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Introduction 

The choice of the best alternatives among a set of all possible alternatives has been a 

matter for study, analysis and debates for a long time. It is hardly to find any sphere where this 

problem did not occur.  

There are a lot of different choice procedures that allow to choose and rank alternatives 

from the initial set [1-10]. In this part, we consider choice procedures of a special type based on 

the superposition principle. Let us remind that by superposition of two choice functions С1(∙) and 

С2(∙) we mean a binary operation ⊙, the result of which is a new function C
*
(∙)=C2(∙)⊙C1(∙), 

having the form  Xϵ2
A
 C

*
(X)=C2(C1(X)) [1]. In other words, superposition consists in sequential 

application of choice functions where the result of the previous choice function C1 is the input 

for the next choice function C2. It is necessary to mention that the change of the order of 

functions may lead to completely different results, as the superposition operation is not 

commutative. 

The interest in superposition of choice procedures can be explained by several reasons. 

First, most existing accurate choice procedures have a high computational complexity so they 

cannot be applied in the cases when the number of alternatives or/and criteria is very large. The 

use of superposition allows to reduce the complexity by applying choice procedures with a low 

computational complexity on first stages and more accurate choice procedures on final stages. 

Thus, the results can be obtained in a reasonable time. Second, there are a lot of situations when 

after applying some choice procedures the remaining set of alternatives is too large. The use of 

superposition allows to avoid such situations through the use of additional choice procedures. 

The change of presentation, a set of criteria or criterial values of some alternatives can 

affect the final choice. Consequently, there is a need for more detailed study of existing choice 

procedures and for understanding which of them can be used in a particular case. 

Thus, we consider the two-stage superposition choice procedures based on scoring rules, 

rules, using majority relation, value function and tournament matrix. The main focus of the paper 

is the study of its properties, its computational complexity and its runtime on real data. The study 

of the properties of two-stage superposition choice procedures is based on the study of the 

properties of different multi-criteria choice procedures which is done in the first part of the study 

[11]. 

This part is divided into several sections. First, some background information on two-

stage choice procedures is given. Second, we form a list of two-stage choice procedures Then, 

we study the properties of two-stage superposition choice procedures. Finally, a computational 

and run-time complexity of studied procedures is given. 

A survey of the literature 

In [1] two-stage extremizational choice procedures that consist of scalar or vector choice 

procedures were studied. The description of such choice procedures is given below. 

Definition 1. A choice function  ( ) is called rationalized by scalar criterion   (or simply 

scalar), if      

 ( )              ( )   ( ) . 
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Suppose now that all alternatives from A are mapped into n criterial scales instead of one 

criterial scale. Denote by  ⃗  a set of n criterial scales  ⃗  (       ), where  ⃗  is a «vector 

criterion», and   , where          , - its component. 

Definition 2. A choice function  ( ) is called rationalized by vector criterion  ⃗  

(       ) or simply vector, if      

 ( )              ⃗ ( )   ⃗ ( ) , 

where 

 ⃗ ( )   ⃗ ( )               ( )    ( ) 

Thus, there are 4 main types of two-stage extremizational choice procedures 

1. scalar-scalar choice procedure; 

2. scalar-vector choice procedure; 

3. vector-scalar choice procedure; 

4. vector-vector choice procedure. 

As the single–criterion extremizational choice procedure is a special case of the vector 

choice procedure, it is clear that the choice procedure 1 is a special case of choice procedures 2 

and 3, which are special cases of the procedure 4. In [1] it was also shown that scalar-scalar 

choice procedure (type 1) is equivalently reducible to the usual single-criterion extremizational 

choice procedure and two-stage scalar-vector choice procedure - to the usual multi-criteria 

extremizational choice procedure. To define under what circumstances the procedure of type 2 is 

equivalent to the scalar procedure, a notion of ψ-triad was introduced in [1]. 

Definition 3. Let u, v, wϵA, where А is a set of alternatives. These alternatives are said to 

form a ψ-triad if ψ(u) < ψ(v), ψ(u) χ ψ(w) and ψ(v) χ ψ(w), where the inequality is understood as 

some vector (component-wise) inequality, and χ stands for the independent relation introduced as  

 ( )   ( )                   ( )    ( )     ( )    ( ),  

where    a set of criteria,   – vector criterion. 

The scalar-vector two-stage choice procedure (type 2) is equivalent to the one-stage 

single-criterion extremizational choice procedure if and only if the set   lacks ψ-triads for any 

Xϵ2
A
 and the criterion   has the same value over all alternatives from this set, that is      

 ( )        [1]. 

As for the vector-vector choice procedure of type 4, it was shown in [1] that this 

procedure is far from being always reducible to the usual multi-criteria (all the more so, to 

single-criterion) choice procedure. Reducibility is possible only for some special relative 

positions of the alternatives in criterial spaces   and  . 

In [1] there were also defined under which conditions choice procedures of type 3 and 4 

can be reduced to pair-dominant choice procedures. Let us remind that a choice procedure  ( ) is 

called pair-dominant or rationalized by binary relation P if      

 ( )                                                             (1) 

In other words, pair-dominant choice procedure is a procedure for which the rational 

choice consists in the choice of undominated by their pairwise comparisons alternatives. 

To define under which conditions choice procedures of type 4 can be reduced to pair-

dominant choice procedure, a notion of uncoordinated triad was introduced. 
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Definition 4. Let u,v,wϵA make up a φ-triad referred to as a φ, ψ-uncoordinated triad of 

the first, or second, or third type if correspondingly 

1. ψ(w) < ψ(u), ψ(w)  ψ(v) or 

2. ψ(u) χ ψ(w), ψ(v) < ψ(w) or 

3. ψ(u) χ ψ(w), ψ(v) χ ψ(w),  

where φ, ψ – vector criteria, χ – independed relation,   is a violation of the vector inequality <, 

i.e., 

ψ(u)  ψ(v)      :   ( )    ( ). 

It was also proved in [1] that for the two-stage vector-vector choice procedure an 

equivalent pair-dominant choice procedure exists if and only if the alternatives from A do not 

make up φ, ψ-uncoordinated triads of the first type. 

As for a pair-dominant choice procedure, it is necessary to define its levels. It was 

defined in [1] that a pair-dominant choice procedure has the level  ̂ if a preference P on 

alternatives in (1) is acyclic, level  ̂ if P is acyclic and transitive, i.e., it is a partial order, level  ̂ 

if P is acyclic, transitive and negatively transitive, i.e., it is a weak order. 

It turned out that for the two-stage vector-vector choice procedure to generate a choice 

function of level  ̂ (level  ̂), it is necessary and sufficient that no alternatives from set A make up 

φ, ψ-noncoordinated triads of a second type (correspondingly φ, ψ-noncoordinated triads of a 

second and third type, and also ψ , φ-noncoordinated triads of third type). 

Finally, it was proved in [1] that two-stage vector-scalar choice procedure (type 3) is 

equivalent to 

a) a pair-dominant level  ̂ choice procedure; 

b) a one-stage multi-criteria extremizational choice procedure; and 

c) a one-stage single-criterion extremizational choice procedure. 

if and only if there are no φ-triads <u,v,w> (φ – vector criterion) in A satysfying, respectively, the 

following conditions 

a') ψ(u)> ψ(w)≥ ψ(v), where ψ is a scalar criterion; 

b') ψ(u)≥ ψ(w)≥ ψ(v) with at least one strict inequality; 

c') ψ(u)≥ ψ(w)≥ ψ(v). 

In [1] an example of a two-stage choice procedure was provided. This two-stage choice 

procedure operates as follows: at the first stage a Pareto set is chosen from initial set X from 

which, at the second stage, an alternative is isolated by Euclidean metric to some «ideal» point 

   (       ) in criterial space, where         – maximum values for each criterion. It 

was shown that this choice procedure can be reduced to its second stage iff  

                ( ). 

In [12] a two-stage sequential choice procedure was studied, the first stage being defined 

by q-Pareto multicriterial choice rule, and the second stage being defined by scalar extremization 

choice procedure.  

Let us define a q-Pareto choice rule that was studied in [2,3]. The main idea of this rule is 

to choose alternatives which are dominated by no more that q alternatives. Hence, it allows to 

avoid situations when the measurement by criterion has not been made very accurately and, 

consequently, it allows not to miss almost optimal elements from the chosen set of alternatives. 
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Below we consider q-Pareto choice rule more precisely, but first we need an additional notion of 

upper contour set. 

The upper contour set   ( ) for an alternative   in the i-th criterion is 

  ( )         ( )    ( ) , 

where   is a vector ctiterion. 

In other words, the upper contour set for   is a set of all alternatives which have higher 

values that   in the criterion i. 

The upper contour set for an alternative   in a set   is defined as [  ( )   ]   

Now, we re-define the Pareto rule as 

   ( )       (⋂ [  ( )   ]   )   . 

Obviously, Pareto rule is a special case of q-Pareto rule when parameter q is equal to 0. 

The generalization of q-Pareto choice rule can be defined as 

   ( )       (⋂ [  ( )   ]   )   . 

Thus, the choice rule consists in choice of alternatives which are dominated by no more 

than q alternatives.  

Example. Consider the following situation.                          . 

A a b c d e f g h k l m 

   1 3 5 0 5 4 4 5 2 4 1 

   5 3 0 4 1 2 5 4 4 4 3 

The results of applying q-Pareto choice rule depending on parameter value q are the 

following 

q C(A) 

0 {g,h} 

1 {a,e,g,h} 

2 {a,c,e,g,h,l} 

3 {a,b,c,e,f,g,h,k,l} 

4 {a,b,c,e,f,g,h,k,l} 

5 {a,b,c,d,e,f,g,h,k,l} 

6 {a,b,c,d,e,f,g,h,k,l,m} 

In [13] it was studied which rationality conditions are satisfied for q-Pareto choice rule.  

It was found that q-Pareto choice rule satisfies only condition С (see below). 

In [12] q-Pareto choice rule is used on the first stage of two-stage choice procedure. 

However, since the choice set of the first stage usually contains too many elements, obtained set 

is used as a presentation for the second stage constructed by a scalar extremization choice 

procedure. Thus, q-Pareto-scalar choice procedure can be presented as a superposition of two 

choice functions С(∙)=С2(С1(∙)), where С1 is defined by q-Pareto rule, С2 is defined by scalar 

choice procedure.  

q-Pareto-scalar choice procedure was firstly studied in [12]. There were found necessary 

and sufficient conditions when this procedure can be reduced to the choice on scalar criterion. 
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Two-stage choice procedure can be reduced to one-stage choice procedure if   ( )    ( ), 

i.e., when for any subset X A the remaining set after the first stage of the rule always contains 

alternatives which are chosen on the second stage of the rule. In addition, necessary conditions 

were defined in [12] under which rationality conditions are satisfied for two-stage q-Pareto-

scalar choice procedure. 
 

Before moving to the study of the properties of two-stage choice procedures, it is 

necessary to consider the notion of choice functions closedness with respect to superposition 

operator. In order to do it some definitions were given in [1]. 

Any particular choice function С(∙) can be treated as a point of the abstract space  , 

consisting of all the possible choice functions on A. 

A set of choice functions С1(∙),…,Сn(∙) is called a functional profile and denoted by 

{Сi(∙)}. 

Let a domain     and number n be fixed. Any mapping from           ⏟          
 

 

times into   is called a functional operator. A functional operator assigns to any profile {Сi(∙)} 

consisting of n choice functions from Q a single choice function denoted by C*(∙)=F({Сi(∙)}), 

where F stands for the functional operator. 

As usual, the set Q
n 

is called the domain of F, and the set of all functions С*(∙)    such 

that     ( )      (   ( ) )    ( ) as the range of operator. 

The set        is called the domain of the functional operator       . Any domain 

      such that     ( )   
   (   ( ) )  

  will be called the range of F(       ). 

According to the definition, the domain      of the functional operator   is any subset from   

which includes the range F. 

If   ( )   (   ( ) )   for any functional profile    ( )   
 , the domain Q is called 

closed with respect to the operator F. 

Now introduce functional operator of “superposition” ( ⊙): 

 ⊙          ( )    (  ( ))  

Let us define in which cases superposition, as applied to the choice functions С1(∙) and 

С2(∙) from different domains of  , ‘preserves’ the result, i.e., the function С*(∙) in any of the 

domains. With such an approach, it is only natural to speak about ‘superposition’ mapping the 

domains Q1 and Q2 to which, respectively, С1(∙) and C2(∙) belong into the domain   , denoting it 

symbolically as  ⊙(Q1,Q2)=   . 

By closedness (conditional and unconditional) of domains, we consider the following. 

The domain       is called conditionally closed at the first superposition stage at fixed domain 

Q2 of the second stage if  ⊙(     )    . Similarly, the domain       is called 

conditionally closed at the second superposition stage at fixed domain Q1 of the first stage if 

 ⊙(     )    . Finally, the domain Q is called unconditionally closed with respect to the 

‘superposition’ operator if  ⊙(    )    . 

Theorem 1 [1]. There are the following conditions of domains closedness in   with 

respect to the superposition operator ⊙: 
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1°. The domain ACA is closed (unconditionally) with respect to superposition operator, 

i.e.,  ⊙(   )     ; none of the domains Q = Н, С, О, H С, H О, C О, H C О us 

closed unconditionally with respect to the superposition operator; 

2°. For Q1=ACA, the domains Q2 = H, С, H С,  ̂  ̂   ̂  ̂   ̂      ̂   ̂   ̂ are 

conditionally closed at the second superposition stage. For Q1=ACA, the domains Q2 = O, 

H О, C О, H C О are not closed. None of the domains Q2=H or С or... or H C О is closed 

for none Q1 = H, or С, or... or H C О, where the notion of  ̂  ̂  ̂ is used for a class of choice 

functions that satisfies current condition (Н,С,О) as well as the condition of choice non-

emptyness. 

3°. None of the fundamental domains and their intersections Н,С, …, H C О is 

conditionally closed as Q1, at the first superposition stage for Q2 = ACA (and all the more so for 

Q2 = H, С, ..., H C О at the second one). 

Remark. Although generally going out of the classical domain H C, the superposition of 

two classical choice functions may be shown to stay within the fundamental domain С. It means 

that  ⊙(       )   . 

Thus, the results on choice functions closedness with respect to superposition operator 

solve the inverse problem that helps to determine will the function resulting from application of 

this operator to the elements of the set satisfy the rationality conditions Н, С or O. 

Now let us study the properties of two-stage choice procedures. 

Two-stage superposition choice procedures 

We consider the two-stage superposition choice procedures based on scoring rules, rules, 

using majority relation, value function and tournament matrix. A full description of studied 

choice procedures is given in [11]. 

A list of two-stage superposition choice procedures is provided in Table 1.  

Table 1. Two-stage choice procedures 

№ Stage 1 Stage 2 

1-121 

Scoring rules 

(11 procedures) 

Scoring rules (11 procedures) 

122-231 Rules, using majority relation (10 procedures) 

232-286 Rules, using value function (5 procedures) 

287-308 Rules, using tournament matrix (2 procedures) 

309-418 
Rules, using majority 

relation 

(10 procedures) 

Scoring rules (11 procedures) 

419-518 Rules, using majority relation (10 procedures) 

519-568 Rules, using value function (5 procedures) 

569-588 Rules, using tournament matrix (2 procedures) 

589-643 

Rules, using value function 

(5 procedures) 

Scoring rules (11 procedures) 

644-693 Rules, using majority relation (10 procedures) 

694-718 Rules, using value function (5 procedures) 

719-728 Rules, using tournament matrix (2 procedures) 

729-750 
Rules, using tournament 

matrix 

(2 procedures) 

Scoring rules (11 procedures) 

751-770 Rules, using majority relation (10 procedures) 

771-780 Rules, using value function (5 procedures) 

781-784 Rules, using tournament matrix (2 procedures) 

Thus, 784 two-stage procedures of 16 different types are studied.  
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As properties of two-stage choice procedures should be studied separately, let us assign 

an identification number to each two-stage choice procedure by the following formula 

      (   )   , 

where id is an identification number of two-stage choice procedure, i is a number of choice 

procedure from [11] used on the first stage, j is a number of choice procedure from [11] used on 

the second stage. 

Before proceeding to the study of the properties of two-stage choice procedures, it is 

necessary to make some notes. 

Note 1. Table 2 provides a list of two-stage procedures that does not make any sense, i.e., 

the second stage of which does not change the choice. 

Table 2. Two-stage choice procedures that does not make any sense («…» is any studied 

choice procedure) 

Two-stage procedure 

№ Stage 1 Stage 2 

1-28 Simple majority rule … 

113-140 Run-off procedure … 

141-168 Hare rule (Ware procedure) … 

231 Inverse Borda rule Borda rule 

233 Inverse Borda rule Inverse Borda rule 

234 Inverse Borda rule Nanson rule 

259 Nanson rule Borda rule 

261 Nanson rule Inverse Borda rule 

262 Nanson rule Nanson rule 

281-308 Coombs procedure … 

320 Minimal dominant set Minimal dominant set 

348 Minimal undominant set Minimal dominant set 

349 Minimal undominant set Minimal undominant set 

505-532 Condorcet winner … 

533 Core Simple majority rule 

539 Core Borda rule 

540 Core Black procedure 

541 Core Inverse Borda rule 

542 Core Nanson rule 

544 Core Minimal dominant set 

545 Core Minimal undominant set 

546 Core Minimal weakly stable set 

547 Core Fishburn rule 

548 Core Uncovered set I 

549 Core Uncovered set II 

550 Core Richelson rule 

552 Core Core 

553 Core k-stable set (k>1) 

555 Core Copeland rule 1 

556 Core Copeland rule 2 

557 Core Copeland rule 3 

559 Core Minimax procedure 

560 Core Simpson procedure 

Total number of choice procedures - 168 
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The simple majority rule, the run-off procedure, the Hare procedure, the Coombs 

procedure and the Condorcet winner choose a single best alternative, consequently, two-stage 

choice procedures 1-28, 113-168, 281-308, 505-532 which use such procedures on the first stage 

do not make any sense as their second stage does not affect the final choice. 

Also two-stage procedures 231, 233, 234, 259, 261, 262 do not make any sense as the 

first stage of such procedures gives a set of alternatives with the same Borda count. Similarly, 

two-stage procedures 283, 291 do not make any sense as the first stage of such procedures gives 

a set of alternatives which are considered as the worst by the same number of criteria. 

Two-stage procedures 320, 348, 349 do not make any sense as by the definition the 

remaining after the first stage set of alternatives is already minimal. As for two-stage choice 

procedure 553, it does not make any sense as the second stage of such procedures does not 

change the choice. 

Finally, two-stage procedures 533, 539-542, 544-550, 552, 555-557,559-560 do not make 

any sense as        ( ⃗    )                                , where   ( ⃗    ) is 

a first-stage procedure (the core). 

Thus, choice procedures provided in Table 2 are excluded from further consideration. 

Note 2. Properties of two-stage choice procedures which use the Black procedure on the 

first stage completely coincide with properties of two-stage choice procedures which use the 

Borda rule if there is no Condorcet winner. 

Note 3. Table 3 provides a list of two-stage procedures which are equivalent to existing 

choice procedures. 

Table 3. Two-stage procedures equivalent to existing choice procedure 

Two-stage choice procedure 
What procedure is equivalent to 

№ Stage 1 Stage 2 

309 Minimal dominant set Simple majority rule Condorcet winner 

321 Minimal dominant set Minimal undominant set Minimal undominant set 

322 Minimal dominant set Minimal weakly stable set Minimal weakly stable set 

323 Minimal dominant set Fishburn rule Fishburn rule 

324 Minimal dominant set Uncovered set I Uncovered set I 

325 Minimal dominant set Uncovered set II Uncovered set II 

326 Minimal dominant set Richelson rule Richelson rule 

327 Minimal dominant set Condorcet winner Condorcet winner 

328 Minimal dominant set Core Core 

331 Minimal dominant set Copeland rule 1 Copeland rule 1 

332 Minimal dominant set Copeland rule 2 Copeland rule 2 

333 Minimal dominant set Copeland rule 3 Copeland rule 3 

337 Minimal undominant set Simple majority rule Core (single chosen alternative) 

350 Minimal undominant set Minimal weakly stable set Minimal weakly stable set 

355 Minimal undominant set Condorcet winner Condorcet winner 

356 Minimal undominant set Core Core 

393 Fishburn rule Simple majority rule Core (single chosen alternative) 

411 Fishburn rule Condorcet winner Core (single chosen alternative) 

421 Uncovered set I Simple majority rule Core (single chosen alternative) 

439 Uncovered set I Condorcet winner Core (single chosen alternative) 

449 Uncovered set II Simple majority rule Core (single chosen alternative) 

467 Uncovered set II Condorcet winner Core (single chosen alternative) 

477 Richelson rule Simple majority rule Core (single chosen alternative) 

495 Richelson rule Condorcet winner Core (single chosen alternative) 

551 Core Condorcet winner Condorcet winner 

Total number of choice procedures - 25 
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Two-stage choice procedures provided in previous table are equivalent to some existing 

choice procedures. Thus, their properties fully coincided with properties of such existing 

procedures. However, these two-stage procedures are not excluded from further consideration as 

the computational complexity of some of them can be lower than the complexity of existing 

procedures.  

Thus, it remains to study properties of 591 two-stage choice procedures. 

A study of the properties of two-stage choice procedures 

A list of studied normative properties is given in [11]. 

A study of the properties is conducted as follows. If a two-stage choice procedure does 

not satisfy given normative condition, a counter-example is provided. On the country, if a two-

stage choice procedure satisfies given normative condition a necessary proof is followed. The 

study of the properties of two-stage choice procedures is based on the study of the properties of 

multi-criteria choice procedures which is done in [11]. 

The results of the study of the properties of 591 two-stage choice procedures are given in 

Theorem 2. 
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Theorem 2. Information on which choice procedures satisfy given normative conditions is provided in Table 4. 

Table 4. Properties of two-stage choice procedures («+» - choice procedure satisfies given normative condition,  

«-» - choice procedure does not satisfy given normative condition) 

Two-stage choice procedure 

Normative conditions 

Rationality Monotonicity 

N
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Stage 1 Stage 2 

№ Name № Name 

2 

3 

4 

12 

13 

15 

16 

17 

18 

20 

23 

24 

25 

26 

27 

28 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1)  

Minimal dominant set 

Minimal undominant set 

Fishburn rule 

Uncovered set I 

Uncovered set II  

Richelson rule 

Core 

Copeland rule 1  

Copeland rule 2 

Copeland rule 3 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

5 

6 

11 

Run-off procedure 

Hare rule (Ware procedure) 

Coombs procedure 

- - - - - 
 

- - 

9 

10 

14 

21 

Inverse Borda rule 

Nanson rule 

Minimal weakly stable set 

k-stable set (k>1) 

1 

5 

6 

11 

19 

Simple majority rule 

Run-off procedure 

Hare rule (Ware procedure) 

Coombs procedure 

Condorcet winner 

- - - - - 
 

- - 

2 

3 

4 

23 

24 

25 

26 

27 

28 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1)  

Copeland rule 1  

Copeland rule 2 

Copeland rule 3 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

1 

19 

Simple majority rule 

Condorcet winner 
- - - - 

  

- - 
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Two-stage choice procedure 

Normative conditions 

Rationality Monotonicity 

N
o

n
-

co
m

p
en

sa
b
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y
 

C
o

n
d

it
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n
 H

 

C
o

n
d

it
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n
 C

 

C
o
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d
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n
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C
o
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d
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n
 A

C
A

 

M
o
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o

to
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y
 1

 

M
o

n
o

to
n
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y
 2

 

S
tr

ic
t 

m
o

n
o

to
n
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y
 

Stage 1 Stage 2 

№ Name № Name 

7 

8 

22 

Borda rule 

Black procedure 

Threshold rule 

1 

5 

6 

19 

Simple majority rule 

Run-off procedure 

Hare rule (Ware procedure)  

Condorcet winner 

- - - - 
  

- - 

13 

20 

Minimal undominant set  

Core 
1 Simple majority rule 

  

- - 
  

- 
- 

15 

16 

17 

18 

Fishburn rule  

Uncovered set I  

Uncovered set II  

Richelson rule 

1 

19 

Simple majority rule 

Condorcet winner 

  

- - 
  

- - 

20 Core 

7 

8 

9 

10 

12 

13 

14 

15 

16 

17 

18 

23 

24 

25 

27 

28 

Borda rule 

Black procedure 

Inverse Borda rule 

Nanson rule 

Minimal dominant set 

Minimal undominant set 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I 

Uncovered set II 

Richelson rule 

Copeland rule 1 

Copeland rule 2 

Copeland rule 3 

Minimax procedure 

Simpson procedure 

  

- - 
  

- - 

17 Uncovered set II 12 Minimal dominant set - 
 

- - 
 

- - - 

2 

3 

4 

23 

24 

25 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1)  

Copeland rule 1  

Copeland rule 2 

Copeland rule 3 

21 k-stable set (k>1) - - - - 
 

- - - 

16 Uncovered set I 20 Core - - - - 
 

- - - 
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Two-stage choice procedure 

Normative conditions 

Rationality Monotonicity 

N
o

n
-

co
m
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en
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b

il
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y
 

C
o

n
d

it
io

n
 H

 

C
o

n
d

it
io

n
 C

 

C
o

n
d

it
io

n
 O

 

C
o

n
d

it
io

n
 A

C
A

 

M
o

n
o

to
n

ic
it

y
 1

 

M
o

n
o

to
n

ic
it

y
 2

 

S
tr

ic
t 

m
o

n
o

to
n
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y
 

Stage 1 Stage 2 

№ Name № Name 

2 

3 

4 

7 

8 

22 

23 

24 

25 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1)  

Borda rule 

Black procedure 

Threshold rule 

Copeland rule 1  

Copeland rule 2 

Copeland rule 3 

2 

3 

4 

7 

8 

12 

13 

14 

15 

16 

17 

18 

20 

22 

23 

24 

25 

26 

27 

28 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1)  

Borda rule 

Black procedure 

Minimal dominant set 

Minimal undominant set 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I 

Uncovered set II 

Richelson rule  

Core 

Threshold rule 

Copeland rule 1 

Copeland rule 2 

Copeland rule 3 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

- - - - 
 

- - - 

7 

8 

22 

Borda rule 

Black procedure 

Threshold rule 

9 

10

21 

Inverse Borda rule 

Nanson rule 

k-stable set (k>1) 

- - - - 
 

- - - 

13 

17 

Minimal undominant set 

Uncovered set II 

16 

18 

Uncovered set I 

Richelson rule 
- - - - 

 

- - - 

13 Minimal undominant set 

15 

17 

21 

23 

24 

25 

Fishburn rule 

Uncovered set II 

k-stable set (k>1) 

Copeland rule 1 

Copeland rule 2 

Copeland rule 3 

- - - - 
 

- - - 

12 

13 

Minimal dominant set 

Minimal undominant set 

26 

27 

28 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

- - - - 
 

- - - 
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Two-stage choice procedure 

Normative conditions 

Rationality Monotonicity 

N
o

n
-

co
m

p
en

sa
b

il
it

y
 

C
o

n
d

it
io

n
 H

 

C
o

n
d

it
io

n
 C

 

C
o

n
d

it
io

n
 O

 

C
o

n
d

it
io

n
 A

C
A

 

M
o

n
o

to
n

ic
it

y
 1

 

M
o

n
o

to
n

ic
it

y
 2

 

S
tr

ic
t 

m
o

n
o

to
n

ic
it

y
 

Stage 1 Stage 2 

№ Name № Name 

15 

16 

18 

Fishburn rule 

Richelson rule 

Uncovered set I 

12 

16 

18 

Minimal dominant set 

Uncovered set I 

Richelson rule 

- - - - 
 

- - - 

26 

27 

28 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

12 

13 

20 

Minimal dominant set 

Minimal undominant set 

Core 

- - - - 
 

- - - 

2 

3 

4 

12 

13 

23 

24 

25 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1) 

Minimal dominant set 

Minimal undominant set 

Copeland rule 1 

Copeland rule 2 

Copeland rule 3 

9 

10 

Inverse Borda rule 

Nanson rule 
- - - - - - - - 

9 

10 

14 

21 

Inverse Borda rule 

Nanson rule 

Minimal weakly stable set 

k-stable set (k>1) 

12 

13 

16 

18 

20 

Minimal dominant set 

Minimal undominant set 

Uncovered set I 

Richelson rule 

Core 

- - - - - - - - 

9 

10 

14 

15 

16 

17 

18 

21 

26 

27 

28 

Inverse Borda rule 

Nanson rule 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I 

Uncovered set II  

Richelson rule 

k-stable set (k>1) 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

2 

4 

8 

14 

15 

17 

21 

22 

23 

24 

25 

26 

27 

28 

Plurality rule 

q-Approval rule (q>1) 

Black procedure 

Minimal weakly stable set 

Fishburn rule 

Uncovered set II 

k-stable set (k>1) 

Threshold rule 

Copeland rule 1 

Copeland rule 2 

Copeland rule 3 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

- - - - - - - - 

16 Uncovered set I 13 Minimal undominant set - - - - - - - - 
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Two-stage choice procedure 

Normative conditions 

Rationality Monotonicity 

N
o

n
-
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m
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en

sa
b

il
it

y
 

C
o

n
d

it
io

n
 H

 

C
o

n
d

it
io

n
 C

 

C
o

n
d

it
io

n
 O

 

C
o

n
d

it
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n
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C
A

 

M
o

n
o
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y
 1

 

M
o
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o
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n
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y
 2

 

S
tr
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t 
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o

n
o

to
n
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Stage 1 Stage 2 

№ Name № Name 

9 

10 

Inverse Borda rule 

Nanson rule 

3 

11 
Inverse plurality rule - - - - - - - - 

12 

13 

Minimal dominant set 

Minimal undominant set 

2 

3 

4 

7 

8 

22 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1) 

Borda rule 

Black procedure 

Threshold rule 

- - - - - - - - 

14 

15 

16 

17 

18 

21 

26 

27 

28 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I 

Uncovered set II  

Richelson rule 

k-stable set (k>1) 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

3 

7 

9 

10 

Inverse plurality rule 

Borda rule 

Inverse Borda rule 

Nanson rule 

- - - - - - - - 

15 

17 

18 

Fishburn rule 

Uncovered set II  

Richelson rule 

13 

20 

Minimal undominant set 

Core 
- - - - - - - - 

20 Core 

2 

3 

4 

22 

26 

Plurality rule 

Inverse plurality rule 

q-Approval rule (q>1) 

Threshold rule 

Super-threshold rule (threshold depends on X)  

- - - - - - - - 

26 

27 

28 

Super-threshold rule (threshold depends on X)  

Minimax procedure 

Simpson procedure 

16 

18 

Uncovered set I 

Richelson rule 
- - - - - - - - 

The proof of the theorem is provided in Appendix 1. 
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Computational complexity of choice procedures 

A computational complexity of choice procedures used in two-stage superpositions is 

provided in Table 5.  

Table 5. Theoretical computational complexity of existing choice procedures (M – cardinality of 

initial set of alternatives, n – number of criteria, q,k – parameters of choice procedures, l,d – 

parameters which depend on initial set of alternatives,          ) 

№ Name of choice procedure 
Computational complexity 

(theoretical) 

Maximum number of 

remaining alternatives 

after applying 

the choice procedure 

1 Simple majority rule  (   ) 1 

2 Plurality rule  (   )   

3 Inverse plurality rule  (   )     

4 q-Approval rule (q>1)  (        (   ))     

5 Run-off procedure  (   ) 1 

6 Hare rule (Ware procedure)  (   ) 1 

7 Borda rule  (      ( )   )   

8 Black procedure  (      ( )   )   

9 Inverse Borda rule  (    )   

10 Nanson rule  (    )   

11 Coombs procedure  (    )   

12 Minimal dominant set  (       )   

13 Minimal undominant set  (       )   

14 Minimal weakly stable set  (     ∑  
  (   )

 

   

)   

15 Fishburn rule  (  )   

16 Uncovered set I  (  )   

17 Uncovered set II  (  )   

18 Richelson rule  (  )   

19 Condorcet winner  (   ) 1 

20 Core  (    )   

21 k-stable set (k>1)  (       )   

22 Threshold rule  (   )   

23 Copeland rule 1  (    )   

24 Copeland rule 2  (    )   

25 Copeland rule 3  (    )   

26 Super-threshold rule  ( )   

27 Minimax procedure  (    )   

28 Simpson procedure  (    )   

A computational complexity of choice procedures was calculated by the author of the paper.  

Based on information provided in Table 5 we can divide all two-stage procedures in several 

groups in accordance with their computational complexity. The results are provided in Table 6.  
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Table 6. A computational complexity of two-stage choice procedures («…» is any choice 

procedure) 

Two-stage choice procedure 

Stage 1 Stage 2 

Choice procedures with a low computational complexity 

Plurality rule 

Threshold rule 

q-Approval rule (q>1) 

… 

Inverse plurality rule 

Super-threshold rule 

Borda rule 

Black procedure 

Simple majority rule 

Run-off procedure 

Hare rule (Ware procedure) 

Borda rule 

Black procedure 

Condorcet winner 

Plurality rule 

Threshold rule 

Inverse plurality rule 

q-Approval rule (q>1) 

Super-threshold rule 

Computational complexity depends on initial set of alternatives 

Inverse plurality rule 

Super-threshold rule 

Borda rule 

Black procedure 

Inverse Borda rule 

Nanson rule 

Core 

Copeland rules 1-3 

Minimax procedure 

Simpson procedure 

Coombs procedure 

Choice procedures with average computational complexity 

Inverse Borda rule 

Nanson rule 

Core 

Copeland rules 1-3 

Minimax procedure 

Simpson procedure 

Simple majority rule 

Run-off procedure 

Hare rule (Ware procedure) 

Borda rule 

Black procedure 

Condorcet winner 

Plurality rule 

Threshold rule 

Inverse plurality rule 

q-Approval rule (q>1) 

Super-threshold rule 

Inverse Borda rule 

Nanson rule 

Core 

Copeland rules 1-3 

Minimax procedure 

Simpson procedure 

Coombs procedure 

Coombs procedure … 

Choice procedures with a high computational complexity 

Inverse plurality rule 

Super-threshold rule 

Borda rule 

Black procedure 

Inverse Borda rule 

Minimal dominant set 

Minimal undominant set 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I, II 
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Two-stage choice procedure 

Stage 1 Stage 2 

Nanson rule 

Core 

Copeland rules 1-3 

Minimax procedure 

Simpson procedure 

Richelson rule 

k-stable set (k>1) 

Minimal dominant set 

Minimal undominant set 

Minimal weakly stable set 

Fishburn rule 

Uncovered set I, II 

Richelson rule 

k-stable set (k>1) 

… 

It is necessary to mention that by the group called “Computational complexity depends on 

initial set of alternatives” we mean that the computational complexity of such two-stage choice 

procedures depends on how many alternatives are eliminated at the first stage. 

The run-time complexity for two-stage superposition choice procedures 

Let the initial set M1 contains 300 thousands of alternatives and the total number of criteria is 

equal to 10. Suppose, a computer can process around 3 billion instructions per second. Consider 

situations when the remaining set M2 after applying the first-stage choice procedure contains 10, 50 

and 100 thousands of alternatives. 

The run-time complexity of two-stage choice procedures from different groups (according to 

Table 6) is provided in Table 7. 

Table 7. The run-time complexity for two-stage choice procedures (M2 – number of alternatives 

remained after applying the first stage of the choice procedure) 

Two-stage choice procedures 
Run time 

Stage 1 Stage 2 

Choice procedures with a low computational 

complexity 
M2=10000 M2=50000 M2=100000 

Plurality rule Uncovered set I ≈50 ms 

Inverse plurality rule Condorcet winner ≈52 ms ≈58 ms ≈66 ms 

Super-threshold rule Threshold rule ≈6 ms ≈13 ms ≈21 ms 

Borda rule Plurality rule ≈910 ms ≈918 ms ≈926 ms 

Computational complexity depends on initial set of alternatives 

Inverse plurality rule Minimax procedure ≈16 s ≈7 min ≈27 min 

Choice procedures with average computational complexity 

Inverse Borda rule Simple majority rule ≈4 h 12 min 

Minimax procedure Simpson procedure ≈4 h 15 min ≈4 h 21 min ≈4 h 36 min 

Choice procedures with a high computational complexity 

Inverse plurality rule Richelson rule ≈46 h 20 min ≈241 days ≈5 years 

Uncovered set I Borda rule ≈140 years 

The results obtained from Tables 6 and 7 give us information on which procedures can be 

applied when we deal with Big Data and which procedures cannot be applied in such problems as 

they are not allow to obtain any results in a sufficient time.  
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Conclusion 

We have studied the properties of 592 two-stage choice procedures, which can be used in 

various multi-criteria problems. It was defined which choice procedures satisfy given normative 

conditions, showing how a final choice is changed due to the changes of preferences or a set of 

feasible alternatives. Such information leads to a better understanding of different choice procedures 

and how stable and sensible is a set of alternatives obtained after applying some choice procedure. 

The results show that most of the two-stage procedures do not satisfy any normative 

conditions. Only some of them satisfy the Monotonicity condition 1. More detailed information is 

provided in Table 4. 

To compute run-time complexity of choice procedures the average computational complexity 

was used. All choice procedures were divided into different groups (see Table 6). It was shown that 

two-stage choice procedures which use choice procedures with a high computational complexity on 

the first stage require more time than other procedures. It means that such procedures are not 

recommended to use in applications to Big Data. Two-stage choice procedures which use on the first 

stage choice procedures with a low computational complexity and on the second stage - with a high 

computational complexity can be used in applications to Big Data, however, their application 

depends on the number of alternatives remained after the first stage. Two-stage choice procedures, 

which use on both stages choice procedures with a low computational complexity, can be used in 

applications to Big Data with no restrictions. 
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Appendix 1. Properties of two-stage choice procedures 

Two-stage choice procedure 29. ‘Plurality rule – Simple majority rule’ 

29.1 Heredity condition (H) 

Let           and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 

a a c b b 

с с b a a 

b b a c c 

According to the two-stage choice procedure  ( ⃗    )       

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 P4 P5 

c c c b b 

b b b c c 

According to the rule the alternative c will be chosen, i.e.,  ( ⃗      )        

Then  ( ⃗      )   ( ⃗    )    . Thus, the condition H is not satisfied. 

29.2 Concordance condition (C) 

Let           and the profile  ⃗   is the following 

P1 P2 P3 

a b c 

b a b 

c c a 

According to the two-stage choice procedure the choice is empty, i.e.,  ( ⃗    )      

Now let us consider the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , 

looks as  

P1 P2 P3 

a b b 

b a a 

According to the two-stage choice procedure the alternative b will be chosen, i.e.,  ( ⃗      )       

Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as  

P1 P2 P3 

b b c 

c c b 

According to the two-stage choice procedure the alternative b will be chosen, i.e.,  ( ⃗        )       

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

29.3 Outcast condition (O) 

The condition O is not satisfied (see paragraph 29.1 of Appendix 1). 

29.4 Arrow’s choice axiom (ACA) 

The condition ACA is not satisfied since the two-stage choice procedure does not satisfy the condition H. 
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29.5 Monotonicity condition 1 

Let  ( ⃗    )     . It means that 

1.            (   ⃗  )    (   ⃗  ) or  

2.            (   ⃗  )    (   ⃗  )      
 (   ⃗   )  

 

 
   ⃗    , where    is a set of 

alternatives remained for the second stage of the choice procedure. 

Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative a. Then 

   (    
 ⃗⃗  ⃗)    (   ⃗  ),   (    

 ⃗⃗  ⃗)    (   ⃗  )    

   (    
 ⃗⃗  ⃗)    (   ⃗  )  

 (     
 ⃗⃗ ⃗⃗  ⃗)    (   ⃗   )     | ⃗  |     

 ⃗⃗  ⃗ .  

Thus,  (  
 ⃗⃗  ⃗  )     . 

Then    ( ⃗    )        (  
 ⃗⃗  ⃗  ). Consequently, the Monotonicity condition 1 is satisfied. 

29.6 Monotonicity condition 2 

Since given two-stage choice procedure chooses no more than one best alternative, the Monotonicity 

condition 2 is not applicable to it as it considers the choice of more than two alternatives. In other 

words, such two-stage choice procedure obeys the Monotonicity condition 2 trivially. 

29.7 Strict monotonicity condition 

Let           and the profile  ⃗   is the following 

P1 P2 P3 

a a b 

c b c 

b c a 

According to the two-stage choice procedure the alternative a will be chosen, i.e.,  ( ⃗    )        

Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative c in   
 : 

  
    

    
  

c a b 

a b c 

b c a 

According to the two-stage choice procedure the choice is empty, i.e.,  (  
 ⃗⃗  ⃗  )      

 (   
 ⃗⃗  ⃗  )  [

 ( ⃗    )   

      

 ( ⃗    )      

 

Thus, the strict monotonicity condition is not satisfied. 

29.8 Non-compensatory condition 

Let           and the profile  ⃗   is the following 

P1 P2 P3 

a a b 

b b c 

c c a 
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According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )        

Let us write the profile  ⃗   in the following form 

X          

a 3 3 1 

b 2 2 3 

c 1 1 2 

According to the non-compensatory condition the alternative b is better than the alternative a and the 

alternative a is better than the alternative c. Thus, the non-compensatory condition is not satisfied as 

     ( ⃗    ). 

Two-stage choice procedures 30-46 

Two-stage choice procedures 30-46 do not satisfy the same conditions as choice procedures which are 

used on the second stage. To prove it we can use the same examples but with larger number of 

alternatives omitted on the first stage of the choice procedure [11].  

Example. Let           and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 

a a c b b 

с с b a a 

b b a c c 

Let us transform this example to the following form 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

d e f g h a b c a b c 

a a c b b b c a c a b 

с с b a a c a b b c a 

b b a c c … 

… 

According to the plurality rule the alternatives d,e,f,g,h are omitted on the first stage of the procedure 

and the alternatives a,b,c are presented for choice on the second stage. 

Thus, it is necessary to check those normative conditions of two-stage choice procedures which are 

satisfied for the choice procedures of the second stage. 

 Two-stage choice procedures 30-32,35-36,40-56 satisfy the Monotonicity condition 1 (the 

proof follows from the paragraph 29.5 of Appendix 1 and properties of second stage choice 

procedures). 

 Two-stage choice procedures 40,45,47,48 do not satisfy the condition C. To proof it the 

following example is used. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

c c c b b b d d d d a a a a 

a a a d d d b b c c b b b c 

d d d a a a c c b b c c c b 

b b b c c c a a a a d d d d 
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Let us calculate the value   (   ⃗  ) for each alternative    :   (   ⃗  )   ,   (   ⃗  )   , 

  (   ⃗  )   ,   (   ⃗  )   . According to the rule the alternatives a and d will be chosen, i.e., 

 ( ⃗    )          

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

c c c b b b b b c c a a a a 

a a a a a a c c b b b b b c 

b b b c c c a a a a c c c b 

Let us calculate the value   (   ⃗   ) for each alternative     :   (   ⃗   )   ,   (   ⃗   )   , 

  (   ⃗   )   . Thus, the alternative a will be omitted on the first stage and the alternative b will be 

chosen on the second stage, i.e.,  ( ⃗      )       

Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

c c c b b b d d d d b b b c 

d d d d d d b b c c c c c b 

b b b c c c c c b b d d d d 

Let us calculate the value   (   ⃗    ) for each alternative      :   (   ⃗    )   ,   (   ⃗    )   , 

  (   ⃗    )   . According to the rule the alternative b will be chosen, i.e.,  ( ⃗        )       

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the two-stage choice procedure does not 

satisfy the condition С. 

 

 Two-stage choice procedures 40,47 do not satisfy the condition O (see paragraph 29.1 of 

Appendix 1). 

 Two-stage choice procedures 47,48 do not satisfy the condition H (see paragraph 29.1 of 

Appendix 1). 

 Two-stage choice procedures 48,54 do not satisfy the Monotonicity condition 2. To prove it the 

following example is used. 

Let           and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 

a a c b b c 

с c a c c b 

b b b a a a 

Let us calculate the value   (   ⃗  ) for each alternative    :   (   ⃗  )   ,   (   ⃗  )   , 

  (   ⃗  )   . According to the plurality rule used on the first stage the alternatives a and b will be 

chosen, i.e.,  ( ⃗    )          

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 P4 P5 P6 

a a c c c c 

с c a a a a 

According to the plurality rule the alternative c will be chosen, i.e.,  ( ⃗      )     . 
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Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 P4 P5 P5 

с c c b b c 

b b b c c b 

According to the rule the alternative c will be chosen, i.e.,  ( ⃗        )     . 

Then        ( ⃗    ),      ( ⃗      )          ( ⃗        ). Thus, the two-stage choice 

procedure does not satisfy the Monotonicity condition 2. 

 Two-stage choice procedure 50 does not satisfy the non-compensatory condition. To prove 

it the following example is used. 

Let           and the profile  ⃗   is the following 

P1 P2 P3 

a a b 

с c c 

b b a 

Let us calculate the value   (   ⃗  ) for each alternative    :   (   ⃗  )   ,   (   ⃗  )   , 

  (   ⃗  )   . According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )        

According to the non-compensatory condition the alternative с is better than the alternative a while 

the alternative a is better than the alternative b. Thus, the non-compensatory condition is not satisfied 

as      ( ⃗    ). 

Two-stage choice procedures 57-84 

Two-stage choice procedures 57-84 do not satisfy the same conditions as choice procedures which are 

used on the second stage. To prove it we can use the same examples but with larger number of 

alternatives which are regarded as the worst by the maximum number of criteria [11].  

Thus, it is necessary to check those normative conditions of two-stage choice procedures which were 

satisfied for the second stage choice procedures. 

 Two-stage choice procedures 57,75,76 do not satisfy the condition H. To prove it the following 

example is used. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 

b d a 

a b d 

c a c 

d c b 

According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )        

Consider now the subset            . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 

b b a 

a a b 

According to the rule the alternative b will be chosen, i.e.,  ( ⃗      )        

Then  ( ⃗      )   ( ⃗    )    . Thus, the condition H is not satisfied. 
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 Two-stage choice procedures 57,68,75 do not satisfy the condition O (see the previous 

example). 

 Two-stage choice procedures 68,73,75,76 do not satisfy the condition С. To prove it the 

following example is used. 

Consider the previous example. According to the rule  ( ⃗    )     . 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 

b d a 

a b d 

d a b 

According to the rule the alternatives a,b,d will be chosen, i.e.,  ( ⃗      )           

Finally, let us consider the subset            . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 

b b c 

c c b 

According to the rule the alternative b will be chosen, i.e.,  ( ⃗        )        

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

 Two-stage choice procedures 57-60, 63, 64, 68-84 satisfy the Monotonicity condition 1 (the 

proof follows from the properties of the inverse plurality rule and second stage choice 

procedures). 

 Two-stage choice procedures 76, 82 do not satisfy the Monotonicity condition 2. To prove it 

the following example is used. 

Let           and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

c c c a a b b c c c 

a a a b b a a b b b 

b b b c c c c a a a 

According to the rule the alternatives a,b will be chosen, i.e.,  ( ⃗    )         

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

c c c a a a a c c c 

a a a c c c c a a a 

According to the inverse plurality rule used on the first stage the alternative c will be chosen, i.e., 

 ( ⃗      )     . Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a 

set    , i.e.,  ⃗    , looks as 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

c c c b b b b c c c 

b b b c c c c b b b 

According to the rule the alternative c will be chosen, i.e.,  ( ⃗        )     . 

Then        ( ⃗    ),      ( ⃗      )          ( ⃗        ). Thus, the Monotonicity condition 

2 is not satisfied. 
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 Two-stage choice procedure 78 does not satisfy the non-compensatory condition. To prove it 

let           and the profile  ⃗   is the following 

P1 P2 P3 P4 

a b c b 

b a a c 

c c b a 

According to the non-compensatory condition the alternative b is better than the alternative a which 

is better than the alternative c. However, according to the two-stage choice procedure 78, the 

alternatives a,b will be chosen, i.e.,  ( ⃗    )          Thus, the non-compensatory condition is not 

satisfied as      ( ⃗    ). 

Two-stage choice procedures 85-112 

Two-stage choice procedures 85-112 satisfy the same conditions as two-stage choice procedures 30-

46 which use the plurality rule on the first stage. The proof follows from properties of q-Approval 

rule [11]. 

Two-stage choice procedures 169-196 

Two-stage choice procedures 169-196 do not satisfy the same conditions as choice procedures which 

are used on the second stage. To prove it we can use the same examples that were used to check the 

properties of the Borda rule [11] but with larger number of alternatives which are omitted on the first 

stage. 

 

Thus, it is necessary to check those normative conditions of two-stage choice procedures which were 

satisfied for the second stage choice procedures. 

 Two-stage choice procedures 169,187,188 do not satisfy the condition H. To prove it the 

following example is provided. 

Let               and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 

e e a b b 

a a d c c 

b b c e a 

c c b a d 

d d e d e 

Let us calculate the Borda count for each alternative:  (   ⃗  )    (   ⃗  )      (   ⃗  )     

 (   ⃗  )     (   ⃗  )    . According to the rule the alternatives c,d,e will be omitted on the first 

stage and the alternative a will be chosen on the second stage, i.e.,  ( ⃗    )        

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 P4 P5 

e e a b b 

a a c c c 

b b b e a 

c c e a e 

Let us calculate the Borda count for each alternative:  (   ⃗   )     (   ⃗   )     (   ⃗   )   , 

 (   ⃗   )   . According to the rule the alternative b will be chosen, i.e.,  ( ⃗      )     . 

Then  ( ⃗      )   ( ⃗    )    . Thus, the condition H is not satisfied. 
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 Two-stage choice procedures 169, 180, 187 do not satisfy the condition O (see the previous 

example). 

 Two-stage choice procedures 180,185,187,188 do not satisfy the condition С. To prove it the 

following example is provided. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 

a b c 

c a b 

d d a 

b c d 

Let us calculate the Borda count for each alternative:  (   ⃗  )     (   ⃗  )   (   ⃗  )    

 (   ⃗  )   . According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )     . 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

 

P1 P2 P3 

a b c 

c a b 

b c a 

Let us calculate the Borda count for each alternative:  (   ⃗   )   (   ⃗   )   (   ⃗   )   . 

According to the rule the alternatives a,b,c will be chosen, i.e.,  ( ⃗      )         . 

Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 

c b c 

d d b 

b c d 

Let us calculate the Borda count for each alternative:  (   ⃗    )   ,  (   ⃗    )   ,  (   ⃗    )   . 

According to the rule the alternative c will be chosen, i.e.,  ( ⃗        )     . 

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

 Two-stage choice procedures 169-196 satisfy the Monotonicity condition 1 (the proof follows 

from properties of the Borda rule). 

 Two-stage choice procedures 188, 194 do not satisfy the Monotonicity condition 2. To prove it 

the following example is provided. 

Let                 and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 

a a a f f f f c 

b b b b b b c f 

c c c a a a e e 

d d d c c c d d 

e e e d d d b a 

f f f e e e a b 
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Let us calculate the Borda count for each alternative:  (   ⃗  )   (   ⃗  )    ,  (   ⃗  )    , 

 (   ⃗  )      (   ⃗  )     (   ⃗  )    . According to the rule the alternatives a,b will be chosen, 

i.e.,  ( ⃗    )         

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 P4 P5 P6 P7 P8 

a a a f f f f c 

c c c a a a c f 

d d d c c c e e 

e e e d d d d d 

f f f e e e a a 

Let us calculate the Borda count for each alternative:  (   ⃗   )      (   ⃗   )      (   ⃗   )  

  ,  (   ⃗   )     (   ⃗   )    . According to the rule the alternative c will be chosen, i.e., 

 ( ⃗      )     . 

Finally, let us consider the subset          . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 P4 P5 P6 P7 P8 

b b b f f f f c 

c c c b b b c f 

d d d c c c e e 

e e e d d d d d 

f f f e e e b b 

Let us calculate the Borda count for each alternative:  (   ⃗    )      (   ⃗    )      (   ⃗    )  

  ,  (   ⃗    )     (   ⃗    )    . According to the rule the alternative c will be chosen, i.e., 

 ( ⃗        )     . 

Then        ( ⃗    ),      ( ⃗      )          ( ⃗        ). Thus, the Monotonicity condition 

2 is not satisfied. 

 Two-stage choice procedure 190 does not satisfy the non-compensatory condition. To prove it 

let           and the profile  ⃗   is the following 

P1 P2 P3 

a a b 

b b c 

c c a 

According to the two-stage choice procedure the alternative a will be chosen, i.e.,  ( ⃗    )        

However, according to the non-compensatory condition the alternative b is better than the alternative a 

which is better than the alternative c.  

Thus, the non-compensatory condition is not satisfied as      ( ⃗    ). 

Two-stage choice procedures 197-224 

To check the properties of two-stage choice procedures 197-224 similar examples, which were given 

to check the properties of existing choice procedures [11], can be used. 

 Two-stage choice procedures 197-224 do not satisfy the conditions H and O. To prove it the 

following example is provided. 
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Let           and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 

a a d b b 

b b a d d 

d d b a a 

In this example none of alternatives is a Condorcet winner (           ). Thus, the Borda rule is 

used for this case. Let us calculate the Borda count for each alternative:  (   ⃗  )     (   ⃗  )  

   (   ⃗  )   . According to the rule the alternative b will be chosen, i.e.,  ( ⃗    )     . 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 P4 P5 

a a a b b 

b b b a a 

According to the rule the alternative a will be chosen, i.e.,  ( ⃗      )        

 ( ⃗      )   ( ⃗    )    . Thus, the condition H is not satisfied. 

 ( ⃗      )   ( ⃗    ). Thus, the condition O is not satisfied. 

 Two-stage choice procedures 197-224 do not satisfy the condition С. To prove it the following 

example is provided. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 

a a c d d 

d d b b b 

с с a a a 

b b d c c 

In this example none of alternatives is a Condorcet winner (                       ). Thus, the 

Borda rule is used for this case. Let us calculate the Borda count for each alternative:  (   ⃗  )  

   (   ⃗  )     (   ⃗  )   ,  (   ⃗  )    . According to the rule the alternative d will be chosen, 

i.e.,  ( ⃗    )     . 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as  

P1 P2 P3 P4 P5 

a a c b b 

с с b a a 

b b a c c 

According to the rule the alternative a will be chosen, i.e.,  ( ⃗      )     . 

Finally, let us consider the subset            . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 P4 P5 

a a a d d 

d d d a a 

According to the rule the alternative a will be chosen, i.e.,  ( ⃗        )     . 

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 
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 Two-stage choice procedures 197-224 do not satisfy the condition ACA since such choice 

procedures do not satisfy the condition H. 

 Two-stage choice procedures 197-224 satisfy the Monotonicity condition 1 (the proof follows 

from the properties of the Black procedure). 

 Two-stage choice procedures 198-200, 203-214, 216-224 do not satisfy the Monotonicity 

condition 2 (the proof follows from the properties of the Black procedure). 

 Since two-stage choice procedures 197, 201-202, 215 chooses no more than one best 

alternative, the Monotonicity condition 2 is not applicable to these procedures as it considers 

the choice of more than two alternatives. In other words, such two-stage choice procedures 

obey the Monotonicity condition 2 trivially. 

 Two-stage choice procedures 197-224 do not satisfy the strict monotonicity condition (the 

proof follows from the properties of the Black procedure). 

 Two-stage choice procedures 197-224 do not satisfy the non-compensatory condition (the 

proof follows from the properties of the Black procedure). 

Two-stage choice procedures 225-252 

Two-stage choice procedures 225-252 do not satisfy the same properties as the Inverse Borda rule. To 

prove it we can use the same examples that were used to check the properties of the Inverse Borda rule 

[11]. 

Two-stage choice procedures 253-280 

Two-stage choice procedures 253-280 do not satisfy the same properties as the Nanson rule. To prove 

it we can use the same examples that were used to check the properties of the Nanson rule [11].  

Two-stage choice procedures 281-308 

Two-stage choice procedures 281-308 do not satisfy the same properties as the Coombs procedure. To 

prove it we can use the same examples that were used to check the properties of the Coombs procedure 

[11].  

Two-stage choice procedures 310-319, 330, 334-336 

310.5 Monotonicity condition 1 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

b d a a b d b d a c 

d c b c a c c c b a 

a a d b c b d a d d 

c b c d d a a b c b 

According to the rule the alternatives a,b,d will be chosen, i.e.,  ( ⃗    )            

Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative a in   
 : 

  
    

    
    

    
    

    
    

    
     

  

b d a a b d b d a c 

d c b c a c c c b a 

a a d b c b a a d d 

c b c d d a d b c b 
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According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider 

now the subset          . A contraction of a profile   
 ⃗⃗  ⃗ onto a set   , i.e.,    

 ⃗⃗ ⃗⃗  ⃗, looks as  

  
    

    
    

    
    

    
    

    
     

  

b c a a b c b c a c 

a a b c a b c a b a 

c b c b c a a b c b 

According to the rule the alternative c will be chosen, i.e.,  (  
 ⃗⃗  ⃗  )     .  

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

311.5 Monotonicity condition 1 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

b d c a a d b d a d 

d a b c b c c c b a 

c c a b c b a a d b 

a b d d d a d b c c 

According to the rule the alternatives a,b,c will be chosen, i.e.,  ( ⃗    )            

Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative a in   
 : 

  
    

    
    

    
    

    
    

    
     

  

b a c a a d b d a d 

d d b c b c c c b a 

c c a b c b a a d b 

a b d d d a d b c c 

According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider 

now the subset          . A contraction of a profile   
 ⃗⃗  ⃗ onto a set   , i.e.,    

 ⃗⃗ ⃗⃗  ⃗, looks as  

  
    

    
    

    
    

    
    

    
     

  

b a c a a c b c a a 

c c b c b b c a b b 

a b a b c a a b c c 

According to the rule the alternatives b,c will be chosen, i.e.,  (  
 ⃗⃗  ⃗  )       . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

315.5 Monotonicity condition 1 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

b d c a a d b d a d 

d c b c b c c c b a 

c a a b c b a a d b 

a b d d d a d b c c 

Let us calculate the Borda count for each alternative:  (   ⃗  )   (   ⃗  )   (   ⃗  )   (   ⃗  )  

  . According to the rule the alternatives a,b,c,d will be chosen, i.e.,  ( ⃗    )              
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Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative a in    
 : 

  
    

    
    

    
    

    
    

    
     

  

b d c a a d b d a a 

d c b c b c c c b d 

c a a b c b a a d b 

a b d d d a d b c c 

According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider 

now the subset          . A contraction of a profile   
 ⃗⃗  ⃗ onto a set   , i.e.,    

 ⃗⃗ ⃗⃗  ⃗, looks as  

  
    

    
    

    
    

    
    

    
     

  

b c c a a c b c a a 

c a b c b b c a b b 

a b a b c a a b c c 

According to the rule the alternative c will be chosen, i.e.,  (  
 ⃗⃗  ⃗  )     . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

 

To check the remaining normative conditions of given two-stage choice procedures similar examples 

which were given to check the properties of existing choice procedures can be used. 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition H (see the 

properties of minimal dominant set). 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition С (see the 

properties of the procedures used on the second stage). 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition O (see the 

properties of the procedures used on the second stage and paragraphs 310.5, 315.5 of Appendix 

1). 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition ACA since 

such choice procedures do not satisfy the condition H. 

 Two-stage choice procedures 310-319, 330 do not satisfy the Monotonicity condition 1 (see the 

properties of the Coombs procedure for choice procedure 319 and paragraphs 310.5, 311.5, 

315.5 for other choice procedures). 

 Two-stage choice procedures 334-336 satisfy the Monotonicity condition 1 (the proof follows 

from the properties of minimal dominant set and second stage choice procedures). 

 Two-stage choice procedures 310-313, 316-319, 330, 334-336 do not satisfy the Monotonicity 

condition 2 (see the properties of minimal dominant set). 

 Since two-stage choice procedures 314-315 chooses no more than one best alternative, the 

Monotonicity condition 2 is not applicable to these procedures as it considers the choice of 

more than two alternatives. In other words, such two-stage choice procedures obey the 

Monotonicity condition 2 trivially. 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the strict monotonicity 

condition (see the properties of minimal dominant set). 

 Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the non-compensatory 

condition (see the properties of minimal dominant set). 
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Two-stage choice procedures 338-347, 350-364 

Since minimal undominated set is equal to minimal dominant set when the number of criteria is odd, 

two-stage choice procedures 338-347, 358, 362-364 do not satisfy the same conditions as two-stage 

choice procedures 310-319, 330, 334-336, which use minimal dominant set on the first stage. 

Consider now the properties of other two-stage choice procedures. 

 Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the condition H, C and O. 

To prove it let             and the profile  ⃗   looks as 

P1 P2 P3 P4 P5 P6 

b a a b a d 

a c d a c b 

c d b c d c 

d b c d b a 

For this case a matrix of majority relation µ is the following 

 a b c d 

a - 0 1 1 

b 0 - 1 0 

c 0 0 - 1 

d 0 1 0 - 

According to the rule the alternative a is included in minimal undominated set Q. Thus,  ( ⃗    )  

     . 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 P4 P5 P6 

b c d b c d 

c d b c d b 

d b c d b c 

According to the rule the alternatives b,c,d make the minimal undominated set. Thus,  ( ⃗      )  

       . 

Finally, consider the subset             . A contraction of a profile  ⃗   onto a set    , i.e.,  ⃗    , 

looks as 

P1 P2 P3 P4 P5 P6 

b a a b a b 

a b b a b a 

According to the rule the alternatives a and b will be chosen, i.e.,  ( ⃗        )       . 

 ( ⃗      )   ( ⃗    )    . Thus, the condition H is not satisfied. 

 ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

 ( ⃗      )   ( ⃗    ). Thus, the condition O is not satisfied. 

 Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the condition ACA since 

such two-stage choice procedures do not satisfy the condition H. 

 Two-stage choice procedures 351-354, 357, 359-361 satisfy the Monotonicity condition 1 (the 

proof follows from properties of minimal undominated set and second stage choice 

procedures). 

 Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the Monotonicity condition 

2 (see the properties of minimal undominated set). 
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 Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the strict monotonicity 

condition (see the properties of minimal undominated set). 

 Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the non-compensatory 

condition (see the properties of minimal undominated set). 

Two-stage choice procedures 365-392 

Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the 

second stage. To prove it we can use the same examples but with larger number of alternatives 

eliminated on the first stage of the two-stage choice procedure [11]. 

Thus, it is necessary to check those normative conditions of two-stage choice procedures which were 

satisfied for the second stage choice procedures. 

 Two-stage choice procedures 365,383,384 do not satisfy the condition H (see paragraph 365.1 

of Appendix 1). 

 Two-stage choice procedures 365, 376 do not satisfy the condition O (see paragraph 365.1 of 

Appendix 1). 

 Two-stage choice procedures 376, 381, 383, 384 do not satisfy the condition С. To prove it the 

following example is used. 

Let               and a matrix of majority relation µ is the following 

 a b c d e 

a - 1 0 0 0 

b 0 - 1 0 0 

c 0 0 - 1 1 

d 1 0 0 - 0 

e 0 0 0 1 - 

According to the rule the alternatives a and c are included in minimal weakly stable set Q. Thus, 

 ( ⃗    )         . 

Consider now the subset          . Then a matrix of majority relation µ is the following  

 a b c d 

a - 1 0 0 

b 0 - 1 0 

c 0 0 - 1 

d 1 0 0 - 

According to the rule the alternatives a,b,c,d are included in minimal weakly stable set, i.e., 

 ( ⃗      )             

Finally, consider the subset           . Then a matrix of majority relation µ is the following 

 b c d e 

b - 1 0 0 

c 0 - 1 1 

d 0 0 - 0 

e 0 0 1 - 

According to the rule the alternative b is included in minimal weakly stable set, i.e.,  ( ⃗        )  

     

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 
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 Two-stage choice procedures 383, 384 do not satisfy the condition С (see paragraph 383.2 of 

Appendix 1). 

 Two-stage choice procedures 365-375, 383-384, 386, 390-392 do not satisfy the Monotonicity 

condition 1 (the proof follows from the paragraph 365.5 of Appendix 1). 

 Two-stage choice procedures 376-382, 385, 387-389 do not satisfy the Monotonicity condition 

1 (the proof follows from the paragraph 376.5 of Appendix 1). 

 Two-stage choice procedures 365-392 do not satisfy the Monotonicity condition 2 (see the 

properties of minimal weakly stable set). 

 Two-stage choice procedures 365-392 do not satisfy the non-compensatory condition (see the 

properties of minimal weakly stable set). 

365.1 Heredity condition (H) 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f 

a  - 1 0 0 0 1 

b 0 - 1 0 0 0 

c 1 0 - 0 0 0 

d 0 1 0 - 0 0 

e 0 0 0 1 - 0 

f 0 0 0 0 1 - 

Minimal weakly stable set is chosen on the first stage of choice procedure. According to the rule the 

alternatives a,c are included in minimal weakly stable set Q, i.e.,        . 

Simple majority rule is used on the second stage of the choice procedure. Consider now the 

remaining set                . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 

c c a 

a a c 

According to the simple majority rule, the alternative c will be chosen, i.e.,  ( ⃗    )     . 

Consider now the subset              . Then, according to the two-stage choice procedure, the 

alternatives a,b,c are included in minimal weakly stable set   .  

Simple majority rule is used on the second stage of the choice procedure. Consider now the 

remaining set                . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 

c b a 

a c b 

b a c 

According to the rule the choice is empty, i.e.,  ( ⃗      )   . 

Then  ( ⃗    )          ( ⃗      ). Thus, the condition H is not satisfied. 

365.5 Monotonicity condition 1 

Consider the example from paragraph 365.1. According to the rule the alternative c will be chosen, i.e., 

 ( ⃗    )     . 
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Suppose that the relative comparison of the alternative с and the alternative d is changed (сµd) while 

the relative comparison of any pair of other alternatives remains unchanged. Then a matrix of 

majority relation looks as 

  a b c d e f 

a  - 1 0 0 0 1 

b 0 - 1 0 0 0 

c 1 0 - 1 0 0 

d 0 1 0 - 0 0 

e 0 0 0 1 - 0 

f 0 0 0 0 1 - 

Minimal weakly stable set is used on the first stage of choice procedure. For this case the alternatives 

a,b,c form a minimal weakly stable set. Simple majority rule is applied on the second stage of the two-

stage choice procedure. Since cµa, aµb, bµc,  (  
 ⃗⃗  ⃗  )   . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

 

376.5 Monotonicity condition 1 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f g h i j k l m n o 

a - 0 1 0 0 0 1 1 0 0 0 0 0 0 0 

b 1 - 0 0 0 0 0 0 0 0 1 1 0 0 0 

c 0 1 - 1 0 0 0 0 0 0 0 0 0 0 1 

d 1 0 0 - 0 0 0 0 0 0 0 0 0 0 0 

e 0 0 0 1 - 0 1 0 0 0 0 0 0 0 0 

f 0 0 0 0 1 - 0 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 1 - 0 0 0 0 0 0 0 0 

h 0 1 0 0 0 0 0 - 0 0 0 0 0 0 0 

i 0 0 0 0 0 0 0 1 - 0 1 0 0 0 0 

j 0 0 0 0 0 0 0 0 1 - 0 0 0 0 0 

k 0 0 0 0 0 0 0 0 0 1 - 0 0 0 0 

l 0 0 1 0 0 0 0 0 0 0 0 - 0 0 0 

m 0 0 0 0 0 0 0 0 0 0 0 1 - 0 1 

n 0 0 0 0 0 0 0 0 0 0 0 0 1 - 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 - 

According to the rule the alternatives a,b,c make a minimal weakly stable set. Thus, the alternatives d, 

e, f, g, h, i, j, k, l, m, n, o will be omitted on the first stage and the alternatives a,b,c will be chosen on 

the second stage of the two-stage choice procedure, i.e.,  ( ⃗    )         . 

Suppose that the relative comparison of the alternative a and the alternative d is changed (aµd) while 

the relative comparison of any pair of other alternatives remains unchanged. Then a matrix of 

majority relation looks as 
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  a b c d e f g h i j k l m n o 

a - 0 1 0 0 0 1 1 0 0 0 0 0 0 0 

b 1 - 0 0 0 0 0 0 0 0 1 1 0 0 0 

c  1 - 1 0 0 0 0 0 0 0 0 0 0 1 

d 1 0 0 - 0 0 0 0 0 0 0 0 0 0 0 

e 0 0 0 1 - 0 1 0 0 0 0 0 0 0 0 

f 0 0 0 0 1 - 0 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 1 - 0 0 0 0 0 0 0 0 

h 0 1 0 0 0 0 0 - 0 0 0 0 0 0 0 

i 0 0 0 0 0 0 0 1 - 0 1 0 0 0 0 

j 0 0 0 0 0 0 0 0 1 - 0 0 0 0 0 

k 0 0 0 0 0 0 0 0 0 1 - 0 0 0 0 

l 0 0 1 0 0 0 0 0 0 0 0 - 0 0 0 

m 0 0 0 0 0 0 0 0 0 0 0 1 - 0 1 

n 0 0 0 0 0 0 0 0 0 0 0 0 1 - 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 - 

According to the rule the alternatives a,b make a minimal weakly stable set. Thus, the alternatives c, d, 

e, f, g, h, i, j, k, l, m, n, o will be omitted on the first stage and the alternative b will be chosen on the 

second stage of the two-stage choice procedure (bµa), i.e.,  (  
 ⃗⃗  ⃗  )     . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

383.2 Concordance condition (C) 

Let                     and a matrix of majority relation µ is the following 

  a b c d e f g h 

a - 1 0 1 0 0 0 0 

b 0 - 1 1 1 0 0 0 

c 1 0 - 0 0 0 0 1 

d 0 0 1 - 0 0 0 0 

e 0 0 1 0 - 0 0 0 

f 0 0 0 0 1 - 0 0 

g 0 0 0 0 0 1 - 0 

h 0 0 0 0 0 0 1 - 

On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case 

there are 3 minimal weakly stable sets:                      . Thus,                     

         .  

On the second stage of the two-stage choice procedure a Condorcet winner rule is used. For this case 

there is no Condorcet winner (aµb, aµd, cµa, bµc, dµc), Thus,  ( ⃗    )   . 

Consider now the subset                . A matrix of majority relation µ looks as 

 

a b d 

a - 1 1 

b 0 - 1 

d 0 0 - 
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On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case 

the alternative a makes a minimal weakly stable set. Thus,  ( ⃗      )     . 

Finally, consider the subset           . Then a matrix of majority relation µ looks as 

  a c d e f g h 

a - 0 1 0 0 0 0 

c 1 - 0 0 0 0 1 

d 0 1 - 0 0 0 0 

e 0 1 0 - 0 0 0 

f 0 0 0 1 - 0 0 

g 0 0 0 0 1 - 0 

h 0 0 0 0 0 1 - 

On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case 

the alternatives a and d make a minimal weakly stable set. On the second stage of the two-stage choice 

procedure a Condorcet winner rule is used. Since aµd,  ( ⃗        )     . 

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

Two-stage choice procedures 394-410, 412-420 

Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the 

second stage. To prove it we can use the same examples but with larger number of alternatives 

eliminated on the first stage of the two-stage choice procedure [11]. 

Thus, it is necessary to check those normative conditions of two-stage choice procedures which were 

satisfied for the second stage choice procedures. 

 Two-stage choice procedure 412 does not satisfy the condition H (see paragraph 412.1 of 

Appendix 1). 

 Two-stage choice procedures 404, 409 do not satisfy the condition C. To prove it the following 

example is used. 

Let               and a matrix of majority relation µ is the following 

 a b c d e f 

a - 1 0 0 1 1 

b 0 - 1 1 0 1 

c 1 0 - 1 1 0 

d 1 0 0 - 0 0 

e 0 0 0 1 - 1 

f 0 0 1 1 0 - 

Let us define the upper contour sets for each alternative.  (   ⃗  )         (   ⃗  )     , 

 (   ⃗  )       ,  (   ⃗  )           ,  (   ⃗  )       ,  (   ⃗  )         . Then    ,    , 

   . Thus,  ( ⃗    )         . 

Consider now the subset            . Then a matrix of majority relation µ is the following  

 a b d e 

a - 1 0 1 

b 0 - 1 0 

d 1 0 - 0 

e 0 0 1 - 
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Let us define the upper contour sets for each alternative.  (   ⃗   )       (   ⃗   )     , 

 (   ⃗   )       ,  (   ⃗   )     . Thus,  ( ⃗      )           . 

Finally, consider the subset             . Then a matrix of majority relation µ is the following 

 c d e f 

c - 1 1 0 

d 0 - 0 0 

e 0 1 - 1 

f 1 1 0 - 

Let us define the upper contour sets for each alternative.  (   ⃗    )     ,  (   ⃗    )         , 

 (   ⃗    )     ,  (   ⃗    )     . Then    ,    ,    . Thus,  ( ⃗        )         . 

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 

 Two-stage choice procedures 412 do not satisfy the condition C (see paragraph 412.2 of 

Appendix 1). 

 Two-stage choice procedure 404 does not satisfy the condition O. To prove it the following 

example is used. 

Let               and a matrix of majority relation µ is the following 

 a b c d e 

a - 1 0 1 1 

b 0 - 1 1 0 

c 1 0 - 1 0 

d 0 0 0 - 1 

e 0 0 0 0 - 

Let us define the upper contour sets for each alternative.  (   ⃗  )       (   ⃗  )     ,  (   ⃗  )  

   ,  (   ⃗  )         ,  (   ⃗  )       . Then    ,    . Thus,  ( ⃗    )         . 

Consider now the subset          . Then a matrix of majority relation µ is the following  

 a b c e 

a - 1 0 1 

b 0 - 1 0 

c 1 0 - 0 

e 0 0 0 - 

Let us define the upper contour sets for each alternative.  (   ⃗   )       (   ⃗   )     , 

 (   ⃗   )     ,  (   ⃗   )     . Thus,  ( ⃗      )           . 

Then  ( ⃗      )   ( ⃗    ), Consequently, the condition O is not satisfied. 

 Two-stage choice procedures 394-403, 405-407, 409, 412, 414-420 do not satisfy the 

Monotonicity condition 1 (the proof follows from the paragraphs 394.5, 409.5 of Appendix 1 

and properties of second stage choice procedures). 

 Two-stage choice procedure 412 does not satisfy the Monotonicity condition 2 (see paragraph 

412.1 of Appendix 1). 

 Two-stage choice procedures 393-420 do not satisfy the non-compensatory condition (see the 

properties of Fishburn rule). 
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394.5 Monotonicity condition 1 

Consider the example from paragraph 412.1 of Appendix 1. Suppose that bµc. Then the alternative f is 

eliminated on the first stage and, consequently, the alternative b is not chosen on the second stage. 

Since      ( ⃗    ),      (  
 ⃗⃗  ⃗  ), the Monotonicity condition 1 is not satisfied. 

409.5 Monotonicity condition 1 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f 

a  - 0 1 0 1 0 

b 0 - 0 1 0 1 

c 0 0 - 0 0 0 

d 0 0 0 - 1 0 

e 0 1 0 0 - 1 

f 1 0 0 0 0 - 

 

According to the rule the alternatives a,b will be chosen, i.e.,  ( ⃗    )       . 

Suppose that the relative position of the alternative a is improved such that aµb, aµd while the 

relative comparison of any pair of other alternatives remains unchanged. Then a matrix of majority 

relation looks as 

  a b c d e f 

a  - 1 1 1 1 0 

b 0 - 0 1 0 1 

c 0 0 - 0 0 0 

d 0 0 0 - 1 0 

e 0 1 0 0 - 1 

f 1 0 0 0 0 - 

For this case the alternatives a,c,f are considered for the second stage of the choice procedure. Since 

fµa, aµc,  (  
 ⃗⃗  ⃗  )       . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

412.1 Heredity condition (H) 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f 

a  - 1 1 0 1 0 

b 0 - 0 1 0 1 

c 0 0 - 0 0 1 

d 0 0 0 - 1 0 

e 0 1 0 0 - 0 

f 1 0 0 0 0 - 

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e.,  ( ⃗    )  

     . 
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Consider now the subset            . A matrix of majority relation µ looks as 

  a b e f 

a  - 0 1 0 

b 0 - 0 1 

e 0 1 - 0 

f 1 0 0 - 

According to the rule the choice is empty, i.e.,  ( ⃗      )   . 

Then  ( ⃗    )            ( ⃗      ). Thus, the condition H is not satisfied. 

412.2 Concordance condition (C) 

Let                   and a matrix of majority relation µ is the following 

  a b c d e f g 

a  - 0 1 0 1 0 0 

b 0 - 0 1 0 1 1 

c 0 0 - 0 0 1 0 

d 0 0 0 - 1 0 0 

e 0 1 0 0 - 0 1 

f 1 0 0 0 0 - 0 

g 1 0 0 1 0 1 - 

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e.,  ( ⃗    )  

     . 

Consider now the subset          . A matrix of majority relation µ looks as 

  a c d e f g 

a  - 1 0 1 0 0 

c 0 - 0 0 1 0 

d 0 0 - 1 0 0 

e 0 0 0 - 0 1 

f 1 0 0 0 - 0 

g 1 0 1 0 1 - 

According to the given two-stage choice procedure the alternatives c,g will be chosen, i.e., 

 ( ⃗      )       . 

Finally, consider the subset           . Then a matrix of majority relation µ looks as 

  b c d e f g 

b - 0 1 0 1 1 

c 0 - 0 0 1 0 

d 0 0 - 1 0 0 

e 1 0 0 - 0 1 

f 0 0 0 0 - 0 

g 0 0 1 0 1 - 

According to the rule the alternative c will be chosen, i.e.,  ( ⃗        )     . 

Then  ( ⃗      )   ( ⃗        )       ( ⃗    ). Thus, the condition С is not satisfied. 
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422.5 Monotonicity condition 1 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f 

a  - 1 0 0 0 0 

b 0 - 1 0 0 0 

c 1 0 - 1 1 0 

d 0 0 0 - 0 0 

e 0 0 0 0 - 0 

f 1 0 0 1 0 - 

According to the rule the alternatives a,b,c will be chosen, i.e.,  ( ⃗    )         . 

Suppose that the relative position of the alternative a is improved such that aµc while the relative 

comparison of any pair of other alternatives remains unchanged. Then a matrix of majority relation 

looks as 

 a b c d e f 

a  - 1 0 0 0 0 

b 0 - 1 0 0 0 

c 0 0 - 1 1 0 

d 0 0 0 - 0 0 

e 0 0 0 0 - 0 

f 1 0 0 1 0 - 

For this case the alternatives a,b,c,f are considered for the second stage of the choice procedure. For 

this majority matrix it is possible to construct a profile   
 ⃗⃗  ⃗  such that      (  

 ⃗⃗  ⃗  )  

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

440.1 Heredity condition (H) 

Let                 and a matrix of majority relation µ is the following 

  a b c d e f 

a  - 0 1 0 0 0 

b 0 - 1 0 0 0 

c 0 0 - 1 1 1 

d 0 0 0 - 1 0 

e 0 0 0 0 - 1 

f 0 0 0 1 0 - 

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e.,  ( ⃗    )  

     . 

Consider now the subset          . A matrix of majority relation µ looks as 

  a b d e f 

a  - 0 0 0 0 

b 0 - 0 0 0 

d 0 0 - 1 0 

e 0 0 0 - 1 

f 0 0 1 0 - 
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According to the rule the choice is empty, i.e.,  ( ⃗      )   . 

Then  ( ⃗    )            ( ⃗      ). Thus, the condition H is not satisfied. 

465.2 Concordance condition (C) 

Consider the example from paragraph 468.2 of Appendix 1. Then  ( ⃗    )           . 

Consider now the subset          . A matrix of majority relation µ looks as 

  a b c d e f 

a  - 0 0 0 1 1 

b 0 - 0 0 0 0 

c 1 0 - 0 0 1 

d 0 0 1 - 0 1 

e 0 1 1 1 - 0 

f 0 0 0 0 1 - 

According to the given two-stage choice procedure the alternatives a,b,d will be chosen, i.e., 

 ( ⃗      )         . 

Finally, consider the subset           . Then a matrix of majority relation µ looks as  

  b c d e f g 

b - 0 0 0 0 0 

c 0 - 0 0 1 0 

d 0 1 - 0 1 0 

e 1 1 1 - 0 0 

f 0 0 0 1 - 1 

g 0 0 1 1 0 - 

According to the rule the alternatives b,c,d,g will be chosen, i.e.,  ( ⃗        )           . 

Then  ( ⃗      )   ( ⃗        )         ( ⃗    ). Thus, the condition С is not satisfied. 

465.5 Monotonicity condition 1 

Let             and a matrix of majority relation µ is the following 

  a b c d 

a  - 1 0 0 

b 0 - 0 1 

c 1 0 - 0 

d 0 0 1 - 

According to the rule the alternatives a,b,c,d will be chosen. Suppose that the relative position of the 

alternative a is improved (aµd). Then the alternative d is omitted on the first stage. For this case it is 

possible to construct a profile   
 ⃗⃗  ⃗  such that      (  

 ⃗⃗  ⃗  )  

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 
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468.1 Heredity condition (H) 

Let                   and a matrix of majority relation µ is the following 

  a b c d e f g 

a  - 0 0 0 1 1 0 

b 0 - 0 0 0 0 0 

c 1 0 - 0 0 1 0 

d 0 0 1 - 0 1 0 

e 0 1 1 1 - 0 0 

f 0 0 0 0 1 - 1 

g 0 0 0 0 1 0 - 

According to the given two-stage choice procedure the alternatives a,b,d,g will be chosen, i.e., 

 ( ⃗    )           . 

Consider now the subset            . A matrix of majority relation µ looks as 

  a b c f g 

a  - 0 0 1 0 

b 0 - 0 0 0 

c 1 0 - 1 0 

f 0 0 0 - 1 

g 0 0 0 0 - 

According to the rule the alternatives b,c,g will be chosen, i.e.,  ( ⃗      )         . 

Then  ( ⃗    )              ( ⃗      ). Thus, the condition H is not satisfied. 

468.2 Concordance condition (C) 

Let                   and a matrix of majority relation µ is the following 

  a b c d e f g 

a  - 0 0 0 1 1 0 

b 0 - 0 0 0 0 0 

c 1 0 - 0 0 1 0 

d 0 0 1 - 0 1 0 

e 0 1 1 1 - 0 0 

f 0 0 0 0 1 - 1 

g 0 0 0 1 1 0 - 

According to the two-stage choice procedure the alternatives b,g will be chosen, i.e.,  ( ⃗    )  

     . 

Consider now the subset          . A matrix of majority relation µ looks as 

  a b c e f g 

a  - 0 0 1 1 0 

b 0 - 0 0 0 0 

c 1 0 - 0 1 0 

e 0 1 1 - 0 0 

f 0 0 0 1 - 1 

g 0 0 0 1 0 - 
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According to the given two-stage choice procedure the alternatives b,c,g will be chosen, i.e., 

 ( ⃗      )         . 

Finally, consider the subset                 . Then a matrix of majority relation µ looks as 

  c d g 

c - 0 0 

d 1 - 0 

g 0 1 - 

According to the rule the alternatives c,g will be chosen, i.e.,  ( ⃗        )       . 

Then  ( ⃗      )   ( ⃗        )         ( ⃗    ). Thus, the condition С is not satisfied. 

468.5 Monotonicity condition 1 

Let                   and a matrix of majority relation µ is the following 

  a c d e f g 

a  - 0 0 0 1 0 

c 1 - 0 0 1 0 

d 0 1 - 0 1 0 

e 0 1 1 - 0 0 

f 0 0 0 1 - 1 

g 0 0 1 1 0 - 

According to the rule the alternatives e,f are omitted on the first stage. Suppose that the relative 

position of the alternative a is improved such that aµg while the relative comparison of any pair of 

other alternatives remains unchanged. Then the alternatives e,f are omitted on the first stage. For this 

case it is possible to construct a profile   
 ⃗⃗  ⃗  such that      (  

 ⃗⃗  ⃗  )  

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 

Two-stage choice procedures 478-494, 496-504 

Two-stage choice procedures 478-494, 496-504 satisfy the same conditions as two-stage choice 

procedures which use the Fishburn rule and Uncovered set I on the first stage. To prove it we can use 

the same examples that are used for these rules [11]. 

 

Two-stage choice procedures 534-538,543,554,558 

Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the 

second stage. As for other normative conditions, two-stage choice procedures 534-538,543,554,558 do 

not satisfy any of them as the subset of alternatives for the second stage can be easily changed when 

the core is applied on the first stage of the rule. To prove it we can provide the following example. 

534.5 Monotonicity condition 1. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 P4 P5 P6 P7 P8 

a a a c b b d d 

c c c a d d b b 

b d d b c a c c 

d b b d a c a a 
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According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )     . 

Suppose now that the position of the alternative a was improved in   
  while the relative comparison of 

any pair of other alternatives remained unchanged. 

  
    

    
    

    
    

    
    

  

a a a c b b d d 

c c c a d a b b 

b d d b c d c c 

d b b d a c a a 

Then the alternative d will be omitted after applying the first choice procedure (the core) and the subset 

          will be presented for the second choice procedure (the plurality rule). A contraction of a 

profile   
 ⃗⃗  ⃗ onto a set   , i.e.,   ⃗⃗  ⃗

  , looks as 

  
    

    
    

    
    

    
    

  

a a a c b b b b 

c c c a c a c c 

b b b b a c a a 

According to the rule the alternative b will be chosen, i.e.,  (  
 ⃗⃗  ⃗  )   (   

 ⃗⃗ ⃗⃗  ⃗   )     . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied for the given 

two-stage choice procedure. 

 

Two-stage choice procedures 561-588 

Two-stage choice procedures 561-588 do not satisfy the same normative conditions as two-stage 

choice procedures which use minimal weakly stable set on the first stage. To prove it similar examples 

can be used but with larger number of alternatives (see the properties of k-stable set) [11].  

Two-stage choice procedures 589-616 

To check the properties of two-stage choice procedures 589-616 it is possible to use the same counter-

examples that were used to check the properties of the threshold rule [11]. Thus, it remained to check 

normative conditions which are satisfied for the threshold rule. 

 Two-stage choice procedures 589-616 satisfy the Monotonicity condition 1. The proof follows 

from properties of the threshold rule (an improved position of any chosen alternative x leads to 

the choice of only this alternative on the first stage of two-stage procedure). 

 Two-stage choice procedures 589-616 do not satisfy the non-compensatory condition. To proof 

it the following example is provided. 

Let             and the profile  ⃗   is the following 

P1 P2 P3 

a b c 

d a b 

b c a 

c d d 
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According to the first stage rule, the alternatives a and b will be chosen on the first stage of the two-

stage choice procedure. Consider now the subset            . A contraction of a profile  ⃗   onto a 

set   , i.e.,  ⃗   , looks as 

P1 P2 P3 

a b b 

b a a 

According to the second stage rule, the alternative b will be chosen on the second stage of the two-

stage choice procedure. Thus,  ( ⃗    )        

Now let us write the profile  ⃗   in the following form 

X          

a 4 3 2 

b 2 4 3 

c 1 2 4 

d 3 1 1 

According to the non-compensatory condition the alternatives a,b (the alternatives a and b are equal) 

are better than the alternative c and the alternative c is better than the alternative d. Thus, the non-

compensatory condition is not satisfied as        ( ⃗    ). 

Two-stage choice procedures 617-700 

Two-stage choice procedures do not satisfy the same conditions as Copeland rules 1-3 and choice 

procedures used on the second stage. To prove it similar examples can be used but with larger number 

of alternatives [11]. Thus, it remained to check normative conditions which are satisfied for Copeland 

rules 1-3 and choice procedures used on the second stage. 

 Two-stage choice procedures 617-620, 623-624, 628-648, 651-652, 656-676, 679-680, 684-700 

satisfy the Monotonicity condition 1 (the proof follows from properties of Copeland rules 1-3 

and choice procedures used on the second stage). 

 Two-stage choice procedures 621-622, 625-627, 649-650, 653-655, 677-678, 681-683 do not 

satisfy the Monotonicity condition 1 (the same example that was used to check the properties 

of the second stage choice procedures can be provided). 

 Two-stage choice procedures 617-700 do not satisfy the non-compensatory condition (the 

proof follows from properties of Copeland rules 1-3). 

Two-stage choice procedures 701-728 

Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the 

second stage. To prove it similar examples can be used but with larger number of alternatives [11]. 

Thus, it remained to check normative conditions which areaz satisfied for choice procedures used on 

the second stage. 

 Two-stage choice procedures 701, 719-720 do not satisfy the condition H (the proof follows 

from properties of super-threshold rule). 

 Two-stage choice procedures 712, 717, 719-720 do not satisfy the condition C (the proof 

follows from properties of super-threshold rule). 

 Two-stage choice procedures 712, 717 do not satisfy the condition O (the proof follows from 

properties of super-threshold rule). 
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 Two-stage choice procedures 701, 712-713, 719-720 satisfy the Monotonicity condition 1 (the 

proof follows from properties of threshold-rule and choice procedures used on the second 

stage). 

 Two-stage choice procedures 702-711, 714-718, 721-728 do not satisfy the Monotonicity 

condition 1. Since super-threshold rule narrows the subset of alternatives remained after the 

first stage of the procedure, alternatives dominated by the chosen one might be eliminated on 

the first stage and, consequently, on the second stage of the rule the chosen alternative will not 

be included into a new choice.  

 Two-stage choice procedures 701-728 do not satisfy the non-compensatory condition (the 

proof follows from properties of super-threshold rule). 

 

Two-stage choice procedures 729-784 

To check the properties of two-stage choice procedures which use minimax and Simpson procedures 

on the first stage we can use the same counter-examples which were used to check the properties of 

minimax and Simpson procedures [11]. Thus, it remained to study those normative conditions which 

are satisfied for choice procedures used on the first stage. 

 Two-stage choice procedures 729, 740-741, 747-748, 757, 768-769, 775-776 satisfy the 

Monotonicity condition 1 (the proof follows from properties of Minimax and Simpson 

procedures and choice procedures used on the second stage). 

 Two-stage choice procedures 730-739, 742-746, 749-756, 758-767, 770-774, 777-784 do not 

satisfy the Monotonicity condition 1. To prove it the following example for the two-stage 

choice procedure 731 is given.  

Let           and the profile  ⃗   looks as 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

c c b a a a a a c d d d d b c 

b b c b c c c c b c b b b a d 

d d d c b b b b d a a a a d a 

a a a d d d d d a b c c c c b 

Let us construct a matrix   ( ⃗    ) for the profile  ⃗  . 

 a b c d 

a - 7 9 6 

b 8 - 6 10 

c 6 9 - 10 

d 9 5 5 - 

According to the minimax procedure used on the first stage, the alternatives a,b,c will be chosen, i.e., 

  ( ⃗    )         , where    is a Minimax choice procedure. 

Consider now the subset          . A contraction of a profile  ⃗   onto a set   , i.e.,  ⃗   , looks as 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

c c b a a a a a c c b b b b c 

b b c b c c c c b a a a a a a 

a a a c b b b b a b c c c c b 

According to the rule the alternative a will be chosen, i.e.,  ( ⃗    )     . 
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Consider now a profile   
 ⃗⃗  ⃗, which differs from the profile  ⃗   only by improved position of the 

alternative a in    
 . 

  
    

    
    

    
    

    
    

    
     

     
     

     
     

     
  

c c b a a a a a c d d d d b c 

b b c b c c c c b a b b b a d 

d d d c b b b b d c a a a d a 

a a a d d d d d a b c c c c b 

Let us construct a matrix   (  ⃗⃗  ⃗
   ) for the profile   ⃗⃗  ⃗

 . 

 a b c d 

a - 7 10 6 

b 8 - 6 10 

c 5 9 - 10 

d 9 5 5 - 

According to the minimax procedure used on the first stage, the alternatives a,b will be chosen, i.e., 

  (  ⃗⃗  ⃗
   )       , where    is a Minimax choice procedure. 

Consider now the subset             . A contraction of a profile   ⃗⃗  ⃗
  onto a set    , i.e.,   ⃗⃗  ⃗

   , 

looks as 

  
    

    
    

    
    

    
    

    
     

     
     

     
     

     
  

b b b a a a a a b a b b b b a 

a a a b b b b b a b a a a a b 

According to the rule the alternative b will be chosen, i.e.,  (  ⃗⃗  ⃗
   )     . 

Then      ( ⃗    ),      (  
 ⃗⃗  ⃗  ). Thus, the Monotonicity condition 1 is not satisfied. 
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Исследуются двухступенчатые процедуры выбора, которые представляют собой суперпозицию 
двух процедур выбора. Показано, какие из рассматриваемых процедур выбора удовлетворяют 
существующим нормативным условиям, описывающим, каким образом изменяется конечный 
выбор при изменении предъявляемого множества альтернатив и оценок альтернатив по критериям. 
Особое внимание уделяется двухступенчатым процедурам, в основе которых лежат позиционные 
правила, а также правила, использующие мажоритарное отношение, вспомогательную числовую 
шкалу и турнирную матрицу. Приводится теорема о том, какие нормативные условия выполняются 
для рассматриваемых двухступенчатых процедур выбора. Оценена вычислительная сложность 
двухступенчатых процедур выбора и время их выполнения на реальных данных.
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