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Hospitals / Residents problem with couples

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

the ranking of NY Queens Hospital: Eve, Bill
the ranking of NY Memorial Hospital: Bill, Adam

Roth (1984): Stable solution may not exist.

Ronn (1990): The related decision problem is NP-complete.

B.-Irving-Schlotter (2011): NP-complete even for master lists.

B.-Manlove-McBride (2014): NP-complete even for preference lists
of length 2 on both sides.

Heuristics are used in the applications...

————————————————I P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples – an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.
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Some more examples...

Applicants: Adam and Eve Romeo and Julia
1st choice: (NY Memorial, NY Queens) (NY Memorial, NY Queens)

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia

Note 1: No applicant-optimal solution

————————————————I P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).



Some more examples...

Applicants: Adam and Eve Romeo and Julia
1st choice: (NY Memorial, NY Queens) (NY Memorial, NY Queens)
2nd choice: (SF General, SF Kaiser)

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia
SF General: Julia
SF Kaiser: Romeo

Note 2: No rural hospital theorem

————————————————I P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).



Some more examples...

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) (NY Memorial, NY Queens) SF Kaiser

(SF General, SF Kaiser) SF General

NY Memorial: Romeo, Adam
NY Queens: Eve, Julia
SF General: Romeo, Bill
SF Kaiser: Bill, Julia

Note 3: No path to stability

————————————————I P. Biró and F. Klijn, Matching with Couples: a Multidisciplinary Survey. International Game Theory
Review 15(2), 1340008 (2013).
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common ranking: Eve, Romeo, Bill, Julia, Adam

Note 4: No strategy proof mechanism that always outputs a stable
matching if there exists one
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I B. Klaus, F. Klijn, and J. Massó. Some things couples always wanted to
know about stable matchings (but were afraid to ask). Review of
Economic Design, 11:175-184, 2007.

I F. Kojima, P.A. Pathak, and A.E. Roth. Matching with Couples: Stability
and Incentives in Large Markets. Quarterly Journal of Economics, 128(4):
1585-1632, 2013.







Maths / Computer Science literature
I E. Ronn. NP-complete stable matching problems. Journal of Algorithms,

11:285-304, 1990.

I B. Aldershof and O.M. Carducci. Stable matchings with couples. Discrete
Applied Mathematics, 68:203-207, 1996.

I J. Sethuraman, C-P. Teo, and L. Qian. Many-to-one stable matching:
geometry and fairness. Mathematics of Operations Research, 31:581-596,
2006.

I E. McDermid and D.F. Manlove. Keeping partners together: Algorithmic
results for the hospitals / residents problem with couples. Journal of
Combinatorial Optimization, 19:279-303, 2010.

I D. Marx and I. Schlotter. Stable assignment with couples: parameterized
complexity and local search. Discrete Optimization, 8:25-40, 2011.

I P. Biró, R.W. Irving, I. Schlotter. Stable matching with couples - an
empirical study. Journal of Experimental Algorithmics, 16, Article No.:
1.2, 2011.

I I. Ashlagi, M. Braverman, and A. Hassidim. Stability in large matching
markets with complementarities. Forthcoming in Operations Research,
2014.











Some more examples...

Adam and Eve Romeo and Julia Bill
(NY Memorial, NY Queens) (SF General, SF Kaiser) NY Queens
(LA Lincoln, LA Hollywood) (NY Memorial, NY Queens) SF General

(LA Lincoln, LA Pacific)

and
David and Victoria Cliff

(LA Hollywood, LA Sunset) LA Hollywood
LA Sunset

common ranking: Eve, Julia, Bill, Romeo, Adam, David, Cliff, Victoria

Note 5: Inevitable failure of heuristics based on best applications

————————————————I P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples – an empirical study. ACM Journal of
Experimental Algorithmics, 16: Article number 1.2, 2011.
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Now, something completely different... (!?)



Definitions: a general setting

Set of residents: A = {a1, a2, . . . , an}, where A = S ∪ C, i.e., single residents
and couples. Set of hospitals: H = {h1, h2, . . . , hm} with c(hp) denoting the
capacity of hospital hp.
Set of applications, E , has three types (E = E S ∪ E J ∪ EC )

I E S : single application from a single resident to a hospital

I E J : joint application from a couple to a pair of hospitals

I EC : combined application from a couple to a hospital

Each application specifies one or two employments, respectively.

A matching M is a set of employments specified by a set of (accepted)
applications EM , where no resident is employed in more than one hospital and
no hospital employs more residents than its quota.

Preferences:
- the single residents and couples have strict preferences over the applications
- the hospitals have strict rankings over the residents, which generates choice
functions over the set of applications (and thus over the set of residents).

Stability: no blocking application, which would be chosen by each party

involved in the application when offered together with the currently accepted

applications of that party.



Definitions: specific model used in SFAS

Easy to check fairness (for single and joint applications) with cutoff scores:

I If a single application [ai → hp] is rejected then hp filled its quota with
better residents than ai (i.e., the resident did not meet the cutoff score).

I If a joint application [(ai , aj)→ (hp, hq)] is rejected then either hp or hq
filled its quota with better applicants than ai or aj , respectively.

This generates the choices of the hospitals over the set off applications:
Adam, Bill, Eve and Adam, Romeo, Julia, Eve

The creation of the hospitals’ choice functions:
- Each hospital hp has a strict ranking �hp over the residents.
- This defines weak preferences ≥hp over the applications according to the
corresponding residents making single or joint applications or the weakest
members of couples making combined applications.
(- Ties: one resident can submit several joint applications to a hospital).
- Refined strict preference >hp is where the above ties are broken according to
the residents’ preferences.
- Choice function Chhp over the set of applications is derived as follows:
hp accepts each application from X ⊆ E in the order of >hp such that no two
applications from the same couple are accepted and its quota is not violated.
- We call this type of choice functions, derived from refined strict preferences
over applications, quota-responsive.
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Notes on Cooperative Game Theory

For Stable Marriage problem,
set of stable matchings = core of the corresponding CFG

For the matching with couples problem with quota-responsive
choice functions where each hospital has one position only:
set of stable matchings = strong core of the corresponding
NTU-game for ≥ = core of the corresponding NTU-game for >

Scarf (1967): Every balanced NTU-game has nonempty core.
(Scarf’s algorithm always returns a core element for such games)

But what if an NTU-game is not balanced? The Scarf algorithm
still returns a (fractional) core solution...
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Stable (fractional) matchings
bipartite graph

nonbipartite graph hypergraph

Marriage problem

Roommates problem Coalition Formation Game

Gale-Shapley ‘62:

Tan ‘90: Aharoni-Fleiner ’03 (Scarf ’67):

∃ stable matching

∃ stable half-matching ∃ stable fractional matching

For every vertex v , let <v be a linear order on the edges incident
with v . A weight-function x : E (G )→ {0, 1} is a matching if∑

v∈e x(e) ≤ 1 for every v ∈ V (G ).

A matching is stable if for every e ∈ E (G ), either x(e) = 1,
or there is a vertex v ∈ e s.t.

∑
e≤v f

x(f ) = 1.

(every non-matching edge is “dominated” at some vertex.)
I Gale-Shapley (1962):

Stable matching may not exist!

I Tan (1990): Stable half-matching
always exists! i.e. x(e) ∈ {0, 1

2 , 1}.
Here: x({B,C}) = x({C ,D}) =
x({B,D}) = 1

2

Aharoni-Fleiner (2003): Scarf’s algorithm returns a stable
fractional matching, as defined above with x(e) ∈ [0, 1].

hyper−
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An example: stable fractional matching

Applicants: Bill Adam and Eve
1st choice: Queens (Memorial, Queens)
2nd choice: Memorial

ranking of NY Queens: Eve, Bill
ranking of NY Memorial: Bill, Adam

A E

M Q

B

Each coalition has weight 1
2 in the stable fractional matching

What is the meaning of a fractional solution?
-These can be seen as part-time contracts...

What if the fractional solution obtained is integral?
-Then it corresponds to a stable matching (or a core element).
Thus the Scarf algorithm can be used as a heuristic to find a stable
matching (or to find a core element in any NTU-game).
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Thus the Scarf algorithm can be used as a heuristic to find a stable
matching (or to find a core element in any NTU-game).
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Stable b-matchings: agents with capacities
bipartite graph

nonbipartite graph hypergraph

College Admissions

Stable Fixtures CFG with agent-capacities

Gale-Shapley ‘62:

Biró-Fleiner ‘03: Biró-Fleiner ’10:

∃ stable matching

∃ stable half-matching ∃ stable fractional matching

Let b : V (G )→ Z+ be vertex-bounds.
A weight-function x : E (G )→ {0, 1} is a (b-)matching if∑

v∈e x(e) ≤b(v) for every v ∈ V (G ).

A matching is stable if for every e ∈ E (G ), either x(e) = 1,
or there is a vertex v ∈ e s.t.

∑
e≤v f

x(f ) =b(v).

(every non-matching edge is “dominated” at some vertex.)

Biró-Fleiner (2003): A stable half-matching can be found
efficiently for nonbipartite graphs.

Cechlárová-Fleiner (2005), Irving-Scott (2007): A stable matching
can be found in linear time, if one exists (“Stable Multiple
Activities” or “Stable Fixtures”).

Biró-Fleiner (2010): A stable fractional matching can be found by
an extension of Scarf’s algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the case when hospitals have capacities, but no couple may
apply for a pair of positions at the same hospital.
The stable matchings as defined here are stable matchings
for the matching with couples problem, and vice versa.



Stable b-matchings: agents with capacities
bipartite graph

nonbipartite graph hypergraph

College Admissions

Stable Fixtures CFG with agent-capacities

Gale-Shapley ‘62:
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Biró-Fleiner (2010): A stable fractional matching can be found by
an extension of Scarf’s algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the case when hospitals have capacities, but no couple may
apply for a pair of positions at the same hospital.
The stable matchings as defined here are stable matchings
for the matching with couples problem, and vice versa.



A motivating example for stable schedules

Researchers’ contributions in projects sponsored by the Hungarian
Scientific Research Fund:

Each researcher can be involved in several running projects, but
she has to declare her contribution in each project, and her total
contribution cannot exceed 1.0 at any time.

Similar requirements apply for the grant applications of the French
National Research Agency.



Stable schedules

Let rv (e) denote v ’s contribution in contract e, and

let b : V (G )→ Z+ be vertex-bounds.
A weight-function x : E (G )→ {0, 1} is a schedule if∑

v∈e rv (e) · x(e) ≤ b(v) for every v ∈ V (G ).

A schedule is stable if for every e ∈ E (G ), either x(e) = 1,
or there is a vertex v ∈ e s.t.

∑
e≤v f

rv (f ) · x(f ) = b(v).

(every non-active edge is “dominated” at some vertex.)

Biró-Fleiner (2012): A stable fractional schedule can be found by
an extension of Scarf’s algorithm for hypergraphs.

This can be used for the Hospitals Residents problem with couples!
In the general case, where each combined applications is a contract
with 1 contribution for the couple and 2 for the hospital.
Stable schedules correspond to stable matchings for the
couples’ market, but not the other way!

————————————————
I P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable

matchings. To appear in Discrete Optimization.
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I P. Biró and T. Fleiner, Fractional solutions for capacitated NTU-games, with applications to stable

matchings. To appear in Discrete Optimization.



Stable schedules

Let rv (e) denote v ’s contribution in contract e, and

let b : V (G )→ Z+ be vertex-bounds.
A weight-function x : E (G )→ {0, 1} is a schedule if∑

v∈e rv (e) · x(e) ≤ b(v) for every v ∈ V (G ).

A schedule is stable if for every e ∈ E (G ), either x(e) = 1,
or there is a vertex v ∈ e s.t.

∑
e≤v f

rv (f ) · x(f ) = b(v).

(every non-active edge is “dominated” at some vertex.)
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Experiments on random samples with 500 applicants
Number of couples

Algorithm 12 25 50 75 100 125 150 175 200 225 250

Roth-Perantson 952 897 701 547 395 277 170 83 41 9 3
Best heuristics in B-I-S 976 958 911 870 811 752 682 546 281 71 10
Scarf (int. solution) 895 813 649 532 426 356 316 261 202 174 158
Scarf half-int. solution 999 997 978 958 918 859 816 777 692 695 588

Scarf frac. solution 105 187 351 468 574 644 684 739 798 826 842
Av. # of frac. weights 3.9 4.8 5.7 6.7 7.6 8.8 10.0 10.8 12.8 13.5 15.7
# of frac. weights = 1 41 61 104 127 119 126 106 114 97 85 69
# of frac. weights = 2 2 9 21 30 36 41 43 43 44 48 41
# of frac. weights = 3 14 14 29 38 38 33 35 44 29 36 22
# of frac. weights = 4 7 18 19 25 40 37 39 38 30 32 41
# of frac. weights = 5 11 19 18 25 33 42 34 30 40 28 30

Scarf’s algorithm performs very well for high proportion of couples!

Biró-Manlove-McBride: Experiments by IP techniques show that
around 70% of these instances with couples only are solvable.

————————————————
I P. Biró, R.W. Irving and I. Schlotter, Stable matching with couples – an empirical study. ACM Journal of

Experimental Algorithmics, 16: Article number 1.2, 2011.

I P. Biró, T. Fleiner and R.W. Irving, Matching couples with Scarf’s algorithm. In the Proceedings of the
8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications, pp. 55-64, 2013.
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Integer programming techniques (David Manlove’s talk)

————————————————
I P. Biró, I. McBride and D.F. Manlove. The Hospitals / Residents problem with Couples: Complexity and

Integer Programming models. To appear in Proceedings of SEA 2014: the 13th International Symposium
on Experimental Algorithms, Lecture Notes in Computer Science, Springer, 2014.



Matching with payments



marriage = one-to-one market with no transfers (?)

The relaxation of the

implicit assumptions on ’marriage’:

1. Everybody can have at most one partner

→ stable b-matching for bipartite graph
=College Admissions (resident allocation)

2. Only men and women can marry each other

→ stable matching for nonbipartite graphs
=Roommates problem (kidney exchange)

3. No dowry (no transfer)

→ stable matching for bipartite graphs with
TU =Assignment Game (“the market”)
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All possible models with relaxations

two-sided one-sided

NTU stable marriage problem stable roommates problem
TU assignment game matching game

capa- NTU college admissions problem stable fixtures problem
city TU multiple partners assignment game this paper



Notes on the problems with no payments
two-sided one-sided

stable marriage

stable roommates

capacity college admissions

stable fixtures

Gale-Shapley (1962): A stable matching always exists for the
marriage problem, and the same result holds for the many-to-one
college admissions problem.

I Gale-Shapley (1962):
Stable matching may not exist!

I Irving (1985): A stable matching can
be found in O(m) time, if one exists.

I Tan (1990): Stable half-matching
always exists. +The same odd cycles
are formed in every stable solution.

I Diamantoudi et al. (2004): Path to stability result.

———————————————————————————-

I Irving-Scott (2007): The stable fixtures problem can be solved
efficiently.

I Cechlárová-Fleiner (2005): The problem can be reduced to the
stable roommates problem with a simple graph construction.
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Graph reduction by Cechlárová-Fleiner 2005
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- stable matchings of the capacitated market correspond to stable
matchings in the reduced non-capacitated market...
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Stable matchings with or without payments
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- Stable matching problems with payments can be seen as stable
matching problems with contracts.
- Stable matchings with contracts can be reduced to stable
matching problems (with the Cechlárová-Fleiner construction).
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Basic graph theoretical notions

G (N,E ) graph, nodes: N = {. . . , i , . . . , j , . . . }, edges:
E = {. . . , ij , . . . }

A matching is a set of independent edges M ⊆ E ,
i.e., it can be described with its characteristic function:
x : E → {0, 1} : for each i ∈ N,

∑
j∈N x(ij) ≤ 1.

For given edge-weights w : E → R+, c : N → R+ is a cover, if for
each ij ∈ E , c(i) + c(j) ≥ wij .

Egerváry 1931: If G is bipartite then
maximum weight of a matching = minimum value of a cover

Balinski 1965: If G is nonbipartite then
maximum weight of a half-matching = minimum value of a cover
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linear programming, duality theorem
LP: max. weight frac. matching

max
∑
ij∈E

wijx(ij)

s.t.
∑
j :ij∈E

x(ij) ≤ 1 for each i ∈ N

where 0 ≤ x(ij) for each ij ∈ E

DLP: minimum value cover

min
∑
i∈N

y(i)

s.t. y(i)+y(j) ≥ wij for each ij ∈ E

where 0 ≤ y(i) for each i ∈ N,

maximum weight matching = maxIP ≤ maxhIP ≤ maxLP =

= minDLP = minimum value cover

Note: The theorem of Egerváry is implied by the fact the incidence
matrix of any bipartite graph is totally unimodular.



Nonbipartite graphs: the role of half-matching

Balinski (1965): The maximum weight of a half-matching is equal
to the minimum value of a cover.

Simple proof: duplication technique (Nemhauser-Trotter, 1975):
G (N,E )→ Gd(Nd ,Ed), where Nd = N1 ∪ N2,
i ∈ N → i1 ∈ N1, i2 ∈ N2

ij ∈ E → i1j2, i2j1 ∈ Ed , and wd(i1j2) = wd(i2j1) = 1
2w(ij).

Let xd be a maximum weight matching and cd a minimum value

cover in Gd . Let us define x(ij) = xd (i1j2)+xd (i2j1)
2 for each edge and

c(i) = c(i1) + c(i2) for each vertex.
We can verify that x is a half-matching, c is a minimum cover in
G s.t.

w(x) = wd(xd) = cd(Nd) = c(N)

Corollary: We can compute a maximum weight half-matching (and
also a minimum cover) efficiently by the Hungarian method.
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Game theory: Koopmans-Beckmann (1957, Econometrica)

stable matching with payments:
Let G (N,E ) be a bipartite graph, where N = I ∪ J (buyers-sellers),
and w : E → R+ edge-weights (value of pairs).

A solution is a pair (M, p), where M ⊆ E is a matching and
p : N → R+ are the payments of the agents such that

I ij ∈ M → p(i) + p(j) = wij and

I i is not covered by M → p(i) = 0.

A solution is stable if for each ij ∈ E \M: p(i) + p(j) ≥ wij .

Observation: (M, p) is stable ⇐⇒ M is a maximum weight
matching and p is a minimum cover.

So the Egerváry thm implies the Koopmans-Beckmann thm:

The stable matching problem with payments is always solvable.
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Game theory: Shapley-Shubik (1971, IJGT)

assignment game:
Let G (N,E ) be a bipartite graph, where N = I ∪ J (buyers-sellers),
and w : E → R+ edge-weights (value of pairs).

We define a TU-game (N, v) as follows. For any coalition S ⊆ N,
let v(S) = maximum weight of a matching on S , the value of S .
u : N → R+ is an imputation if

∑
i∈N u(i) = u(N) = v(N).

u is in the core of the game if for each S ⊆ N, v(S) ≤ u(S).

Observation: u is in the core ⇐⇒ u is not blocked by any pair.
u is in the core ⇐⇒ (M, u) is a stable matching with payments

Koopmans-Beckmann thm implies Shapley-Shubik thm:

The assignment game has a nonempty core.

+Shapley-Shubik 1971: The set of stable solutions forms a
lattice with a buyer-optimal and a seller-optimal solution.
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Generalisations of the assignment game

bipartite graph nonbipartite graph

non-capacitated assignment game

matching game

capacitated

multiple partners a.g.

Sotomayor: multiple partners assignment game
1992: stable solution exists
1999, IJGT: the stable solutions form a lattice
2007, JET: competitive equilibria exist and form a sub-lattice
(competitive equilibrium: each seller gets the same payment from
any of her buyers, which can be seen as the price of her goods)

Biró-Kern-Paulusma 2012: A matching game has a stable
solution ⇐⇒ the maximum weight of a matching is equal to the
maximum weight of a half-matching. (Thus it can be decided
efficiently with Edmonds’ algorithm and with the Hungarian
method.)
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Path to stability for assignment games

For an unstable state (M, p), satisfying a blocking pair ij /∈ M
means that we get a new state (M ′, p′) such that
- ij ∈ M ′, p′(i) + p′(j) = w(ij), p′(i) ≥ p(i) and p′(j) ≥ p(j)
- if i was matched in M then M(i) is unmatched in M ′

- agents outside i , j and their partners in M are not affected.
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Biró-Bomhoff-Golovach-Kern-Paulusma (2014, TCS): If a stable
solution exists then one can be reached in at most 2n steps.
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Stable Fixtures problem with Payments (SFP)
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non-capacitated assignment game matching game

capacitated multiple partners a.g. SFP

A motivating example: soccer teams looking for opponents in the
summer training season...
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Stable Fixtures problem with Payments (SFP)

G (N,E ) nonbipartite, with w : E → R+ edge-weights and
b : N → Z+ node-capacities.
A solution is a pair (M, p), where

1. M ⊆ E is a b-matching, i.e. for each i ∈ N
|{j : ij ∈ M}| ≤ bi , and

2. p : E → R2
+ are the payments, such that

a) ij ∈ M → p(i , j) + p(j , i) = wij and
b) ij /∈ M → p(i , j) = p(j , i) = 0.

Let up(i) = 0 if |{j : ij ∈ M}| < bi and
up(i) = min{p(i , j) : ij ∈ M} otherwise.

A solution is (M, p) stable, if for each ij ∈ E \M,
up(i) + up(j) ≥ wij .



Simple reduction with a graph construction

We can reduce

multiple partners a.g. to a.g.

and

SFP to matching game
(construction by Tutte 1954)
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Consequence for two-sided markets

Alternative proofs for Sotomayor’s theorems:

1992: stable solution exists
(from the reduction + Koopmans-Beckhamm 1957)

1999: the stable solutions form a lattice
(from the lattice prop. on the ’middle agents’ in the reduction)

2007: competitive equilibria exist and form a sub-lattice
(from the lattice prop. on the ’copied sellers’ in the reduction)



LP model, where dual solutions ⇐⇒ payments

PRIMAL:

max
∑
ij∈E

wijx(ij)

s.t.∑
j :ij∈E

x(ij) ≤ bi for each i ∈ N

where

0 ≤ x(ij) ≤ 1 for each ij ∈ E

DUAL:

min
∑
i∈N

biy(i) +
∑
ij∈E

d(ij)

s.t.

y(i)+y(j)+d(ij) ≥ wij for each ij ∈ E

where 0 ≤ y(i) for each i ∈ N,

and 0 ≤ d(ij) for each ij ∈ E

Thm 1: If (M, u) is a stable solution for an instance of SFP then
y(i) = up(i), d(ij) = wij − up(i)− up(j) is opt. solution for DUAL.

Thm 2: (M ′, u′) is a stable solution for the reduced instance IFF
y(i) = u′(i s), d(ij) = (u′(ij)− u′(i s)) + (u′(ji )− u′(j t)) is opt.
solution for DUAL.
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Solving SFP efficiently

Theorem: An instance (G , b,w) of SFP admits a stable solution if
and only if the maximum weight of a b-matching in G is equal to
the maximum weight of a half-b-matching in G . So this can be
decided in O(n2mlog(n2/m)) time.

Proof: again by the duplication technique:

maxIP(Gd) ≤ maxhIP(G ) ≤minDLP(G ) ≤ minDLP(Gd)

but maxIP(Gd)=minDLP(Gd) so we have = everywhere!



Core of Multiple Partners Matching Game

We define the TU-game (N, v) that corresponds with a multiple
partners matching game (G , b,w) by setting, for every S ⊆ N,

v(S) = w(MS) =
∑
e∈MS

w(e),

where MS is a maximum weight b-matching in S .

[2]

[2]

[2] [1]

maximum weight of a matching: 3
maximum weight of a half-matching: 3.5
yet, core allocation exists
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Core of Multiple Partners Matching Game

Theorem: The payoff vector of every stable solution of a multiple
partners matching game is a core allocation.

Proof: Let (M, p) be a stable solution, with total payoff vector pt ∈ Rn defined by pt (i) =
∑

ij∈E p(i, j) for all

i ∈ N. Let M′ be a maximum-weight b-matching in S ...

pt (S) =
∑
i∈S

pt (i)

=
∑
i∈S

( ∑
j :ij∈M∩M′

p(i, j) +
∑

j :ij∈M\M′
p(i, j)]

)

=
∑

ij∈M∩M′
(p(i, j) + p(j, i)) +

∑
i∈S

∑
j :ij∈M\M′

p(i, j)

=
∑

ij∈M∩M′
w(ij) +

∑
i∈S

∑
j :ij∈M\M′

p(i, j)

≥
∑

ij∈M∩M′
w(ij) +

∑
i∈S

∑
j :ij∈M′\M

up(i)

=
∑

ij∈M∩M′
w(ij) +

∑
ij∈M′\M

up(i) + up(j)

≥
∑

ij∈M∩M′
w(ij) +

∑
ij∈M′\M

w(ij)

= w(M′) = v(S).



Core of Multiple Partners Matching Game

Theorem: It is possible to test in polynomial time if an allocation
is in the core of a multiple partners matching game defined on a
triple (G , b,w) with b ≤ 2.

Proof: Let (N, v) be a multiple partners matching game defined on
a triple (G , b,w), where b(i) ≤ 2 for all i ∈ N. Given S ⊆ N, a
maximum weight b-matching in G [S ] is composed of cycles and
paths. Hence the core can be alternatively described by the
following (slightly smaller) set of constraints:

p(C ) ≥ w(C ), for all cycles C ∈ C
p(P) ≥ w(P), for all paths P ∈ P
p(N) = v(N).

The first condition is testable efficiently by solving the tramp
steamer problem. The second is testable by solving O(n3)
instances of the shortest path problem.



Core of Multiple Partners Matching Game

Theorem: It is co-NP-complete to test if an allocation is in the
core of a multiple partners matching game defined on a triple
(G , b,w) with b = 3.

Proof: reduction from BIPARTITE CUBIC SUBGRAPH problem:
Testing whether a bipartite graph has a 3-regular subgraph.

We add new vertices and create
K3,3 subgraphs in G ′:
original agent gets: 3

2 −
1
n

new agents get: 3
2 + 1

5n

Blocking coalition exists ⇐⇒ G has a 3-regular subgraph



Conclusions

I Half-matchings are crucial in solving and characterising the
roommates problems.

I The ’basic’ capacitated stable matching problems can be
reduced to non-capacitated problems by simple graph
constructions, thus their properties are similar.

I The basic models with payments are not much different from
the corresponding models without payments (although we still
need to understand the exact connections)

————————————————
Further references on generalised roommates problems:

I A. Alkan and A. Tuncay. Pairing games and markets. Working paper, August 2013.

I P. Biró, and T. Fleiner. The Integral Stable Allocation Problem on Graphs. Discrete Optimization 7(1-2),
pp: 64-73, 2010.

I P. Biró, and T. Fleiner. Fractional solutions for capacitated NTU-games, with applications to stable
matchings. To appear in Discrete Optimization, 2015.

I T. Fleiner. The stable roommates problem with choice functions. In proceedings of IPCO 2008, LNCS, vol.
5035, pp:385-400, 2008.



Open questions

I Any further result of non-capacited models that can be
generalised to capacitated models? (e.g. the path to stability
result)

I More general models, e.g. stable fixtures with contributions?
Motivation: a friendly game might take 1 day for the home
team but 3 days for the visitors...

I Other TU-games with capacities and contributions?

————————————————
References on capacitated TU-games with contributions:

I G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov and N. R. Jennings. Cooperative Games with
Overlapping Coalitions. Journal of Artificial Intelligence Research, 39:179–216, 2010.

I Y. Zick, E. Elkind. Arbitrators in overlapping coalition formation games. Proceedings of AAMAS 2011.

I Y. Zick, G. Chalkiadakis, E. Elkind. Overlapping coalition formation games: Charting the tractability
frontier. Proceedings of AAMAS 2012.



Further references

New book on the algorithmic aspects:
David F. Manlove: Algorithmics of matching under preferences.
World Scientific, 2013.

Summer school talks by Manlove and others:
http://econ.core.hu/english/res/MatchingSchool.html

COST Action on Computational Social Choice:
http://www.illc.uva.nl/COST-IC1205/

The Matching in Practice network website:
http://www.matching-in-practice.eu/

My research website:
http://www.cs.bme.hu/∼pbiro/research.html


