Game theoretic aspects of of matching problems under preferences (2nd talk)

Péter Biró
Institute of Economics
Hungarian Academy of Sciences
peter.biro@krtk.mta.hu

Summer school on matchings
Moscow
5-8 October 2015

Outline

- Matching with couples
- Stable fractional solutions for capacitated NTU-games
- Scarf's algorithm as a new heuristic
- Matching with payments

四［inbo．．．

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

- P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Hospitals / Residents problem with couples

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

the ranking of NY Queens Hospital: Eve, Bill the ranking of NY Memorial Hospital: Bill, Adam

Roth (1984): Stable solution may not exist.
Ronn (1990): The related decision problem is NP-complete.
B.-Irving-Schlotter (2011): NP-complete even for master lists.
B.-Manlove-McBride (2014): NP-complete even for preference lists of length 2 on both sides.

Heuristics are used in the applications...

[^0]
Some more examples...

Applicants:	Adam and Eve	Romeo and Julia
1st choice:	(NY Memorial, NY Queens)	(NY Memorial, NY Queens)

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia
Note 1: No applicant-optimal solution

- P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory Review 15(2), 1340008 (2013).

Some more examples...

Applicants:	Adam and Eve	Romeo and Julia
1st choice:	(NY Memorial, NY Queens)	(NY Memorial, NY Queens)
2nd choice:		(SF General, SF Kaiser)

```
NY Memorial: Romeo, Adam
NY Queens: Eve, Julia
SF General: Julia
SF Kaiser: Romeo
```

Note 2: No rural hospital theorem

[^1]
Some more examples...

Adam and Eve	Romeo and Julia	Bill
(NY Memorial, NY Queens)	(NY Memorial, NY Queens)	SF Kaiser
	(SF General, SF Kaiser)	SF General

NY Memorial:	Romeo, Adam
NY Queens:	Eve, Julia
SF General:	Romeo, Bill
SF Kaiser:	Bill, Julia

Note 3: No path to stability

[^2]
Some more examples...

Adam and Eve	Romeo and Julia	Bill
(NY Memorial, NY Queens)	(NY Memorial, NY Queens)	NY Queens
	(SF General, SF Kaiser)	SF General

NY Memorial:	Romeo, Adam
NY Queens:	Eve, Bill, Julia
SF General:	Romeo, Bill
SF Kaiser:	Julia

common ranking: Eve, Romeo, Bill, Julia, Adam
Note 4: No strategy proof mechanism that always outputs a stable matching if there exists one

- P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory Review 15(2), 1340008 (2013).

Some more examples...

Adam and Eve	Romeo and Julia	Bill
(NY Memorial, NY Queens)	(NY Memorial, NY Queens) (SF General, SF Kaiser)	NY Memorial SF General

NY Memorial:	Romeo, Bill, Adam
NY Queens:	Eve, Julia
SF General:	Romeo, Bill
SF Kaiser:	Julia

common ranking: Eve, Romeo, Bill, Julia, Adam
Note 4: No strategy proof mechanism that always outputs a stable matching if there exists one

- P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory Review 15(2), 1340008 (2013).

Economics/Game Theory literature

- A. E. Roth. The evolution of the labor market for medical interns and residents: a case study in game theory. Journal of Political Economy, 6(4):991-1016, 1984.
- A. E. Roth and E. Peranson. The redesign of the matching market for American physicians: Some engineering aspects of economic design. American Economic Review, 89(4):748-780, 1999.
- A. E. Roth. The economist as engineer: Game Theory, Experimentation, and Computation as tools for design economics. Econometrica, 70:1341-1378, 2002.
- B. Klaus and F. Klijn. Stable matchings and preferences of couples. Journal of Economic Theory, 121:75-106, 2005.
- B. Klaus and F. Klijn. Paths to stability for matching markets with couples. Games and Economic Behavior, 58:158-171, 2007.
- B. Klaus, F. Klijn, and J. Massó. Some things couples always wanted to know about stable matchings (but were afraid to ask). Review of Economic Design, 11:175-184, 2007.
- F. Kojima, P.A. Pathak, and A.E. Roth. Matching with Couples: Stability and Incentives in Large Markets. Quarterly Journal of Economics, 128(4): 1585-1632, 2013.

The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design

By Alyin E. Roth and Elliott Peranson ${ }^{2}$

Abstract

We report on the design of the new clearinghouse adopted by the National Resident Matching Program, which annually fills approximately 20,000 jobs for new physicians. Because the market has complementarities between applicants and between positions, the theory of simple matching markets does not apply directly. However, computational experiments show the theory provides good approximations. Furthermore, the set of stable matchings, and the opportunities for strategic manipulation, are surprisingly small. A new kind of "core convergence" result explains this; that each applicant interviews only a small fraction of available positions is important. We also describe engineering aspects of the design process. (JEL C78, B41, J44)

The entry-level labor market for new physicians in the United States is organized via a centralized clearinghouse called the National Resident Matching Program (NRMP). Each year, approximately 20,000 jobs are filled in a process in which graduating physicians and other applicants interview at residency programs throughout the country and then compose and submit Rank Order Lists (ROLs) to the NRMP, each indicating an applicant's prefer-
employment, rather than waiting to participate in the larger market. (By the 1940's, contracts were typically being signed two years in advance of employment.) Although the matching algorithm has been adapted over time to meet changes in the structure of medical employment, roughly the same form of clearinghouse market mechanism has been used since 1951 (see Roth, 1984). The kind of market failure that gave rise to this clearinghouse has since been
Ele Edit View $\underline{\text { Go Help }}$
H
Previous Next

Maths / Computer Science literature

- E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285-304, 1990.
- B. Aldershof and O.M. Carducci. Stable matchings with couples. Discrete Applied Mathematics, 68:203-207, 1996.
- J. Sethuraman, C-P. Teo, and L. Qian. Many-to-one stable matching: geometry and fairness. Mathematics of Operations Research, 31:581-596, 2006.
- E. McDermid and D.F. Manlove. Keeping partners together: Algorithmic results for the hospitals / residents problem with couples. Journal of Combinatorial Optimization, 19:279-303, 2010.
- D. Marx and I. Schlotter. Stable assignment with couples: parameterized complexity and local search. Discrete Optimization, 8:25-40, 2011.
- P. Biró, R.W. Irving, I. Schlotter. Stable matching with couples - an empirical study. Journal of Experimental Algorithmics, 16, Article No.: 1.2, 2011.
- I. Ashlagi, M. Braverman, and A. Hassidim. Stability in large matching markets with complementarities. Forthcoming in Operations Research, 2014.

Location: 9 http://wrvrver.nes.scot.nhs. uk/sfas/About/default.asp

NHS Education for Scotland (NES)

NHS
 scotland

SCOTTISH FOUNDATION ALLOCATION SCHEME (SFAS)

NAVIGATION

- About SFAS

- Prog. by Region
- How to Apply
- Terms \& Conditions
- Help
- Comments
- Open Days
- Useful Links
- Disclaimer
- Back to NES Home

Home $>$ Sfas $>$ About

SFAS 2010 Timetable - click to view

Post Compatibility (xis) - click to view (Compatible Posts are marked in Blue) for linked applications

Scottish Scoring Comparison Chart (xis)

The SFAS matching scheme
The SFAS Matching Scheme uses a computer program that aims to produce a matching that best satisfies the applicants' preferences. The algonithm that underlies this program was developed in the Department of Computing Science at the University of Glasgow, and is based on state-of-the-art research into optimal matching.

Introduction

The matching algorithm takes account of the following factors:

- the number of places in each programme
the preference list of each individual applicant
the score of each applicant
which pairs of applicants are linked
- the compatibility information on programmes (from the viewpoint of linked applicants).

The algonthm is complicated by the need to deal with linked pairs in a fair way. giving them neither an advantage nor a disadvantage over single applicants, and ensuring that, if they are matched, then it is to compatible programmes. The description below is initially in terms of single applicants, and then an indication is given of the adaptations needed to accommodate linked pairs of applicants.

The algorithm-main idea
The first step is a tie-breaking step in which applicants with equal scores are randomly ordered. In effect, each applicant is given a unique score, but if applicant a had a higher original score than applicant b this will still be true for the revised scores.
The main body of the algorithm can be viewed as a sequence of attempts to match an applicant to a programme. At any point during the progress of the algorithm, an applicant is either matched (at least temporarily) or unmatched. Initially, each applicant's best achievable preference is the first entry on his/her preference list. At each step of the algorithm, a random applicant is chosen from those who are unmatched, and an attempt is made to match this applicant to his/her best achievable preference. If the programme has at least one free place then the match is accepted. Otherwise score is displaced; if not the match is rejected a rejection or a displacement, results in the best achievable preference being advanced by ane score is isplaced, if rot the match is rejected. A rejection, or a displacement, psult in the best achable prelerence being advanced by one position in the list of the applicant concerned. The process terminates when each applicant is either matched or has been rejected by, or displaced from, all of the programmes on his/her preference list

The resulting matching has the crucial stability property, namely:

- there ran be no anolirant a who would nrefer to be matrhed to nonoramene n. and at the same time n has an unfilled nlare or an assioned

Stable matching with couples - theory and practice

Péter Birós ${ }^{1, *, \dagger}$, Robert W. Irving ${ }^{2, *}$ and Ildikó Schlotter ${ }^{3, \ddagger}$
${ }^{1}$ Institute of Economics, Hungarian Academy of Sciences, H-1112, Budaörsi út 45, Budapest, Hungary Email: birop@econ.core.hu.
${ }^{2}$ School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: rob.irving@glasgow.ac.uk.
${ }^{3}$ Budapest University of Technology and Economics, H-1521 Budapest, Hungary Email: ildi@cs.bme.hu. I

Abstract

In practical applications, algorithms for the classical version of the Hospitals Residents problem (the many-one version of the Stable Marriage problem) may have to be extended to accommodate the needs of couples who wish to be allodated to (geographically) compatible places. Such an extension has been in operation in the NRMP matching scheme in the US for a number of years. In this setting, a stable matching need not exist, and it is an NP-complete problem to decide if one does. However, the only previous empirical study in this context (focused on the NRMP algorithm), together with information from NRMP, suggest that, in practice, stable matchings do exist and that an appropriate heuristic can be used to find such a matching.

The study presented here was motivated by the recent decision to accommodate couples in the Scottish Foundation Allocation Scheme (SFAS), the Scottish equivalent of the NRMP. Here, the problem is a special case, since hospital preferences are derived from a 'master list' of resident scores, but we show that the existence problem remains NP-complete in this case. We describe the algorithm used in SFAS, and contrast it with a version of the alcorithm that forms the basis of the NRMP approach. We

Table 2: Instances of size 500 (5 seconds per instance)

[^3]
Some more examples...

Adam and Eve		Romeo and Julia		Bill
(NY Memorial, NY Queens) (LA Lincoln, LA Hollywood)		(SF General, SF Kaiser) (NY Memorial, NY Queens) (LA Lincoln, LA Pacific)		NY Queens
		SF General		
and	David and Victoria		Cliff	
	(LA Hollywood, LA Sunset)		LA Hollywood	

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria
Note 5: Inevitable failure of heuristics based on best applications

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Some more examples...

Adam and Eve		Romeo and Julia		Bill		
(NY Memorial, NY Queens) (LA Lincoln, LA Hollywood)		(SF General, SF Kaiser)(NY Memorial, NY Queens) (LA Lincoln, LA Pacific)		NY Queens		
		SF General				
and	David and Victoria		Cliff			
	(LA Hollywood			LA Sunset)	LA Hollywood LA Sunset	

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria
Note 5: Inevitable failure of heuristics based on best applications

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Some more examples...

Adam and Eve		Romeo and Julia		Bill
(NY Memorial, NY Queens) (LA Lincoln, LA Hollywood)		(SF General, SF Kaiser)(NY Memorial, NY Queens)(LA Lincoln, LA Pacific)		NY Queens
		SF General		
and	David and Victoria		Cliff	
	(LA Hollywood, LA Sunset)		LA Hollywood LA Sunset	

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria
Note 5: Inevitable failure of heuristics based on best applications

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

Now, something completely different... (!?)

Definitions: a general setting

Set of residents: $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where $\mathcal{A}=\mathcal{S} \cup \mathcal{C}$, i.e., single residents and couples. Set of hospitals: $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ with $c\left(h_{p}\right)$ denoting the capacity of hospital h_{p}.
Set of applications, E, has three types $\left(E=E^{S} \cup E^{J} \cup E^{C}\right)$

- E^{S} : single application from a single resident to a hospital
- E^{J} : joint application from a couple to a pair of hospitals
- E^{C} : combined application from a couple to a hospital

Each application specifies one or two employments, respectively.
A matching M is a set of employments specified by a set of (accepted) applications E_{M}, where no resident is employed in more than one hospital and no hospital employs more residents than its quota.

Preferences:

- the single residents and couples have strict preferences over the applications
- the hospitals have strict rankings over the residents, which generates choice functions over the set of applications (and thus over the set of residents).

Stability: no blocking application, which would be chosen by each party involved in the application when offered together with the currently accepted applications of that party.

Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

- If a single application $\left[a_{i} \rightarrow h_{p}\right.$] is rejected then h_{p} filled its quota with better residents than a_{i} (i.e., the resident did not meet the cutoff score).
- If a joint application $\left[\left(a_{i}, a_{j}\right) \rightarrow\left(h_{p}, h_{q}\right)\right]$ is rejected then either h_{p} or h_{q} filled its quota with better applicants than a_{i} or a_{j}, respectively.

Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

- If a single application [$a_{i} \rightarrow h_{p}$] is rejected then h_{p} filled its quota with better residents than a_{i} (i.e., the resident did not meet the cutoff score).
- If a joint application $\left[\left(a_{i}, a_{j}\right) \rightarrow\left(h_{p}, h_{q}\right)\right]$ is rejected then either h_{p} or h_{q} filled its quota with better applicants than a_{i} or a_{j}, respectively.

This generates the choices of the hospitals over the set off applications:
Adam, Bill, Eve and Adam, Romeo, Julia, Eve

Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

- If a single application [$a_{i} \rightarrow h_{p}$] is rejected then h_{p} filled its quota with better residents than a_{i} (i.e., the resident did not meet the cutoff score).
- If a joint application $\left[\left(a_{i}, a_{j}\right) \rightarrow\left(h_{p}, h_{q}\right)\right]$ is rejected then either h_{p} or h_{q} filled its quota with better applicants than a_{i} or a_{j}, respectively.
This generates the choices of the hospitals over the set off applications: Adam, Bill, Eve and Adam, Romeo, Julia, Eve

The creation of the hospitals' choice functions:

- Each hospital h_{p} has a strict ranking $\succ_{h_{p}}$ over the residents.
- This defines weak preferences $\geq_{h_{p}}$ over the applications according to the corresponding residents making single or joint applications or the weakest members of couples making combined applications.
(- Ties: one resident can submit several joint applications to a hospital).
- Refined strict preference $>_{h_{p}}$ is where the above ties are broken according to the residents' preferences.
- Choice function $C h_{h_{p}}$ over the set of applications is derived as follows: h_{p} accepts each application from $X \subseteq E$ in the order of $>_{h_{p}}$ such that no two applications from the same couple are accepted and its quota is not violated. - We call this type of choice functions, derived from refined strict preferences over applications, quota-responsive.

Notes on Cooperative Game Theory

For Stable Marriage problem, set of stable matchings $=$ core of the corresponding CFG

Notes on Cooperative Game Theory

For Stable Marriage problem, set of stable matchings $=$ core of the corresponding CFG

For the matching with couples problem with quota-responsive choice functions where each hospital has one position only: set of stable matchings $=$ strong core of the corresponding NTU-game for $\geq=$ core of the corresponding NTU-game for $>$

Notes on Cooperative Game Theory

For Stable Marriage problem, set of stable matchings $=$ core of the corresponding CFG

For the matching with couples problem with quota-responsive choice functions where each hospital has one position only: set of stable matchings $=$ strong core of the corresponding NTU-game for $\geq=$ core of the corresponding NTU-game for $>$

Scarf (1967): Every balanced NTU-game has nonempty core. (Scarf's algorithm always returns a core element for such games)

Notes on Cooperative Game Theory

For Stable Marriage problem, set of stable matchings $=$ core of the corresponding CFG

For the matching with couples problem with quota-responsive choice functions where each hospital has one position only: set of stable matchings $=$ strong core of the corresponding NTU-game for $\geq=$ core of the corresponding NTU-game for $>$

Scarf (1967): Every balanced NTU-game has nonempty core. (Scarf's algorithm always returns a core element for such games)
But what if an NTU-game is not balanced? The Scarf algorithm still returns a (fractional) core solution...

Stable (fractional) matchings

bipartite graph
Marriage problem
Gale-Shapley '62:
\exists stable matching

Stable (fractional) matchings

bipartite graph	nonbipartite graph	
Marriage problem	Roommates problem	
Gale-Shapley '62:		
\exists stable matching		

For every vertex v, let $<_{v}$ be a linear order on the edges incident with v. A weight-function $x: E(G) \rightarrow\{0,1\}$ is a matching if $\sum_{v \in e} x(e) \leq 1$ for every $v \in V(G)$.

Stable (fractional) matchings

bipartite graph	nonbipartite graph	
Marriage problem	Roommates problem	
Gale-Shapley '62:		
\exists stable matching		

For every vertex v, let $<_{v}$ be a linear order on the edges incident with v. A weight-function $x: E(G) \rightarrow\{0,1\}$ is a matching if $\sum_{v \in e} x(e) \leq 1$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq_{v} f} x(f)=1$. (every non-matching edge is "dominated" at some vertex.)

Stable (fractional) matchings

bipartite graph	nonbipartite graph	
Marriage problem	Roommates problem	
Gale-Shapley '62:		
\exists stable matching		

For every vertex v, let $<_{v}$ be a linear order on the edges incident with v. A weight-function $x: E(G) \rightarrow\{0,1\}$ is a matching if $\sum_{v \in e} x(e) \leq 1$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq{ }_{v} f} x(f)=1$.

- Gale-Shapley (1962): Stable matching may not exist!

Stable (fractional) matchings

bipartite graph	nonbipartite graph
Marriage problem	Roommates problem
Gale-Shapley ‘62:	Tan ‘90:
\exists stable matching	\exists stable half-matching

For every vertex v, let $<_{v}$ be a linear order on the edges incident with v. A weight-function $x: E(G) \rightarrow\{0,1\}$ is a matching if $\sum_{v \in e} x(e) \leq 1$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq{ }_{v} f} x(f)=1$.

- Gale-Shapley (1962): Stable matching may not exist!
- Tan (1990): Stable half-matching always exists! i.e. $x(e) \in\left\{0, \frac{1}{2}, 1\right\}$. Here: $x(\{B, C\})=x(\{C, D\})=$ $x(\{B, D\})=\frac{1}{2}$

Stable (fractional) matchings

bipartite graph	nonbipartite graph	hypergraph
Marriage problem	Roommates problem	Coalition Formation Game
Gale-Shapley '62:	Tan '90:	Aharoni-Fleiner '03 (Scarf '67):
\exists stable matching	\exists stable half-matching	\exists stable fractional matching

For every vertex v, let $<_{v}$ be a linear order on theedges incident with v. A weight-function $x: E(G) \rightarrow\{0,1\}$ is a matching if $\sum_{v \in e} x(e) \leq 1$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq{ }_{v} f} x(f)=1$.

Aharoni-Fleiner (2003): Scarf's algorithm returns a stable fractional matching, as defined above with $x(e) \in[0,1]$.

An example: stable fractional matching

Applicants:	Bill	Adam and Eve
1st choice: 2nd choice:	Queens	(Memorial, Queens)

ranking of NY Queens: Eve, Bill ranking of NY Memorial: Bill, Adam

An example: stable fractional matching

Applicants:	Bill	Adam and Eve
1st choice: 2nd choice:	Queens	(Memorial, Queens)

ranking of NY Queens: Eve, Bill ranking of NY Memorial: Bill, Adam

Each coalition has weight $\frac{1}{2}$ in the stable fractional matching

An example: stable fractional matching

Applicants:	Bill	Adam and Eve
1st choice: 2nd choice:	Queens	(Memorial, Queens)

ranking of NY Queens: Eve, Bill ranking of NY Memorial: Bill, Adam

Each coalition has weight $\frac{1}{2}$ in the stable fractional matching
What is the meaning of a fractional solution?
-These can be seen as part-time contracts...

An example: stable fractional matching

Applicants:	Bill	Adam and Eve
1st choice:	Queens	(Memorial, Queens)
2nd choice:	Memorial	

ranking of NY Queens: Eve, Bill ranking of NY Memorial: Bill, Adam

Each coalition has weight $\frac{1}{2}$ in the stable fractional matching
What is the meaning of a fractional solution?
-These can be seen as part-time contracts...
What if the fractional solution obtained is integral?
-Then it corresponds to a stable matching (or a core element).
Thus the Scarf algorithm can be used as a heuristic to find a stable matching (or to find a core element in any NTU-game).

Stable b-matchings: agents with capacities

bipartite graph		
College Admissions		
Gale-Shapley '62:		
\exists stable matching		

Let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a (b-)matching if $\sum_{v \in e} x(e) \leq b(v)$ for every $v \in V(G)$.

Stable b-matchings: agents with capacities

bipartite graph		
College Admissions		
Gale-Shapley '62:		
\exists stable matching		

Let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a (b-)matching if $\sum_{v \in e} x(e) \leq b(v)$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq_{v} f} x(f)=b(v)$. (every non-matching edge is "dominated" at some vertex.)

Stable b-matchings: agents with capacities

bipartite graph	nonbipartite graph
College Admissions	Stable Fixtures
Gale-Shapley '62:	Biró-Fleiner '03:
\exists stable matching	\exists stable half-matching

Let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a (b-)matching if $\sum_{v \in e} x(e) \leq b(v)$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq_{v} f} x(f)=b(v)$.
Biró-Fleiner (2003): A stable half-matching can be found efficiently for nonbipartite graphs.

Cechlárová-Fleiner (2005), Irving-Scott (2007): A stable matching can be found in linear time, if one exists ("Stable Multiple Activities" or "Stable Fixtures").

Stable b-matchings: agents with capacities

bipartite graph	nonbipartite graph	hypergraph
College Admissions	Stable Fixtures	CFG with agent-capacities
Gale-Shapley '62:	Biró-Fleiner '03:	Biró-Fleiner '10:
\exists stable matching	\exists stable half-matching	\exists stable fractional matching

Let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a (b-)matching if $\sum_{v \in e} x(e) \leq b(v)$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq v} x(f)=b(v)$.

Biró-Fleiner (2010): A stable fractional matching can be found by an extension of Scarf's algorithm for hypergraphs.

Stable b-matchings: agents with capacities

bipartite graph	nonbipartite graph	hypergraph
College Admissions	Stable Fixtures	CFG with agent-capacities
Gale-Shapley '62:	Biró-Fleiner '03:	Biró-Fleiner '10:
\exists stable matching	\exists stable half-matching	\exists stable fractional matching

Let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a (b-)matching if $\sum_{v \in e} x(e) \leq b(v)$ for every $v \in V(G)$.

A matching is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq v} x(f)=b(v)$.

Biró-Fleiner (2010): A stable fractional matching can be found by an extension of Scarf's algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the case when hospitals have capacities, but no couple may apply for a pair of positions at the same hospital.
The stable matchings as defined here are stable matchings for the matching with couples problem, and vice versa.

A motivating example for stable schedules

Researchers' contributions in projects sponsored by the Hungarian Scientific Research Fund:

Each researcher can be involved in several running projects, but she has to declare her contribution in each project, and her total contribution cannot exceed 1.0 at any time.

Similar requirements apply for the grant applications of the French National Research Agency.

Stable schedules

Let $r_{v}(e)$ denote v 's contribution in contract e, and
let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a schedule if $\sum_{v \in e} r_{v}(e) \cdot x(e) \leq b(v)$ for every $v \in V(G)$.

- P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable matchings. To appear in Discrete Optimization.

Stable schedules

Let $r_{v}(e)$ denote v 's contribution in contract e, and
let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a schedule if
$\sum_{v \in e} r_{v}(e) \cdot x(e) \leq b(v)$ for every $v \in V(G)$.
A schedule is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq_{v} f} r_{v}(f) \cdot x(f)=b(v)$. (every non-active edge is "dominated" at some vertex.)

- P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable matchings. To appear in Discrete Optimization.

Stable schedules

Let $r_{v}(e)$ denote v 's contribution in contract e, and
let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a schedule if
$\sum_{v \in e} r_{v}(e) \cdot x(e) \leq b(v)$ for every $v \in V(G)$.
A schedule is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq_{v} f} r_{v}(f) \cdot x(f)=b(v)$.

Biró-Fleiner (2012): A stable fractional schedule can be found by an extension of Scarf's algorithm for hypergraphs.

- P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable matchings. To appear in Discrete Optimization.

Stable schedules

Let $r_{v}(e)$ denote v 's contribution in contract e, and
let $b: V(G) \rightarrow \mathbb{Z}_{+}$be vertex-bounds.
A weight-function $x: E(G) \rightarrow\{0,1\}$ is a schedule if
$\sum_{v \in e} r_{v}(e) \cdot x(e) \leq b(v)$ for every $v \in V(G)$.
A schedule is stable if for every $e \in E(G)$, either $x(e)=1$, or there is a vertex $v \in e$ s.t. $\sum_{e \leq{ }_{v} f} r_{v}(f) \cdot x(f)=b(v)$.

Biró-Fleiner (2012): A stable fractional schedule can be found by an extension of Scarf's algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples! In the general case, where each combined applications is a contract with 1 contribution for the couple and 2 for the hospital. Stable schedules correspond to stable matchings for the couples' market, but not the other way!

[^4]
Experiments on random samples with 500 applicants

| | Number of couples | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Algorithm | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 |
| Roth-Perantson | 952 | 897 | 701 | 547 | 395 | 277 | 170 | 83 | 41 | 9 | 3 |
| Best heuristics in B-I-S | 976 | 958 | 911 | 870 | 811 | 752 | 682 | 546 | 281 | 71 | 10 |
| Scarf (int. solution) | 895 | 813 | 649 | 532 | 426 | 356 | 316 | 261 | 202 | 174 | 158 |
| Scarf half-int. solution | 999 | 997 | 978 | 958 | 918 | 859 | 816 | 777 | 692 | 695 | 588 |
| Scarf frac. solution | 105 | 187 | 351 | 468 | 574 | 644 | 684 | 739 | 798 | 826 | 842 |
| Av. \# of frac. weights | 3.9 | 4.8 | 5.7 | 6.7 | 7.6 | 8.8 | 10.0 | 10.8 | 12.8 | 13.5 | 15.7 |
| \# of frac. weights $=1$ | 41 | 61 | 104 | 127 | 119 | 126 | 106 | 114 | 97 | 85 | 69 |
| \# of frac. weights $=2$ | 2 | 9 | 21 | 30 | 36 | 41 | 43 | 43 | 44 | 48 | 41 |
| \# of frac. weights $=3$ | 14 | 14 | 29 | 38 | 38 | 33 | 35 | 44 | 29 | 36 | 22 |
| \# of frac. weights $=4$ | 7 | 18 | 19 | 25 | 40 | 37 | 39 | 38 | 30 | 32 | 41 |
| \# of frac. weights $=5$ | 11 | 19 | 18 | 25 | 33 | 42 | 34 | 30 | 40 | 28 | 30 |

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

- P. Biró, T. Fleiner and R.W. Irving, Matching couples with Scarf's algorithm. In the Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.

Experiments on random samples with 500 applicants

| | Number of couples | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Algorithm | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 |
| Roth-Perantson | 952 | 897 | 701 | 547 | 395 | 277 | 170 | 83 | 41 | 9 | 3 |
| Best heuristics in B-I-S | 976 | 958 | 911 | 870 | 811 | 752 | 682 | 546 | 281 | 71 | 10 |
| Scarf (int. solution) | 895 | 813 | 649 | 532 | 426 | 356 | 316 | 261 | 202 | 174 | 158 |
| Scarf half-int. solution | 999 | 997 | 978 | 958 | 918 | 859 | 816 | 777 | 692 | 695 | 588 |
| Scarf frac. solution | 105 | 187 | 351 | 468 | 574 | 644 | 684 | 739 | 798 | 826 | 842 |
| Av. \# of frac. weights | 3.9 | 4.8 | 5.7 | 6.7 | 7.6 | 8.8 | 10.0 | 10.8 | 12.8 | 13.5 | 15.7 |
| \# of frac. weights $=1$ | 41 | 61 | 104 | 127 | 119 | 126 | 106 | 114 | 97 | 85 | 69 |
| \# of frac. weights $=2$ | 2 | 9 | 21 | 30 | 36 | 41 | 43 | 43 | 44 | 48 | 41 |
| \# of frac. weights $=3$ | 14 | 14 | 29 | 38 | 38 | 33 | 35 | 44 | 29 | 36 | 22 |
| \# of frac. weights $=4$ | 7 | 18 | 19 | 25 | 40 | 37 | 39 | 38 | 30 | 32 | 41 |
| \# of frac. weights $=5$ | 11 | 19 | 18 | 25 | 33 | 42 | 34 | 30 | 40 | 28 | 30 |

Scarf's algorithm performs very well for high proportion of couples!

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

- P. Biró, T. Fleiner and R.W. Irving, Matching couples with Scarf's algorithm. In the Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.

Experiments on random samples with 500 applicants

| | Number of couples | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Algorithm | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 |
| Roth-Perantson | 952 | 897 | 701 | 547 | 395 | 277 | 170 | 83 | 41 | 9 | 3 |
| Best heuristics in B-I-S | 976 | 958 | 911 | 870 | 811 | 752 | 682 | 546 | 281 | 71 | 10 |
| Scarf (int. solution) | 895 | 813 | 649 | 532 | 426 | 356 | 316 | 261 | 202 | 174 | 158 |
| Scarf half-int. solution | 999 | 997 | 978 | 958 | 918 | 859 | 816 | 777 | 692 | 695 | 588 |
| Scarf frac. solution | 105 | 187 | 351 | 468 | 574 | 644 | 684 | 739 | 798 | 826 | 842 |
| Av. \# of frac. weights | 3.9 | 4.8 | 5.7 | 6.7 | 7.6 | 8.8 | 10.0 | 10.8 | 12.8 | 13.5 | 15.7 |
| \# of frac. weights $=1$ | 41 | 61 | 104 | 127 | 119 | 126 | 106 | 114 | 97 | 85 | 69 |
| \# of frac. weights $=2$ | 2 | 9 | 21 | 30 | 36 | 41 | 43 | 43 | 44 | 48 | 41 |
| \# of frac. weights $=3$ | 14 | 14 | 29 | 38 | 38 | 33 | 35 | 44 | 29 | 36 | 22 |
| \# of frac. weights $=4$ | 7 | 18 | 19 | 25 | 40 | 37 | 39 | 38 | 30 | 32 | 41 |
| \# of frac. weights $=5$ | 11 | 19 | 18 | 25 | 33 | 42 | 34 | 30 | 40 | 28 | 30 |

Scarf's algorithm performs very well for high proportion of couples!

Biró-Manlove-McBride: Experiments by IP techniques show that around 70% of these instances with couples only are solvable.

P P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

- P. Biró, T. Fleiner and R.W. Irving, Matching couples with Scarf's algorithm. In the Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.

Integer programming techniques (David Manlove's talk)

- Model developed by lain McBride (2013)
- Solved using CPLEX IP solver
- Random instances, scalability (preference lists of length between 5 and 10):
- 5000 residents, 500 hospitals, 500 couples, 5000 posts ($\times 25$)
- solved in 99.6 seconds on average
- 10000 residents, 1000 hospitals, 1000 couples, 10000 posts (x1)
- solved in 10 minutes
- Random instances, solvability / sizes of largest stable matchings found:
- 500 residents, 50 hospitals, 250 couples, 500 posts ($\times 1000$)
- around 70% of instances were solvable
- Average time taken 75 s per instance
- SFAS instances:

- 2012: 710 residents, stable matching of size 681 found in 16 s
- 2011: 736 residents, stable matching of size 688 found in 17 s
- 2010: 734 residents, stable matching of size 681 found in 65 s
- P. Biró, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and Integer Programming models. To appear in Proceedings of SEA 2014: the 13th International Symposium on Experimental Algorithms, Lecture Notes in Computer Science, Springer, 2014.

Matching with payments

marriage $=$ one-to-one market with no transfers (?)

implicit assumptions on 'marriage':

1. Everybody can have at most one partner
2. Only men and women can marry each other
3. No dowry (no transfer)

marriage $=$ one-to-one market with no transfers (?)

The relaxation of the
 implicit assumptions on 'marriage':

1. Everybody can have at most one partner \rightarrow stable b-matching for bipartite graph =College Admissions (resident allocation)
2. Only men and women can marry each other
3. No dowry (no transfer)

marriage $=$ one-to-one market with no transfers (?)

The relaxation of the
 implicit assumptions on 'marriage':

1. Everybody can have at most one partner
2. Only men and women can marry each other \rightarrow stable matching for nonbipartite graphs =Roommates problem (kidney exchange)
3. No dowry (no transfer)

marriage $=$ one-to-one market with no transfers (?)

The relaxation of the
 implicit assumptions on 'marriage':

1. Everybody can have at most one partner
2. Only men and women can marry each other
3. No dowry (no transfer)
\rightarrow stable matching for bipartite graphs with TU =Assignment Game ("the market")

All possible models with relaxations

		two-sided	one-sided
capa- city NTU stable marriage problem TU TUU stable roommates problem			
	TU	multiple partners assignment game	matching game

Notes on the problems with no payments

	two-sided	one-sided
	stable marriage	
capacity	college admissions	

Gale-Shapley (1962): A stable matching always exists for the marriage problem, and the same result holds for the many-to-one college admissions problem.

Notes on the problems with no payments

	two-sided	one-sided
	stable marriage	stable roommates
capacity	college admissions	

- Gale-Shapley (1962): Stable matching may not exist!
- Irving (1985): A stable matching can be found in $O(m)$ time, if one exists.
- Tan (1990): Stable half-matching always exists. + The same odd cycles are formed in every stable solution.
- Diamantoudi et al. (2004): Path to stability result.

Notes on the problems with no payments

	two-sided	one-sided
	stable marriage	stable roommates
capacity	college admissions	stable fixtures

- Gale-Shapley (1962):
 Stable matching may not exist!
- Irving (1985): A stable matching can be found in $O(m)$ time, if one exists.
- Tan (1990): Stable half-matching always exists. + The same odd cycles are formed in every stable solution.
- Diamantoudi et al. (2004): Path to stability result.
- Irving-Scott (2007): The stable fixtures problem can be solved efficiently.
- Cechlárová-Fleiner (2005): The problem can be reduced to the stable roommates problem with a simple graph construction.

Graph reduction by Cechlárová-Fleiner 2005

Graph reduction by Cechlárová-Fleiner 2005

- stable matchings of the capacitated market correspond to stable matchings in the reduced non-capacitated market...

Stable matchings with or without payments

Stable matchings with or without payments

- Stable matching problems with payments can be seen as stable matching problems with contracts.
- Stable matchings with contracts can be reduced to stable matching problems (with the Cechlárová-Fleiner construction).

Basic graph theoretical notions

$G(N, E)$ graph, nodes: $N=\{\ldots, i, \ldots, j, \ldots\}$, edges: $E=\{\ldots, i j, \ldots\}$
A matching is a set of independent edges $M \subseteq E$,
i.e., it can be described with its characteristic function:
$x: E \rightarrow\{0,1\}:$ for each $i \in N, \sum_{j \in N} x(i j) \leq 1$.
For given edge-weights $w: E \rightarrow \mathbb{R}_{+}, c: N \rightarrow \mathbb{R}_{+}$is a cover, if for each $i j \in E, c(i)+c(j) \geq w_{i j}$.

Basic graph theoretical notions

$G(N, E)$ graph, nodes: $N=\{\ldots, i, \ldots, j, \ldots\}$, edges:
$E=\{\ldots, i j, \ldots\}$
A matching is a set of independent edges $M \subseteq E$,
i.e., it can be described with its characteristic function:
$x: E \rightarrow\{0,1\}:$ for each $i \in N, \sum_{j \in N} x(i j) \leq 1$.
For given edge-weights $w: E \rightarrow \mathbb{R}_{+}, c: N \rightarrow \mathbb{R}_{+}$is a cover, if for each $i j \in E, c(i)+c(j) \geq w_{i j}$.

Egerváry 1931: If G is bipartite then
maximum weight of a matching $=$ minimum value of a cover

Basic graph theoretical notions

$G(N, E)$ graph, nodes: $N=\{\ldots, i, \ldots, j, \ldots\}$, edges:
$E=\{\ldots, i j, \ldots\}$
A matching is a set of independent edges $M \subseteq E$,
i.e., it can be described with its characteristic function:
$x: E \rightarrow\{0,1\}:$ for each $i \in N, \sum_{j \in N} x(i j) \leq 1$.
For given edge-weights $w: E \rightarrow \mathbb{R}_{+}, c: N \rightarrow \mathbb{R}_{+}$is a cover, if for each $i j \in E, c(i)+c(j) \geq w_{i j}$.

Egerváry 1931: If G is bipartite then
maximum weight of a matching $=$ minimum value of a cover
Balinski 1965: If G is nonbipartite then maximum weight of a half-matching $=$ minimum value of a cover

linear programming, duality theorem

LP: max. weight frac. matching
DLP: minimum value cover

$$
\max \sum_{i j \in E} w_{i j} x(i j)
$$

$$
\min \sum_{i \in N} y(i)
$$

s.t. $\sum_{j: i j \in E} x(i j) \leq 1$ for each $i \in N$ s.t. $y(i)+y(j) \geq w_{i j}$ for each $i j \in E$
where $0 \leq x(i j)$ for each $i j \in E \quad$ where $0 \leq y(i)$ for each $i \in N$,
maximum weight matching $=\max _{I P} \leq \max _{h I P} \leq \max _{L P}=$ $=\min _{D L P}=$ minimum value cover

Note: The theorem of Egerváry is implied by the fact the incidence matrix of any bipartite graph is totally unimodular.

Nonbipartite graphs: the role of half-matching

Balinski (1965): The maximum weight of a half-matching is equal to the minimum value of a cover.

Simple proof: duplication technique (Nemhauser-Trotter, 1975): $G(N, E) \rightarrow G^{d}\left(N^{d}, E^{d}\right)$, where $N^{d}=N_{1} \cup N_{2}$, $i \in N \rightarrow i_{1} \in N_{1}, i_{2} \in N_{2}$
$i j \in E \rightarrow i_{1} j_{2}, i_{2} j_{1} \in E^{d}$, and $w^{d}\left(i_{1} j_{2}\right)=w^{d}\left(i_{2} j_{1}\right)=\frac{1}{2} w(i j)$.
Let x^{d} be a maximum weight matching and c^{d} a minimum value cover in G^{d}. Let us define $x(i j)=\frac{x^{d}\left(i_{1} j_{2}\right)+x^{d}\left(i_{2} j_{1}\right)}{2}$ for each edge and $c(i)=c\left(i_{1}\right)+c\left(i_{2}\right)$ for each vertex.
We can verify that x is a half-matching, c is a minimum cover in G s.t.

$$
w(x)=w^{d}\left(x^{d}\right)=c^{d}\left(N^{d}\right)=c(N)
$$

Corollary: We can compute a maximum weight half-matching (and also a minimum cover) efficiently by the Hungarian method.

Example for the duplication construction

$$
\max _{I P}\left(G^{d}\right) \leq \max _{h I P}(G) \leq \min _{D L P}(G) \leq \min _{D L P}\left(G^{d}\right)
$$

but $\max _{I P}\left(G^{d}\right)=\min _{D L P}\left(G^{d}\right)$ so we have $=$ everywhere!

Game theory: Koopmans-Beckmann (1957, Econometrica)

stable matching with payments:
Let $G(N, E)$ be a bipartite graph, where $N=I \cup J$ (buyers-sellers), and $w: E \rightarrow \mathbb{R}_{+}$edge-weights (value of pairs).

A solution is a pair (M, p), where $M \subseteq E$ is a matching and $p: N \rightarrow \mathbb{R}_{+}$are the payments of the agents such that

- $i j \in M \rightarrow p(i)+p(j)=w_{i j}$ and
- i is not covered by $M \rightarrow p(i)=0$.

A solution is stable if for each $i j \in E \backslash M: p(i)+p(j) \geq w_{i j}$.

Game theory: Koopmans-Beckmann (1957, Econometrica)

stable matching with payments:
Let $G(N, E)$ be a bipartite graph, where $N=I \cup J$ (buyers-sellers), and $w: E \rightarrow \mathbb{R}_{+}$edge-weights (value of pairs).

A solution is a pair (M, p), where $M \subseteq E$ is a matching and $p: N \rightarrow \mathbb{R}_{+}$are the payments of the agents such that

- $i j \in M \rightarrow p(i)+p(j)=w_{i j}$ and
- i is not covered by $M \rightarrow p(i)=0$.

A solution is stable if for each $i j \in E \backslash M: p(i)+p(j) \geq w_{i j}$.
Observation: (M, p) is stable $\Longleftrightarrow M$ is a maximum weight matching and p is a minimum cover.

So the Egerváry thm implies the Koopmans-Beckmann thm:

The stable matching problem with payments is always solvable.

Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let $G(N, E)$ be a bipartite graph, where $N=I \cup J$ (buyers-sellers), and $w: E \rightarrow \mathbb{R}_{+}$edge-weights (value of pairs).

We define a TU-game (N, v) as follows. For any coalition $S \subseteq N$, let $v(S)=$ maximum weight of a matching on S, the value of S. $u: N \rightarrow \mathbb{R}_{+}$is an imputation if $\sum_{i \in N} u(i)=u(N)=v(N)$. u is in the core of the game if for each $S \subseteq N, v(S) \leq u(S)$.

Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let $G(N, E)$ be a bipartite graph, where $N=I \cup J$ (buyers-sellers), and $w: E \rightarrow \mathbb{R}_{+}$edge-weights (value of pairs).
We define a TU-game (N, v) as follows. For any coalition $S \subseteq N$, let $v(S)=$ maximum weight of a matching on S, the value of S. $u: N \rightarrow \mathbb{R}_{+}$is an imputation if $\sum_{i \in N} u(i)=u(N)=v(N)$. u is in the core of the game if for each $S \subseteq N, v(S) \leq u(S)$.

Observation: u is in the core $\Longleftrightarrow u$ is not blocked by any pair. u is in the core $\Longleftrightarrow(M, u)$ is a stable matching with payments
Koopmans-Beckmann thm implies Shapley-Shubik thm:
The assignment game has a nonempty core.

Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let $G(N, E)$ be a bipartite graph, where $N=I \cup J$ (buyers-sellers), and $w: E \rightarrow \mathbb{R}_{+}$edge-weights (value of pairs).
We define a TU-game (N, v) as follows. For any coalition $S \subseteq N$, let $v(S)=$ maximum weight of a matching on S, the value of S. $u: N \rightarrow \mathbb{R}_{+}$is an imputation if $\sum_{i \in N} u(i)=u(N)=v(N)$. u is in the core of the game if for each $S \subseteq N, v(S) \leq u(S)$.

Observation: u is in the core $\Longleftrightarrow u$ is not blocked by any pair. u is in the core $\Longleftrightarrow(M, u)$ is a stable matching with payments
Koopmans-Beckmann thm implies Shapley-Shubik thm:
The assignment game has a nonempty core.
+Shapley-Shubik 1971: The set of stable solutions forms a lattice with a buyer-optimal and a seller-optimal solution.

Generalisations of the assignment game

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	
capacitated		

Generalisations of the assignment game

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	
capacitated	multiple partners a.g.	

Sotomayor: multiple partners assignment game
1992: stable solution exists
1999, IJGT: the stable solutions form a lattice
2007, JET: competitive equilibria exist and form a sub-lattice (competitive equilibrium: each seller gets the same payment from any of her buyers, which can be seen as the price of her goods)

Generalisations of the assignment game

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	

Biró-Kern-Paulusma 2012: A matching game has a stable solution \Longleftrightarrow the maximum weight of a matching is equal to the maximum weight of a half-matching. (Thus it can be decided efficiently with Edmonds' algorithm and with the Hungarian method.)

Generalisations of the assignment game

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	

Biró-Kern-Paulusma 2012: A matching game has a stable solution \Longleftrightarrow the maximum weight of a matching is equal to the maximum weight of a half-matching. (Thus it can be decided efficiently with Edmonds' algorithm and with the Hungarian method.)

Path to stability for assignment games

For an unstable state (M, p), satisfying a blocking pair ij $\notin M$ means that we get a new state $\left(M^{\prime}, p^{\prime}\right)$ such that
$-i j \in M^{\prime}, p^{\prime}(i)+p^{\prime}(j)=w(i j), p^{\prime}(i) \geq p(i)$ and $p^{\prime}(j) \geq p(j)$

- if i was matched in M then $M(i)$ is unmatched in M^{\prime}
- agents outside i, j and their partners in M are not affected.

Biró-Bomhoff-Golovach-Kern-Paulusma (2014, TCS): If a stable solution exists then one can be reached in at most $2 n$ steps.

References

Matching with payments, assignment game

- T.C. Koopmans and M. Beckmann. Assignment problems and the location of economic activities. Econometrica, 25(1), 53-76 (1957)
- L.S. Shapley and M. Shubik. The assignment game I: the core. International Journal of Game Theory 1, 111-130 (1971).

(many-to-many) multiple partners assignment game:

- M. Sotomayor. The multiple partners game. In Majumdar M. (ed) Equilibrium and dynamics: essays in honor of David Gale. Macmillan Press Ltd, New York (1992)
- M. Sotomayor. The lattice structure of the set of outcomes of the multiple partners assignment game. International Journal of Game Theory, 28, 567-583 (1999)
- M. Sotomayor. Connecting the cooperative and competitive structures of the multiple-partners assignment game. Journal of Economic Theory, 134, 155-174 (2007)

(one-sided) matching game:

- K. Eriksson and J. Karlander. Stable outcomes of the roommate game with transferable utility. International Journal of Game Theory, 29, 555-569 (2001)
- P. Biró, W. Kern and D. Paulusma. Computing solutions for matching games. International Journal of Game Theory, 41, 75-90 (2012)
- P. Biró, M. Bomhoff, P.A. Golovach, W. Kern and D. Paulusma. Solutions for the Stable Roommates Problem with Payments. Theoretical Computer Science, 540-541, 53-61 (2014)

Stable Fixtures problem with Payments (SFP)

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	SFP

A motivating example: soccer teams looking for opponents in the summer training season...

Stable Fixtures problem with Payments (SFP)

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	SFP

A motivating example: soccer teams looking for opponents in the summer training season...

Stable Fixtures problem with Payments (SFP)

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	SFP

A motivating example: soccer teams looking for opponents in the summer training season...

Stable Fixtures problem with Payments (SFP)

	bipartite graph	nonbipartite graph
non-capacitated	assignment game	matching game
capacitated	multiple partners a.g.	SFP

A motivating example: soccer teams looking for opponents in the summer training season...

Stable Fixtures problem with Payments (SFP)

$G(N, E)$ nonbipartite, with $w: E \rightarrow \mathbb{R}_{+}$edge-weights and $b: N \rightarrow \mathbb{Z}_{+}$node-capacities.
A solution is a pair (M, p), where

1. $M \subseteq E$ is a b-matching, i.e. for each $i \in N$ $|\{j: i j \in M\}| \leq b_{i}$, and
2. $p: E \rightarrow \mathbb{R}_{+}^{2}$ are the payments, such that
a) $i j \in M \rightarrow p(i, j)+p(j, i)=w_{i j}$ and
b) $i j \notin M \rightarrow p(i, j)=p(j, i)=0$.

Let $u_{p}(i)=0$ if $|\{j: i j \in M\}|<b_{i}$ and $u_{p}(i)=\min \{p(i, j): i j \in M\}$ otherwise.
A solution is (M, p) stable, if for each $i j \in E \backslash M$, $u_{p}(i)+u_{p}(j) \geq w_{i j}$.

Simple reduction with a graph construction

$$
\begin{aligned}
& i j \in M \Longleftrightarrow\left\{i^{k}, \bar{i}_{j}\right\},\left\{i_{j}, j_{i}\right\},\left\{\bar{j}_{i}, j^{\prime}\right\} \in M^{\prime} \\
& i j \notin M \Longleftrightarrow\left\{\bar{i}_{j}, i_{j}\right\},\left\{\left\{_{i}, j_{i}\right\} \in M^{\prime}\right.
\end{aligned}
$$

Simple reduction with a graph construction

Simple reduction with a graph construction

$$
\begin{aligned}
& i j \in M \Longleftrightarrow\left\{i^{k}, \bar{i}_{j}\right\},\left\{i_{j}, j_{i}\right\},\left\{\overline{j_{i}}, j^{\prime}\right\} \in M^{\prime} \\
& i j \notin M \Longleftrightarrow\left\{\bar{i}_{j}, i_{j}\right\},\left\{\bar{j}_{i}, j_{i}\right\} \in M^{\prime}
\end{aligned}
$$

Consequence for two-sided markets

Alternative proofs for Sotomayor's theorems:

1992: stable solution exists
(from the reduction + Koopmans-Beckhamm 1957)
1999: the stable solutions form a lattice
(from the lattice prop. on the 'middle agents' in the reduction)
2007: competitive equilibria exist and form a sub-lattice
(from the lattice prop. on the 'copied sellers' in the reduction)

LP model, where dual solutions \Longleftrightarrow payments

PRIMAL:

$$
\max \sum_{i j \in E} w_{i j} x(i j)
$$

s.t.
$\sum_{j: i j \in E} x(i j) \leq b_{i}$ for each $i \in N$ where
$0 \leq x(i j) \leq 1$ for each $i j \in E$

DUAL:

$$
\min \sum_{i \in N} b_{i} y(i)+\sum_{i j \in E} d(i j)
$$

s.t.
$y(i)+y(j)+d(i j) \geq w_{i j}$ for each $i j \in E$ where $0 \leq y(i)$ for each $i \in N$, and $0 \leq d(i j)$ for each $i j \in E$

LP model, where dual solutions \Longleftrightarrow payments

PRIMAL:

s.t.
$\sum_{j: i j \in E} x(i j) \leq b_{i}$ for each $i \in N$
where

$$
0 \leq x(i j) \leq 1 \text { for each } i j \in E
$$

DUAL:

$$
\min \sum_{i \in N} b_{i} y(i)+\sum_{i j \in E} d(i j)
$$

s.t.
$y(i)+y(j)+d(i j) \geq w_{i j}$ for each $i j \in E$ where $0 \leq y(i)$ for each $i \in N$, and $0 \leq d(i j)$ for each $i j \in E$

Thm 1: If (M, u) is a stable solution for an instance of SFP then $y(i)=u_{p}(i), d(i j)=w_{i j}-u_{p}(i)-u_{p}(j)$ is opt. solution for DUAL.

LP model, where dual solutions \Longleftrightarrow payments

PRIMAL:

s.t.

$$
\sum_{j: i j \in E} x(i j) \leq b_{i} \text { for each } i \in N
$$

where

$$
0 \leq x(i j) \leq 1 \text { for each } i j \in E
$$

DUAL:

$$
\min \sum_{i \in N} b_{i} y(i)+\sum_{i j \in E} d(i j)
$$

s.t.
$y(i)+y(j)+d(i j) \geq w_{i j}$ for each $i j \in E$ where $0 \leq y(i)$ for each $i \in N$, and $0 \leq d(i j)$ for each $i j \in E$

Thm 2: $\left(M^{\prime}, u^{\prime}\right)$ is a stable solution for the reduced instance IFF $y(i)=u^{\prime}\left(i^{s}\right), d(i j)=\left(u^{\prime}\left(i_{j}\right)-u^{\prime}\left(i^{s}\right)\right)+\left(u^{\prime}\left(j_{i}\right)-u^{\prime}\left(j^{t}\right)\right)$ is opt. solution for DUAL.

Solving SFP efficiently

Theorem: An instance (G, b, w) of SFP admits a stable solution if and only if the maximum weight of a b-matching in G is equal to the maximum weight of a half- b-matching in G. So this can be decided in $O\left(n^{2} m \log \left(n^{2} / m\right)\right)$ time.

Proof: again by the duplication technique:
$\max _{I P}\left(G^{d}\right) \leq \max _{h I P}(G) \leq \min _{D L P}(G) \leq \min _{D L P}\left(G^{d}\right)$
but $\max _{I P}\left(G^{d}\right)=\min _{D L P}\left(G^{d}\right)$ so we have $=$ everywhere!

Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple partners matching game (G, b, w) by setting, for every $S \subseteq N$,

$$
v(S)=w\left(M_{S}\right)=\sum_{e \in M_{S}} w(e)
$$

where M_{S} is a maximum weight b-matching in S.

Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple partners matching game (G, b, w) by setting, for every $S \subseteq N$,

$$
v(S)=w\left(M_{S}\right)=\sum_{e \in M_{S}} w(e)
$$

where M_{S} is a maximum weight b-matching in S.

$$
\text { maximum weight of a matching: } 3
$$

Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple partners matching game (G, b, w) by setting, for every $S \subseteq N$,

$$
v(S)=w\left(M_{S}\right)=\sum_{e \in M_{S}} w(e)
$$

where M_{S} is a maximum weight b-matching in S.

maximum weight of a matching: 3
 maximum weight of a half-matching: 3.5

Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple partners matching game (G, b, w) by setting, for every $S \subseteq N$,

$$
v(S)=w\left(M_{S}\right)=\sum_{e \in M_{S}} w(e)
$$

where M_{S} is a maximum weight b-matching in S.

maximum weight of a matching: 3 maximum weight of a half-matching: 3.5 yet, core allocation exists

Core of Multiple Partners Matching Game

Theorem: The payoff vector of every stable solution of a multiple partners matching game is a core allocation.

Proof: Let (M, p) be a stable solution, with total payoff vector $p^{t} \in \mathbb{R}^{n}$ defined by $p^{t}(i)=\sum_{i j \in E} p(i, j)$ for all $i \in N$. Let M^{\prime} be a maximum-weight b-matching in S...

$$
\begin{aligned}
p^{t}(S) & =\sum_{i \in S} p^{t}(i) \\
& \left.=\sum_{i \in S}\left(\sum_{j: i j \in M \cap M^{\prime}} p(i, j)+\sum_{j: i j \in M \backslash M^{\prime}} p(i, j)\right]\right) \\
& =\sum_{i j \in M \cap M^{\prime}}(p(i, j)+p(j, i))+\sum_{i \in S} \sum_{j: i j \in M \backslash M^{\prime}} p(i, j) \\
& =\sum_{i j \in M \cap M^{\prime}} w(i j)+\sum_{i \in S} \sum_{j: i j \in M \backslash M^{\prime}} p(i, j) \\
& \geq \sum_{i j \in M \cap M^{\prime}} w(i j)+\sum_{i \in S} \sum_{j: i j \in M^{\prime} \backslash M} u_{p}(i) \\
& =\sum_{i j \in M \cap M^{\prime}} w(i j)+\sum_{i j \in M^{\prime} \backslash M} u_{p}(i)+u_{p}(j) \\
& \geq \sum_{i j \in M \cap M^{\prime}} w(i j)+\sum_{i j \in M^{\prime} \backslash M} w(i j) \\
& =w\left(M^{\prime}\right)=v(S) .
\end{aligned}
$$

Core of Multiple Partners Matching Game

Theorem: It is possible to test in polynomial time if an allocation is in the core of a multiple partners matching game defined on a triple (G, b, w) with $b \leq 2$.

Proof: Let (N, v) be a multiple partners matching game defined on a triple (G, b, w), where $b(i) \leq 2$ for all $i \in N$. Given $S \subseteq N$, a maximum weight b-matching in $G[S]$ is composed of cycles and paths. Hence the core can be alternatively described by the following (slightly smaller) set of constraints:

$$
\begin{aligned}
& p(C) \geq w(C), \text { for all cycles } C \in \mathcal{C} \\
& p(P) \geq w(P), \text { for all paths } P \in \mathcal{P} \\
& p(N)=v(N) .
\end{aligned}
$$

The first condition is testable efficiently by solving the tramp steamer problem. The second is testable by solving $O\left(n^{3}\right)$ instances of the shortest path problem.

Core of Multiple Partners Matching Game

Theorem: It is co-NP-complete to test if an allocation is in the core of a multiple partners matching game defined on a triple (G, b, w) with $b=3$.

Proof: reduction from BIPARTITE CUBIC SUBGRAPH problem:
Testing whether a bipartite graph has a 3-regular subgraph.

We add new vertices and create $K_{3,3}$ subgraphs in G^{\prime} : original agent gets: $\frac{3}{2}-\frac{1}{n}$ new agents get: $\frac{3}{2}+\frac{1}{5 n}$

Blocking coalition exists $\Longleftrightarrow G$ has a 3-regular subgraph

Conclusions

- Half-matchings are crucial in solving and characterising the roommates problems.
- The 'basic' capacitated stable matching problems can be reduced to non-capacitated problems by simple graph constructions, thus their properties are similar.
- The basic models with payments are not much different from the corresponding models without payments (although we still need to understand the exact connections)

Further references on generalised roommates problems:

- A. Alkan and A. Tuncay. Pairing games and markets. Working paper, August 2013.
- P. Biró, and T. Fleiner. The Integral Stable Allocation Problem on Graphs. Discrete Optimization 7(1-2), pp: 64-73, 2010.
- P. Biró, and T. Fleiner. Fractional solutions for capacitated NTU-games, with applications to stable matchings. To appear in Discrete Optimization, 2015.
T. Fleiner. The stable roommates problem with choice functions. In proceedings of IPCO 2008, LNCS, vol. 5035, pp:385-400, 2008.

Open questions

- Any further result of non-capacited models that can be generalised to capacitated models? (e.g. the path to stability result)
- More general models, e.g. stable fixtures with contributions? Motivation: a friendly game might take 1 day for the home team but 3 days for the visitors...
- Other TU-games with capacities and contributions?

References on capacitated TU-games with contributions:

- G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov and N. R. Jennings. Cooperative Games with Overlapping Coalitions. Journal of Artificial Intelligence Research, 39:179-216, 2010.
- Y. Zick, E. Elkind. Arbitrators in overlapping coalition formation games. Proceedings of AAMAS 2011.
- Y. Zick, G. Chalkiadakis, E. Elkind. Overlapping coalition formation games: Charting the tractability frontier. Proceedings of AAMAS 2012.

Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences. World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html
COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/
The Matching in Practice network website: http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/~pbiro/research.html

[^0]: - P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples - an empirical study. ACM Journal of Experimental Algorithmics, 16: Article number 1.2, 2011.

[^1]: \rightarrow P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory Review 15(2), 1340008 (2013).

[^2]: \rightarrow P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory Review 15(2), 1340008 (2013).

[^3]:

[^4]: - P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable matchings. To appear in Discrete Optimization.

