Does Milk Matter? Genetic Adaptation to Environment: The Effect of Lactase Persistence on Cultural Change

SHCHERBAK Andrey

LCSR HSE

2 April 2015
Introduction

• The role of ecologic environment:
 – Geography (Diamond, 1997)
 – Pathogens load (Murray and Schaller, 2010), epidemics (Clark, 2010)

• Severe environment means more existential hardship for human societies
 – In-group solidarity, collectivism, ‘tight’ culture vs. ‘loose’ culture (Gelfand et al., 2011)
 – ‘Cool-water’ condition (Welzel, 2013; Welzel and Inglehart, 2013)

• Genetic diversity and prosocial behaviour
Genes and Food traditions

- Diet is an essential part of the environments people are living in
 - Famine, malnutrition and collectivism
 - Climate, geography and food production

- *Diamond*: geographic conditions of Eurasia were the most favorable for earlier sedentary agriculture due to abundance of domesticated cereals and animals. Ever-increasing food production led to earlier population growth and emergence of division of labor, social stratification, urban settlements, and ancient states.

- *Amount* of food is an important factor; is it important *what* people eat?

- Diet is often an outcome of adaptation to geographic environment. For example, ‘a thrifty genotype hypothesis’

- Research provides evidence of genetic adaptation to consumption of milk, sugar, mushrooms, starch, meat, beans, alcohol etc. (Borinskaya et al., 2009).
Hypolactasia (lactose intolerance)

- Lactose intolerance is an inability to digest lactose, a sugar found in milk. Lactose is normally broken down by an enzyme called lactase.
- Lactose intolerance or hypolactasia is associated with gene **LCT**. **LCT* C/T –13910** genotypes are associated with hypolactasia among European populations (f.e., Ingram et al., 2009; Itan et al., 2010). Genotype C/C was reported to be responsible for hypolactasia.
- Frequency of lactose malabsorption (primary hypolactasia) varies dramatically among populations from 2% (Danes) to app. 100% (Chinese, Japanese, Vietnamese) (Kozlov et al., 2005; Borinskaya et al., 2006).
- The lowest frequencies of hypolactasia were found in North-Western Europe, in the areas with the lowest levels of insolation. Low level of insolation means deficit of vitamin D; milk and dairy products are calcium-rich and substitution for vitamin D.
<table>
<thead>
<tr>
<th>Population</th>
<th>LCT* C/T –13910 genotype frequency</th>
<th>Hypolactasia, share of population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>0,344</td>
<td>0,02</td>
</tr>
<tr>
<td>Danes</td>
<td>0,212</td>
<td>0,03</td>
</tr>
<tr>
<td>Swedes</td>
<td>0,069</td>
<td>0,03</td>
</tr>
<tr>
<td>Irish</td>
<td>0,148</td>
<td>0,04</td>
</tr>
<tr>
<td>Finns</td>
<td>0,173</td>
<td>0,17</td>
</tr>
<tr>
<td>Germans</td>
<td>0,437</td>
<td>0,148</td>
</tr>
<tr>
<td>Russians</td>
<td>0,740</td>
<td>0,36-0,53</td>
</tr>
<tr>
<td>Greeks</td>
<td>0,925</td>
<td>0,45</td>
</tr>
<tr>
<td>Italians</td>
<td>0,829</td>
<td>0,71</td>
</tr>
<tr>
<td>Koreans</td>
<td>1,000</td>
<td>0,75</td>
</tr>
<tr>
<td>Iranians</td>
<td>0,810</td>
<td>0,86</td>
</tr>
<tr>
<td>Han</td>
<td>1,000</td>
<td>0,92</td>
</tr>
<tr>
<td>Japanese</td>
<td>1,000</td>
<td>1</td>
</tr>
</tbody>
</table>
The worldwide frequency of LCT* C-13910 genotype
Map summarizing all known lactose persistence SNPs and their worldwide frequencies
Old World LP phenotype frequencies
Lactose persistence

• How to explain this variation?
 – The ‘Calcium assimilation’ hypothesis
 – The ‘Arid environment’ hypothesis
 – The ‘Culture-gene coevolution’ hypothesis
 – The ‘Reverse cause’ hypothesis
Lactose tolerance and social effects
Lit review

• 2 papers by Justin Cook (2013)
 – ‘The Role of Lactase Persistence in Precolonial Development’
 • Positive association between frequency of lactose persistence and population density in the Old World in 1500 CE
 – ‘Potatoes, Milk, and the Old World Population Boom’
 • Positive association between interaction effect of frequency of lactose persistence * potato (land suitability) and population growth in 1700-1900
Lactose tolerance and social effects

• Cochrane and Harpending (2009) argue that a high frequency of the European lactose-tolerance mutation (the 13910-T allele) was the driving advantage for *Proto-Indo-European expansion*.

• Reilly (2013) focuses on the relationship between LP and proliferation of *consanguineous marriage pattern* (marriage between second cousins or more closely related individuals) in the Middle East (from 15.3% in Morocco to as high as 65% in Sudan), especially among Bedouins.

• Nowadays, in China and India, despite the absence of a tradition of dairying milk consumption is understood as an essential element of modernization agenda (Wiley, 2011). Milk becomes a synonym for nation’s growth and strength: to catch up with the West means to narrow the gap in average height between East and West.
Lactose tolerance and social effects

- Baten and Blum (2014), Koepke and Baten (2008): LP as one of determinants of ‘biological standard of living’ (average heights)
- Simoons (1973): ‘non-milking attitude’ in Asia and Africa. Many people say that they do not know how to milk animals or it is unnatural to manipulate the udder of an animal. Moreover, both Asian and African non-milkers believe that milk is an unclean animal fluid, like urine; non-milkers sometimes protest that milk is a disgusting white substance that both smells and tastes bad.
LP as a nutritional advantage

• Milk is a reserve food resource in times of famine
• About 200 kg of milk - a surplus per cow. A liter of whole milk = app. 720 calories; dairy products from the same amount of milk – only app. 400 calories.
• Such nutritional advantage might have contributed to lower inequality in those societies
• Inequality is understood in a) nutritional (well-fed elites vs. starving lower classes with poor monocereal diets), b) exposure to disease (better diet is associated with better health), c) physical strength (better diet and better health make people stronger) and d) reproductive advantage (better health and lower exposure to disease) terms.
• LP and milk consumption -> individual autonomy: Lower classes had more opportunities and resources to protect their rights and property against claims from ruling elites.
Lactase persistence and cultural change

• Can food intolerances affect cultural change?
• Research question: Does lactase persistence as a product of genetic adaptation to the environment affect cultural change in historical perspective?
• I expect that LP affects Emancipative values via individual autonomy that might be reflected in certain historical demographic and social trends.
Data and methods

• Conversion of population-based data into country-level data, using ethno-linguistic approximation. 78 populations

• H: The higher share of population with LP in a given country, the higher is the score for Emancipative Values
Variables

• Lactase persistence frequency
• Emancipative values
• Pathogens history
• Income in 1, 1000, 1500 and 1820
• Population density in 1000, 1500 and 1820
• Child mortality in 1800
• Fertility in 1800
• Average height (cm) in 1850
• Serfdom
• Cattle per capita
• Urban population rate in 1800
Sample

- Cook (2013; 2013a): converts population-based data on lactase persistence (phenotype) into country-based data in three steps.
 - Firstly, he takes data for contemporary ethnic composition of existing polities from Alesina (2003). Secondly, he adjusts data on lactose persistence for populations from Ingram (2009) to ethnic groups indicated in Alesina using linguistic approximation. Finally, he calculates country level estimates for lactose persistence for 118 countries.
 - I used his matrix to calculate estimates of lactose persistence; in some cases I used Ingram (2009) calculations of country level frequency of milk digestors. My new sample includes 78 cases (Europe – 41, Asia – 25, Africa – 12).
Correlation between lactose persistence and Emancipative values

$r=0.637, \ p=0.000\ N = 78$

European sample : $r= 0.766, \ p=0.000$
HDI 2013 and LP

r=0.522 (p<0.000)
LP and income per capita

Income in 1 CE
$r = -0.508, p=0.010, N=25$

Income in 1820 CE
$r = 0.724, p=0.000, N=39$
LP and population density

Pop density in 1500 CE
$r=0.310, \ p=0.006, \ N=78$

Pop density in 1820 CE
$r=0.378, \ p=0.003, \ N=58$
LP and demographic trends

Fertility in 1800 CE
\[r = -0.542, \ p = 0.000, \ N = 76 \]

Child mortality in 1800 CE
\[r = -0.453, \ p = 0.000, \ N = 78 \]
Emancipative Values and milk consumption in 2000 CE

$r=0.714$, $p=0.000$, $N=74$
LP and serfdom

- Individual autonomy means greater capacity to defend one’s rights.
- LP and the emancipation of the serfdom, on European sample (N=33): $r=-0.606$ ($p=0.000$); lactase tolerant societies could enjoy higher degree of freedom
Causal mechanisms

• How to explain the relationship between LP and modernization?

• 1) **Demographic trends** (better nutrition and different reproductive strategies)

• 2) **Cattle husbandry** (unique type of agriculture leads to very efficient economy)
Causal mechanisms

• **Demographic trends** (better nutrition and different reproductive strategies)
 – Fertility and child mortality rates (1800 CE)
• Protein-energy malnutrition is likely to be lower in lactose tolerant societies
• Mokyr (1990): protein-rich diet is crucial for children, and later – for society (technical creativity)
Emancipative Values and LP

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactase persistence</td>
<td>0.637***</td>
<td>0.411***</td>
<td>0.529***</td>
<td>0.420***</td>
<td>0.256**</td>
<td>0.405***</td>
</tr>
<tr>
<td>Fertility 1800</td>
<td>-</td>
<td>-0.478***</td>
<td>-</td>
<td>-</td>
<td>-0.445***</td>
<td>-0.490***</td>
</tr>
<tr>
<td>Child mortality 1800</td>
<td>-</td>
<td>-</td>
<td>-0.237**</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pathogens index</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.338***</td>
<td>-0.270***</td>
<td>-</td>
</tr>
<tr>
<td>Heights 1850, in cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.318***</td>
</tr>
<tr>
<td>R-square</td>
<td>0.405</td>
<td>0.610</td>
<td>0.450</td>
<td>0.473</td>
<td>0.652</td>
<td>0.771</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.397</td>
<td>0.599</td>
<td>0.435</td>
<td>0.458</td>
<td>0.638</td>
<td>0.748</td>
</tr>
<tr>
<td>Observations</td>
<td>78</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>76</td>
<td>33</td>
</tr>
</tbody>
</table>
Causal mechanisms

• Dairy farming and higher economic autonomy. Direct and/or indirect effects?
• Only milk digestors could use livestock/ cattle in the most efficient way
• Crop growing + cattle husbandry
• Multifunctional use of livestock/ cattle: food, manure and muscle power
• (the late Manchu) China: 7,5 mln non-producers of 400 mln people vs. 6 mln non-peasants of 40 mln people in France
• Europeans commanded more working capital per head, esp. in form of livestock
• Europeans held population growth a little below its maximum and kept land back for livestock husbandry and thus held their consumption a little bit higher than in Asia (Jones, 2003).
Causal mechanisms

• A specific type of agriculture with much higher share and role of cattle
• Cattle ‘liberated’ human muscle power – for war and industry on larger scale
• Faster urban growth?
• Ostrom (1990): livestock husbandry and institution-building from below?
Human energy wasting?
Human capital wasting?
Emancipative Values and Cattle per capita

$r = 0.342$, $p = 0.038$, $N = 48$
Emancipative values and LP

<table>
<thead>
<tr>
<th></th>
<th>Model 7</th>
<th>Model 8</th>
<th>Model 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactase persistence</td>
<td>0.567***</td>
<td>0.318***</td>
<td>-</td>
</tr>
<tr>
<td>Urban pop rate 1800</td>
<td>0.174*</td>
<td>0.210**</td>
<td>0.343**</td>
</tr>
<tr>
<td>Pathogens index</td>
<td>-</td>
<td>-0.363***</td>
<td>-</td>
</tr>
<tr>
<td>Cattle, per capita (ln)</td>
<td>-</td>
<td>-</td>
<td>0.304**</td>
</tr>
<tr>
<td>R-square</td>
<td>0.434</td>
<td>0.510</td>
<td>0.233</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.418</td>
<td>0.489</td>
<td>0.198</td>
</tr>
<tr>
<td>Observations</td>
<td>74</td>
<td>74</td>
<td>47</td>
</tr>
</tbody>
</table>
Conclusion

• Lactose tolerant societies are likely to have had a bit higher chances for modernization

• New challenges for neoinstitutional theory
 – Institutions are the sequence of development

• Emerging social structures are affected by genetic adaptation of population to geographic environment
• THANK YOU!
This report was presented at the training methodological workshop "Economic and Social Changes: values effects across Eurasia".

March 31 - April 6, 2015 – Turkey.

На настоящий доклад был представлен на методологическом учебном семинаре «Экономические и социальные изменения: оценка эффектов по всей Евразии».

31 марта – 6 апреля 2015 года – Турция.

http://lcsr.hse.ru/seminar_m2015