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Introduction

The choice of the best alternatives among a set of all possible alternatives has been a
matter for study, analysis and debates for a long time. It is hardly to find any sphere where this
problem did not occur.

There are a lot of different choice procedures that allow to choose and rank alternatives
from the initial set [1-10]. In this part, we consider choice procedures of a special type based on
the superposition principle. Let us remind that by superposition of two choice functions C;(-) and
Cy(") we mean a binary operation ©, the result of which is a new function C(-)=Ca(-Y®C1("),
having the form VXe2" C"(X)=C,(C1(X)) [1]. In other words, superposition consists in sequential
application of choice functions where the result of the previous choice function C; is the input
for the next choice function C,. It is necessary to mention that the change of the order of
functions may lead to completely different results, as the superposition operation is not
commutative.

The interest in superposition of choice procedures can be explained by several reasons.
First, most existing accurate choice procedures have a high computational complexity so they
cannot be applied in the cases when the number of alternatives or/and criteria is very large. The
use of superposition allows to reduce the complexity by applying choice procedures with a low
computational complexity on first stages and more accurate choice procedures on final stages.
Thus, the results can be obtained in a reasonable time. Second, there are a lot of situations when
after applying some choice procedures the remaining set of alternatives is too large. The use of
superposition allows to avoid such situations through the use of additional choice procedures.

The change of presentation, a set of criteria or criterial values of some alternatives can
affect the final choice. Consequently, there is a need for more detailed study of existing choice
procedures and for understanding which of them can be used in a particular case.

Thus, we consider the two-stage superposition choice procedures based on scoring rules,
rules, using majority relation, value function and tournament matrix. The main focus of the paper
is the study of its properties, its computational complexity and its runtime on real data. The study
of the properties of two-stage superposition choice procedures is based on the study of the
properties of different multi-criteria choice procedures which is done in the first part of the study
[11].

This part is divided into several sections. First, some background information on two-
stage choice procedures is given. Second, we form a list of two-stage choice procedures Then,
we study the properties of two-stage superposition choice procedures. Finally, a computational
and run-time complexity of studied procedures is given.

A survey of the literature

In [1] two-stage extremizational choice procedures that consist of scalar or vector choice
procedures were studied. The description of such choice procedures is given below.

Definition 1. A choice function C(-) is called rationalized by scalar criterion ¢ (or simply
scalar), if vX € A

CX) ={y eX|Ax € X: (x) > 0(1)}-



Suppose now that all alternatives from A are mapped into n criterial scales instead of one
criterial scale. Denote by ¢ a set of n criterial scales ¢ = (¢, ..., ®,)), Where @ is a «vector
criterion», and ¢;, where i = 1, 2, ..., n, - its component.

Definition 2. A choice function C(-) is called rationalized by vector criterion ¢ =
(@1, .-, @y) Or simply vector, if VX € A

CX)={yeX[AxeX:4(x) > g(y)},
where
¢(x) > g(y) @ Viell,..,n}o;(y) > ¢;(x)
Thus, there are 4 main types of two-stage extremizational choice procedures
1. scalar-scalar choice procedure;
2. scalar-vector choice procedure;
3. vector-scalar choice procedure;
4. vector-vector choice procedure.

As the single—criterion extremizational choice procedure is a special case of the vector
choice procedure, it is clear that the choice procedure 1 is a special case of choice procedures 2
and 3, which are special cases of the procedure 4. In [1] it was also shown that scalar-scalar
choice procedure (type 1) is equivalently reducible to the usual single-criterion extremizational
choice procedure and two-stage scalar-vector choice procedure - to the usual multi-criteria
extremizational choice procedure. To define under what circumstances the procedure of type 2 is
equivalent to the scalar procedure, a notion of yw-triad was introduced in [1].

Definition 3. Let u, v, weA, where 4 is a set of alternatives. These alternatives are said to
form a y-triad if y(u) < w(v), w(u) y w(w) and w(v) ¥ w(w), where the inequality is understood as
some vector (component-wise) inequality, and y stands for the independent relation introduced as

Py pW) © 3ij € 1= {1, .., n}: ;@) = Py(w) & ;) < (W),
where I — a set of criteria, Y — vector criterion.

The scalar-vector two-stage choice procedure (type 2) is equivalent to the one-stage
single-criterion extremizational choice procedure if and only if the set X lacks w-triads for any
Xe2" and the criterion ¢ has the same value over all alternatives from this set, that is Vx € X
¢@(x) = const [1].

As for the vector-vector choice procedure of type 4, it was shown in [1] that this
procedure is far from being always reducible to the usual multi-criteria (all the more so, to
single-criterion) choice procedure. Reducibility is possible only for some special relative
positions of the alternatives in criterial spaces ¢ and .

In [1] there were also defined under which conditions choice procedures of type 3 and 4
can be reduced to pair-dominant choice procedures. Let us remind that a choice procedure C () is
called pair-dominant or rationalized by binary relation P if VX € A

C(X) ={y € X|Ax € X: xPy} 1)

In other words, pair-dominant choice procedure is a procedure for which the rational
choice consists in the choice of undominated by their pairwise comparisons alternatives.

To define under which conditions choice procedures of type 4 can be reduced to pair-
dominant choice procedure, a notion of uncoordinated triad was introduced.



Definition 4. Let u,v,weA make up a ¢-triad referred to as a ¢, w-uncoordinated triad of
the first, or second, or third type if correspondingly
L w(w) <y(u), y(w) <y(v) or
2. y(u) x w(w), y(v) < w(w) or
3. w(u) x ww), w(v) x w(w),
where ¢, w — vector criteria, y — independed relation, < is a violation of the vector inequality <,
i.e.,
p(u) <p(v) & 3i e I ;W) = P; ().

It was also proved in [1] that for the two-stage vector-vector choice procedure an
equivalent pair-dominant choice procedure exists if and only if the alternatives from A do not
make up ¢, w-uncoordinated triads of the first type.

As for a pair-dominant choice procedure, it is necessary to define its levels. It was
defined in [1] that a pair-dominant choice procedure has the level 1 if a preference P on
alternatives in (1) is acyclic, level 2 if P is acyclic and transitive, i.e., it is a partial order, level 3
If P is acyclic, transitive and negatively transitive, i.e., it is a weak order.

It turned out that for the two-stage vector-vector choice procedure to generate a choice
function of level 2 (level 3), it is necessary and sufficient that no alternatives from set A make up
@, y-noncoordinated triads of a second type (correspondingly ¢, y-noncoordinated triads of a
second and third type, and also  , p-noncoordinated triads of third type).

Finally, it was proved in [1] that two-stage vector-scalar choice procedure (type 3) is
equivalent to

a) a pair-dominant level 1 choice procedure;
b) a one-stage multi-criteria extremizational choice procedure; and
c) aone-stage single-criterion extremizational choice procedure.
if and only if there are no ¢-triads <u,v,w> (¢ — vector criterion) in A satysfying, respectively, the
following conditions
a') w(u)> w(w)=>w(v), where y is a scalar criterion;
b) wu)>w(w)> w(v) with at least one strict inequality;
¢) W)=z yw)=w).

In [1] an example of a two-stage choice procedure was provided. This two-stage choice
procedure operates as follows: at the first stage a Pareto set is chosen from initial set X from
which, at the second stage, an alternative is isolated by Euclidean metric to some «ideal» point
wo = (wq, ..., wy) In criterial space, where wy, ..., w, — maximum values for each criterion. It
was shown that this choice procedure can be reduced to its second stage iff

Vi € w; = max,ey @;(x).

In [12] a two-stage sequential choice procedure was studied, the first stage being defined
by g-Pareto multicriterial choice rule, and the second stage being defined by scalar extremization
choice procedure.

Let us define a g-Pareto choice rule that was studied in [2,3]. The main idea of this rule is
to choose alternatives which are dominated by no more that g alternatives. Hence, it allows to
avoid situations when the measurement by criterion has not been made very accurately and,
consequently, it allows not to miss almost optimal elements from the chosen set of alternatives.
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Below we consider g-Pareto choice rule more precisely, but first we need an additional notion of
upper contour set.
The upper contour set D; (x) for an alternative x in the i-th criterion is
Di(x) = {yeAlp;(y) > ¢;(x)},
where  is a vector ctiterion.
In other words, the upper contour set for x is a set of all alternatives which have higher
values that x in the criterion i.
The upper contour set for an alternative x in a set X is defined as [D;(x) N X].
Now, we re-define the Pareto rule as
xeC(X) < card (N;en[D;(x) N X]) = 0.
Obviously, Pareto rule is a special case of g-Pareto rule when parameter q is equal to 0.
The generalization of g-Pareto choice rule can be defined as
xeC(X) & card (Nien[D;(x) N X]) <q.
Thus, the choice rule consists in choice of alternatives which are dominated by no more
than q alternatives.

Example. Consider the following situation. A = {a, b,c,d, e, f, g, h, k,[,m}.

Ala|b|jc|d|e|f|g|h]| k][]
@,/ 1|3|5|0|5|4]4|5|2]|4]1
@, 530|412 2|54 |4]4]3

The results of applying g-Pareto choice rule depending on parameter value g are the
following

C(A)

{g9,n}
{a,e,g,n}
{a,c,e,g,h,I}
{a,b,c,e,f,g,hkI}
{a,b,c,e,f,g,hk I}
{a,b,c,d,ef,g,hkI}
{a,b,c,d,e,f,g,hkI,m}

O O | W NP, OO

In [13] it was studied which rationality conditions are satisfied for g-Pareto choice rule.
It was found that g-Pareto choice rule satisfies only condition C (see below).

In [12] g-Pareto choice rule is used on the first stage of two-stage choice procedure.
However, since the choice set of the first stage usually contains too many elements, obtained set
is used as a presentation for the second stage constructed by a scalar extremization choice
procedure. Thus, g-Pareto-scalar choice procedure can be presented as a superposition of two
choice functions C(:)=C»(Cx(*)), where C; is defined by g-Pareto rule, C; is defined by scalar
choice procedure.

g-Pareto-scalar choice procedure was firstly studied in [12]. There were found necessary
and sufficient conditions when this procedure can be reduced to the choice on scalar criterion.
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Two-stage choice procedure can be reduced to one-stage choice procedure if €, (X) € C,(X),
i.e., when for any subset XSA the remaining set after the first stage of the rule always contains
alternatives which are chosen on the second stage of the rule. In addition, necessary conditions
were defined in [12] under which rationality conditions are satisfied for two-stage g-Pareto-
scalar choice procedure.

Before moving to the study of the properties of two-stage choice procedures, it is
necessary to consider the notion of choice functions closedness with respect to superposition
operator. In order to do it some definitions were given in [1].

Any particular choice function C(:) can be treated as a point of the abstract space C,
consisting of all the possible choice functions on A.

A set of choice functions Ci(*),...,Cq(+) is called a functional profile and denoted by
{Gi()}.

Let a domain Q < C and number n be fixed. Any mapping from Q" =Q X Q X ...X Q

n
times into C is called a functional operator. A functional operator assigns to any profile {Ci(-)}

consisting of n choice functions from Q a single choice function denoted by C*(-)=F({Ci(*)}),
where F stands for the functional operator.

As usual, the set Q" is called the domain of F, and the set of all functions C*(-)e C such
that 3{C; (1)} € Q™: F({C;(-)}) = C*(*) as the range of operator.

The set Qg = Q is called the domain of the functional operator F: Q™ — C. Any domain
Q' € C such that v{C;()}eQ™ F({C;(")})eQ" will be called the range of F(Q' = Qger)-
According to the definition, the domain Q4. of the functional operator F is any subset from C
which includes the range F.

If C*(-) = F({C;()})eQ for any functional profile {C;(-)}eQ™, the domain Q is called
closed with respect to the operator F.

Now introduce functional operator of “superposition” (F©):

FO:vX € 24 C*(X) = C,(C.(X)).

Let us define in which cases superposition, as applied to the choice functions Cy(-) and
Ca(+) from different domains of C, ‘preserves’ the result, i.e., the function C*(-) in any of the
domains. With such an approach, it is only natural to speak about ‘superposition’ mapping the
domains Q; and Q to which, respectively, Ci(-) and Cy(-) belong into the domain Q’, denoting it
symbolically as R°(Q1,Q2)=0Q’.

By closedness (conditional and unconditional) of domains, we consider the following.
The domain Q; € C is called conditionally closed at the first superposition stage at fixed domain
Q. of the second stage if R©(Q;,Q,) S Q,. Similarly, the domain Q, S C is called
conditionally closed at the second superposition stage at fixed domain Q; of the first stage if
RO(Q4,0Q,) S Q,. Finally, the domain Q is called unconditionally closed with respect to the

‘superposition” operator if RO (Q;,Q) € Q.
Theorem 1 [1]. There are the following conditions of domains closedness in C with
respect to the superposition operator ©:



1°. The domain ACA is closed (unconditionally) with respect to superposition operator,
i.e., RO(K,K) € ACA; none of the domains Q = H, C, O, HNC, HNO, CNO, HNCNO us
closed unconditionally with respect to the superposition operator;

2°. For Q;=ACA, the domains Q, = H, C, HNC, 0,HN 0,CNn0and HNCN O are
conditionally closed at the second superposition stage. For Q:=ACA, the domains Q, = O,
HNO, CnO, HNCNO are not closed. None of the domains Q,=H or C or... or HNCNO is closed
for none Q1 = H, or C, or... or HNCNO, where the notion of H, C, 0 is used for a class of choice
functions that satisfies current condition (H,C,0) as well as the condition of choice non-
emptyness.

3°. None of the fundamental domains and their intersections H,C, ..., HNCNO is
conditionally closed as Q;, at the first superposition stage for Q, = ACA (and all the more so for
Q2=H, C, ..., HNCNO at the second one).

Remark. Although generally going out of the classical domain HNC, the superposition of
two classical choice functions may be shown to stay within the fundamental domain C. It means
that R°%CHN C,HN C) c C.

Thus, the results on choice functions closedness with respect to superposition operator
solve the inverse problem that helps to determine will the function resulting from application of
this operator to the elements of the set satisfy the rationality conditions H, C or O.

Now let us study the properties of two-stage choice procedures.

Two-stage superposition choice procedures

We consider the two-stage superposition choice procedures based on scoring rules, rules,
using majority relation, value function and tournament matrix. A full description of studied
choice procedures is given in [11].

A list of two-stage superposition choice procedures is provided in Table 1.

Table 1. Two-stage choice procedures

Ne Stage 1 Stage 2

1-121 Scoring rules (11 procedures)
122-231 Scoring rules Rules, using majority relation (10 procedures)
232-286 (11 procedures) Rules, using value function (5 procedures)
287-308 Rules, using tournament matrix (2 procedures)
309-418 Rules, using majority Scoring rules (11 procedures)
419-518 ' . Rules, using majority relation (10 procedures)

relation - -

519-568 (10 procedures) Rules, using value function (5 procedures)
569-588 Rules, using tournament matrix (2 procedures)
589-643 Scoring rules (11 procedures)
644-693 Rules, using value function | Rules, using majority relation (10 procedures)
694-718 (5 procedures) Rules, using value function (5 procedures)
719-728 Rules, using tournament matrix (2 procedures)
729-750 Rules, using tournament Scoring rules (11 procedures)
751-770 ' matrix Rules, using majority relation (10 procedures)
771-780 (2 procedures) Rules, using value function (5 procedures)
781-784 Rules, using tournament matrix (2 procedures)

Thus, 784 two-stage procedures of 16 different types are studied.



As properties of two-stage choice procedures should be studied separately, let us assign

an identification number to each two-stage choice procedure by the following formula
id=28%(i—1)+],

where id is an identification number of two-stage choice procedure, i is a number of choice
procedure from [11] used on the first stage, j is a number of choice procedure from [11] used on
the second stage.

Before proceeding to the study of the properties of two-stage choice procedures, it is
necessary to make some notes.

Note 1. Table 2 provides a list of two-stage procedures that does not make any sense, i.e.,
the second stage of which does not change the choice.

Table 2. Two-stage choice procedures that does not make any sense («...» is any studied
choice procedure)

Two-stage procedure

Ne Stage 1 Stage 2
1-28 Simple majority rule
113-140 Run-off procedure
141-168 Hare rule (Ware procedure)
231 Inverse Borda rule Borda rule
233 Inverse Borda rule Inverse Borda rule
234 Inverse Borda rule Nanson rule
259 Nanson rule Borda rule
261 Nanson rule Inverse Borda rule
262 Nanson rule Nanson rule
281-308 | Coombs procedure
320 Minimal dominant set Minimal dominant set
348 Minimal undominant set Minimal dominant set
349 Minimal undominant set Minimal undominant set
505-532 Condorcet winner
533 Core Simple majority rule
539 Core Borda rule
540 Core Black procedure
541 Core Inverse Borda rule
542 Core Nanson rule
544 Core Minimal dominant set
545 Core Minimal undominant set
546 Core Minimal weakly stable set
547 Core Fishburn rule
548 Core Uncovered set |
549 Core Uncovered set 11
550 Core Richelson rule
552 Core Core
553 Core k-stable set (k>1)
555 Core Copeland rule 1
556 Core Copeland rule 2
557 Core Copeland rule 3
559 Core Minimax procedure
560 Core Simpson procedure

Total number of choice procedures - 168




The simple majority rule, the run-off procedure, the Hare procedure, the Coombs
procedure and the Condorcet winner choose a single best alternative, consequently, two-stage
choice procedures 1-28, 113-168, 281-308, 505-532 which use such procedures on the first stage
do not make any sense as their second stage does not affect the final choice.

Also two-stage procedures 231, 233, 234, 259, 261, 262 do not make any sense as the
first stage of such procedures gives a set of alternatives with the same Borda count. Similarly,
two-stage procedures 283, 291 do not make any sense as the first stage of such procedures gives
a set of alternatives which are considered as the worst by the same number of criteria.

Two-stage procedures 320, 348, 349 do not make any sense as by the definition the
remaining after the first stage set of alternatives is already minimal. As for two-stage choice
procedure 553, it does not make any sense as the second stage of such procedures does not
change the choice.

Finally, two-stage procedures 533, 539-542, 544-550, 552, 555-557,559-560 do not make

any sense as Vx,y € C;(Py,X) > card{i € N|xP;y} = card{i € N|yPx}, where C;(Py, X) is
a first-stage procedure (the core).

Thus, choice procedures provided in Table 2 are excluded from further consideration.

Note 2. Properties of two-stage choice procedures which use the Black procedure on the
first stage completely coincide with properties of two-stage choice procedures which use the
Borda rule if there is no Condorcet winner.
Note 3. Table 3 provides a list of two-stage procedures which are equivalent to existing
choice procedures.

Table 3. Two-stage procedures equivalent to existing choice procedure

Ng Sta‘;\évi—stage choice procedure Stage 2 What procedure is equivalent to
309 | Minimal dominant set Simple majority rule Condorcet winner
321 | Minimal dominant set Minimal undominant set Minimal undominant set
322 | Minimal dominant set Minimal weakly stable set Minimal weakly stable set
323 | Minimal dominant set Fishburn rule Fishburn rule
324 | Minimal dominant set Uncovered set | Uncovered set |
325 | Minimal dominant set Uncovered set 11 Uncovered set 11
326 | Minimal dominant set Richelson rule Richelson rule
327 | Minimal dominant set Condorcet winner Condorcet winner
328 | Minimal dominant set Core Core
331 | Minimal dominant set Copeland rule 1 Copeland rule 1
332 | Minimal dominant set Copeland rule 2 Copeland rule 2
333 | Minimal dominant set Copeland rule 3 Copeland rule 3
337 | Minimal undominant set Simple majority rule Core (single chosen alternative)
350 | Minimal undominant set Minimal weakly stable set Minimal weakly stable set
355 | Minimal undominant set Condorcet winner Condorcet winner
356 | Minimal undominant set Core Core
393 | Fishburn rule Simple majority rule Core (single chosen alternative)
411 | Fishburn rule Condorcet winner Core (single chosen alternative)
421 | Uncovered set | Simple majority rule Core (single chosen alternative)
439 | Uncovered set | Condorcet winner Core (single chosen alternative)
449 | Uncovered set 1l Simple majority rule Core (single chosen alternative)
467 | Uncovered set I Condorcet winner Core (single chosen alternative)
477 | Richelson rule Simple majority rule Core (single chosen alternative)
495 | Richelson rule Condorcet winner Core (single chosen alternative)
551 | Core Condorcet winner Condorcet winner

Total number of choice procedures - 25
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Two-stage choice procedures provided in previous table are equivalent to some existing
choice procedures. Thus, their properties fully coincided with properties of such existing
procedures. However, these two-stage procedures are not excluded from further consideration as
the computational complexity of some of them can be lower than the complexity of existing
procedures.

Thus, it remains to study properties of 591 two-stage choice procedures.

A study of the properties of two-stage choice procedures

A list of studied normative properties is given in [11].

A study of the properties is conducted as follows. If a two-stage choice procedure does
not satisfy given normative condition, a counter-example is provided. On the country, if a two-
stage choice procedure satisfies given normative condition a necessary proof is followed. The
study of the properties of two-stage choice procedures is based on the study of the properties of
multi-criteria choice procedures which is done in [11].

The results of the study of the properties of 591 two-stage choice procedures are given in
Theorem 2.
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Theorem 2. Information on which choice procedures satisfy given normative conditions is provided in Table 4.

Table 4. Properties of two-stage choice procedures («+» - choice procedure satisfies given normative condition,
«-» - choice procedure does not satisfy given normative condition)

Normative conditions

Rationality Monotonicity
>
. < — | N =
Two-stage choice procedure T|o| O | O |22 &2 3
c c c < 'S 'S H,g é [
Sl e8| & c|c|c|es5|sd
2| E = S|l a|g|EL|zg
T | © © = S| B8|H e Q
215/ 5/2/8/87¢8 &
Stage 1 Stage 2 0|0 O | g|2|2 £| ©
O
Ne Name Ne Name
2 Plurality rule
3 Inverse plurality rule
4 g-Approval rule (g>1)
12 | Minimal dominant set
13 | Minimal undominant set
15 | Fishburn rule
16 | Uncovered set |
17 | Uncovered set 11 5 | Run-off procedure
. 6 Hare rule (Ware procedure) - - - - - |+ - -
18 | Richelson rule
11 | Coombs procedure
20 | Core
23 | Copeland rule 1
24 | Copeland rule 2
25 | Copeland rule 3
26 | Super-threshold rule (threshold depends on X)
27 | Minimax procedure
28 | Simpson procedure
9 Inverse Borda rule 1 Simple majority rule
5 Run-off procedure
10| Nanson rule 6 Hare rule (Ware procedure) - - - - - |+ - -
14 | Minimal weakly stable set b q P
21 | k-stable set (k>1) 11 | Coombs procedure
19 | Condorcet winner
2 Plurality rule
3 Inverse plurality rule
4 g-Approval rule (g>1)
23 | Copeland rule 1 . .
24 | Coplndue Ly | S oy i el ]
25 | Copeland rule 3
26 | Super-threshold rule (threshold depends on X)
27 | Minimax procedure
28 | Simpson procedure
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Normative conditions

Rationality Monotonicity
>
Two-stage choice procedure ol o | & }' ‘5 2 3
c | c c < |3 |T|8lsTw
S8 8 s |c|c|les|sd
E= I - = 2|l so|sa|5E8|=za
T |8 ° 2 18| 8|H < Q
s151§512|5|5| gl §
Stage 1 Stage 2 c|0| © |3 S| S g o
Ne Name Ne Name
1 | Simple majority rule
; gfggs F:L;(I)ie dure 5 Run-off procedure | ) I R i i
22 | Threshold rule 6 Hare rule (V\/_are procedure)
19 | Condorcet winner
;g I(\:/I(:?elmal undominant set 1 | Simple majority rule + |+ - -+ |+ - i
15 | Fishburn rule
16 | Uncovered set | 1 Simple majority rule
17 | Uncovered set II 19 | Condorcet winner I+ St - i
18 | Richelson rule
7 Borda rule
8 Black procedure
9 Inverse Borda rule
10 | Nanson rule
12 | Minimal dominant set
13 | Minimal undominant set
14 | Minimal weakly stable set
15 | Fishburn rule
20 | Core 16 | Uncovered set | ++ ) ST i
17 | Uncovered set 11
18 | Richelson rule
23 | Copeland rule 1
24 | Copeland rule 2
25 | Copeland rule 3
27 | Minimax procedure
28 | Simpson procedure
17 | Uncovered set Il 12 | Minimal dominant set - |+ - - |+ - - -
2 Plurality rule
3 Inverse plurality rule
3, | Spproval wle (@>1) 21 | kestable set (1) R
24 | Copeland rule 2
25 | Copeland rule 3
16 | Uncovered set | 20 | Core - - - - |+ - - -
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Normative conditions
Rationality Monotonicity
>
. < — | N =
Two-stage choice procedure T|O| O | O | x| 2 =
c | ¢ c < |3 |T|8lsTw
S8 8 c|cS|c|lesg|lsd
E= I - = 2|l so|sa|5E8|=za
T | T © h= 51858 |H e Q
S| 518l2/2|7¢8| &
Stage 1 Stage 2 o|lo0| O S|1S|s g o
O
Ne Name Ne Name
2 Plurality rule
3 Inverse plurality rule
4 | g-Approval rule (g>1)
7 Borda rule
8 Black procedure
2 Plurality rule 12 | Minimal dominant set
. 13 | Minimal undominant set
3 Inverse plurality rule inimal Kl bl
4 a-Approval rule (q>1) 14 Mlnlma weakly stable set
15 | Fishburn rule
7 Borda rule
16 | Uncovered set |
8 | Black procedure - - - -+ - -
17 | Uncovered set Il
22 | Threshold rule .
18 | Richelson rule
23 | Copeland rule 1
20 | Core
24 | Copeland rule 2 Threshold rul
25 | Copeland rule 3 22 reshold rure
23 | Copeland rule 1
24 | Copeland rule 2
25 | Copeland rule 3
26 | Super-threshold rule (threshold depends on X)
27 | Minimax procedure
28 | Simpson procedure
7 Borda rule 9 Inverse Borda rule
8 Black procedure 10 | Nanson rule - - - - |+ - - -
22 | Threshold rule 21 | k-stable set (k>1)
13 | Minimal undominant set 16 | Uncovered set | ] ) o+ |- i i
17 | Uncovered set Il 18 | Richelson rule
15 | Fishburn rule
17 | Uncovered set Il
- . 21 | k-stable set (k>1)
13 | Minimal undominant set 23 | Copeland rule 1 - - - -+ - - -
24 | Copeland rule 2
25 | Copeland rule 3
12 | Minimal dominant set 26 Su_pgr-threshold rule (threshold depends on X)
L . 27 | Minimax procedure - |- + |- |- -
13 | Minimal undominant set .
28 | Simpson procedure
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Normative conditions

Rationality Monotonicity
>
. < — | N =
Two-stage choice procedure T|O| O | O | x| 2 =
c | c < |35|5|._8 S
o (=} o c — i o C [%]
=S| B = o < c|l=6|l25
S5 5 |8 |2|8|58|¢8
S| o S c | 5|5 Q <]
Stage 1 Stage 2 o|lo0| O S £ o
ol 2|2
Ne Name Ne Name
15 | Fishburn rule 12 | Minimal dominant set
16 | Richelson rule 16 | Uncovered set | - - - -+ - - -
18 | Uncovered set | 18 | Richelson rule
26 | Super-threshold rule (threshold depends on X) 12 | Minimal dominant set
27 | Minimax procedure 13 | Minimal undominant set - - - -+ - - -
28 | Simpson procedure 20 | Core
2 Plurality rule
3 Inverse plurality rule
4 g-Approval rule (g>1)
12 | Minimal dominant set 9 Inverse Borda rule ) ) ) i i i i i
13 | Minimal undominant set 10 | Nanson rule
23 | Copeland rule 1
24 | Copeland rule 2
25 | Copeland rule 3
9 Inverse Borda rule 12 | Minimal dominant set
13 | Minimal undominant set
10 | Nanson rule 16 | Uncovered set | - - - - - - - -
14 | Minimal weakly stable set 18 | Richelson rule
21 | k-stable set (k>1) 20 | Core
2 Plurality rule
9 | Inverse Borda rule 4 | g-Approval rule (g>1)
8 Black procedure
10 | Nanson rule o
- 14 | Minimal weakly stable set
14 | Minimal weakly stable set .
. 15 | Fishburn rule
15 | Fishburn rule
17 | Uncovered set Il
16 | Uncovered set |
21 | k-stable set (k>1)
17 | Uncovered set Il - - - - - - - -
. 22 | Threshold rule
18 | Richelson rule 23 | Copeland rule 1
21 | k-stable set (k>1) 24 Copelan d rule 2
26 | Super-threshold rule (threshold depends on X) 5 c P land rule 3
27 | Minimax procedure > opetand rute
28 | Simpson brocedure 26 | Super-threshold rule (threshold depends on X)
pson p 27 | Minimax procedure
28 | Simpson procedure
16 | Uncovered set | 13 | Minimal undominant set - - - - - - - -
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Normative conditions

Rationality Monotonicity
>
. < — | N =
Two-stage choice procedure T|O| O | O | x| 2 =
c | ¢ c < |3 |T|8lsTw
S8 8 c|cS|c|lesg|lsd
E= I - = 2|l so|sa|5E8|=za
T | T © h= 51858 |H e Q
S| § S T || c 5 g
Stage 1 Stage 2 o|lo0| O S|1S|s g o
O
Ne Name Ne Name
9 Inverse Borda rule 3 Inverse plurality rule | ) i | i i
10 | Nanson rule 11 P
2 Plurality rule
3 Inverse plurality rule
12 | Minimal dominant set 4 | g-Approval rule (g>1) | ) i | i i
13 | Minimal undominant set 7 Borda rule
8 Black procedure
22 | Threshold rule
14 | Minimal weakly stable set
15 | Fishburn rule
16 | Uncovered set | 3 Inverse plurality rule
17 | Uncovered set I P
. 7 Borda rule
18 | Richelson rule 9 | Inverse Borda rule T ) I i i
21 | k-stable set (k>1) 10 | Nanson rule
26 | Super-threshold rule (threshold depends on X)
27 | Minimax procedure
28 | Simpson procedure
15 | Fishburn rule . .
17 | Uncovered set I1 ;g I(\:/I(;?émal undominant set ) ) ) i i i i i
18 | Richelson rule
2 Plurality rule
3 Inverse plurality rule
20 | Core 4 | g-Approval rule (g>1) - - - - -] - - -
22 | Threshold rule
26 | Super-threshold rule (threshold depends on X)
26 Su_pt_er-threshold rule (threshold depends on X) 16 | Uncovered set |
27 | Minimax procedure . - - - - - - - -
. 18 | Richelson rule
28 | Simpson procedure

The proof of the theorem is provided in Appendix 1.
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Computational complexity of choice procedures

A computational complexity of choice procedures used in two-stage superpositions is
provided in Table 5.

Table 5. Theoretical computational complexity of existing choice procedures (M — cardinality of
initial set of alternatives, n — number of criteria, g,k — parameters of choice procedures, I,d —
parameters which depend on initial set of alternatives,d > 1,1 <l < M)

Maximum number of
No| Name of choice procedure Computational_complexity remaining alter_natives
(theoretical) after applying
the choice procedure
1 | Simple majority rule O(M-n) 1
2 | Plurality rule O(M-n) n
3 | Inverse plurality rule O(M-n) M-—n
4 | g-Approval rule (g>1) OM-n-log,(q +1)) q-n
5 | Run-off procedure O(M-n) 1
6 | Hare rule (Ware procedure) O(M-n) 1
7 | Bordarule O(M -log,(M) -n) M
8 | Black procedure O(M -log,(M) -n) M
9 | Inverse Borda rule 0O(M?-n) M
10 | Nanson rule 0(M? - n) M
11 | Coombs procedure 0O(M?-n) n
12 | Minimal dominant set 0(M?*374) M
13 | Minimal undominant set 0(M*37%) M
l
14 | Minimal weakly stable set O(M?-n+ Z Cl - (M —1)) M
i=1
15 | Fishburn rule 0(M?) M
16 | Uncovered set | 0(M?3) M
17 | Uncovered set Il o(M?) M
18 | Richelson rule o(M3) M
19 | Condorcet winner O(M-n) 1
20 | Core 0(M? -n) M
21 | k-stable set (k>1) 0(M%37%) M
22 | Threshold rule O(M-n) M
23 | Copeland rule 1 0(M? - n) M
24 | Copeland rule 2 0(M?-n) M
25 | Copeland rule 3 0(M?-n) M
26 | Super-threshold rule o(M) M
27 | Minimax procedure O(M? - n) M
28 | Simpson procedure 0(M? - n) M

A computational complexity of choice procedures was calculated by the author of the paper.
Based on information provided in Table 5 we can divide all two-stage procedures in several
groups in accordance with their computational complexity. The results are provided in Table 6.
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Table 6. A computational complexity of two-stage choice procedures («...» is any choice
procedure)

Two-stage choice procedure

Stage 1 |

Stage 2

Choice procedures with a low computational complexity

Plurality rule
Threshold rule
g-Approval rule (g>1)

Inverse plurality rule
Super-threshold rule
Borda rule

Black procedure

Simple majority rule
Run-off procedure
Hare rule (Ware procedure)
Borda rule

Black procedure
Condorcet winner
Plurality rule
Threshold rule
Inverse plurality rule
g-Approval rule (g>1)
Super-threshold rule

Computational complexity depends on initial set of alternatives

Inverse plurality rule
Super-threshold rule
Borda rule

Black procedure

Inverse Borda rule

Nanson rule

Core

Copeland rules 1-3
Minimax procedure
Simpson procedure
Coombs procedure

Choice procedures with average computational complexity

Inverse Borda rule

Nanson rule

Core

Copeland rules 1-3
Minimax procedure
Simpson procedure

Simple majority rule
Run-off procedure
Hare rule (Ware procedure)
Borda rule

Black procedure
Condorcet winner
Plurality rule
Threshold rule
Inverse plurality rule
g-Approval rule (g>1)
Super-threshold rule
Inverse Borda rule
Nanson rule

Core

Copeland rules 1-3
Minimax procedure
Simpson procedure
Coombs procedure

Coombs procedure

Choice procedures with a high computational complexity

Inverse plurality rule
Super-threshold rule
Borda rule

Black procedure
Inverse Borda rule

Minimal dominant set
Minimal undominant set
Minimal weakly stable set
Fishburn rule

Uncovered set |, |1
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Two-stage choice procedure

Stage 1

Stage 2

Nanson rule

Core

Copeland rules 1-3
Minimax procedure
Simpson procedure

Richelson rule
k-stable set (k>1)

Minimal dominant set
Minimal undominant set
Minimal weakly stable set

Fishburn rule
Uncovered set I, 11
Richelson rule
k-stable set (k>1)

It is necessary to mention that by the group called “Computational complexity depends on
initial set of alternatives” we mean that the computational complexity of such two-stage choice
procedures depends on how many alternatives are eliminated at the first stage.

The run-time complexity for two-stage superposition choice procedures

Let the initial set My contains 300 thousands of alternatives and the total number of criteria is
equal to 10. Suppose, a computer can process around 3 billion instructions per second. Consider
situations when the remaining set M, after applying the first-stage choice procedure contains 10, 50
and 100 thousands of alternatives.

The run-time complexity of two-stage choice procedures from different groups (according to
Table 6) is provided in Table 7.

Table 7. The run-time complexity for two-stage choice procedures (M, — number of alternatives
remained after applying the first stage of the choice procedure)

Two-stage choice procedures

Stage 1 Stage 2 Run time
Choice procedures with a low computational M,=10000 M,=50000 | M,=100000
complexity
Plurality rule Uncovered set | ~50 ms
Inverse plurality rule | Condorcet winner ~52 ms ~58 ms ~66 ms
Super-threshold rule | Threshold rule ~6 ms ~13 ms ~21 ms
Borda rule Plurality rule ~910 ms ~918 ms ~926 ms
Computational complexity depends on initial set of alternatives
Inverse plurality rule | Minimax procedure | =16s | =Imin | =~27min

Choice procedures with average computational complexity

Inverse Borda rule

Simple majority rule

~4 h 12 min

Minimax procedure

Simpson procedure

~4h15min | =4 h21 min | =4 h 36 min

Choice procedures with a high computational complexity

Inverse plurality rule

Richelson rule

~46 h 20 min | =241 days |

=5 years

Uncovered set |

Borda rule

~140 years

The results obtained from Tables 6 and 7 give us information on which procedures can be
applied when we deal with Big Data and which procedures cannot be applied in such problems as
they are not allow to obtain any results in a sufficient time.
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Conclusion

We have studied the properties of 592 two-stage choice procedures, which can be used in
various multi-criteria problems. It was defined which choice procedures satisfy given normative
conditions, showing how a final choice is changed due to the changes of preferences or a set of
feasible alternatives. Such information leads to a better understanding of different choice procedures
and how stable and sensible is a set of alternatives obtained after applying some choice procedure.

The results show that most of the two-stage procedures do not satisfy any normative
conditions. Only some of them satisfy the Monotonicity condition 1. More detailed information is
provided in Table 4.

To compute run-time complexity of choice procedures the average computational complexity
was used. All choice procedures were divided into different groups (see Table 6). It was shown that
two-stage choice procedures which use choice procedures with a high computational complexity on
the first stage require more time than other procedures. It means that such procedures are not
recommended to use in applications to Big Data. Two-stage choice procedures which use on the first
stage choice procedures with a low computational complexity and on the second stage - with a high
computational complexity can be used in applications to Big Data, however, their application
depends on the number of alternatives remained after the first stage. Two-stage choice procedures,
which use on both stages choice procedures with a low computational complexity, can be used in
applications to Big Data with no restrictions.
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Appendix 1. Properties of two-stage choice procedures

Two-stage choice procedure 29. ‘Plurality rule — Simple majority rule’
29.1 Heredity condition (H)
Let X = {a, b, c} and the profile I3X is the following

P]_ P2 P3 P4 P5

a a ¢ b b

c c b a a

b b a ¢ ¢

According to the two-stage choice procedure C (ﬁX, X) = {b}.

Consider now the subset X' = X\{a}. A contraction of a profile f’X onto a set X', i.e., ﬁXf, looks as
P]_ P2 P3 P4 P5
c ¢ ¢ b b
b b b ¢ ¢

According to the rule the alternative ¢ will be chosen, i.e., C(Pys, X") = {c}.
Then C(P,1,X") 2 C(Py,X) N X'. Thus, the condition H is not satisfied.

29.2 Concordance condition (C)

Let X = {a, b, c} and the profile ﬁx is the following

P1 P2 Ps
a b ¢
b a b
C Cc a

According to the two-stage choice procedure the choice is empty, i.e., C(Py, X) = @.

Now let us consider the subset X' = X\{c}. A contraction of a profile ﬁX onto a set X', i.e., ﬁXf,
looks as

Pi P2 Ps
a b b
b a a

According to the two-stage choice procedure the alternative b will be chosen, i.e., C(ﬁX:,X’) = {b}.

Finally, let us consider the subset X' = X\{a}. A contraction of a profile ﬁX onto a set X", i.e., ﬁxu,
looks as

Pi P2 Ps
b b ¢
c ¢ b

According to the two-stage choice procedure the alternative b will be chosen, i.e., C(ﬁXu,X”) = {b}.
Then C(Pyr, X") N C(Py, X") = {b} & C(Py, X). Thus, the condition C is not satisfied.

29.3 Outcast condition (0)
The condition O is not satisfied (see paragraph 29.1 of Appendix 1).

29.4 Arrow’s choice axiom (ACA)
The condition ACA is not satisfied since the two-stage choice procedure does not satisfy the condition H.
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29.5 Monotonicity condition 1
Let C(Py, X) = {a}. It means that
1. vx € X\{a}n*(a, ﬁx) > n*(x, ﬁx) or
2. 3y e X\{a}n*(a, I3X) =n*(y, I3X) and n*(a, I3Xr) > % |Py|, where X' is a set of
alternatives remained for the second stage of the choice procedure.

Consider now a profile ?, which differs from the profile ﬁX only by improved position of the
alternative a. Then

e nt (a, EZ) > n+(a, ﬁX), nt (x, E{) < n+(x, ﬁx) or
e nt (a, Eg’) =n*(a, ﬁx),n+ (a,P—)’(,)) >n*(a, ﬁxr) and |ﬁx| = |E§|.
Thus, C (EZ X) = {a}.
Thena € C(Py, X)and a € C(E{, X). Consequently, the Monotonicity condition 1 is satisfied.
29.6 Monotonicity condition 2
Since given two-stage choice procedure chooses no more than one best alternative, the Monotonicity

condition 2 is not applicable to it as it considers the choice of more than two alternatives. In other
words, such two-stage choice procedure obeys the Monotonicity condition 2 trivially.

29.7 Strict monotonicity condition

Let X = {a, b, c} and the profile Py is the following

Pi P> Ps
a a b
c b ¢
b ¢ a

According to the two-stage choice procedure the alternative a will be chosen, i.e., C(Py, X) = {a}.

Consider now a profile ?, which differs from the profile ﬁX only by improved position of the
alternative c in Py:

Py P; P;
c a b
a b ¢
b ¢ a

According to the two-stage choice procedure the choice is empty, i.e., C(?, X) = 0.
C(ﬁX,X) or
C ( Eg, X) * {c}or
C(Py, X) U {c}.
Thus, the strict monotonicity condition is not satisfied.

29.8 Non-compensatory condition

Let X = {a, b, c} and the profile I3X is the following

Pi P> P3
a a b
b b ¢
c ¢ a
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According to the rule the alternative a will be chosen, i.e., C(Py, X) = {a}.

Let us write the profile I3X in the following form

X|@1|92]| @3
al| 3|31
bl 2|23
c|1]|1]|2

According to the non-compensatory condition the alternative b is better than the alternative a and the
alternative a is better than the alternative c. Thus, the non-compensatory condition is not satisfied as

{b} = C(Py, X).

Two-stage choice procedures 30-46
Two-stage choice procedures 30-46 do not satisfy the same conditions as choice procedures which are

used on the second stage. To prove it we can use the same examples but with larger number of
alternatives omitted on the first stage of the choice procedure [11].

Example. Let X = {a, b, c} and the profile I3X is the following
P, P, P3 Ps Ps
a a ¢ b b
c c b a a
b b a ¢ ¢
Let us transform this example to the following form
P P Ps Py Ps Pg Pz Pg P9 Pip Pu
e f g h a b ¢ a b ¢
b b ¢c a ¢ a b
a ¢ a b b ¢ a
c

T o 99 o

a ¢ b
c b a
b a ¢
According to the plurality rule the alternatives d,e,f,g,h are omitted on the first stage of the procedure
and the alternatives a,b,c are presented for choice on the second stage.

Thus, it is necessary to check those normative conditions of two-stage choice procedures which are
satisfied for the choice procedures of the second stage.
e Two-stage choice procedures 30-32,35-36,40-56 satisfy the Monotonicity condition 1 (the
proof follows from the paragraph 29.5 of Appendix 1 and properties of second stage choice
procedures).

e Two-stage choice procedures 40,45,47,48 do not satisfy the condition C. To proof it the
following example is used.

Let X = {a, b, c,d} and the profile ﬁx is the following

Pir P P3 P4 Ps Pg P7 Pg Pg Py Puu Pz Pz Py
c ¢ ¢ b b b d d d d a a a a
a a a d d d b b ¢ ¢ b b b c
d d d a a a ¢ ¢ b b Cc c c b
b b b ¢ ¢ ¢ a a a a d d d d
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Let us calculate the value n*(x, Py) for each alternative x € X: n*(a, Py) = 4, n*(b,Py) = 3,
n*(c,Py) = 3, n*(d, Py) = 4. According to the rule the alternatives a and d will be chosen, i.e.,
C(Py,X) = {a,d}.
Consider now the subset X’ = X\{d}. A contraction of a profile ﬁX onto a set X', i.e., ﬁxr, looks as
Pr P, Ps3 P, Ps Pg Pz Pg Py P Piy Pz Pz Pu
c ¢ ¢ b b b b b ¢ ¢c a a a a

a a a a a a ¢ ¢ b b b b b ¢
b b b ¢ ¢ ¢ a a a a ¢ ¢ ©¢ b

Let us calculate the value n*(x, Py/) for each alternative x € X": n*(a, Py/) = 4, n*(b,Py:) = 5,
n*(c, Pyr) = 5. Thus, the alternative a will be omitted on the first stage and the alternative b will be
chosen on the second stage, i.e., C(Py/, X') = {b}.
Finally, let us consider the subset X' = X\{a}. A contraction of a profile ﬁX onto a set X", i.e., I3Xu,
looks as

Pi P2 Ps Py Ps Ps Pr Pg Po P Piu Pz Pz Puy

c ¢c ¢c b b b d d d d b b b c

d d d d d d b b ¢ ¢ ¢ ¢ ¢ b
b b b ¢ ¢ ¢ ¢ ¢ b b d d d d

Let us calculate the value n*(x, P for each alternative x € X"': n*(b, Pyn) = 6, n*(c, Pyn) = 5,
n*(d, Pyn) = 4. According to the rule the alternative b will be chosen, i.e., C(Py, X"") = {b}.

Then C(F’X,,X’) N C(ﬁXu,X” = {b} & C(Py,X). Thus, the two-stage choice procedure does not
satisfy the condition C.

e Two-stage choice procedures 40,47 do not satisfy the condition O (see paragraph 29.1 of
Appendix 1).

e Two-stage choice procedures 47,48 do not satisfy the condition H (see paragraph 29.1 of
Appendix 1).

e Two-stage choice procedures 48,54 do not satisfy the Monotonicity condition 2. To prove it the
following example is used.

Let X = {a, b, ¢} and the profile Py is the following
Pj_ P2 P3 P4 P5 P6
a a ¢ b b ¢
c Cc a ¢ ¢ b
b b b a a a

Let us calculate the value n*(x, Py) for each alternative x € X: n*(a,Py) = 2, n*(b,Py) = 2,

nt (c, ﬁx) = 1. According to the plurality rule used on the first stage the alternatives a and b will be
chosen, i.e., C(ﬁx, X) ={a, b}.
Consider now the subset X' = X\{b}. A contraction of a profile 13X onto aset X', i.e., ﬁXf, looks as
Pi P, P3 Ps Ps Pg
a a ¢ ¢ ¢ ¢
c C a a a a

According to the plurality rule the alternative ¢ will be chosen, i.e., C(ﬁXI,X’) = {c}.
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Finally, let us consider the subset X" = X\{a}. A contraction of a profile ﬁX onto a set X", i.e., I3X~,
looks as

P, P, P3 P, Ps Ps

c ¢ ¢ b b c

b b b ¢ ¢ b
According to the rule the alternative c will be chosen, i.e., C(ﬁXn,X”) = {c}.
Then {a,b} € C(Py,X), {a}¢& C(Py,X')and {b} & C(Py»,X"). Thus, the two-stage choice
procedure does not satisfy the Monotonicity condition 2.

e Two-stage choice procedure 50 does not satisfy the non-compensatory condition. To prove
it the following example is used.

Let X = {a, b, c} and the profile ﬁx is the following

Pr P> Ps
a a b
c € ¢
b b a

Let us calculate the value n*(x, Py) for each alternative x € X: n*(a,Py) = 2, n*(b,Py) = 1,

n* (c, ﬁx) = 0. According to the rule the alternative a will be chosen, i.e., C(ﬁX, X) ={a}.

According to the non-compensatory condition the alternative c is better than the alternative a while
the alternative a is better than the alternative b. Thus, the non-compensatory condition is not satisfied

as{c} # C(ﬁX,X).

Two-stage choice procedures 57-84
Two-stage choice procedures 57-84 do not satisfy the same conditions as choice procedures which are
used on the second stage. To prove it we can use the same examples but with larger number of
alternatives which are regarded as the worst by the maximum number of criteria [11].
Thus, it is necessary to check those normative conditions of two-stage choice procedures which were
satisfied for the second stage choice procedures.

e Two-stage choice procedures 57,75,76 do not satisfy the condition H. To prove it the following

example is used.

Let X = {a, b, ¢, d} and the profile ﬁX is the following

Pi P> P3
b d a
a b d
c a ¢
d ¢ b

According to the rule the alternative a will be chosen, i.e., C(Py, X) = {a}.
Consider now the subset X’ = X\{c, d}. A contraction of a profile Py onto a set X', i.e., B, looks as

Pi P2 Ps
b b a
a a b

According to the rule the alternative b will be chosen, i.e., C(Py, X') = {b}.
Then C(P,/,X") 2 C(Py,X) N X'. Thus, the condition H is not satisfied.
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e Two-stage choice procedures 57,68,75 do not satisfy the condition O (see the previous
example).

e Two-stage choice procedures 68,73,75,76 do not satisfy the condition C. To prove it the
following example is used.

Consider the previous example. According to the rule C(ﬁx, X) ={a}.
Consider now the subset X' = X\{c}. A contraction of a profile 13X onto a set X', i.e., I3Xr, looks as

P1 P2 P3
b d a
a b d
d a b

According to the rule the alternatives a,b,d will be chosen, i.e., C(Py:, X") = {a, b, d}.

Finally, let us consider the subset X" = X\{a, d}. A contraction of a profile I3X ontoaset X", i.e., I3Xu,
looks as

Pi. P2 Ps
b b ¢
c ¢ b

According to the rule the alternative b will be chosen, i.e., C(ﬁXu,X” = {b}.
Then C(Pyr, X") N C(Pyr, X') = {b} & C(Py, X). Thus, the condition C is not satisfied.

e Two-stage choice procedures 57-60, 63, 64, 68-84 satisfy the Monotonicity condition 1 (the
proof follows from the properties of the inverse plurality rule and second stage choice
procedures).

e Two-stage choice procedures 76, 82 do not satisfy the Monotonicity condition 2. To prove it
the following example is used.

Let X = {a, b, c} and the profile I3X is the following
Pr P2 Ps Py Ps Ps Pz Pg Py Py
c ¢ ¢c a a b b ¢ ¢ ¢
a a a b b a a b b b
b b b ¢c ¢ ¢ ¢ a a a

According to the rule the alternatives a,b will be chosen, i.e., C(ﬁX, X) = {a, b}.

Consider now the subset X’ = X\{b}. A contraction of a profile P, onto a set X', i.e., Py, looks as
Pr P, P3 Py Ps Pe Pz Pg P9 Py
c ¢ c a a a a ¢ ¢c ¢
a a a ¢ c €c ¢ a a a
According to the inverse plurality rule used on the first stage the alternative ¢ will be chosen, i.e.,

C(ﬁXf,X’) = {c}. Finally, let us consider the subset X"" = X\{a}. A contraction of a profile By onto a
set X", i.e., P, looks as
Pi P, P3 Ps Ps Pg P7 Pg Py Py
c ¢c ¢ b b b b c¢c ¢ c
b b b ¢c ¢c ¢ ¢ b b b

According to the rule the alternative ¢ will be chosen, i.e., C(ﬁX,,,X”) = {c}.
Then {a, b} € C(Py, X), {a} & C(Py/,X") and {b} & C(Py,X"). Thus, the Monotonicity condition
2 is not satisfied.
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e Two-stage choice procedure 78 does not satisfy the non-compensatory condition. To prove it
let X = {a, b, ¢} and the profile Py is the following
Pr P2 P3 Py
a b ¢ b
b a a ¢
c ¢ b a
According to the non-compensatory condition the alternative b is better than the alternative a which
is better than the alternative c. However, according to the two-stage choice procedure 78, the

alternatives a,b will be chosen, i.e., C(I3X, X) = {a, b}. Thus, the non-compensatory condition is not
satisfied as {b} # C(ﬁX,X).

Two-stage choice procedures 85-112

Two-stage choice procedures 85-112 satisfy the same conditions as two-stage choice procedures 30-
46 which use the plurality rule on the first stage. The proof follows from properties of g-Approval
rule [11].

Two-stage choice procedures 169-196

Two-stage choice procedures 169-196 do not satisfy the same conditions as choice procedures which
are used on the second stage. To prove it we can use the same examples that were used to check the
properties of the Borda rule [11] but with larger number of alternatives which are omitted on the first
stage.

Thus, it is necessary to check those normative conditions of two-stage choice procedures which were
satisfied for the second stage choice procedures.
e Two-stage choice procedures 169,187,188 do not satisfy the condition H. To prove it the
following example is provided.

Let X = {a, b, c,d, e} and the profile I3X is the following
P, P, P3 Py Ps

e e a b b
a a d c¢c ¢
b b ¢ e a
c ¢ b a d
d d e d e

Let us calculate the Borda count for each alternative: r(a,Py) = r(b, Py) = 13,r(c, Py) = 10,
r(d, Py) = 4,7(e, Py) = 10. According to the rule the alternatives c,d,e will be omitted on the first
stage and the alternative a will be chosen on the second stage, i.e., C(ﬁX,X) = {a}.

Consider now the subset X' = X\{d}. A contraction of a profile ﬁX onto aset X', i.e., ﬁXr, looks as
P, P, P3 Py Ps
e e a b b

a a ¢ ¢ ¢
b b b e a
c C e a e

Let us calculate the Borda count for each alternative: r(a, Py/) = 8,r(b, Py) = 9,r(c, Py) = 6,
r(e, ﬁXf) = 7. According to the rule the alternative b will be chosen, i.e., C(Py, X") = {b}.
Then C(ﬁX,,X’) 2 C(Py,X) N X'. Thus, the condition H is not satisfied.
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e Two-stage choice procedures 169, 180, 187 do not satisfy the condition O (see the previous
example).

e Two-stage choice procedures 180,185,187,188 do not satisfy the condition C. To prove it the
following example is provided.

Let X = {a, b, ¢, d} and the profile ﬁX is the following

P Py P3
a b c¢
c a b
d d a
b ¢ d

Let us calculate the Borda count for each alternative: r(a,Py) = 6,7(b,Py) = 1(c,Py) =5,
r(d,ﬁx) = 2. According to the rule the alternative a will be chosen, i.e., C(ﬁX, X) ={a}.

Consider now the subset X' = X\{d}. A contraction of a profile ﬁx onto aset X', i.e., ﬁXr, looks as

P Py P3
a b ¢
c a b
b ¢ a

Let us calculate the Borda count for each alternative: r(a, Py) =1(b,Py) =r(c,Py) = 3.
According to the rule the alternatives a,b,c will be chosen, i.e., C(P,s, X") = {a, b, c}.

Finally, let us consider the subset X'’ = X\{a}. A contraction of a profile ﬁx onto a set X", i.e., ﬁxu,
looks as

P]_ P2 P3
c b ¢
d d b
b ¢ d

Let us calculate the Borda count for each alternative: (b, Pyir) = 3,7(c, Pyrr) = 4,7(d, Pyrr) = 2.
According to the rule the alternative c will be chosen, i.e., C(ﬁXu,X”) = {c}.
Then C(Pyr, X') N C(Pyr, X") = {c} & C(Px, X). Thus, the condition C is not satisfied.

e Two-stage choice procedures 169-196 satisfy the Monotonicity condition 1 (the proof follows
from properties of the Borda rule).

e Two-stage choice procedures 188, 194 do not satisfy the Monotonicity condition 2. To prove it
the following example is provided.

Let X ={a,b,c,d,e, f} and the profile Py is the following
P. P, Ps P4 Ps Ps P7; Pg

a a a f f f f ¢
b b b b b b ¢ f
c C C a a a e &€
d d d ¢ ¢ ¢ d d
e e e d d d b a
f f f e e e a b
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Let us calculate the Borda count for each alternative: r(a, Py) = r(b, Py) = 25, r(c, Py) = 24,

r(d,Py) = 13,r(e, Py) = 9,7(f, Py) = 24. According to the rule the alternatives a,b will be chosen,

i.e., C(Py,X) = {a,b}.

Consider now the subset X' = X\{b}. A contraction of a profile ﬁx onto a set X', i.e., ﬁxf, looks as
P, P, Py Py Ps Py P; Py

a a a f f f f ¢
c ¢ ¢ a a a c¢ f
d d d ¢c ¢ ¢ e e
e e e d d d d d
f f f e e e a a

Let us calculate the Borda count for each alternative: r(a, Py/) = 21,7(c, Byr) = 22, r(d, Py/) =
13, 7(e, Py) = 7,7(f, Pyr) = 19. According to the rule the alternative ¢ will be chosen, i.e.,
C(Py, X") = {c}.
Finally, let us consider the subset X"' = X\{a}. A contraction of a profile B, onto a set X", i.e., 13Xu,
looks as

P, P, Py Py Ps Py P; Py
b f f f f ¢

O O O T

O O O T
o
(o
(o
(o

f
e
d

o
(@]
(@]
(@]
o @ O

f f f e e e b Db

Let us calculate the Borda count for each alternative: 7(b, Pyr) = 21,7(c, Pyrr) = 22,7(d, Byn) =
13, r(e, Py) = 7,7(f, Pynr) = 19. According to the rule the alternative ¢ will be chosen, i.e.,
C(Byn, X") = {c}.

Then {a, b} € C(Py,X), {a} & C(Pys,X") and {b} & C(Pyr,X""). Thus, the Monotonicity condition
2 is not satisfied.

e Two-stage choice procedure 190 does not satisfy the non-compensatory condition. To prove it
let X = {a, b, c} and the profile Py is the following

Pl P2 P3
a a b
b b ¢
c ¢ a

According to the two-stage choice procedure the alternative a will be chosen, i.e., C(Py,X) = {a}.
However, according to the non-compensatory condition the alternative b is better than the alternative a
which is better than the alternative c.

Thus, the non-compensatory condition is not satisfied as {b} # C(Py, X).

Two-stage choice procedures 197-224
To check the properties of two-stage choice procedures 197-224 similar examples, which were given
to check the properties of existing choice procedures [11], can be used.
e Two-stage choice procedures 197-224 do not satisfy the conditions H and O. To prove it the
following example is provided.
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Let X = {a, b, c} and the profile ﬁX is the following
P, P, P3 Py Ps
a a d b b
b b a d d
d d b a a
In this example none of alternatives is a Condorcet winner (aub, dua, bud). Thus, the Borda rule is

used for this case. Let us calculate the Borda count for each alternative: r(a, Py) = 5,r(b, Py) =
6,7(c, Py) = 4. According to the rule the alternative b will be chosen, i.e., C(Py, X) = {b}.

Consider now the subset X' = X\{d}. A contraction of a profile I3X onto a set X', i.e., I3Xr, looks as
P1 P2 P3 Ps Ps
a a a b b
b b b a a

According to the rule the alternative a will be chosen, i.e., C(Py, X') = {a}.
C(Py1,X") 2 C(Py, X) N X'. Thus, the condition H is not satisfied.
C(Py,X") # C(Py, X). Thus, the condition O is not satisfied.

e Two-stage choice procedures 197-224 do not satisfy the condition C. To prove it the following
example is provided.

Let X = {a, b, c,d} and the profile ﬁX is the following

Pj_ P2 P3 P4 P5

a a ¢ d d

d d b b b

c ¢ a a a

b b d ¢ ¢
In this example none of alternatives is a Condorcet winner (auc, aud, bua, cub, dub, duc). Thus, the
Borda rule is used for this case. Let us calculate the Borda count for each alternative: 7(a, Py) =
9,7(b, Py) = 6,7(c, Py) = 5, r(d, Py) = 10. According to the rule the alternative d will be chosen,
i.e., C(Py,X) = {d}.
Consider now the subset X' = X\{d}. A contraction of a profile P, onto aset X', i.e., ﬁX:, looks as

Pr P2 Ps Py Ps

a a ¢ b b

c ¢ b a a
b b a ¢ ¢

According to the rule the alternative a will be chosen, i.e., C(P,/, X") = {a}.

Finally, let us consider the subset X" = X\{b, c}. A contraction of a profile ﬁX ontoaset X", i.e., ﬁXu,
looks as

P, P, P3 Ps Ps
a a a d d
d d d a a

According to the rule the alternative a will be chosen, i.e., C(}_”X,’,X” = {a}.
Then C(ﬁX,,X’) n C(ﬁXn,X” = {a} & C(Py, X). Thus, the condition C is not satisfied.
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e Two-stage choice procedures 197-224 do not satisfy the condition ACA since such choice
procedures do not satisfy the condition H.

e Two-stage choice procedures 197-224 satisfy the Monotonicity condition 1 (the proof follows
from the properties of the Black procedure).

e Two-stage choice procedures 198-200, 203-214, 216-224 do not satisfy the Monotonicity
condition 2 (the proof follows from the properties of the Black procedure).

e Since two-stage choice procedures 197, 201-202, 215 chooses no more than one best
alternative, the Monotonicity condition 2 is not applicable to these procedures as it considers
the choice of more than two alternatives. In other words, such two-stage choice procedures
obey the Monotonicity condition 2 trivially.

e Two-stage choice procedures 197-224 do not satisfy the strict monotonicity condition (the
proof follows from the properties of the Black procedure).

e Two-stage choice procedures 197-224 do not satisfy the non-compensatory condition (the
proof follows from the properties of the Black procedure).

Two-stage choice procedures 225-252

Two-stage choice procedures 225-252 do not satisfy the same properties as the Inverse Borda rule. To
prove it we can use the same examples that were used to check the properties of the Inverse Borda rule
[11].

Two-stage choice procedures 253-280
Two-stage choice procedures 253-280 do not satisfy the same properties as the Nanson rule. To prove
it we can use the same examples that were used to check the properties of the Nanson rule [11].

Two-stage choice procedures 281-308

Two-stage choice procedures 281-308 do not satisfy the same properties as the Coombs procedure. To
prove it we can use the same examples that were used to check the properties of the Coombs procedure
[11].

Two-stage choice procedures 310-319, 330, 334-336

310.5 Monotonicity condition 1

Let X = {a, b, c,d} and the profile Py is the following
Pi P, Ps Ps Ps Ps P; Pg Py Py
b d a a b d b d a c
d ¢ b ¢ a ¢ ¢ b a

c
a a d b ¢ b d a d d
c b ¢ d d a a b c b

According to the rule the alternatives a,b,d will be chosen, i.e., C(ﬁX, X) ={a,b,d}.

Consider now a profile ?, which differs from the profile Py only by improved position of the
alternative a in P;:
Py P, P; P, Py Py P; Pg Py Pj,

b d a a b d b d a

d c b c a c c c b a
a a d b c b a a d d
c b c d d a d b c b
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According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider

now the subset X' = X\{d}. A contraction of a profile P} onto a set X', i.e., P_)’(,) looks as
Py P, P3 Py Ps Py P; Py Py Pi
b ¢ a a b ¢ b ¢ a ¢

a a b ¢ a b ¢ a b a
c b ¢ b ¢ a a b ¢ b

According to the rule the alternative c will be chosen, i.e., C (E{ X) = {c}.

Then {a} € C(Py,X), {a} & C (E{ X). Thus, the Monotonicity condition 1 is not satisfied.

311.5 Monotonicity condition 1

Let X = {a, b, c,d} and the profile ﬁX is the following
Pr P Pz Py Ps Ps P7 Pg Py Py
b d ¢ a a d b d a d
d a b ¢ b ¢ ¢ b a

c
c ¢ a b ¢ b a a d b
a b d d d a d b c c

According to the rule the alternatives a,b,c will be chosen, i.e., C(Py, X) = {a, b, c}.

Consider now a profile ?, which differs from the profile Py only by improved position of the
alternative a in P;:

Py P, P3 Py Py Py P; Py Py Pj,

b a ¢ a a d b d a d

d d b ¢ b ¢ ¢ ¢ b a

c ¢ a b ¢ b a a d b

a b d d d a d b c c
According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider

now the subset X' = X\{d}. A contraction of a profile P} onto a set X', i.e., P_)’(,), looks as
Py P, P3 Py Ps Py P; Pg Py Pig
b a ¢ a a ¢ b ¢ a a

c ¢ b ¢ b Db ¢ a b b
a b a b ¢ a a b ¢ ¢

According to the rule the alternatives b,c will be chosen, i.e., C (Ef X) = {b, c}.

Then {a} € C(ﬁX,X), {a} & C (Ef X). Thus, the Monotonicity condition 1 is not satisfied.

315.5 Monotonicity condition 1

Let X = {a, b, ¢, d} and the profile I3X is the following
Pi P2 Ps Py Ps Pg Pz Pg Pg Pio
b d ¢ a a d b d a d
d ¢ b ¢ b ¢ ¢ ¢ b a
c a a b ¢ b a a d b
a b d d d a d b ¢ ¢

Let us calculate the Borda count for each alternative: r(a, Py) = r(b, Py) = r(c, Py) = r(d, Py) =

15. According to the rule the alternatives a,b,c,d will be chosen, i.e., C(Py, X) = {a, b, ¢, d}.
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Consider now a profile PT} which differs from the profile I3X only by improved position of the
alternative a in P :

Py P, P3 Py Py Py P; Pg Py Py

b d ¢ a a d b d a a

d ¢ b ¢ b ¢ ¢ ¢ b d

c a a b ¢ b a a d b

a b d d d a d b ¢ c
According to the two-stage choice procedure the alternative d is omitted on the first stage. Consider

now the subset X’ = X\{d}. A contraction of a profile PT; onto a set X', i.e., P_)’(,’ looks as
Py P, P3 Py Ps Pg P; Py Py Pio
b ¢ ¢ a a ¢ b ¢ a a

c a b ¢ b b ¢ a b b
a b a b ¢ a a b ¢ ¢

According to the rule the alternative c will be chosen, i.e., C (E{ X) = {c}.

Then {a} € C(Py,X), {a} & C (E{ X). Thus, the Monotonicity condition 1 is not satisfied.

To check the remaining normative conditions of given two-stage choice procedures similar examples
which were given to check the properties of existing choice procedures can be used.

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition H (see the
properties of minimal dominant set).

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition C (see the
properties of the procedures used on the second stage).

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition O (see the
properties of the procedures used on the second stage and paragraphs 310.5, 315.5 of Appendix
1).

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the condition ACA since
such choice procedures do not satisfy the condition H.

e Two-stage choice procedures 310-319, 330 do not satisfy the Monotonicity condition 1 (see the
properties of the Coombs procedure for choice procedure 319 and paragraphs 310.5, 311.5,
315.5 for other choice procedures).

e Two-stage choice procedures 334-336 satisfy the Monotonicity condition 1 (the proof follows
from the properties of minimal dominant set and second stage choice procedures).

e Two-stage choice procedures 310-313, 316-319, 330, 334-336 do not satisfy the Monotonicity
condition 2 (see the properties of minimal dominant set).

e Since two-stage choice procedures 314-315 chooses no more than one best alternative, the
Monotonicity condition 2 is not applicable to these procedures as it considers the choice of
more than two alternatives. In other words, such two-stage choice procedures obey the
Monotonicity condition 2 trivially.

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the strict monotonicity
condition (see the properties of minimal dominant set).

e Two-stage choice procedures 310-319, 330, 334-336 do not satisfy the non-compensatory
condition (see the properties of minimal dominant set).

33



Two-stage choice procedures 338-347, 350-364
Since minimal undominated set is equal to minimal dominant set when the number of criteria is odd,
two-stage choice procedures 338-347, 358, 362-364 do not satisfy the same conditions as two-stage
choice procedures 310-319, 330, 334-336, which use minimal dominant set on the first stage.
Consider now the properties of other two-stage choice procedures.

e Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the condition H, C and O.

To prove it let X = {a, b, ¢, d} and the profile Py looks as
Pr P, P3 Py Ps Pg
b a a b a d
a c¢c d a c b
c d b c¢c d c
d b ¢c d b a
For this case a matrix of majority relation p is the following
d

]
o
Rk o

O |IT| D
o
1

1
0
0|0 -1
d 0|1]|0] -

According to the rule the alternative a is included in minimal undominated set Q. Thus, C(Py, X) =
Q = {a}.
Consider now the subset X' = X\{a}. A contraction of a profile f’X onto a set X', i.e., ﬁXf, looks as

P, P, Ps Py Ps Ps

b ¢ d b ¢ d

c d b ¢ d b

d b c d b c
According to the rule the alternatives b,c,d make the minimal undominated set. Thus, C(Pyr,X') =
{b,c,d}.
Finally, consider the subset X' = X\{c,d}. A contraction of a profile ﬁx onto a set X", i.e., ﬁXn,
looks as

P, P, P3 Py Ps Pg
b a a b a b
a b b a b a

According to the rule the alternatives a and b will be chosen, i.e., C(Py, X'") = {a, b}.
C(ﬁXf,X’) 2 C(Py, X) N X'. Thus, the condition H is not satisfied.

C(Pyr,X") N C(Py,X") = {b} & C(Py, X). Thus, the condition C is not satisfied.
C(Py1,X") # C(Py, X). Thus, the condition O is not satisfied.

e Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the condition ACA since
such two-stage choice procedures do not satisfy the condition H.

e Two-stage choice procedures 351-354, 357, 359-361 satisfy the Monotonicity condition 1 (the
proof follows from properties of minimal undominated set and second stage choice
procedures).

e Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the Monotonicity condition
2 (see the properties of minimal undominated set).
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e Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the strict monotonicity
condition (see the properties of minimal undominated set).

e Two-stage choice procedures 351-354, 357, 359-361 do not satisfy the non-compensatory
condition (see the properties of minimal undominated set).

Two-stage choice procedures 365-392
Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the
second stage. To prove it we can use the same examples but with larger number of alternatives
eliminated on the first stage of the two-stage choice procedure [11].
Thus, it is necessary to check those normative conditions of two-stage choice procedures which were
satisfied for the second stage choice procedures.
e Two-stage choice procedures 365,383,384 do not satisfy the condition H (see paragraph 365.1
of Appendix 1).
e Two-stage choice procedures 365, 376 do not satisfy the condition O (see paragraph 365.1 of
Appendix 1).
e Two-stage choice procedures 376, 381, 383, 384 do not satisfy the condition C. To prove it the
following example is used.

Let X = {a, b, c,d, e} and a matrix of majority relation p is the following

alblc|d]|e
al-]1]0|0]0
b|0O|-]1|0]0
c|0]O0O|-]1]|1
d{1{0|0]-1]0
e|0|0[O0|1] -

According to the rule the alternatives a and c are included in minimal weakly stable set Q. Thus,

C(ﬁX,X) =Q ={a,c}
Consider now the subset X’ = X\{e}. Then a matrix of majority relation p is the following

alblc|d
al-11]01|0
b{O0O|-]1]0
c|0|0]-1|1
d{1]0|0] -

According to the rule the alternatives a,b,c,d are included in minimal weakly stable set, i.e.,
C(Py,X') ={a,b,c,d}.
Finally, consider the subset X' = X\{a}. Then a matrix of majority relation p is the following

blc|d]e
b|-]11]0|0
c|O0|-[1]1
d|{0oj0|-10
e|0[0]1] -

According to the rule the alternative b is included in minimal weakly stable set, i.e., C(ﬁXu,X”) =
{b}.
Then C(ﬁX,,X’) n C(ﬁXn,X” = {b} & C(Py, X). Thus, the condition C is not satisfied.
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e Two-stage choice procedures 383, 384 do not satisfy the condition C (see paragraph 383.2 of
Appendix 1).

e Two-stage choice procedures 365-375, 383-384, 386, 390-392 do not satisfy the Monotonicity
condition 1 (the proof follows from the paragraph 365.5 of Appendix 1).

e Two-stage choice procedures 376-382, 385, 387-389 do not satisfy the Monotonicity condition
1 (the proof follows from the paragraph 376.5 of Appendix 1).

e Two-stage choice procedures 365-392 do not satisfy the Monotonicity condition 2 (see the
properties of minimal weakly stable set).

e Two-stage choice procedures 365-392 do not satisfy the non-compensatory condition (see the
properties of minimal weakly stable set).

365.1 Heredity condition (H)
Let X ={a,b,c,d, e, f} and a matrix of majority relation p is the following
albjc(dje]|f
1(0/0
-11|0

0

ol ol oo

0|1/ -
f{0O|0[0|0|1 |-
Minimal weakly stable set is chosen on the first stage of choice procedure. According to the rule the
alternatives a,c are included in minimal weakly stable set Q, i.e., Q = {a, c}.

Simple majority rule is used on the second stage of the choice procedure. Consider now the

remaining set X' = X\{b,d, e, f}. A contraction of a profile ﬁX onto aset X', i.e., ﬁX/, looks as

||l O|T| o
ol oOo| | O
oO|—| O
o
O OO Ok

P P2 Ps
(o C a
a a C

According to the simple majority rule, the alternative ¢ will be chosen, i.e., C(Py, X) = {c}.

Consider now the subset X' = X\{d, e, f}. Then, according to the two-stage choice procedure, the
alternatives a,b,c are included in minimal weakly stable set Q’.

Simple majority rule is used on the second stage of the choice procedure. Consider now the

remaining set Q' = X\{b,d, e, f}. A contraction of a profile P, onto aset Q', i.e., P, looks as

P1 P> Ps
c b a
a ¢ b
b a ¢

According to the rule the choice is empty, i.e., C(ﬁXf,X’) = 0.
Then C(Py, X) N X' = {c} & C(Py,X"). Thus, the condition H is not satisfied.

365.5 Monotonicity condition 1
Consider the example from paragraph 365.1. According to the rule the alternative c will be chosen, i.e.,

C(Py, X) = {c}.
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Suppose that the relative comparison of the alternative ¢ and the alternative d is changed (cud) while
the relative comparison of any pair of other alternatives remains unchanged. Then a matrix of
majority relation looks as

1
=
OO

| OOl

0l -
011] -
fl0{0|0|0|1 |-
Minimal weakly stable set is used on the first stage of choice procedure. For this case the alternatives
a,b,c form a minimal weakly stable set. Simple majority rule is applied on the second stage of the two-

O|l o Ol O|

| Q|0 |T| D
ol oOo| | O
O| | O

Ol O| O O| k| =

stage choice procedure. Since cua, aub, buc, C (Eﬁ X) = Q.

Then {c} € C(ﬁX, X),{c}¢cC (Ef X). Thus, the Monotonicity condition 1 is not satisfied.

376.5 Monotonicity condition 1

Let X ={a,b,c,d, e, f} and a matrix of majority relation p is the following
alblc|d flglh|{i]j|k|l]|m
01
0

= O] O

ol ol Oo| oo

oO| OO O] o

Ol OO O| k-

[elNelielNeliNoelNolil

Ol OO OO0 OO O

[eleolieliel o] le] o] Nl o]

Ol OO0 OO0 O0O|O|kFr| O

O OO OO0 0|00 OO

O OO0 O OO0 O0|O0O|O| O oo

1
0|1
o(0|0(0|0|0]O 0|0 0|00 |1]-
According to the rule the alternatives a,b,c make a minimal weakly stable set. Thus, the alternatives d,
e, f,0,h1,j,k I, m n, owill be omitted on the first stage and the alternatives a,b,c will be chosen on

S|3|—| X|—|—|T|Q|=|loo|a|o|lT|o
o|lo|o|o|o|o|lo|o|o|o| | ok
o|lo|lo|o|lo|o|lr|o|lolo|o|-
o|lo|r|lo|lo|lolo|lo|lo|o|o
o|lo|o|lo|lo| ol o|o|o|r
o|lo|o|lo|lo|olo|o|-
o|lo|lo|lo|lo|ol ol
o|lo|o|o|lo|r

o|lo|lo|l ol

o|lo| o
Oo|lo|lo|o|lo|jo|o|lo|o|o|o|o|lo
ol o|lojlo|lolo|o|o|o|o|lr|o|lolo

[elNeliellellelle]l o]l
O O O] O| k-

the second stage of the two-stage choice procedure, i.e., C(ﬁx, X) ={a,b,c}.

Suppose that the relative comparison of the alternative a and the alternative d is changed (axd) while
the relative comparison of any pair of other alternatives remains unchanged. Then a matrix of
majority relation looks as
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01
o/0(0|0|0O|O0O]|O 0|0 0|0|0]|1]-
According to the rule the alternatives a,b make a minimal weakly stable set. Thus, the alternatives c, d,
e, f,g,h 1,k I, m n, owill be omitted on the first stage and the alternative b will be chosen on the

S| 3| —| X|=—|—|T|Q|=wo|lalo|lTo|lo
o|lo|lo|lo|lo|o|lo|lo| ool -
o|lo|lo|lo|lo|lo|lr|ol ol olo|r
o|lo|lr|o|lo|lo|lo|lo|lo|o|o
olo|lo|lo|lo|lo|lolo|l ol
o|lo|lo|lo|lo|lol ook
o|lo|lo|lo|o|l ol o -

o|lo|lo|lo| ok

o|lo|lo|l ol

o| ol o
olo|lo|lo|lo|lo|o|lo|lo|lo|lo|o|o| D
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second stage of the two-stage choice procedure (bua), i.e., C (PT; X) = {b}.
Then {a} € C(ﬁX,X), {a} & C (Ef X). Thus, the Monotonicity condition 1 is not satisfied.

383.2 Concordance condition (C)
LetX ={a,b,c,d, e, f, g, h} and a matrix of majority relation p is the following

albjc|dje|[f|{g|h
al-(1/0(1|{0j0|0 0O
b{O|-]1(1{1]0|0 |0
c{1/0(-/0(0|0]|0 |1
d0|{0|1|-|0]|0|0O]O
e(0|0[1|0(-]|0(0 O
floj0(0|{0O|1|-]|0]0O
g/0|{0|0f(0[0O|1|- |0
h{0|0|0[0]|0|0|1 |-

On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case
there are 3 minimal weakly stable sets: {a, b}, {a,d} and {b,c}. Thus, Q = {a,b} U {a,d} U {b,c} =
{a,b,c,d}.

On the second stage of the two-stage choice procedure a Condorcet winner rule is used. For this case
there is no Condorcet winner (aub, aud, cua, buc, duc), Thus, C(ﬁx, X) = Q.

Consider now the subset X' = X\{c, e, f, g}. A matrix of majority relation p looks as

alb|d
al-|1/1
0-]1
do|0]-

(on
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On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case
the alternative a makes a minimal weakly stable set. Thus, C(ﬁX,,X’) = {a}.
Finally, consider the subset X' = X\{b}. Then a matrix of majority relation pu looks as

alc|/dje|f|g|h
al-(0/1(0/0]0|0
c|l/-/0(0|0]|0]|1
d/oj1(-/0(0/0]0
e|011|/0|-|/0]0|0O
f|0|0|0|1]|-]0]0
g|0(0|0(0O|1]|-|0
h{0(0|0|0|0|1]-

On the first stage of the two-stage choice procedure minimal weakly stable set is defined. For this case
the alternatives a and d make a minimal weakly stable set. On the second stage of the two-stage choice

procedure a Condorcet winner rule is used. Since aud, C(ﬁXu,X”) = {a}.
Then C(Pyr, X") N C(Pyr, X") = {a} & C(Py, X). Thus, the condition C is not satisfied.

Two-stage choice procedures 394-410, 412-420
Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the
second stage. To prove it we can use the same examples but with larger number of alternatives
eliminated on the first stage of the two-stage choice procedure [11].
Thus, it is necessary to check those normative conditions of two-stage choice procedures which were
satisfied for the second stage choice procedures.
e Two-stage choice procedure 412 does not satisfy the condition H (see paragraph 412.1 of
Appendix 1).
e Two-stage choice procedures 404, 409 do not satisfy the condition C. To prove it the following
example is used.

Let X = {a, b, c,d, e} and a matrix of majority relation p is the following

alblc|d|e]|f
al-|11]0]0|1]1
b{O0O|-]1]1/0]1
ci1|0|-11]1]0
d{1/0|0|-]0/|0
e|0|0]0|1]-]1
f|0o|0|2]1]|0]-

Let us define the upper contour sets for each alternative. D(a,Py) = {c,d},D(b, Px) = {a},
D(c,Py) = {b,f}, D(d,Py) = {b,c,e,f}, D(e,Px) = {a,c}, D(f,Px) = {a,b,e}. Then cyd, bye,
byf. Thus, C(Py,X) = {a, b, c}.

Consider now the subset X' = X\{c, f}. Then a matrix of majority relation p is the following

a|lb|d]e
al-]11]0/|1
b{O0]|-]1]0
d{1/0]|-1]0
el 0|01 -
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Let us define the upper contour sets for each alternative. D(a,Py) = {d},D(b,Py/) = {a},
D(d,Pyr) = {b,e}, D(e, Py:) = {a}. Thus, C(Py:,X") = {a, b, d,e}.
Finally, consider the subset X" = X\{a, b}. Then a matrix of majority relation p is the following

c|d|e|f
c|-]1(1]0
d{ 0o|-/0]0
el 0]1-1]1
f|1(1|0] -

Let us define the upper contour sets for each alternative. D(c, ﬁxu) = {f}, p(d, ﬁxu) ={c,ef}
D(e, Pyn) = {c}, D(f,Pyr) = {e}. Then cyd, eyd, fyd. Thus, C(Pyr,X") = {c, e, f}.
Then C(Pyr, X") N C(Pyr, X') = {e} & C(Py, X). Thus, the condition C is not satisfied.

e Two-stage choice procedures 412 do not satisfy the condition C (see paragraph 412.2 of
Appendix 1).

e Two-stage choice procedure 404 does not satisfy the condition O. To prove it the following
example is used.

Let X = {a, b, c,d, e} and a matrix of majority relation p is the following

alblc|d]|e
a|l-(1]0(1]1
b|O0|-]1|1]0
c|1]0|-121/0
d/ 0o(0|0]-|1
e| 0|00 |0 -

Let us define the upper contour sets for each alternative. D(a, Py) = {c},D(b, Py) = {a}, D(c, Px) =
(b}, D(d, Py) = {a,b,c}, D(e, Py) = {a,d}. Then cyd, bye. Thus, C(Py,X) = {a, b, c}.
Consider now the subset X’ = X\{d}. Then a matrix of majority relation p is the following

alblcle
al-]11]01|1
b{O0O|-]1]0
c|1{0]-10
e| 0|00 -

Let us define the upper contour sets for each alternative. D(a,Py/) = {c},D(b,Py/) = {a},
D(c, ﬁXr) = {b}, D(e, ﬁXr) = {a}. Thus, C(ﬁXr,X’) ={a,b,c, e}
Then C(Pys, X") # C(Py, X), Consequently, the condition O is not satisfied.

e Two-stage choice procedures 394-403, 405-407, 409, 412, 414-420 do not satisfy the
Monotonicity condition 1 (the proof follows from the paragraphs 394.5, 409.5 of Appendix 1
and properties of second stage choice procedures).

e Two-stage choice procedure 412 does not satisfy the Monotonicity condition 2 (see paragraph
412.1 of Appendix 1).

e Two-stage choice procedures 393-420 do not satisfy the non-compensatory condition (see the
properties of Fishburn rule).
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394.5 Monotonicity condition 1
Consider the example from paragraph 412.1 of Appendix 1. Suppose that buc. Then the alternative f is
eliminated on the first stage and, consequently, the alternative b is not chosen on the second stage.

Since {b} € C(ﬁx, X),{b}&C (PT} X), the Monotonicity condition 1 is not satisfied.

409.5 Monotonicity condition 1
Let X ={a,b,c,d, e, f} and a matrix of majority relation p is the following

alblc|d|e]|f
al-/0|1]0|1]|0
b{O0O|-]0]1]|0]|1
c|0/0|-|0|0|O
d/0o|0|0|-]1]0
e|011|0(0|-|1
f{1/0(0]|0|0 |-

According to the rule the alternatives a,b will be chosen, i.e., C(Px, X) = {a, b}.

Suppose that the relative position of the alternative a is improved such that aub, aud while the
relative comparison of any pair of other alternatives remains unchanged. Then a matrix of majority
relation looks as

a c|d|e|f
al - 1({1/1]|0
blO0O|-(0]1]0]1
c|0|l0|-|0|0]|O
d{0o(0j0|-(1]0
el0]1](0(0]-]|1
f{1/0(0|0|0 |-

For this case the alternatives a,c,f are considered for the second stage of the choice procedure. Since
fua, auc, C (EfX) ={f,c}.
Then {a} € C(Py,X), {a} & C (EZ X). Thus, the Monotonicity condition 1 is not satisfied.

412.1 Heredity condition (H)
Let X ={a,b,c,d, e, f} and a matrix of majority relation p is the following

alblc|d|e]|f
al-/1|1/0|1]|0
b{0O|-]0]1]0 |1
c|0|/0|-|0|0|1
d/0o|0|0|-]1]0
e|011|/0(0|-|0
f{1/0[0]|0|0 |-

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e., C(ﬁX,X) =

{a,b}.

41



Consider now the subset X' = X\{c, d}. A matrix of majority relation u looks as

alble]|f
al-/0|1]0
b{O|-(0 |1
el0|1]-10
f{1/0(0 |-

According to the rule the choice is empty, i.e., C(ﬁXf,X’) = 0.
Then C(Px, X) N X' = {a,b} & C(Py,X"). Thus, the condition H is not satisfied.

412.2 Concordance condition (C)
LetX ={a,b,c,d,e, f, g} and a matrix of majority relation p is the following

albjc|d|e|f]|g
al-{0(1/0|1|0]|0
b|{0O|-]0j1|0|1]|1
c|0/0|-(0|0|2]0
do0o|0|0|-]1]0|O0
e|0/1|0(0|-|0]1
f{1/0{0|0|0|-|0
g|1{0(0j1/0|1]-

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e., C(ﬁX,X) =

{a, b}.
Consider now the subset X' = X\{b}. A matrix of majority relation p looks as

alc|d|e|f]|g
al-|1/0j1 (0|0
c|0|-]0l0]1]0
d{ojo|-|{1(0(0
e|0|0|0]-10|1
f|1/0{0|0 -0
g|1]/0[1(0[1]-

According to the given two-stage choice procedure the alternatives c,g will be chosen, i.e.,

C(Py,X') ={c g}
Finally, consider the subset X" = X\{a}. Then a matrix of majority relation p looks as

bic|dje|f|g
b|-]0]1(0|1]|1
c|0(-/0|0|1]|0
do|0|-{120|0
e|{1(0(0|-]0]|1
f{0|0|0]|0 -0
g(0]0|2|0 |1]-

According to the rule the alternative ¢ will be chosen, i.e., C(Pyr, X") = {c}.
Then C(ﬁX,,X’) n C(ﬁXu,X” = {c} & C(Py,X). Thus, the condition C is not satisfied.
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422.5 Monotonicity condition 1
Let X ={a,b,c,d, e, f} and a matrix of majority relation p is the following
alblc|d|e]|f
1100
-111]0

1

ol Ol O

0(0] -
f 0/1]0 |-
According to the rule the alternatives a,b,c will be chosen, i.e., C(Py, X) = {a, b, c}.

Suppose that the relative position of the alternative a is improved such that auc while the relative
comparison of any pair of other alternatives remains unchanged. Then a matrix of majority relation
looks as

| Q|0 |T|D
O OO O] o

| OOl O
ol oOo| O] O
o

1
= OO

0] -
0(0] -
f|1/0[{0|1]|0 |-
For this case the alternatives a,b,c,f are considered for the second stage of the choice procedure. For

= O| Ol Q

Ol Ol O|m

OO0 T|D
ol o| o o
o| O] O
O OO O| O =

this majority matrix it is possible to construct a profile F; such that {a} ¢ C (Eg X).

Then {a} € C(ﬁX,X), {a} & C (PT; X). Thus, the Monotonicity condition 1 is not satisfied.

440.1 Heredity condition (H)
Let X = {a,b,c,d,e, f} and a matrix of majority relation p is the following
albjc|d|e|f
0110
-111]0

1

|| O O

0|0
f{0|0[{0|1]|0 |-

According to the two-stage choice procedure the alternatives a,b will be chosen, i.e., C(ﬁX,X) =

Q|0 T| D
ol o| ol o
ol o| o
o
ROl Ol O

{a, b}.
Consider now the subset X' = X\{c}. A matrix of majority relation p looks as
albldje|f
al-/0]/0|0 |0
b|{0O|-]0|0 |0
d/oj0o|-|1]0
e|0|0]0]- |1
fl0|0O|1|0 |-
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According to the rule the choice is empty, i.e., C(ﬁXf,X’) = 0.
Then C(Px, X) N X' = {a,b} & C(Py,X"). Thus, the condition H is not satisfied.

465.2 Concordance condition (C)
Consider the example from paragraph 468.2 of Appendix 1. Then C(ﬁX, X) ={a,b,c, g}
Consider now the subset X' = X\{b}. A matrix of majority relation p looks as
albljc|d|je]|f
-10(0|0
-10]0
0

ol O| O -

11 -
111
f{0O|0[0|0|1 |-
According to the given two-stage choice procedure the alternatives a,b,d will be chosen, i.e.,
C(Py,X") = {a,b,d}.

Finally, consider the subset X"’ = X\{a}. Then a matrix of majority relation p l00ks as

Do|lQo|lo|T| D
o|lo|r| o
Rl ol o

ol k| ol

bic|d|e|f]|g
b|-]0[{0(0|0]|O0
c|0(-/0|0|1]|0
d/o|1|-(0 1|0
ell1(1|1,-1(0]|0
f{0Oj0|0|1 (-1
g|/0j0j1|1]|0]-

According to the rule the alternatives b,c,d,g will be chosen, i.e., C(ﬁXu,X” ={b,c,d, g}.
Then C(Pyr, X') N C(Pyr, X") = {b,d} & C(Py, X). Thus, the condition C is not satisfied.

465.5 Monotonicity condition 1
Let X = {a, b, c,d} and a matrix of majority relation p is the following
albjc|d

a 0
b{0|-]{0]|1
c 0

dfojo|1]-
According to the rule the alternatives a,b,c,d will be chosen. Suppose that the relative position of the
alternative a is improved (aud). Then the alternative d is omitted on the first stage. For this case it is

possible to construct a profile E{ such that {a} ¢ C (PT} X).

Then {a} € C(ﬁX,X), {a} & C (Ef X). Thus, the Monotonicity condition 1 is not satisfied.
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468.1 Heredity condition (H)
Let X ={a,b,c,d, e, f, g} and a matrix of majority relation p is the following

alblc|d|e|f]|g
al-(0|0j0|1|1]0
b{O0O[-]0[0[|0|0]O0
c|1|0|-/0]|0(21]0
dfojo|1{-/0 1|0
e|0O|1|21/1]|-(0]0
fl0|{0|0]|0|1 |-|1
g|0(0|0O|O|1|0]-

According to the given two-stage choice procedure the alternatives a,b,d,g will be chosen, i.e.,
C(ﬁX,X) ={a,b,d, g}.

Consider now the subset X' = X\{d, e}. A matrix of majority relation p l0oks as

alblc|f]|g

1
o
o

1
-1010
1

- | O | T| D
Ol | O
o
1
R Ol Ol O

0|0 -
g|0|0|0|0]-
According to the rule the alternatives b,c,g will be chosen, i.e., C(ﬁXf,X’) ={b,c, g}
Then C(Py, X) N X' = {a,b, g} & C(Pys,X"). Thus, the condition H is not satisfied.

468.2 Concordance condition (C)
LetX ={a,b,c,d,e, f, g} and a matrix of majority relation p is the following

albjc|d|e|f]|g
al-/{0(0j0|1 (1|0
b|{0|-]0[{0|0|0]|O0
c|1/0|-({0|0(2]0
do|0o|1|-]0]1|0
e|0O2|2(1|-1|0]0
f{oOj0|0|0|1 |-|1
g|/0{0j0|2|1]|0]-

According to the two-stage choice procedure the alternatives b,g will be chosen, i.e., C(ﬁX,X) =

{b, g}-
Consider now the subset X' = X\{d}. A matrix of majority relation p looks as

alblicle|f]|g
-10]01
-101]0

0

OoO| | O| k-
ROl OOl O

o| OoO| | O
ol OoO| -
[EY
1

Q|=-wloD|lO|T|D

O O|O| k| O
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According to the given two-stage choice procedure the alternatives b,c,g will be chosen, i.e.,
C(ﬁx"X’) ={b,c, g}

Finally, consider the subset X' = X\{a, b, e, f}. Then a matrix of majority relation u looks as
cld|g
c|-10]0
11-10
0[1]-
According to the rule the alternatives c,g will be chosen, i.e., C(Py, X") = {c, g}.

Then C(Pyr, X') N C(Pyr, X") = {c, g} & C(Py, X). Thus, the condition C is not satisfied.

468.5 Monotonicity condition 1
LetX ={a,b,c,d, e, f, g} and a matrix of majority relation p is the following

alc|d|e|f]|g
al-({0/0j0 |10
c(1|-{0|/021|0
d0o|1(-{0|1]|0
e|/01|1|-1]0]0
flo|0j0O|1 |-|1
g|0({01]1]|0]-

According to the rule the alternatives e,f are omitted on the first stage. Suppose that the relative
position of the alternative a is improved such that aug while the relative comparison of any pair of
other alternatives remains unchanged. Then the alternatives e,f are omitted on the first stage. For this

case it is possible to construct a profile PT} such that {a} ¢ C (PT; X).

Then {a} € C(ﬁX,X), {a} & C (Ef X). Thus, the Monotonicity condition 1 is not satisfied.

Two-stage choice procedures 478-494, 496-504

Two-stage choice procedures 478-494, 496-504 satisfy the same conditions as two-stage choice
procedures which use the Fishburn rule and Uncovered set | on the first stage. To prove it we can use
the same examples that are used for these rules [11].

Two-stage choice procedures 534-538,543,554,558

Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the
second stage. As for other normative conditions, two-stage choice procedures 534-538,543,554,558 do
not satisfy any of them as the subset of alternatives for the second stage can be easily changed when
the core is applied on the first stage of the rule. To prove it we can provide the following example.

534.5 Monotonicity condition 1.
Let X = {a, b, ¢, d} and the profile I3X is the following
Pi. P, P3 Py, Ps Pg P7; Pg

a a a ¢ b b d d
c ¢c ¢ a d d b b
b d d b ¢ a ¢ ¢
d b b d a ¢ a a
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According to the rule the alternative a will be chosen, i.e., C(ﬁX, X) = {a}.
Suppose now that the position of the alternative a was improved in P, while the relative comparison of
any pair of other alternatives remained unchanged.
P, P, P, P, P, P, P, Pj
a a a ¢ b b d d
c ¢ ¢ a d a b b
b d d b ¢ d ¢ ¢
d b b d a ¢ a a
Then the alternative d will be omitted after applying the first choice procedure (the core) and the subset
X' = X\{d} will be presented for the second choice procedure (the plurality rule). A contraction of a

profile Ef ontoaset X', i.e., F)Xr, looks as
P, P, P; P, P; P, P, Pg
a a a ¢ b b b b
c ¢ ¢ a ¢ a ¢ ¢
b b b b a ¢ a a

According to the rule the alternative b will be chosen, i.e., C (E{ X) =C (P_)’(,),X’) = {b}.

Then {a} € C(ﬁX, X),{a}&C (E{ X). Thus, the Monotonicity condition 1 is not satisfied for the given
two-stage choice procedure.

Two-stage choice procedures 561-588

Two-stage choice procedures 561-588 do not satisfy the same normative conditions as two-stage
choice procedures which use minimal weakly stable set on the first stage. To prove it similar examples
can be used but with larger number of alternatives (see the properties of k-stable set) [11].

Two-stage choice procedures 589-616

To check the properties of two-stage choice procedures 589-616 it is possible to use the same counter-
examples that were used to check the properties of the threshold rule [11]. Thus, it remained to check
normative conditions which are satisfied for the threshold rule.

e Two-stage choice procedures 589-616 satisfy the Monotonicity condition 1. The proof follows
from properties of the threshold rule (an improved position of any chosen alternative x leads to
the choice of only this alternative on the first stage of two-stage procedure).

e Two-stage choice procedures 589-616 do not satisfy the non-compensatory condition. To proof
it the following example is provided.

Let X = {a, b, ¢, d} and the profile I3X is the following

P1 P2 P3
a b c
d a b
b ¢ a
c d d
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According to the first stage rule, the alternatives a and b will be chosen on the first stage of the two-
stage choice procedure. Consider now the subset X' = X\{c, d}. A contraction of a profile ﬁX onto a
set X', i.e., P/, looks as

Pi P2 Ps
a b b
b a a

According to the second stage rule, the alternative b will be chosen on the second stage of the two-
stage choice procedure. Thus, C(ﬁX,X) = {b}.

Now let us write the profile ﬁx in the following form

X|@1|92]| @3
al 4| 3|2
bl 2] 4] 3
c| 1|2 |4
d| 3|11

According to the non-compensatory condition the alternatives a,b (the alternatives a and b are equal)
are better than the alternative ¢ and the alternative c is better than the alternative d. Thus, the non-

compensatory condition is not satisfied as {a, b} # C(ﬁX, X).

Two-stage choice procedures 617-700

Two-stage choice procedures do not satisfy the same conditions as Copeland rules 1-3 and choice
procedures used on the second stage. To prove it similar examples can be used but with larger number
of alternatives [11]. Thus, it remained to check normative conditions which are satisfied for Copeland
rules 1-3 and choice procedures used on the second stage.

e Two-stage choice procedures 617-620, 623-624, 628-648, 651-652, 656-676, 679-680, 684-700
satisfy the Monotonicity condition 1 (the proof follows from properties of Copeland rules 1-3
and choice procedures used on the second stage).

e Two-stage choice procedures 621-622, 625-627, 649-650, 653-655, 677-678, 681-683 do not
satisfy the Monotonicity condition 1 (the same example that was used to check the properties
of the second stage choice procedures can be provided).

e Two-stage choice procedures 617-700 do not satisfy the non-compensatory condition (the
proof follows from properties of Copeland rules 1-3).

Two-stage choice procedures 701-728
Two-stage choice procedures do not satisfy the same conditions as choice procedures used on the
second stage. To prove it similar examples can be used but with larger number of alternatives [11].
Thus, it remained to check normative conditions which areaz satisfied for choice procedures used on
the second stage.
e Two-stage choice procedures 701, 719-720 do not satisfy the condition H (the proof follows
from properties of super-threshold rule).
e Two-stage choice procedures 712, 717, 719-720 do not satisfy the condition C (the proof
follows from properties of super-threshold rule).
e Two-stage choice procedures 712, 717 do not satisfy the condition O (the proof follows from
properties of super-threshold rule).
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Two-stage choice procedures 701, 712-713, 719-720 satisfy the Monotonicity condition 1 (the
proof follows from properties of threshold-rule and choice procedures used on the second
stage).

Two-stage choice procedures 702-711, 714-718, 721-728 do not satisfy the Monotonicity
condition 1. Since super-threshold rule narrows the subset of alternatives remained after the
first stage of the procedure, alternatives dominated by the chosen one might be eliminated on
the first stage and, consequently, on the second stage of the rule the chosen alternative will not
be included into a new choice.

Two-stage choice procedures 701-728 do not satisfy the non-compensatory condition (the
proof follows from properties of super-threshold rule).

Two-stage choice procedures 729-784

To check the properties of two-stage choice procedures which use minimax and Simpson procedures
on the first stage we can use the same counter-examples which were used to check the properties of
minimax and Simpson procedures [11]. Thus, it remained to study those normative conditions which
are satisfied for choice procedures used on the first stage.

Two-stage choice procedures 729, 740-741, 747-748, 757, 768-769, 775-776 satisfy the
Monotonicity condition 1 (the proof follows from properties of Minimax and Simpson
procedures and choice procedures used on the second stage).

Two-stage choice procedures 730-739, 742-746, 749-756, 758-767, 770-774, 777-784 do not
satisfy the Monotonicity condition 1. To prove it the following example for the two-stage
choice procedure 731 is given.

Let X = {a, b, c} and the profile Py looks as

Pt P, Ps Ps Ps Ps P; Pg Py Pig P11 P12 Piz Pu Pis
c ¢ b a a a a a ¢ d d d d b ¢

b b ¢ b ¢ ¢c ¢ ¢ b ¢ b b b a d
d d d ¢ b b b b d a a a a d a
a a a d d d d d a b c c c c b
Let us construct a matrix S‘(ﬁX, X) for the profile ﬁX.
a b |c|d
a | - 71916
b | 8 - | 6110
c| 6 9 | - 110
d| 9 5 5| -

According to the minimax procedure used on the first stage, the alternatives a,b,c will be chosen, i.e.,
C1(Py, X) = {a, b, c}, where C; is a Minimax choice procedure.

Consider now the subset X' = X\{d}. A contraction of a profile 13X onto a set X', i.e., I3Xr, looks as

Pi. P, Ps P4 Ps Ps P7 Pg P9 Pio Pz Pio Pz Pis Pis
c ¢ b a a a a a c¢c ¢ b b b b ¢
b b ¢ b ¢ ¢c ¢c ¢ b a a a a a a
a a a ¢ b b b b a b ¢ ¢ ¢ ¢ b

According to the rule the alternative a will be chosen, i.e., C(Py, X) = {a}.
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Consider now a profile E{ which differs from the profile ﬁX only by improved position of the
alternative a in Py,.

Py P, P3; Py Py Py P; Py Py Pyy Py Py Py3 Py Py

c ¢ b a a a a a c¢ d d d d b C

b b ¢ b ¢ ¢ ¢ ¢ b a b b b a d
d d d ¢c b b b b d c a a a d a
a a a d d d d d a b Cc Cc c c b
Let us construct a matrix S‘(?X, X) for the profile ?X.
a b |c|d
a | - 7 |10| 6
b | 8 - | 6|10
c| 5 9 - |10
d| 9 515 -

According to the minimax procedure used on the first stage, the alternatives a,b will be chosen, i.e.,
C, (?X, X) = {a, b}, where C, is a Minimax choice procedure.

Consider now the subset X" = X\{c,d}. A contraction of a profile ?X onto a set X", i.e., F’)Xu,
looks as

Py P, P; Py, Py Py P; Pg Py Pyy Py Py Py3 Py Py

b b b a a a a a b a b b b b a

a a a b b b b b a b a a a a b

According to the rule the alternative b will be chosen, i.e., C (?X,X) = {b}.

Then {a} € C(Py,X), {a} & C (E{ X). Thus, the Monotonicity condition 1 is not satisfied.
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HopmaruBHbie cBOicTBa mpoLenyp MHOTOKPHUTEpHaIbHOIO BbIOOpa WM MX cyneprnosuuuu: II
[Onexrponnslit pecype]: npenpuntr WP7/2015/07 (Hacts 2) / C. B. LIBbiayH ; Ham. uccnen. yH-T
«BbIcIIas MIKOIa SKOHOMUKM». — DJIEKTPOH. TEKCT. AaH. (2 M0O). — M. : U3n. nom Beiciiei mxosbt
sxonomukH, 2015. — (Cepust WP7 «MaremaTideckiue METOIbl aHAIM3a PEIICHUI B JKOHOMHUKE,
Ou3Hece U MONMUTHKE»). — 53 ¢. (Ha aHIII. 513.)

Hcenenyrorcs 1ByXCTyneHYaThIe POLEypbl BHIOOPA, KOTOPbIE MPECTABIAIOT COOOH CyNepHO3ULIUI0
JIByX Iporexyp Beibopa. [Toka3aHo, kakue U3 paccMaTpUBaeMbIX IIPOLEAYp BHIOOpa YHAOBICTBOPSIOT
CYILIECTBYIOLIIM HOPMAaTUBHBIM YCIIOBHSIM, OIUCBHIBAIOIIMM, KAKMM 00pa30M U3MEHSETCSl KOHEYHbIH
BBIOOP IIPH H3MEHEHUH NIPEABSABIIEMOT0 MHOKECTBA AJIETEPHATUB ¥ OLICHOK AJIFTEPHATHB 110 KPUTEPUSIM.
Ocoboe BHUMaHHUE YAEIACTCs AByXCTyHEHYaThIM IIPOLIEyPaM, B OCHOBE KOTOPBIX JIEKAT IO3ULIHOHHbBIE
IIpaBILIa,  TAKXKE [IPABILIIA, HCIIOIB3YIOIIIE MaXXOPUTAPHOE OTHOIIEHHE, BCIIOMOTaTeNILHYIO YHCIIOBYIO
IIKATy ¥ TYPHUPHYIO Matpuity. [IpuBomuTCs TEOpeMa 0 ToM, KaKie HOPMATHBHBIC YCIIOBHS BBIITOTHAIOTCS
JUISL pacCMaTpPHBAaEMBIX JIByXCTYIIEHUYATBIX IIPOLeAyp BEIOOpa. OLeHeHa BEIYUCIUTENIbHAS CII0)KHOCTD
JIBYXCTYIEHYATHIX MPOLIEAYP BIOOpPA M BPEMs MX BBINOJIHEHHUS HA PEANIbHBIX JAHHBIX.
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