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1 Introduction

In calculation of the power indices, both well-known (Banzhaf, Shapley-
Shubik and others [3, 5, 6]) and new (depending on the agent preferences,
[2]) indices, one generally has to enumerate almost all coalitions, that is,
the subsets of the set of players, which makes calculations impossible if the
number of players exceeds fifty.

Yet, if all players have an integer number of votes, there are players
with the same number of votes, many coalitions have equal total number of
votes or the sum of votes of all players is small, then the algorithms based
on calculations using the generating functions become efficient. But these
algoritms work only for classical power indices [4] and some particular types
of the power indices based on agents’ preferences [7].

In this paper we consider an important specific case when all players
have the same number of votes. For classical power indices in this case all
players have the same power, however it is not the case for the indices which
allow the preferences of agents to coaless.

We introduce efficient algorithms for calculation of the latter indices for
most types of these indices [2].

2 Main definitions

Definition 1. A simple game is a pair (N, v), where N = {1, . . . , n} is a
set of agents, v : 2n → {0, 1} is a function, which maps any subset of N to
0 or 1. The function v satisfies monotonicity property, that is, if S and T
are subsets of N , and S is a subset of T , then v(T ) ≥ v(S).

Coalition S is called the winning one if v(S) = 1, and losing otherwise.
Due to monotonicity property, if S and T are winning coalitions and T is a
subset of S, then S is a winning coalition as well.

Definition 2. A weighted game is denoted as a vector of n + 1 positive
numbers w = (q; w1, w2, . . . , wn), where the first component is called a quota,
and the other n components mean predefined number of votes, which each
agent has. A weighted game w determines a simple game (N, v)

N = {1, . . . , n}

v(S) =
{

1,
∑

i∈S wi ≥ q
0, otherwise
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Example 1. Since the last election in 2011, four political parties are rep-
resented in the State Duma of the Russian Federation: United Russia (238
seats), Communist Party of the Russian Federation (92), A Just Russia
(64) and Liberal Democratic Party of Russia (56). All factions have 450
seats in total and consitutional bills pass by two thirds of the total number
of the deputies. So, it is the weighted game with w = (301; 238, 92, 64, 56).

To create a winnig coalition the first and the second (or the third) agents
should coalesce. So, the set of winning coalitios is

W = {{1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}.
Definition 3. Player i ∈ S is a swinger (or a pivotal player) in a coalition
S if S is a winning one and S \ {i} is the loosing coalition.

In the previous example agent 1 is pivotal in any winning coalition, and
agent 3 is a swinger in the coalitions {1, 3} and {1, 3, 4}.

A power index Φ : SGn → Rn associates with each simple game v a
vector Φ(v). Its i-th component is interpreted as a measure of the power of
player i. The best known power indices are Banzhaf and Shapley—Shubik
[6] indices. Below we deal with only Banzhaf power index.

Banzhaf power index (BI) [3] is calculated under the assumption
that power of a player is proportional to the number of coalitions in which
she is a swinger.

The total Banzhaf index TBzi for player i is

TBzi = |Wi|,
where Wi is a set of winnig coalitions, which contain the pivotal player i.

Banzhaf power index (Bzi) is obtained from the general index by the
normalizaton, i. e.

Bzi =
|Wi|∑n

j=1 |Wj | .

Let us calculate both these indices for players in our example. First
player is a swinger in any winning coalition, second player is pivotal in two
winning coalitions ({1, 2} and {1, 2, 4}), the third one is also pivotal in two
coalitions and the last one is not a swinger in any coalition. So, the total
Banzhaf index is equal to

TBz1 = 6, TBz2 = 2, TBz3 = 2, TBz4 = 0,

and normalized Bazhaf index is equal to

Bz1 = 0.6, Bz2 = 0.2, Bz3 = 0.2, Bz4 = 0

4



3 Power indices taking into account agents’
preferences

Consider an example. Let N = {A,B, C} be a set of agents, w = (3; 2, 1, 1).
Winning coalitions are {A,B}, {A, C}, {A,B, C}, Banzhaf index equals
BzA = 3/5, BzB = 1/5, BzC = 1/5. Assume now that agents B and C
decide not to coalesce with each other. Does it affect their capabilities in the
voting? Obviously, coalition {A,B, C} is impossible, but it reduces total
Banzhaf index only for player A, because she is a swinger in that coalition.
So, the values of Banzhaf index are BzA = 1/2, BzB = 1/4, BzC = 1/4. As
we can see, the desire of two players not to coalesce with each other increases
their capabilities in that voting. The same decision may also has an opposite
effect, for example, if players A and B cannot be in one coalition. Then
BzA = 1/2, BzB = 0, BzC = 1/2.

In order to evaluate a connection between a player i and a coalition S,
an intensity function f(i, S) was introduced in [1, 2]. It is assumed that
the desire of the player i to cooperate with the player j can be represented
as pij , 0 ≤ pij ≤ 1. If pij > pik, it means that agent i wants to coalesce
with agent j more than with agent k. The construction of the intensity
function is based on the predefined matrix P = ‖pij‖. Then power indices
are constructed as

α(i, v, P ) =
∑

S,v(S)=1,
v(S\{i})=0

f(i, S),

and

Nα(i, v, P ) =
α(i, v, P )∑n
j=1 α(j, v)

.

There are many ways of construction f(i, S, P ) suggested in [1].
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f+(i, S, P ) =
∑

j∈S

pij

s− 1
, (1)

f−(i, S, P ) =
∑

j∈S

pji

s− 1
, (2)

f(i, S, P ) = (f+(i, S, P ) + f−(i, S, P ))/2, (3)

f(S, P ) =

∑
i,j∈S pij

s(s− 1)
, (4)

f+
max(i, S, P ) = max

j∈S,j 6=i
pij , (5)

f+
min(i, S, P ) = min

j∈S,j 6=i
pij , (6)

fmf (i, S, P ) = (f+
max(i, S, P ) + f+

min(i, S, P ))/2, (7)

f−max(i, S, P ) = max
j∈S,j 6=i

pji, (8)

f−min(i, S, P ) = min
j∈S,j 6=i

pji, (9)

f+
sm(i, S, P ) = d

√
1

s− 1

∑

j∈S

pd
ij , (10)

f−sm(i, S, P ) = d

√
1

s− 1

∑

j∈S

pd
ji, (11)

fmaxmin(S, P ) = max
i∈S

min
j∈S,j 6=i

pij , (12)

fminmax(S, P ) = min
i∈S

max
j∈S,j 6=i

pij , (13)

fmf (S, P ) = (fmaxmin(S, P ) + fminmax(S, P ))/2. (14)

Let us denote as αk(i, v, P ) an α-index based on the intensity function
from formula (k).

Assume that any agent has only one vote. This means that any player
has the same opportunity. Therefore, any original index, which does not
take into account agents’ preferences, will also be the same for anyone. This
result is simply predictable and does not lead to any important conclusion.
However, real possibilities of agents could be strongly distinctive. Conse-
quently, in order to get the whole representation of this type of voting it is
necessary to take into consideration agents’ preferences.
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4 Main results

On evaluation of the indices αk(i, v, P )

As we can see from formulas (1) – (14), in order to calculate α(i, v, P ) we
have to search for all winning coalitions, where agent i is pivotal. In weighted
games i is a swinger in the coalition S, if q >

∑
j∈S\{i} wj ≥ q−wi. As any

agent has only one vote, this inequality can be represented as

q >
∑

j∈S\{i}
1 = |S \ {i}| = |S| − 1 = s− 1 ≥ q − 1

or s = q. Thus, we should enumerate all coalitions S, i ∈ S and s = q.
But sometimes the number of these coalitions can be too large to do that.
Let the number of agents be n and the quota q be approximately equal
to [n/2 + 1]. So, using the Stirling approximation formula, the number of
winning coalitions consisting of pivotal player i would be equal to

(
n− 1
q − 1

)
=

(n− 1)!
(q − 1)!(n− q)!

∼ 1
2
· n!
(n/2)!(n/2)!

∼ 1
2
· nn · √πn · 2n · en

en · nn · (πn)
∼ 2n−1

√
πn

.

When the number of players is more than 500, this value is greater than
10148.

In order to calculate power indices quickly, computational methods must
allow parallel processing. This goal may be achieved by developing the same
methods for power indices with the same structure. Then we can calculate
α-indices deriving one from another.

Example 2. If α1(v) is already calculated, α2(v) can be obtained by apply-
ing the same approach with transposed matrix P ′

f−(i, S, P ) =
∑

j∈S

pji

s− 1
=

∑

j∈S

p′ij
s− 1

= f+(i, S, P ′),

α2(i, v, P ) =
∑

S,i∈S,s=q

f−(i, S, P ) =
∑

S,i∈S,s=q

f+(i, S, P ′) = α1(i, v, P ′).
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It suggests us to classify these indices into several groups:
1. Linear type (1) – (3),
2. Symmetric linear type (4),
3. Max-type (5) – (9),
4. Minkowski type (10), (11),
5. Minimax-type (12) – (14).
In each group only one index should be evaluated, the other are obtained

from it by applying three simple methods:
1) Use the same approach with transposed matrix P ,
2) Replace each element pij of matrix P by (1− pij),
3) Sum up denormalized indices.
Next we will show how this approach works for any group.

4.1 Linear type

α1(i, v, P ) =
∑

S,i∈S,s=q

1
q − 1

∑

j∈S,j 6=i

pij ,

α2(i, v, P ) =
∑

S,i∈S,s=q

∑

j∈S

pji

q − 1
=

∑

S,i∈S,s=q

∑

j∈S

p′ij
q − 1

= α1(i, v, P ′),

α3(i, v, P ) =
∑

S,i∈S,s=q

(f+(i, S, P ) + f−(i, S, P ))/2 =

(α1(i, v, P ) + α1(i, v, P ′))/2.

Let us emphasize four key features of this index
— it is the sum of elements pij , j = 1, . . . , n with appropriate weights

(or non-negative coefficients),
— pxy, x, y 6= i, is included in the sum with zero coefficient,
— as any player has one vote, number of coalitions including i and x is

equal for any x 6= i. So, the coefficient for pix, x 6= i does not depend on
particular x,

— the sum of all coefficients (equal to one another) is

∑

S,i∈S,s=q

1
q − 1

∑

j∈S,j 6=i

1 =
(

n− 1
q − 1

)
· 1
q − 1

· (q − 1) =
(

n− 1
q − 1

)
,

so this sum (as well as any coefficient) does not depend on i.
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Thus we first can evaluate α1(i, v, P ) as

c ·
n∑

j=1,j 6=i

pij ,

where c is a constant, which does not depend on particular i. Therefore,
the normalized α1(i, v, P ) is equal to

Nα1(i, v, P ) =
c ·∑n

j=1,j 6=i pij

c ·∑n
i=1

∑n
j=1,j 6=i pij

=

∑n
j=1,j 6=i pij∑n

i=1

∑n
j=1,j 6=i pij

,

and

Nα2(i, v, P ) =

∑n
j=1,j 6=i pji∑n

i=1

∑n
j=1,j 6=i pji

As we have already mentioned, coefficient c does not depend on ele-
ments of matrix P , so this coefficient is the same for transposed matrix P ′.
Consequently, if α3(i, v, P ) = (α1(i, v, P ) + α2(i, v, P ))/2, then

n∑

i=1

α3(i, v, P ) =
n∑

i=1

(α1(i, v, P ) + α2(i, v, P ))
2

=

1
2
· (c ·

n∑

i=1

n∑

j=1,j 6=i

pij + c ·
n∑

i=1

n∑

j=1,j 6=i

pji) = c ·
n∑

i=1

n∑

j=1,j 6=i

pij .

As a result we obtain

Nα3(i, v, P ) =
1
2
(

α1(i, v, P )
c ·∑n

i=1

∑n
j=1,j 6=i pij

+
α2(i, v, P )

c ·∑n
i=1

∑n
j=1,j 6=i pij

) =

1
2
(Nα1(i, v, P ) + Nα2(i, v, P )).

4.2 Symmetric linear type

α4(i, v, P ) =
∑

S,i∈S,s=q

1
q(q − 1)

∑

j,l∈S,j 6=l

pjl =
1

q(q − 1)

∑

S,i∈S,s=q

∑

j,l∈S,j 6=l

pjl

This index satisfies the first and the third key features of the previous
index. In addition, as appropriate coefficient for element pxy, x 6= y, is
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a number of winning coalitions consist of players x and y (and, obviously,
the pivotal player i), therefore both elements pyx and pxy have the same
coefficients. They are equal to

(
n−3
q−3

)
, if x, y 6= i, or

(
n−2
q−2

)
, otherwise. Let

c = 1
q−2

(
n−3
q−3

)
,
(
n−3
q−3

)
= (q − 2) · c and

(
n−2
q−2

)
= (n− 2) · c. Tnen α4(i, v, P )

can be represented as

α4(i, v, P ) =
1

q(q − 1)


(n− 2) · c ·

n∑

j=1,j 6=i

(pij + pji) +

(q − 2) · c ·
n∑

j,l=1,j,l 6=i,j 6=l

pjl


 .

C =
1

q(q − 1)
· c, (n− 2) = (n− q + q − 2) = (n− q) + (q − 2),

α4(i, v, P ) = C

(
(n− q) ·

n∑

j=1,j 6=i

(pij + pji) + (q− 2) ·
( n∑

j=1,j 6=i

(pij + pji)+

n∑

j,l=1,j,l 6=i,j 6=l

pjl

))
= C

(
(n− q) ·

n∑

j=1,j 6=i

(pij +pji)+(q−2) ·
n∑

j,l=1,j 6=l

pjl

)
,

and

Nα4(i, v, P ) =

C · ((n− q) ·∑n
j=1,j 6=i (pij + pji) + (q − 2) ·∑n

j,l=1,j 6=l pjl

)

C · ((n− q) ·∑n
i,j=1,j 6=i(pij + pji) + n · (q − 2) ·∑n

j,l=1,j 6=l pjl

) .

As
n∑

i,j=1,j 6=i

pij =
n∑

i,j=1,j 6=i

pji =
n∑

j,l=1,j 6=l

pjl

and
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(n− q) + (n− q) + n(q − 2) = 2n− 2q + nq − 2n = q(n− 2),

then

Nα4(i, v, P ) =
(n− q) ·∑n

j=1,j 6=i (pij + pji) + (q − 2) ·∑n
j,l=1,j 6=l pjl

q(n− 2) ·∑n
j,l=1,j 6=l pjl

=

2(n− q)
q(n− 2)

Nα3(i, v, P )+
q − 2

q(n− 2)
=

2(n− q)
q(n− 2)

·Nα3(i, v, P )+
(q − 2)n
q(n− 2)

· 1
n

.

As we have mentioned, Banzhaf power index equals 1
n in this kind of

game, so we can represent Nα4(i, v, P ) as

Nα4(i, v, P ) =
2(n− q)
q(n− 2)

·Nα3(i, v, P ) +
(q − 2)n
q(n− 2)

·Bzi =

n

n− 2
· 2
q
·Nα3(i, v, P )− 2

n− 2
·Nα3(i, v, P ) +

n

n− 2
· q − 2

q
·Bzi.

Let n À 1, so n
n−2 ≈ 1, 2

n−2 ≈ 0 and

Nα4(i, v, P ) =
2
q
·Nα3(i, v, P ) + (1− 2

q
) ·Bzi.

As we can see from this formula, Nα4(i, v, P ) is approximately equals
Banzhaf power index with large q.

4.3 Max-type

α5(i, v, P ) =
∑

S,i∈S,s=q

max
j∈S,j 6=i

pij ,

α6(i, v, P ) =
∑

S,i∈S,s=q

min
j∈S,j 6=i

pij =

∑

S,i∈S,s=q

(1− max
j∈S,j 6=i

(1− pij)) =
(

n− 1
q − 1

)
− α5(i, v,1− P ),

α7(i, v, P ) =
∑

S,i∈S,s=q

(f+
max(i, S, P ) + f+

min(i, S, P ))/2 =

(α5(i, v, P ) +
(

n− 1
q − 1

)
− α5(i, v,1− P ))/2,
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α8(i, v, P ) =
∑

S,i∈S,s=q

f−max(i, S, P ) =

∑

S,i∈S,s=q

f+
max(i, S, P ′) = α5(i, v, P ′),

α9(i, v, P ) =
∑

S,i∈S,s=q

f−min(i, S, P ) =

∑

S,i∈S,s=q

f+
min(i, S, P ′) =

(
n− 1
q − 1

)
− α5(i, v,1− P ′),

where 1 is a square matrix of order n consisting of ones.
Required index is a sum of elements pij , j 6= i, with different coefficients

cj . Let pij1 = maxj 6=i pij for some j1. The number of winning coalitions S
such that i, j1 ∈ S, s = q, is

(
n−2
q−2

)
. All these coalitions include player j1,

so f+
max(i, S, P ) = maxj∈S,j 6=i pij = pij1 as well. Consequently, cj1 =

(
n−2
q−2

)
.

Then let j2 be such that pij2 = maxj 6=i,j1 pij . The number of winning
coalitions S such that i, j2 ∈ S, j1 /∈ S, s = q, is

(
n−3
q−2

)
. These coalitions

include player j2, but do not include player j1, so f+
max(i, S, P ) = pij2 . This

implies cj2 =
(
n−3
q−2

)
. Similarly, cjk

=
(
n−k−1

q−2

)
, where pjk

is a k-th element
in the i-th row of the matrix P , sorted in descending order, k ≤ n− q + 1.
For k > n − q + 1 it would be impossible to construct a winning coalition
consisting of n− (k − 1) < q players, so the coefficient cjk

is equal to zero.
To sum up, the method can be divided into two steps. First, we need to

sort elements in row, and second, sum every element with the corresponding
coefficient.

Let p1 be the maximal element of {pi1, pi2, . . . , pin}/{pii}, p2 be the
second largest element, . . . , pn−1 be the minimal element of this set. Then
the corresponding α-index is equal to

α5(i, v, P ) =
(

n− 2
q − 2

)
· p1 +

(
n− 3
q − 2

)
· p2 + . . . +

(
q − 2
q − 2

)
· pn−q+1.

Then this index can be simply normalized.
Computational complexity of this approach is to sort elements in any

row. The fastest method of sorting is ’heapsort’, which sorts elements in
one row in O(n log n), so it can put elements of matrix P in right order and
calculate α-index in O(n2 log n).
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4.4 Minkowski type

α10(i, v, P ) =
∑

S,i∈S,s=q

d

√
1

q − 1

∑

j∈S,j 6=i

pd
ij ,

α11(i, v, P ) =
∑

S,i∈S,s=q

f−sm(i, S, P ) =
∑

S,i∈S,s=q

f+
sm(i, S, P ′) = α10(i, v, P ′).

In general this problem is too complex to solve it fast. For instance, if all
elements of matrix P are different, we need to search every set of q agents.
Besides, we can use some approximate statistical methods, but it is difficult
to estimate errors of these methods. To simplify the problem we assume that
each element pij ∈ M = {0, 1

m , 2
m , . . . , m

m = 1}, |M | = m + 1. It means that
preferences of agent i can be ranged with some scale providing comparison
of any two categories. With this assumption we can deal with categories,
not agents, cause any two agents in one category are indistinguishable. Let
r = (r0, r1, . . . , rm), rj - number of players in category j (pix = j

m , if x from
category j), and ls = (ls0, l

s
1, . . . , l

s
m), where lsj is a quantity of players from

category j (lsj ≤ rj) in the winning coalition S including pivotal player i

(
∑m

j=0 lsj = (q − 1)). These agents with i form the winning coalition S. So,
for any vector ls the intensity function can be calculated as

f(i, S, P ) = f(i, ls) = d

√√√√ 1
q − 1

m∑

j=1

lsj · (
j

m
)
d

.

The number of subsets of lsj distinct players from category j is equal to
binomial coefficient (

rj

lsj

)
.

The number of subsets of ls0 agents from the category 0, ls1 agents from the
category 1, . . . , lsm agents from the category m is equal to

c(ls) =
(

r0

ls0

)
·
(

r1

ls1

)
· · ·

(
rm

lsm

)
.

As α10(i, v, P ) is the sum of intensity functions f(i, S, P ) = f(i, ls), the
value of f(i, ls) occurs in the sum c(ls) times. Then

α10(i, v, P ) =
∑

S,i∈S,s=q

d

√
1

q − 1

∑

j∈S,j 6=i

pd
ij =

∑

ls

c(ls) · d

√√√√ 1
q − 1

m∑

j=1

lsj · (
j

m
)
d
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The number of different values of intensity function is equal to the num-
ber of vectors ls. The latter (without assumption lsj ≤ rj , j = 0, . . . ,m) can
be calculated as

|{ls}| =
(

q − 1 + m

m

)
.

The real number of vectors ls is less than this value.
Assume that calculation of intensity function takes O(1). Then the

quantity of required operations is proportional to the number of vectors ls.
Obviously, if m = n, the latter is equal to the number of winning coalitions
S including pivotal player i. Therefore, this approach is reasonable to apply
only with small values of m.

5 Conclusion

These algorithms were written to calculate the power indices for the council
of the European union (near 700 agents) and for the Russian State Duma
(450 agents).

The table below we give the complexity of evoluation of the main types
of indices obtained above.

Index Nα1 Nα4 Nα5 Nα10 Nα12

Complexity O(n2) O(n2) O(n2 · log n) O(n · nm) O(2n)
As

it can be seen from the table, the algorithms for Minkowsky and minimax
types of indices have exponential complexity.
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