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1 Introduction

In calculation of the power indices, both well-known (Banzhaf, Shapley-
Shubik and others [3, 5, 6]) and new (depending on the agent preferences,
[2]) indices, one generally has to enumerate almost all coalitions, that is,
the subsets of the set of players, which makes calculations impossible if the
number of players exceeds fifty.

Yet, if all players have an integer number of votes, there are players
with the same number of votes, many coalitions have equal total number of
votes or the sum of votes of all players is small, then the algorithms based
on calculations using the generating functions become efficient. But these
algoritms work only for classical power indices [4] and some particular types
of the power indices based on agents’ preferences [7].

In this paper we consider an important specific case when all players
have the same number of votes. For classical power indices in this case all
players have the same power, however it is not the case for the indices which
allow the preferences of agents to coaless.

We introduce efficient algorithms for calculation of the latter indices for
most types of these indices [2].

2 Main definitions

Definition 1. A simple game is a pair (N,v), where N = {1,...,n} is a
set of agents, v : 2™ — {0,1} is a function, which maps any subset of N to
0 or 1. The function v satisfies monotonicity property, that is, if S and T
are subsets of N, and S is a subset of T, then v(T) > v(S5).

Coalition S is called the winning one if v(S) = 1, and losing otherwise.
Due to monotonicity property, if S and T are winning coalitions and 7" is a
subset of S, then S is a winning coalition as well.

Definition 2. A weighted game is denoted as a vector of n + 1 positive
numbers w = (¢; wy,wa, . . ., wy), where the first component is called a quota,
and the other n components mean predefined number of votes, which each
agent has. A weighted game w determines a simple game (N, v)

N=A{1,...,n}

u(S) = { L) eswi 24

1 0, otherwise



Example 1. Since the last election in 2011, four political parties are rep-
resented in the State Duma of the Russian Federation: United Russia (238
seats), Communist Party of the Russian Federation (92), A Just Russia
(64) and Liberal Democratic Party of Russia (56). All factions have 450
seats in total and consitutional bills pass by two thirds of the total number
of the deputies. So, it is the weighted game with w = (301;238, 92,64, 56).

To create a winnig coalition the first and the second (or the third) agents
should coalesce. So, the set of winning coalitios is

w={{1,2},{1,3},{1,2,3},{1,2,4},{1,3,4},{1,2,3,4} }.

Definition 3. Player i € S is a swinger (or a pivotal player) in a coalition
S if S is a winning one and S\ {i} is the loosing coalition.

In the previous example agent 1 is pivotal in any winning coalition, and
agent 3 is a swinger in the coalitions {1,3} and {1, 3,4}.

A power index ® : SG,, — R™ associates with each simple game v a
vector ®(v). Its i-th component is interpreted as a measure of the power of
player i. The best known power indices are Banzhaf and Shapley—Shubik
[6] indices. Below we deal with only Banzhaf power index.

Banzhaf power index (BI) [3] is calculated under the assumption
that power of a player is proportional to the number of coalitions in which
she is a swinger.

The total Banzhaf index T'Bz; for player 7 is

where W; is a set of winnig coalitions, which contain the pivotal player i.

Banzhaf power index (Bz;) is obtained from the general index by the
normalizaton, i. e.

Wil
E?:l ‘W]| .

Let us calculate both these indices for players in our example. First
player is a swinger in any winning coalition, second player is pivotal in two
winning coalitions ({1, 2} and {1,2,4}), the third one is also pivotal in two
coalitions and the last one is not a swinger in any coalition. So, the total
Banzhaf index is equal to

BZZ‘ =

TBZl = 6,TBZQ = 2,TBZg = 2,TBZ4 = 07
and normalized Bazhaf index is equal to

Bz = 0.6, Bzs = 0.2, Bz3 = 0.2, Bzy = 0



3 Power indices taking into account agents’
preferences

Consider an example. Let N = {A, B, C'} be a set of agents, w = (3;2,1,1).
Winning coalitions are {4, B}, {A,C}, {A, B,C}, Banzhaf index equals
Bzy = 3/5, Bzp = 1/5, Bz = 1/5. Assume now that agents B and C
decide not to coalesce with each other. Does it affect their capabilities in the
voting? Obviously, coalition {A, B,C} is impossible, but it reduces total
Banzhaf index only for player A, because she is a swinger in that coalition.
So, the values of Banzhaf index are Bz4 = 1/2, Bzg = 1/4, Bzc = 1/4. As
we can see, the desire of two players not to coalesce with each other increases
their capabilities in that voting. The same decision may also has an opposite
effect, for example, if players A and B cannot be in one coalition. Then
Bza=1/2, Bzp =0, Bzc =1/2.

In order to evaluate a connection between a player i and a coalition S,
an intensity function f(i,.5) was introduced in [1, 2]. Tt is assumed that
the desire of the player i to cooperate with the player j can be represented
as pi;,0 < pi; < 1. If pi; > pix, it means that agent ¢ wants to coalesce
with agent j more than with agent k. The construction of the intensity
function is based on the predefined matrix P = ||p;;||. Then power indices

are constructed as
a(i,o,P)= > f(58),

S,w(9)=1,
v(S\{i})=0

and
a(i,v, P)
Z;L:l a(]) U) .

There are many ways of construction f(i,.5, P) suggested in [1].

Na(i,v, P) =



(i, S, P) p” (1)

JGS
f7(.8,P) = Sp_—l (2)
jeSs
f(i,8,P) = (f7(i,8,P) + f~(i,5, P)) /2, (3)
1(5,P) = a;sﬁ ()
f;ax(ia S, P) = jrgg‘aj);&ipij’ (5)
min(t,5,P) = _min, pij, (6)
fmp (6,8, P) = (frnaa(is S, P) + frin(is S, P)) /2, (7)
fmaw(z S P) jglsa); p]“ (8)
frnin (@, S, P) = ensur;é Dijis (9)
fam (@, S, P) 1/ (10)
jGS
fom (1,8, P) ‘/ (11)
jGS
fmaa:mzn<s P) = Ifleas)(]gé};lilpij7 (12)
fminmam(sv P) I;Iélg’l]glgai};zp 7 (13)
f'mf(S7 P) = (fmawmin(sa P) + fnbin’maw(sa P))/2 (14)

Let us denote as o (i, v, P) an a-index based on the intensity function
from formula (k).

Assume that any agent has only one vote. This means that any player
has the same opportunity. Therefore, any original index, which does not
take into account agents’ preferences, will also be the same for anyone. This
result is simply predictable and does not lead to any important conclusion.
However, real possibilities of agents could be strongly distinctive. Conse-
quently, in order to get the whole representation of this type of voting it is
necessary to take into consideration agents’ preferences.



4 Main results

On evaluation of the indices o*(i, v, P)

As we can see from formulas (1) — (14), in order to calculate «(i,v, P) we
have to search for all winning coalitions, where agent i is pivotal. In weighted
games 7 is a swinger in the coalition S, if ¢ > ZjeS\{i} wj > q¢—w;. As any
agent has only one vote, this inequality can be represented as

g> Y 1=[S\{i}|=|S|-1=s-1>¢—1
jes\{i}

or s = ¢q. Thus, we should enumerate all coalitions S, i € S and s = q.
But sometimes the number of these coalitions can be too large to do that.
Let the number of agents be n and the quota ¢ be approximately equal
to [n/2 + 1]. So, using the Stirling approximation formula, the number of
winning coalitions consisting of pivotal player ¢ would be equal to

(n—l) (n—1)! 1 n!
¢-1) " G-Din—q! ~ 2" m/2)n/2)!
N}nn\/ﬁQnen N2n—1

2 er-nn-(mn) N

When the number of players is more than 500, this value is greater than
10148.

In order to calculate power indices quickly, computational methods must
allow parallel processing. This goal may be achieved by developing the same
methods for power indices with the same structure. Then we can calculate
a-indices deriving one from another.

Example 2. If a'(v) is already calculated, o®(v) can be obtained by apply-
ing the same approach with transposed matriz P’

F(,8 Py =3 P =¥ i pe(i,5,P),

ey s—1 s s—1
(v, P)= > f(6,8P)= > i, P)=a'(iv,P).
S,i€85,s=q S,i€8S,s=q



It suggests us to classify these indices into several groups:
. Linear type (1) — (3),
. Symmetric linear type (4),
. Max-type (5) — (9),
. Minkowski type (10), (11),

5. Minimax-type (12) — (14).

In each group only one index should be evaluated, the other are obtained
from it by applying three simple methods:

1) Use the same approach with transposed matrix P,

2) Replace each element p;; of matrix P by (1 — p;;),

3) Sum up denormalized indices.

Next we will show how this approach works for any group.

=~ N

4.1 Linear type

al(i,v, P) = Z

1
-1 Z Dij,

S,i€S5,s=q JES,j#i
) o
o?(i,v, P) = Z Z%: Z Z%:al(i,v,P’),
S,icSs=qjes 1~ S,icSs—qjes 1

o’i,0,P)= > (f*(i,8,P)+ f(i,5,P))/2 =

S,i€S,s=q
(a'(i,v, P) + & (i, v, P")) /2.

Let us emphasize four key features of this index

— it is the sum of elements p;;,j = 1,...,n with appropriate weights
(or non-negative coefficients),

— Dy, T, Y # 1, is included in the sum with zero coefficient,
— as any player has one vote, number of coalitions including 7 and z is

equal for any x # i. So, the coefficient for p;.,x # i does not depend on
particular z,

— the sum of all coefficients (equal to one another) is
1 n—1 1 n—1
> S =) e n=(00),
, q—1 <~ =1/ q-1 q
S,i€8,s=q JES,j#1

so this sum (as well as any coefficient) does not depend on .



Thus we first can evaluate ol (i, v, P) as

n
Z Pij,
J=1,j#i
where c is a constant, which does not depend on particular i. Therefore,
the normalized o' (i, v, P) is equal to

1¢; € Yoy Pig 2 j=1,52i Pis
Nao (Za v, P) = n n = n n s
€D im1 2ajm1 i Pis Doim1 D,z Pid
and s
1 Did
Na?(i,v, P) = J=Lizi 9t

st Z?:Lj;sipji

As we have already mentioned, coefficient ¢ does not depend on ele-
ments of matrix P, so this coefficient is the same for transposed matrix P’.
Consequently, if a3(i,v, P) = (a'(i,v, P) + o?(i,v, P))/2, then

al(i,v, P) + o2(i,v, P
ZMUP _y @i P) e P)

2
=1
1 n n n n n n
RO WD IPTEIS 3 SFULEYS o) off
i=1 j=1,j#i i=1 j=1,j7i i=1j=1,j
As a result we obtain
1 al(i,v, P) a?(i,v, P)

Na?(i,v, P) = ( )=

+
Zz 12] 1,]7$sz] ¢ Ez 12] l,j;élpzj
§(Na1(i,v,P)+Na (i,v, P)).

4.2 Symmetric linear type

ot (i,v, P) = Z 0 Z P = ﬁ Z Z Djt

5,i€5,5=q Q(q T juEs g S,i€5,5=q j,1E5,j#1

This index satisfies the first and the third key features of the previous
index. In addition, as appropriate coeflicient for element p.,, = # y, is



a number of winning coalitions consist of players x and y (and, obviously,
the pivotal player i), therefore both elements p,, and pmy have the same

coeflicients. They are equal to ("_3), if x,y # i, or (2_2), otherwise. Let
c= q%z(;”:g), (Z:g) =(¢—2)-cand (" g) (n —2)-c. Tnen o*(i,v, P)
can be represented as

n

1

0442.71)7P - n—2)-c- ii + i) +
Jj=1,j7#i
(g—2)-c- Z it
J’lzls.]’l#%]?él
C=——— (-2 =(n—g+q-2) = (n—g)+(q—2)
- &= n=qTq- n—q)+(q—2),
q(g—1)

n

allio. ) =C (=0 3 G+ + =2 (X o+

Jj=1g#i Jj=1,j#i
n n n
> )= ( > gt Y )
Gl=1,4,14,5#1 j=1j#i =151
and
Na'(i,v, P) =
C-((n—aq) - 3271 s i +pji) + (@ —2) - 307121 j Pit)
- ((” —q)- ZZj:lJ;éi(pij +pji) +n-(¢g—2)- Z?,l:l,j;él pjl)
As
n n n
Do Pi= D, mi= >, P
i,j=1,j#1 i,j=1,j7#1 Jil=1,5#1
and

10



(n—q)+(n—q)+n(qg—2)=2n—2q+nqg—2n=q(n—2),
then

(n—a) 31 jzs Pij +050) + (0 —2) 271 Pt

(i, v =

Noi,v, P) Q(n_2)‘2?,1:1,j¢1pjl
20— q) 300 =2 _2(n—4q) N 5. (g=2)n 1
an—2) e P T S gy N e P ey

As we have mentioned, Banzhaf power index equals % in this kind of
game, so we can represent Na'(i,v, P) as

2(n —q) (q—2)n

Nat(i,v, P) = =——% . Na3(i,v, P) + -Bz; =
q(n—2) q(n—2) !
"2 NGdi,u, P)— —— Na(i,v,P)+ —— .12 .
-=-Na*(i,v,P) — —— - Na*(i,v - *—= . Bz
n—2 q Y n—2 T n—2
Let n>> 1, s0 -5 ~ 1, =%, ~ 0 and

2 2
Na'(i,v,P) = = - Na?(i,v,P) 4+ (1 — =) - Bz.
q q

As we can see from this formula, Na?(i,v, P) is approximately equals
Banzhaf power index with large q.

4.3 Max-type

5 .
a’(i,v, P) = E ‘glqa‘);ipij,
S,iES,s:qJ J

a®(i,v, P) = Z min p;; =

S.icS.smq ) EHIT
-1
Z (1= max (1—pij)) = <n 1) —a’(i,v,1 - P),
S,i€S,s=q JES,j#1 g

(6,0, P)= S (fiaeli, S, P)+ f1,.(1,5,P)) /2 =
S,i€8,s=q

n—1
q—1

(®(i,v, P) + ( ) —a’(i,v,1 - P))/2,

11



048(1'71;7]3) = Z f';mx(ivs7p) =

S,i€S,s=q

Z fntaxZSP/)_a(zUP)

S,3€8,s=q

ag(i7’(}7p): Z fm'm,ZSP)

S,1€8,s=q
-1
Z frﬁzn Z S P/) (n 1) —045(2',1},1—Pl)7
S,i€8,s=q a-

where 1 is a square matrix of order n consisting of ones.

Required index is a sum of elements p;;, j # %, with different coefficients

. Let p;j, = max;x; p;; for some j;. The number of winning coalitions S
such that 7,5; € S, s = ¢, is (" 2) All these coalitions include player ji,
SO frhaw (6,5, P) = max;es jzi pij = pij, as well. Consequently, ¢;, = (273).
Then let jo» be such that p;;, = max;;; p;;. The number of winning
coalitions S such that i,j2 € S,j1 ¢ S, s = ¢, is (Z_S’) These coalitions
include player jo, but do not include player j;, so 1,5, P) = pij,. This
implies ¢;, = (Z:g) Similarly, ¢;, = (";fgl), where pj, is a k-th element
in the i-th row of the matrix P, sorted in descending order, k <n — g+ 1.
For k > n — ¢+ 1 it would be impossible to construct a winning coalition
consisting of n — (k — 1) < ¢ players, so the coefficient c;, is equal to zero.

To sum up, the method can be divided into two steps. First, we need to
sort elements in row, and second, sum every element with the corresponding
coeflicient.

Let p; be the maximal element of {p;1,pia,...,Pin}/{Pii}, P2 be the
second largest element, ..., p,_1 be the minimal element of this set. Then
the corresponding a-index is equal to

. n—2 n—3 q—2
O£5(’L,’U,P): (q_2> P1+<q_2) p2++(q_2) *Pn—q+1-

Then this index can be simply normalized.

Computational complexity of this approach is to sort elements in any
row. The fastest method of sorting is "heapsort’, which sorts elements in
one row in O(nlogn), so it can put elements of matrix P in right order and
calculate a-index in O(n? logn).

maz (

12



4.4 Minkowski type

a'(i,v, P) = Z

Sicss=q \ 47 jes 2
a(i,v, P) = Z fam(i, S, P) = Z (1,8, P'") = o' (i,v, P).
S,i€S,s=q S,1€8,s=q

In general this problem is too complex to solve it fast. For instance, if all
elements of matrix P are different, we need to search every set of ¢ agents.
Besides, we can use some approximate statistical methods, but it is difficult
to estimate errors of these methods. To simplify the problem we assume that
each element p;; € M = {0, -, m, ooy =1}, [M| = m+1. It means that
preferences of agent i can be ranged with some scale providing comparison
of any two categories. With this assumption we can deal with categories,
not agents, cause any two agents in one category are indistinguishable. Let
r=(r9,71,...,"m), r; - number of players in category j (piz = %v if  from
category j), and I° = (I, l{,...,l},), where [$ is a quantity of players from
category j (ls < r;) in the winning coalition S including pivotal player ¢
(ZJ oli = (g —1)). These agents with ¢ form the winning coalition S. So,
for any vector [® the intensity function can be calculated as

LS = Fi0) = ¢ S (A
f(la s )—f(Z, )_ q—l;j'(%)'

The number of subsets of /7 distinct players from category j is equal to
binomial coefficient
i

The number of subsets of I§ agents from the category 0, I{ agents from the
category 1, ..., [7, agents from the category m is equal to

=) (1) (i)

As al%(i,v, P) is the sum of intensity functions f(i, S, P) = f(i,1°), the
value of f(i,1°) occurs in the sum ¢(I®) times. Then

a'(i,v, P) =

mj
Z'%




The number of different values of intensity function is equal to the num-

ber of vectors {*. The latter (without assumption I5<r;,j=0,... ,m) can
be calculated as )
qg—1+m
°} = .
= ("7

The real number of vectors [* is less than this value.

Assume that calculation of intensity function takes O(1). Then the
quantity of required operations is proportional to the number of vectors [°.
Obviously, if m = n, the latter is equal to the number of winning coalitions
S including pivotal player i. Therefore, this approach is reasonable to apply
only with small values of m.

5 Conclusion

These algorithms were written to calculate the power indices for the council
of the European union (near 700 agents) and for the Russian State Duma
(450 agents).

The table below we give the complexity of evoluation of the main types

of indices obtained above.
Index Nat Not NaP Nato Nal?

Complexity | O(n?) | O(n?) | O(n?-logn) | O(n-n™) | O(2")
it can be seen from the table, the algorithms for Minkowsky and minimax
types of indices have exponential complexity.

As
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