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1. Introduction 

An experience in solving of various Automatic Classification (AC) 

problems, both model and real ones, demonstrates that among them 

simpler and more complicated problems can occur. In intuitively simple 

situations finding classifications do not cast any doubt, while in more 

complicated situations this is not the case. The causes might be different, 

for instance: 

 classifications are not the unique ones; 

 the mere existence of classifications is not evident;                             

 a classification is unique and intuitively clear but it is not clear how 

it can be found; 

 search of classifications in real dimensions leads to significant 

computational difficulties. 

Other reasons can also determine the complexity of AC problems. 

However, these issues, despite of their practical and theoretical 

importance, are almost not considered in the literature, except for the 

analysis of computational complexity of some AC algorithms. Just the 

absence of the general formal notion of complexity of AC problems, as 

well as the absence of algorithms of their solutions that cope with 

problems of various complexity in the framework of one scheme, has 

initiated the present investigation.    

The solution of an AC problem is understood as a family of classifi-

cations that includes all reasonable (in some sense) classifications. The 

complexity of a problem is determined in the construction of the above 

mentioned family. Generally, the subsequent choice of one or several 

classifications can be accomplished on a basis of additional data by 

specialists in the considered specific domain, i.e. beyond the framework 

of the initial AC problem. The corresponding multi-criteria problem is 

not considered in the paper; only some reasoning concerning the possible 

criteria are given. Yet frequently encountered situations, in which 

intuitively evident solution does exist, are briefly mentioned. Such 

solutions are selected based on the notions introduced in the paper. 

The material is structured as follows. In section 2 the suggested 

algorithm of the family of classifications construction is briefly 
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described. Comments, examples and discussion concerning the material 

of section 2 are presented in section 3. The general formal definition of 

complexity of an AC problem is introduced in section 4. The results of 

application of the proposed algorithm for the solution of AC problem and 

calculation of its complexity to analysis of activity of the 2-nd, the 3-rd 

and the 4-th RF Dumas (Parliaments) are described in section 5. In the 

Conclusion the further possibilities and directions of elaborating of the 

suggested approach are mentioned. 

 

2. Algorithm of solution of AC problem 

In this section the algorithm of solution of AC problem is described. 

As it was mentioned above, all the necessary explications and comments 

are given in section 3. In the described algorithm initial data about 

objects’ proximity are presented in the well-known form of dissimilarity 

matrix. This means that all the objects are ordered by indices from 1 to N 

and for two arbitrary indices i and j numbers dij, interpreted as the degree 

of dissimilarity or the distance between i-th and j-th objects, are given. It 

is assumed that dissimilarity matrix D = (dij) (i, j = 1, …, N) is a 

symmetrical one; by definition, dii = 0 (i = 1, …, N). 

Let us give the concise description of the suggested essential 

algorithm. 

At the preliminary stage the neighborhood graph G is constructed 

(see subsection 2.1), basing on dissimilarity matrix D. At the main stage 

both formal objects − neighborhood graph and dissimilarity matrix – are 

used as inputs.                                        

The algorithm of the main stage is determined as a three-level 

procedure. At the external level (subsection 2.4) several runs of the 

algorithm of the intermediate level are completed. At every run a family 

of classifications – candidates for solution of the initial AC problem – is 

determined. Output of the external stage is a new family of classifica-

tions, selected among the above mentioned families. This new family is 

considered as a complete solution of the initial AC problem.  

At the intermediate level one family of classifications is constructed. 

It is executed by a special Divisive-Agglomerative Algorithm (DAA), 

whose description is given in subsection 2.3. 



5 
 

DAA is based on the new algorithm of graph dichotomy (subsection 

2.2). It presents the internal level of the suggested classification 

algorithm of the general three-level procedure of the main stage.  

2.1. Preliminary stage - neighborhood graph construction. This 

notion is well-known (see, for instance, [Luxburg, 2007]). Graph vertices 

are in one-to-one correspondence to given objects. For every object (say, 

a) all the other vertices are ordered as follows: the distance between i-th 

object in the list and object a is a non-decreasing function of index i. All 

the distances are presented in dissimilarity matrix D. The first four 

vertices in this list and all the other vertices (if they exist), whose distance 

from a are equal to the distance from a to the 4-th vertex in the list, are 

connected by edge to the vertex, corresponding to object a. It is easy to 

see that the constructed graph does not depend upon a specific 

numerations, satisfying the above conditions. 

2.2. Frequency minimax algorithm of graph dichotomy. The 

input of the algorithm is an undirected connected graph G. There is one 

integer algorithm parameters: number of repetition T for statistics 

justification.  

1. Preliminary stage. Frequencies in all the edges are initialized by 0. 

2. Cumulative stage. The operations of steps 2.1 – 2.3 are repeated Т 

times: 

2.1. Random choice of a pair of vertices of graph G. 

2.2. Construction of a minimal path (connecting the two chosen 

vertices, whose longest edge is the shortest one among all such paths) 

by Dijkstra algorithm. The length of an edge is its current frequency. 

2.3. Frequencies modification. 1-s are added to frequencies of all 

edges belonging to the path found at the previous step 2.2. 

3. Final stage.  

3.1. The maximal (after Т repetitions) value of frequency fmax in edges 

is saved. 

3.2. The operations of steps 2.1 – 2.3 are executed once. 

3.3. The new maximal value of frequency fmod in edges is determined. 

3.4. If fmod = fmax, go to step 3.2; otherwise, go to the next step 3.5. 

3.5. Deduct one from frequencies in all edges forming the last found 

path. 
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3.6. Remove all the edges, in which frequency is equal to fmax. 

3.7. Find connectivity components of the modified graph. The 

component with the maximal number of vertices is declared as the 1-st 

part of the constructed dichotomy of the initial graph; all the other 

components form its 2-nd part. After that all the edges, removed at 

step 3.6, are returned into the graph, except the edges, connecting 

vertices from different parts of the dichotomy. ■ 

Note, that despite the fact of connectivity of the initial graph, the graph 

presenting the 2-nd part of the dichotomy can be disconnected. 

2.3. Intermediate level – DAA. This subsection is devoted to DAA 

description. Its flow-chart is shown in Fig. 1. The neighborhood graph 

(see subsection 2.1) and dissimilarity matrix together form the input of 

DAA. Its output will be defined further. The only parameter of DAA is 

the maximal number k of successive dichotomies. The DAA itself 

consists in alternation of divisive and agglomerative stages. 

 
Fig. 1. DAA flow-chart 

At the beginning the frequency minimax algorithm of graph 

dichotomy (see subsection 2.2) divides the initial (neighborhood) graph 

into 2 parts. Let us denote the found classification into 2 classes as D2. 

Thereafter one of these two subgraphs, whose number of vertices is 

larger, is divided by the same algorithm into 2 parts that results in 

classification D3 of the initial set into 3 classes. Classifications D2 and D3 

are named the essential ones. Denote them as 𝐶2
2 and 𝐶3

3. After entering 

the next essential classification Dj (j ≥3) to the agglomerative stage the 

following operations are completed.  

Classification Dj into j classes determines the subfamily of classifi-

cation into j classes (Dj itself), into j–1 classes (obtained by the union of  
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subgraphs, connected by the maximal number of edges), and so on, in 

correspondence to the convenient agglomeration scheme (successively 

joining subsets, connected by the maximal number of edges), till to  

classification into 2 classes. Denote the constructed classifications as 𝐶𝑗
𝑗
, 

𝐶𝑗−1
𝑗

, …,  𝐶2
𝑗
. These classifications are named the adjoint ones. 

Let us come back to the divisive stage. Among all the classes of the 

already constructed classification Dj select the class whose graph contains 

the maximal number of vertices. Check its connectivity. If it is a 

disconnected one, add one edge connecting two closest vertices 

belonging to different components. Continue the same operations till the 

graph becomes a connected one. Just here initial dissimilarity matrix D is 

used. Completion of these operations guarantees connectivity of graph in 

the input of the above considered dichotomy algorithm. Applying the 

frequency dichotomy algorithm to the selected and modified (if 

necessary) graph, find two new classes. Together with other classes of Dj 

(except the divided one) these two classes form new essential 

classification Dj+1 into j+1 classes. Return another time to agglomeration 

stage and determine adjoint classifications 𝐶𝑗
𝑗+1

, …, 𝐶2
𝑗+1

. Repeating the 

described steps k times produces the following family of classification: 

𝐶2
2; 𝐶2

3, 𝐶3
3; 𝐶2

4, 𝐶3
4, 𝐶4

4; …; 𝐶2
𝑘+1, 𝐶3

𝑘+1, …, 𝐶𝑘+1
𝑘+1.                                (1) 

This family is defined as the output of DAA. Pay attention that some 

classifications from list (1) can coincide to one another. 

2.4. External level – repetitive DAA runs. At the external level 

DAA is applied to the same initial graph. However, the output of DAA 

(list of found classifications) in different runs can differ. The matter is 

that at every step of accumulating stage a pair of vertices that must be 

connected by a path is selected randomly. It implies that in AC problems, 

both model and real, output of DAA depends upon the initialization of 

random generator. More precisely, some classifications at different DAA 

runs differ one to another, whereas some classifications coincide at the all 

DAA runs. Just these distinctions allow us to find “correct” classifica-

tions. Therefore it is necessary to complete several runs of the same 

algorithm with the same initial data − otherwise it is simply impossible to 

find out in one or another actual situation. 
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From the formal point of view the situation is clear enough. r DAA 

runs are executed. The output of this level as well as the final output of 

the suggested algorithm of solution of AC problem is a family of all the 

different classifications selected among all the classifications found as a 

result of r DAA runs. This selection is a standard problem, solved by the 

direct pairwise comparisons. The possibilities of contraction of this family – 

sometimes up to one “correct” classification – are discussed in subsection 

3.4. 

 

3. Comment to algorithm of solution of AC program 

3.1. Frequency minimax algorithm of graph dichotomy. Let us 

start with an historical journey. In the article “Community structure in 

social and biological networks” [Girvan and Newman, 2002] a new 

approach to graphs decomposition – and thereby to AC problem – was 

suggested. Let us describe the essence of the matter, citing the article. 

 “We define the edge betweenness of an edge as the number of shortest 

paths between pairs of vertices that run along it. If there is more than one 

shortest path between a pair of vertices, each path is given equal weight 

such that the total weight of all the paths is unity. If a network contains 

communities or groups that are only loosely connected by a few 

intergroup edges, then all shortest paths between different communities 

must go along one of these few edges. Thus, the edges connecting 

communities will have high edge betweenness. By removing these edges, 

we separate groups from one another and so reveal the underlying 

community structure of the graph.” The formal algorithm for identifying 

communities is stated in the article as follows. 

Girvan-Newman Algorithm 

1. Calculate the betweenness for all edges in the network. 

2. Remove the edge with the highest betweenness. 

3. Recalculate betweennesses for all edges affected by the removal. 

4. Repeat from step 2 until no edges remain. 

It is clear that during the execution of the algorithm every increment (by 1) 

of the number of connectivity components means division of one of groups 

into two parts, that is an hierarchical structure of groups (or communities) 

determined only by an initial graph, is obtained as a result. Betweenness 
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calculation is reduced to determination of shortest paths for all pairs of 

vertices; it is well known that it is a computationally efficient operation 

with upper estimation n2. Subsequently [Newman, 2004] several modifi-

cations of this approach have been suggested, among which the most im-

portant are: 

 use of random paths (instead of shortest ones) for calculation of 

edges betweenness; 

 use of relatively small part of pairs of vertices (instead of all of 

them) for estimation of edges betweenness; 

 edge removal based on this estimation. 

In this connection instead of the notion “edge betweenness” it seems be 

more convenient to use the notion “edge frequency” keeping in mind a 

number of an edge inclusions in constructed paths. Taking into account 

these modifications, an algorithm of graph division into two parts can be 

described as follows. 

Generalized Girvan-Newman Algorithm 

1. Set the current frequency at every edge equal to zero. 

2. Choose two vertices of the graph. 

3. Find by some method a path between vertices chosen at the 

previous step. If such a path does not exist, go to step 7. 

4. Add 1 to frequencies in all the edges included in the path found at 

step 3. 

5. Under certain conditions return to step 2. The example of such 

condi-tions is attainment of a large number of execution of steps 2 – 4 

or at-tainment of stochastic stability when the indices of edges with 

maximal frequency have not been changed for a long time (possibility 

of different realizations of this step is obvious). 

6. Remove an edge with the maximal frequency and return to step 1. 

7. Stop. Graph G is divided into two or more connectivity components 

that correspond to the required classes. 

It is natural to name the above considered approach as the frequency one, 

because it is based on calculation of frequencies of inclusion of graph 

edges into consecutively constructed paths. It can be applied to every AC 

problem as soon as it is presented by a graph, particularly, by above 

mentioned neighborhood graph. The obvious drawback of Girvan-

Newman algorithm (outlined by its authors) is that after removal of an edge  
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with the highest betweenness at step 2 all the accumulated statistics about 

edges betweenness is deleted and, hence, it is not used subsequently. If it 

has been possible to save these data for consecutive steps, it could 

essentially accelerate the algorithm. About this issue in the already cited 

article [Girvan and Newman, 2002] it is written the following. “To try to 

reduce the running time of the algorithm further, one might be tempted to 

calculate the betweennesses of all edges only once and then remove them 

in order of decreasing betweenness. We find however that this strategy 

does not work well, because if two communities are connected by more 

than one edge, then there is no guarantee that all of those edges will have 

high betweenness – we only know that at least one of them will. By 

recalculating betweennesses after the removal of each edge we ensure 

that at least one of the remaining edges between two communities will 

always have a high value.” The same is related to the generalized Girvan-

Newman algorithm. However, the dichotomy algorithm, described in 

subsection 2.2, avoids this trap. The essence of the matter is as follows. 

In the previously suggested frequency algorithms paths, connecting a 

next pair of vertices, are traced independently of all the already traced 

paths. Yet, taking into account all the already traced paths can obtain cuts 

between two sets of vertices whose all the edges have the same maximal 

frequency. Then concurrent removal of all the edges with the maximal 

frequency defines the desired dichotomy of the graph. 

It is turned out that before the execution of step 3.6 of the algorithm 

(see subsection 2.2) the set of all edges whose frequency is equal to the 

maximal one, indeed contain a cut of graph G. There is  

Statement 1. Before execution of step 3.6: 

a) maximal value of frequency over all the edges of the graph is equal to 

fmax, where fmax is the number, saved at step 3.1; 

b) the set of all the edges, whose frequency is equal to fmax, contains a cut 

of graph G. 

Proof. Step 3.2 refers to steps 2.1 – 2.3. Finding the next minimax 

path at step 2, we can encounter one of the following two cases: 

1. There is a minimax path, connecting vertices chosen at step 2.1, 

whose all the edges have frequencies lesser than fmax. 

2. Such a path does not exist. 

In the 1-st case after every addition 1 (at step 2.3) to frequencies in all the 
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edges of the given path their maximal value does not exceed fmax. On the 

other hand, at least in one edge its frequency increases by 1 and at the 

same time frequency cannot decrease in any edge. Together it means that 

after some number t of executions of steps 3.2→3.3→3.4→3.2 at step 2.2 

we encounter case 2. At case 2 at any path connecting vertices chosen at 

step 2.1, there is at least one edge, whose frequency is not lesser than fmax. 

Because up to now we have encountered only case 1, then, as it was 

established, all the frequencies do not exceed fmax. Therefore at any path 

connecting vertices, chosen at step 2.1, there is an edge, whose frequency 

is equal to fmax. Hence, the set of all the edges whose frequency is equal to 

fmax, contains a cut of graph G. Addition 1 to frequencies in all the edges 

of the constructed path at step 2.3 and deduction the same edges at step 

3.5 does not changes frequencies, that proves a) and b) and, hence, 

completes the proof of statement 1. ■  

Statement 1 means that in the suggested version of frequency 

algorithm the necessity of frequency recalculation does not appear. After 

the only one statistics accumulation the set of edges with maximal value 

of frequency contains the required cut of the graph. 

Figures 2а and 2b demonstrate cases 1 and 2, considered in the proof 

of Statement 1. The cut itself, of course, depends upon selection of pairs 

of vertices and distribution of frequencies in edges existing just before the 

execution of step 3.1. That is the reason of the execution of the 

cumulative stage, taking the most part of the time. As a result of this 

stage the required cut became stable in the sense that forming it edges 

cease to depend upon the number T of the constructed minimax paths. 

Yet this cut can depend on the initialization of random generator. The 

presence (or absence) of a dependence of the cut (and, hence, the 

corresponding dichotomy) upon the initialization of random generator 

turns out the important feature of the AC problem itself other than the 

used classification method. 

It is also important that in opposite to previously known versions of 

frequency algorithms, the suggested algorithm finds an approximate 

solution of some graph optimization problem. This solution expresses a 

reasonable (even if, like in other cases, incomplete) presentation about 

correctness of classifications. Let us dwell on it in more detail. 

Let us consider connections between the considered algorithm and 

known optimization statements of a balanced cut in a graph. Introduce the 
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necessary notions. Assume N be the number of vertices, M be the number 

of executions of steps 2.1 – 2.3 (but the last one) in the algorithm at 

stages 2 and 3 together, A and B be any division of the set of graph 

vertices, d(A, B) be the cardinality of cut (A, B). Note that M is equal to 

the number of all the constructed paths in the graph and M ≥ Т.  

 
Fig. 2a. Dashed line shows the path, connecting vertices a and b, in which every 

edge frequency is less than the maximal frequency fm 

 
Fig. 2b. Dashed line marks the path connecting vertices b, located in different 

sides of the cut, in which all the edges frequency is equal to the maximal one. 

Such a path compulsory passes along an edge with the maximal frequency fm 

Consider all the paths (among the constructed ones) whose one end 

belongs to A, and the other end − to B. Then sum S(A, B) of frequencies 

in all the edges from cut (A, B) is not less than the number of all such 

paths (denoted as М(A, B)). Indeed, every path increases sum of frequencies at 
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least by one (one, if it intersects cut (A, B) once, whereas some paths can 

intersect it several times). Because vertices are chosen at random, 

probability of the fact that one end of a path belongs to A and another to 

B is approximately equal to (2•|A|•|B|) ⁄N2. Therefore for the total number 

of such paths there is an approximate equality  

М(A, B) ≈ ((2•|A|•|B|) ⁄N2)*М.                                                                  (2) 

Assume (for a rough estimation) that any path from А to B intersects cut 

(A, B) exactly once. Because the number of paths М significantly exceeds 

the maximal value of initial frequency f, the following rough estimation 

takes place: 

S(A, B) ≈ ((2•|A|•|B|) ⁄N2)*М.                                                                   (3) 

Dividing both parts of this approximate equality by the number of edges 

in the cut (A, B), we receive 

𝑓(̅A, B) = S(A, B) ⁄d(A, B) ≈ (((2•|A|•|B|) ⁄N2)*М) ⁄d(A, B),                      (4) 

where 𝑓(̅A, B) is the average frequency in edges belonging to cut (A, B). 

It is very important that the suggested algorithm finds cut (A*, B*) 

whose edges have the same maximal frequency. That means that for any 

other cut (A, B) 

𝑓(̅A, B)  ≤  𝑓(̅A*, B*).                                                                              (5)   

Formulae (5) and (4) together mean that cut (A*, B*) maximizes 

(approxi-mately, in view of made assumptions) expression (((2•|A|•|B|) 

⁄N2)*М) ⁄d(A, B) over the set of all the cuts of the considered graph. 

Eliminating from the latest expression constants 2, N and М, common for 

all the cuts, we obtain the expression 

D(A, B) = 
|𝐴|×|𝐵|

𝑑(𝐴,𝐵)
.                                                                                      (6)       

Let us name the function D(A, B) the decomposition function of a 

graph. The above reasoning allow to make the following plausible mea-

ningful conclusion: cut (A*, B*), found by the algorithm, approximately 

maximizes the decomposition function (6) of the considered graph. The 

fact that in some cases this cut depends upon the initialization of random 

generator (and for this reason alone it cannot exactly maximize function 

(6) defining only by the graph itself) just expresses the approximate 

character of solution of this optimization problem. The corresponding 

examples are given below in this subsection.  
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In the above cited review [Luxsburg, 2007] the minimization 

problem 

R(A, B) = d(A, B)×(
1

|𝐴|
 + 

1

|𝐵|
) → min,                                                       (7) 

named “Ratio Cut Problem” was considered. Direct comparison of formu- 

lae (6) and (7) demonstrates that problems of function D(A, B) maximiza-

tion and of function R(A, B) minimization (determined on the same set of 

all cuts of the graph) are equivalent ones. Therefore the suggested frequen- 

cy algorithm can be used for approximate solution of this well-known 

“Ratio Cut Problem”. Moreover, it is an efficient approximate method for 

this purpose. Yet the essential question, concerning this NP-complete 

decomposition problem, does not consist in finding its approximate 

solutions. It rather can be stated as follows: is it true that the exact solution 

of the above optimization problem (found by any way) can be considered 

as an intuitively correct dichotomy? Of course, this question is meaningful 

and it can be answered only by examples. Several successful examples of 

correct dichotomies, found by the suggested frequency algorithm, are 

presented in preprint [Rubchinsky, 2010]. But it is not necessarily the 

case for arbitrary AC problems.  

Just the last circumstance has initiated the elaboration of the general 

AC algorithm described in this work, in which the suggested algorithm of 

dichotomy is used as an essential step at the divisive stage (see subsection 

2.3). In order to explain the necessity of more thorough analysis the 

following example is considered. 

Example 1. Two two-dimensial sets are shown in Fig. 3a and 3c. 

The dichotomy result for the set of Fig. 3a is shown in Fig. 3b. The cut, 

found by the frequency algorithm, maximizes the decomposition function 

(6) over the set of all the cuts of the neighborhood graph and determines 

intuitively correct classification into two classes. It is reasonable that the 

same cut minimizes function (7). The result does not depend upon 

initialization of random generator. 

At the same time the use of the same algorithm for the similar set, 

shown in Fig.3c, leads to results, perceptibly depending upon an initiali-

zation of random generator, as it is clear from Fig. 3d, 3e, and 3f. In these 

cases the found solutions do not coincide with intuitively obvious one. 

Finally, the value of decomposition function for the correct cut is equal to 

31549, whereas for the incorrect cut, found by the frequency algorithm and 

shown in Fig. 3d, it is equal to 40382. In two other cases this function also  
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is essentially greater, than its value on the correct cut. Note, that we are 

dealing with exact but not approximate values of decomposition function. 

This simple example another time underlines the caution, which is requi-

red in using well-accepted balanced criteria of classification (as well as 

other formal models of classification). 

a b 

c d 

e f 
Fig. 3. Examples of found dichotomies. For the dichotomy in Fig. 3b D = 30758, 

in Fig. 3d D = 40382, in Fig. 3e D = 40755, in Fig. 3f D = 36886 

The cause of failure of criteria (6) in the considered case is clear 

enough. The ratio between the maximal and the minimal numbers of 

points, belonging to correct classes, in the set in Fig. 3c is essentially 

greater than in the set in Fig. 3a. Therefore the numerator |A|×|B| in (6) is 

so small relatively to the cardinality of product of approximately equal 

parts, so that it cannot be compensated by the denominator in (6) equal to 

relatively small number of edges in the correct cut. The same phenome-

non concerns (and even to a greater extent because it is revealed under 

lesser relation of cardinalities) to other frequency algorithms of dichotomy. ■ 
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Taking into accounts results of tens computational experiments with 

different data, we reached the following informal conclusions.  

1. The exact solution of the well-known balanced cut problem (and, 

hence, spectral and kernel methods that approximate this solution) can 

lead to intuitively wrong classifications in many relatively simple cases. 

2. All the stochastically stable dichotomies found by the suggested 

frequency algorithm are intuitively correct; they maximize criterion (6). 

3. All the stochastically unstable dichotomies found by the suggested 

frequency algorithm are intuitively incorrect; values of criterion (6) 

exceed its value on the “correct” cut. 

Yet the notion of dichotomy stability itself is not the exactly defined one. 

Between obviously stable and obviously unstable situations there is some 

“gray zone” of weak instability. Analogously to many situations of such a 

kind, encountering in various domains of pure and applied mathematics, 

these intermediate situations in some sense are inevitable, while the most 

important and intriguing phenomena occur just in such intermediate 

zones. These reasons do not only initiate but in some sense warrant the 

suggested approach to AC problems, because it does not only explain but 

uses in the algorithms instability of classifications. 

In the summary of this subsection let us note that the only parameter 

of the frequency algorithm – number T of paths at the accumulating stage 

– is not the essential one. Parameter T can be removed, if calculations 

ceases at reaching stability, i.e. selection of the same cut. If the objects 

number does not exceed 1000, typical value of repetitions is 1500 – 2000. 

As noted above, this cut itself can depend upon initialization of random 

generator, which determines the sequence of random minimax paths.   

3.2. Intermediate level – DAA. In order to keep strong properties of 

the suggested method of dichotomy and to be got rid of its weaknesses it 

is natural to consider consecutive dichotomies. For instance, the use of 

the same algorithm for the maximal (in number of points) of two classes, 

shown in Fig. 3d, results in classification into three classes, shown in Fig. 

4. If now to pool two classes, connected by the largest number of edges, 

then just the correct classification is obtained. DAA from subsection 2.3 

just describes consecutive operations, required to obtaining correct classi-

fications in the general case.  
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Fig. 4. Result of two consecutive dichotomies 

Example 2. Let us demonstrate DAA in more complicated case – set 

of points shown in Fig. 5a. Consider consecutive dichotomies and 

construction of essential and adjoint classifications, using notation from 

subsection 2.3. Assume k = 3, i.e. restrict our consideration to 3 

consecutive dichotomies. Essential classifications D2 = 𝐶2
2, D3 = 𝐶3

3 and 

D4 = 𝐶4
4 are shown in Fig. 5b, 5c и 5d. The edges forming cuts between 

different classes are shown, too. Pooling classes 0 and 2 from classification 

𝐶3
3 results in adjoint classification 𝐶2

3, coinciding with the essential 

classification 𝐶2
2. 

Further, pooling classes 0 and 2 from classification 𝐶4
4, shown in Fig. 

5d results in adjoint classification 𝐶3
4, shown in separate Fig. 6. It is clear 

that this classification is the desirable “correct” classification. However, 

DAA does not “know” yet about it and continues the considered 

agglomerative stage. Pooling classes 0 and 1 from classification 𝐶4
4 are 

connected by 2 edges. Their pooling results in adjoint classification 𝐶2
4, 

coinciding with classifications 𝐶2
2 and 𝐶2

3.  

At this point the work of DAA is over. 6 classifications: 𝐶2
2; 𝐶2

3, 𝐶3
3; 

𝐶2
4, 𝐶3

4, 𝐶4
4 are found. Among them there are 4 different classifications: 

𝐶2
2, 𝐶3

3, 𝐶3
4, 𝐶4

4, shown in Fig. 5b, 5c, 6 and 5d, correspondingly. Pay 

attention that the correct classification is the adjoint one. It cannot be an 

essential classification after any number of consecutive dichotomies. It 

cannot be found as well as a result of agglomerative procedure, starting 

with one-element or little classes, because rings 1 and 0 + 2 (Fig. 6) 

cannot be constructed by pooling of closest classes. In DAA just the 

alternation of divisive and agglomerative stages is especially important. ■ 
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a) initial set 

 
b) after the 1-st dichotomy 

 
c) after the 2-ndt dichotomy 

 
d) after the 3-rd dichotomy 

Fig. 5. Initial set and essential classifications 

 
Fig. 6. Correct adjoint classification 



19 
 

3.3. External level – repetitive DAA runs. At this stage results of 

several DAA runs for the same neighborhood graph are considered and 

compared one to another. Let us consider the encountered situation for 

the AC problem from example 2.  

Example 3. Assume (for visibility of illustration) the number of runs 

r = 4. In Fig. 7 results of 4 runs for essential classification 𝐶3
3 are shown 

(see also Fig. 5c). All the 4 found classifications are the different ones.  

 
a)  

 
b)  

 
c)  

 
d)  

Fig. 7.  Classifications 𝐶3
3 found at four DAA runs 

It is easy to understand that in the same run essential classifications 

𝐶4
4 are differ of the classifications shown in Fig. 7 only in presence of 

another class in the center (see also Fig. 5d). This implies that all these 

four classification also are different ones. At the same time essential 

classification 𝐶2
2 and adjoint classification 𝐶3

4 found at all the runs 

coincide with classifications shown in Fig. 5b and Fig. 6, i.e. they are 

permanent. ■ 

Thus, the final result, produced by the suggested algorithm, consists 

of 10 different classifications.  Among them there are 8 varying with every 

run, and 2 permanent classifications. 
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3.4. Contraction of classification family. In many AC problems, 

partially, in all the model examples considered in preprint [Rubchinsky, 

2010], the only correct classification was determined simply enough. A 

stable (i.e. repeating in all the runs) classification with the maximal 

number of classes turns out to be the intuitively correct one. In examples 

2 and 3 such a classification is shown in Fig. 6. Growth of runs number r 

and dichotomies number k nothing changes – no one new stable 

classification arises, while found classification remains stable. Therefore 

in such simple situations choice of parameters r and k can be done 

adaptively, notifying stable classifications and ceasing calculations, if 

new stable classifications with greater number of classes do not arise. 

Yet in real AC problem the situation proves to be another one. Only 

“degenerated” classifications are the “absolutely” stable, i.e. repeating 

completely in all the DAA runs. Classifications are named degenerated if 

they include one- or two-elements classes. Found meaningful classifica-

tions are not absolutely stable: in different runs they coincide, for 

instance, by 99% but not by 100%. 

In order to analyze such situations it is supposed to introduce 

reasonable criteria, which characterize single classifications. Two criteria 

are considered as the essential ones: stability and number of classes. 

Stability is understood here as a degree of repeatability of a classifi-

cation under different runs. From the formal point of view the situation is 

rather simple and well-known. To compare two classifications of the 

same set RAND index (see, for instance, [Mirkin, 2006, subchapter 7.3]) 

is used. It is defined as follows. Assume φ(i, j) = 1 iff (if and only if) i-th 

and j-th elements are included in one class in both classifications or i-th 

and j-th elements are not included in one class in both classifications. In 

all the other cases φ(i, j) = 0. Function φ(i, j) is summing up over all the 

pairs of non-coinciding i and j; thereafter the sum is divided by the 

number of all such pairs. The obtained value is equal to 1 iff both 

classifications completely coincide. This value is named RAND index 

and denoted by R(A, B), where A and B – two classifications of the same 

set. 

Thereafter for any family F of classifications, taken by one from 

every run, the concordance of the family: 

c(F) = min
𝐴,𝐵∈F

𝑅(𝐴, 𝐵).                                                                                (8)  

Finally, stability s(A) of classification A is defined as the maximal con- 
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cordance of family F, contained A. Under the introduced definitions 

calculation of any classification can be executed by computationally 

efficient greedy algorithm. Stability s(A) of classification А is equal to 1 

iff it is completely repeated in all the runs.  

The number of classes is a clear criterion, which, of course, does not 

require any calculations. The other criteria depend upon a specific AC 

problem. 

In many cases the set of all the classifications found by the 

suggested algorithm can be notably contracted, if among several close 

(i.e. with pairwise RAND index close to 1) classifications to select only 

one by the elimination of several degenerated classifications with the 

greater number of classes. It is expedient to take the number of classes 

into account after this operation. The alternative approach consists in use 

of the criterion of uniformity of a classification (ratio between maximal 

and minimal cardinality of classes in this classification). 

The final choice of a single classification among several ones found 

by the suggested approach, like in other multi-criteria problems, 

remains to decision-maker.  

The material of the present subsection has a preliminary, “sketch” 

character. The importance of this issue requires the special consideration, 

including specific examples and conclusions. However, one thing can be 

stated with certitude. Reasonable solutions of real AC problems can be 

obtained using an interactive computer system, including computational 

algorithms as well as means of presentation, analysis and visualization of 

results, which take into account specifics of a considered problem.   

 

4. Complexity of AC problems 

Analyzing AC problems it is useful to have some objective indices, 

describing their complexity, entanglement, and other hardly defined 

properties. These indices must be relevant to arbitrary AC problems 

rather to its special types.  

In the presented work such an index is suggested. It concerns the 

number of classifications in the set of all the solutions of an AC problem, 

defined at the end of subsection 2.4. Yet this number depends on the 

number k of dichotomies in DAA and of number r of DAA runs. It is easy 

to see that the general number of classifications, considered at the external  
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level of the algorithm, is equal to 
(𝑘+1)∗𝑘

2
∗ 𝑟. Among them all the 

different classifications are selected. It seems that a reasonable measure 

of complexity of an AC problem is the ratio between the number of 

actually existing different classifications and its maximal possible 

number  
(𝑘+1)∗𝑘

2
∗ 𝑟. 

In the AC problem from Examples 2 and 3 for k = 3 and r = 4 there 

are 10 different classifications. Dividing 10 to 24 = 
4∗3

2
∗ 4, we receive 

0.417. This is the complexity (in the introduced sense) of the considered 

AC problem. As in some other domains of discrete mathematics, the int-

roduced notion of complexity of an AC problem is not defined through its 

initial description but through one specific method of its solution. There-

fore the only approach to substantiation of the introduced notion consists 

in possibility of its meaningful interpretation in actual AC problems. 

This issue is considered in the next section.   

 

5. Analysis of voting in 2-nd, 3-rd and 4-th RF Duma 

In this section activity of State Duma during the period since the be- 

ginning of 1996 till the end of 2007 is considered. Many important 

political events had happened during this 12-year period. And yet, it 

seems that the separate events were not as important as the process of 

building of still actual system of political power itself.  

Mathematical models of political processes in the first four Duma 

were considered in detail in the monograph [Aleskerov et all, 2007] and 

in cited where literature. 

For every separate month of the considered period all the votes are 

considered. To every i-th deputy (i = 1, 2, …, m) a vector vi  = (𝑣1
𝑖 , 𝑣2

𝑖 , 

…, 𝑣𝑛
𝑖 ) is related, where n is the number of votes in a given month. Note, 

that the number m of deputies, though slightly, changed from period to 

period. Of course, at every moment the number of deputies is always 

equal to 450. Yet during 4 years some deputies dropped out while the 

other ones came instead. The number of deputies participated in Duma 

voting activity in 1996-1997 was equal to 465, in 1998-1999 – to 485, in 

2000-2003 – to 479 and in 2004-2007 – to 477. 
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Assume  

𝑣𝑗
𝑖 = {

1, if i-th deputy voted for j-th proposition;                    

−1, if i-th deputy voted against j-th proposition;                

  0, otherwise (abstained or not participated).                   

 

Dissimilarity dst between s-th and t-th deputies is defined as usual 

Euclidian distance between vectors vs and vt. The dissimilarity matrix D = 

(dst) is the initial one for finding deputies classes by the method, 

described in section 2.  

The following Tables 1, 2 and 3 present the complexity of 

corresponding classifications for every month of the voting activity of 2-

nd, 3-rd and 4-th RF Duma. The numbers in the 1-st column are the dates 

(year and month). The numbers in the 2-nd column are equal to the 

number of votes in the corresponding months. Numbers in the 3-rd 

columns are equal to complexity of the corresponding AC problem, 

calculated following the definition of this notion in section 4. Here the 

number k of consecutive dichotomies is equal to 10, the number r of DAA 

runs also is equal 10, so that the maximal number  
(𝑘+1)∗𝑘

2
∗ 𝑟 of 

classifications is equal to 550. Some reasons, concerning choice of these 

essential parameters, are discussed further. The missed rows in Tables 

1, 2 and 3 correspond to the months without any voting activity. 

Тable 1 

Complexity of voting generated classifications in 2-nd Duma (1996-1999) 

1 2 3  1 2 3 

9601 174 0.610909  9801 248 0.421818 

9602 321 0.625455  9802 366 0.330909 

9603 295 0.581818  9803 347 0.469091 

9604 470 0.683636  9804 334 0.436364 

9605 263 0.938182  9805 292 0.398182 

9606 269 0.827273  9806 489 0.534545 

9607 450 0.263636  9807 493 0.352727 

9608    9808   

9609    9809 405 0.390909 

9610 432 0.494545  9810 326 0.507273 
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9611 226 0.567273  9811 338 0.327273 

9612 566 0.465455  9812 534 0.392727 

9701 234 0.456364  9901 416 0.207273 

9702 427 0.445455  9902 354 0.250909 

9703 334 0.381818  9903 482 0.369091 

9704 437 0.316364  9904 384 0.372727 

9705 169 0.485455  9905 228 0.449091 

9706 762 0.238182  9906 768 0.392727 

9707    9907   

9708    9908   

9709 337 0.201818  9909 292 0.241818 

9710 354 0.247273  9910 338 0.270909 

9711 253 0.289091  9911 696 0.218182 

9712 530 0.265455  9912 243 0.430909 

Тable 2 

Complexity of voting generated classifications in 3-rd Duma (2000-2003) 

1 2 3  1 2 3 

0001 71 0.547273  0201 279 0.183636 

0002 228 0.112727  0202 380 0.063636 

0003 177 0.387273  0203 311 0.081818 

0004 368 0.112727  0204 640 0.114545 

0005 279 0.141818  0205 353 0.138182 

0006 454 0.149091  0206 956 0.072727 

0007 301 0.078182  0207   

0008    0208   

0009 144 0.154545  0209 329 0.120000 

0010 371 0.169091  0210 541 0.067273 

0011 240 0.103636  0211 448 0.065454 

0012 483 0.138182  0212 531 0.058182 
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0101 141 0.109091  0301 144 0.203636 

0102 254 0.245455  0302 350 0.136364 

0103 268 0.085454  0303 382 0.160000 

0104 409 0.187273  0304 519 0.136364 

0105 248 0.296364  0305 248 0.141818 

0106 683 0.069091  0306 677 0.083636 

0107 825 0.132727  0307   

0108    0308   

0109 200 0.140000  0309 208 0.221818 

0110 360 0.069091  0310 428 0.072727 

0111 668 0.160000  0311 400 0.203636 

0112 600 0.101818  0312   

                                                        Тable 3 

Complexity of voting generated classifications in 4-th Duma (2004-2007) 

1 2 3  1 2 3 

0401 101 0.360000  0601 168 0.216364 

0402 220 0.101818  0602 204 0.289091 

0403 270 0.141818  0603 256 0.265455 

0404 295 0.101818  0604 255 0.147273 

0405 249 0.325455  0605 179 0.194545 

0406 385 0.143636  0606 365 0.085454 

0407 378 0.372727  0607 260 0.221818 

0408 268 0.303636  0608   

0409 101 0.274545  0609 230 0.114545 

0410 252 0.261818  0610 305 0.278182 

0411 355 0.349091  0611 528 0.320000 

0412 535 0.250909  0612 463 0.260000 

0501 130 0.283636  0701 243 0.214545 

0502 209 0.421818  0702 189 0.356364 
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0503 237 0.225455  0703 262 0.123636 

0504 355 0.090909  0704 368 0.187273 

0505 255 0.123636  0705 190 0.118182 

0506 300 0.338182  0706 448 0.169091 

0507 240 0.141818  0707 320 0.310909 

0508    0708   

0509 174 0.325455  0709 141 0.167273 

0510 266 0.360000  0710 350 0.298182 

0511 359 0.232727  0711 337 0.227273 

0512 426 0.225455  0712   

The numbers in the 3-rd column in Table 1 – 3, i.e. complexity of 

classifications based on voting results, demonstrate noticeable variability, 

though some trend are seen at once, by “unaided eye”. Smoothed data, 

i.e. average value for half years, thereafter for years, and, finally, for 

whole period of every Duma activity, are presented in Table 4.  
Table 4 

Smoothed complexity data  

 Half 1 Half 2 Half 3 Half 4 Half 5 Half 6 Half 7 Half 8 

Duma 2 0.711 0.448 0.387 0.251 0.432 0.394 0.340 0.290 

Duma 3 0.242 0.129 0.165 0.121 0.109 0.078 0.144 0.166 

Duma 4 0.196 0.302 0.247 0.257 0.199 0.239 0.195 0.251 

 

 1-st year 2-nd year 3-rd year 4-th year 
Duma 2 0.606 0.332 0.415 0.320 
Duma 3 0.190 0.145 0.096 0.151 
Duma 4 0.249 0.252 0.217 0.217 

 

 

 

It is curiously to compare the data presented in Table 4 with the 

averaged for every year stability index for the 3-rd Duma [Aleskerov et 

al, 2007]. These data, calculated using materials from the above cited 

book, are presented in Table 5.  
 

Duma 2 Duma 3 Duma 4 

0.418 0.147 0.235 
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Table 5 

Stability index in the 3-rd Duma 

Year 2000 2001 2002 2003 

Average stability index for one year 0,5597 0,5627 0,5339 0,5090 

Maximally possible value of stability index is equal to 1, minimally 

possible value is equal to 0. In contrast to the complexity data, which has 

a clear-cut minimum in 2002, stability index does not reach the maximum 

in this year. Perhaps it happens because stability indices were found 

basing on votes concerning only politically important issues, while in the 

present work all the votes are used.  

It seems that low value of complexity in 2002 was due to creation of 

party “United Russia” and connected with this event attempts of 

straightening out the activity of Duma. It is surprising – at first sight – 

that in the 4-th Duma in the condition of constitutional majority of this 

party the level of complexity is noticeably higher than in the 3-rd Duma 

(0,235 opposite to 0,147), in which no party had majority.  

One-month deputies classifications, found in order to filling Tables 1 

– 3, let us to conduct a special investigation. An interest is attracted to 

correspondence between classes and deputies’ fractions, dynamics of 

one-month classes changes, location of maximums and minimums and 

their connection with essential political events (such a connection was 

considered for one-month stability index in [Aleskerov et al, 2007]). 

As it was marked above, value of complexity depends upon the para-

meters k and r of the essential algorithm. Let us consider this dependence 

in more detail. In order to do it, we calculated complexity for k and r, 

changing from 5 to 10 inclusive. Tables 6, 7 and 8 contain values of 

complexity, calculated under parameters, changing within indicated 

limits, for 3 months: May, 1996; June, 2002, and February, 2005. These 

periods are related, correspondingly, to 2-nd, 3-rd and 4-th Duma; 

complexity has high (more 0.9), low (less 0.1) and middle (about 0.4) 

values. 

In Tables 6 – 8 numbers in right bottom corner coincide with comp-

lexity values in the corresponding period. Convergence in every column 

is well appreciable that is completely naturally, because averaging is done 

over increasing number of runs of the same algorithm with the same initi-

al data (neighborhood and dissimilarity matrices), differing only in ran-

dom generator initiation. Numbers in rows slightly more variable, though 
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in the considered limits any visible outliers are not presented. It is clear 

that in the 1-st and 3-rd cases minor variations of the chosen parameters 

results remain almost permanent ones. They can be used in order to 

achieve stable complexity values, satisfying practical needs. In the case 

of low complexity value (Table 7) it seems of expedient to increase 

parameter k in 1-2 units to achieve a reasonable stability. 
Table 6  

Dependence of complexity on algorithm parameters for May, 1996 

        k       
  r 5 6 7 8 9 10 

5 0.826667                  0.876190       0.900000 0.933333       0.945455 0.922222 

6 0.822222       0.873016       0.898810       0.921296       0.933333       0.945455 

7 0.819048             0.870748       0.897959       0.920635  0.933333       0.942857 

8 0.816667       0.869048       0.897321       0.920139       0.933333       0.940909 

9 0.807407                         0.862434       0.892857 0.916667 0.930864 0.939394 

10 0.806667                   0.861905       0.892857       0.913889 0.928889 0.938182 

Table 7  

Dependence of complexity on algorithm parameters for June, 2002 

           k 
  r 5 6 7 8 9 10 

5 0.120000           0.142857 0.114286      0.094444      0.093333      0.123636 

6 0.100000          0.119048 0.095238      0.078704      0.085185      0.115152 

7 0.085714      0.102041      0.081632      0.067460      0.076190      0.103896 

8 0.075000      0.089286      0.071429      0.059028      0.066667      0.090909 

9 0.066666                0.079365 0.063492 0.052469      0.059259      0.080808 

10 0.060000      0.071429      0.057143      0.047222      0.053333      0.072727 

Table 8  

Dependence of complexity on algorithm parameters for February 

2005  

           k 
  r 5 6 7 8 9 10 

5 0.360000                  0.380952       0.414286       0.422222 0.440000 0.440000 

6 0.344444       0.365079       0.398810       0.412037       0.437037       0.433333 

7 0.333333             0.353741 0.382653       0.396825       0.415873       0.407792 

8 0.333333                              0.351190 0.379464 0.395833 0.416667 0.413636 

9 0.318519                         0.338624 0.365079 0.388889       0.409877 0.412121 

10 0.320000                               0.347619 0.371429 0.397222 0.415556 0.421818 
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Generally it is reasonably to modify the suggested definition of 

complexity of AC problem through addition of adaptability in calculation 

of parameters k and r, stopping by reaching a stable complexity value. It 

is supposed to consider this issue in the further investigations, though it 

should be mentioned that significant problems are not expected here. 

The comparison with one other method of analysis of stability of 

political body was mentioned above in this section (see Table 5). It is 

supposed to consider these issues in more detail in a separate publication, 

especially concerning analysis of voting activity of political bodies, inclu-

ding RF Duma during its several convening. 

Comparison of suggested method of solution of the general AC 

problem with other the most known approaches was done in the preprint 

[Rubchinsky, 2010]. Yet the comparison there was done only for model 

AC problems. It is interesting to compare results for considered in this 

section real data on voting in RF state Duma. Let us consider as an 

example the classification, based on voting in May, 2001 by one of the 

most known method – method of K-means. This method is described in 

book [Mirkin, 2010, p. 252] as follows. 

“In general, the cluster finding process according to K-means starts 

from K tentative centroids and repeatedly applies two steps:  

(a) collecting clusters around centroids,  

(b) updating centroids as within cluster means,  

– until convergence.  

This makes much sense – whichever centroids are suggested first, as 

hypothetical cluster tendencies, they are checked then against real data 

and moved to the areas of higher density.”  

Assume the number of clusters is equal to 4. This number is determined 

by meaningful reasoning – in the 3-rd Duma 10 deputies’ fractions and 

groups were presented, and therefore selection of 4 classes is expected. 

This does not mean that larger number of classes is impossible. The 

matter consists in the simple fact: union of several stable classes forms a 

stable class, too. At the same time the division into 4 classes is visible 

enough. 

5 different classifications, found after 5 random determination of 4 

initial centroids, are presented below. Remember (see Table 2) that 

objects are vectors with 248 components (value 1, −1 and 0). The first 4 

numbers in every shown below classification are the initial centroids in K-
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means method. Every class is preceded by its cardinality. The number of 

steps is equal 1000, though convergence is reached after 200-300 steps. 

Classification 1 
195 465 459 202 

 167 

   3   4  14  17  21  22  23  26  27  28  30  40  44  45  48  53  55  56  58  61  64  67  

69  70  74  77  78  79  82  85  90  91  92  93  94 100 102 110 111 114 116 121 122 

123 124 126 128 129 134 136 137 139 145 147 148 155 157 162 167 168 174 175 

179 180 182 183 188 195 197 199 200 202 203 206 208 209 213 214 216 218 221 

223 225 229 232 236 238 239 240 241 247 249 251 253 257 259 262 266 271 272 

273 274 275 276 278 281 282 285 286 292 294 298 300 301 307 311 316 320 321 

324 326 331 338 339 340 343 344 347 358 361 366 370 372 373 380 381 386 388 

393 394 397 398 400 404 405 407 410 413 415 417 418 420 422 424 428 431 434 

438 440 441 444 445 448 450 452 455 

 108 

1   5  24  25  34  39  43  47  57  62  66  76  81  83  89  96  97 103 108 109 113 115 

119 130 143 159 165 170 181 186 193 205 210 217 220 222 227 230 231 234 244 

245 246 248 252 254 255 256 258 268 287 288 296 299 303 305 317 318 322 335 

336 337 346 352 355 363 364 365 367 369 375 376 377 378 379 411 414 421 425 

429 432 433 437 446 449 451 454 457 458 460 461 462 463 464 465 466 467 468 

469 470 471 472 473 474 475 476 477 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 198 212 

219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 353 354 

356 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 

 125 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

84  86  87  95  98 105 106 107 112 118 127 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 235 237 242 243 260 261 263 264 265 270 277 279 280 284 290 

291 293 295 302 306 308 309 312 313 319 323 325 327 328 332 333 334 341 342 

348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 443 447 

Classification 2 
199 221 141 440 

  58 

 4  17  25  39  43  62  66  76  81  83 116 123 136 145 170 181 193 199 205 206 213 

223 227 241 244 245 247 249 254 255 256 258 276 294 296 305 317 318 322 336 
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363 369 372 375 378 379 413 414 418 425 428 429 433 434 438 451 452 

 174 

   3   4   5  21  22  23  24  26  27  28  30  40  44  45  47  48  53  55  56  57  58  61  64  

67  69  70  74  77  78  79  82  84  85  89  90  91  92  93  94 100 102 108 110 111 

113 114 115 119 121 122 124 126 128 129 134 137 139 147 148 155 157 162 165 

167 168 174 175 179 180 182 183 188 195 197 200 202 203 208 209 210 214 216 

218 221 225 229 231 232 236 238 239 240 246 251 252 253 257 259 262 266 268 

271 272 273 274 275 278 281 282 285 286 292 298 300 301 303 307 311 316 320 

321 324 326 331 335 338 339 340 343 344 346 347 352 358 361 366 370 373 377 

380 381 386 388  

393 394 397 398 400 404 405 407 410 411 415 417 420 422 424 431 432 

437 440 441 444 445 446 448 449 450 454 455 456 457 

 127 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 284 

290 291 293 295 299 302 306 308 309 312 313 319 323 325 327 328 332 333 334 

341 342 348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 

416 423 426 427 430 443 447 

 120 

   1   2   6   8  10  13  29  31  32  34  35  37  41  42  49  54  60  65  68  75  88  96  97  

99 101 103 104 109 117 120 125 133 142 143 153 154 156 159 163 164 169 171 

172 173 178 185 186 187 198 212 217 219 220 222 226 230 233 248 250 267 269 

283 287 288 289 297 304 310 314 315 329 330 337 345 349 353 354 355 356 357 

359 360 362 364 365 367 368 374 376 384 387 390 391 399 412 419 421 435 436 

439 442 459 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 

477 

Classification 3 
207  115  162  267 

 127 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

84  86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 

149 150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 

207 211 215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 

284 290 291 293 295 302 306 308 309 312 313 319 323 325 327 328 332 333 334 

341 342 348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 

416 423 426 427 430 443 447 

  67 

   1   5  34  57  89  96  97 103 108 113 115 119 143 159 186 210 217 220 222 227 

230 231 244 246 248 252 268 287 288 299 303 318 335 337 346 352 355 364 365 
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367 376 377 421 432 437 446 454 457 460 461 462 463 464 465 466 467 468 469 

470 471 472 473 474 475 476 477 

 206 

   3   4  14  17  21  22  23  24  25  26  27  28  30  39  40  43  44  45  47  48  53  55  

56  58  61  62  64  66  67  69  70  74  76  77  78  79  81  82  83  85  90  91  92  93  

94 100 102 109 110 111 114 116 121 122 123 124 126 128 129 134 136 137 139 

145 147 148 155 157 162 165 167 168 170 174 175 179 180 181 182 183 188 193 

195 197 199 200 202 203 205 206 208 209 213 214 216 218 221 223 225 229 232 

236 238 239 240 241 245 247 249 251 253 254 255 256 257 258 259 262 266 271 

272 273 274 275 276 278 281 282 285 286 292 294 296 298 300 301 305 307 311 

316 317 320 321 322 324 326 331 336 338 339 340 343 344 347 358 361 363 366 

369 370 372 373 375 378 379 380 381 386 388 393 394 397 398 400 404 405 407 

410 411 413 414 415 417 418 420 422 424 425 428 429 431 433 434 438 440 441 

444 445 448 449 450 451 452 455 456 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 

198 212 219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 

353 354 356 

 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 

Classification 4 
240  139  26  439 

 150 

   3   4  14  21  22  23  26  27  28  30  40  44  45  47  48  53  55  56  58  61  64  67  

69  70  74  77  78  79  82  85  90  91  92  93  94 100 102 109 111 114 121 122 124 

126 128 129 134 137 139 147 148 155 157 162 167 168 174 175 179 180 182 183 

188 195 197 199 200 202 203 208 209 213 214 216 218 221 225 229 232 236 238 

239 240 251 253 257 259 262 266 271 272 273 274 275 276 278 281 282 285 286 

292 298 300 301 307 311 316 320 321 324 326 331 338 339 340 343 344 347 358 

361 366 370 373 380 381 386 388 393 394 397 398 400 404 405 407 410 415 417 

420 422 424 431 440 441 444 445 448 450 455 

 125 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

84  86  87  95  98 105 106 107 112 118 127 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 235 237 242 243 260 261 263 264 265 270 277 279 280 284 290 

291 293 295 302 306 308 309 312 313 319 323 325 327 328 332 333 334 341 342 

348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 443 447 

 125 

   1   5  17  24  25  34  39  43  57  62  66  76  81  83  89  96  97 103 108 110 
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113 115 116 119 123 130 136 143 145 159 165 170 181 186 193 205 206 210 217 

220 222 223 227 230 231 234 241 244 245 246 247 248 249 252 254 255 256 258 

268 287 288 294 296 299 303 305 317 318 322 335 336 337 346 352 355 363 364 

365 367 369 372 375 376 377 378 379 411 413 414 418 421 425 428 429 432 433 

434 437 438 446 449 451 452 454 457 458 460 461 462 463 464 465 466 467 468 

469 470 471 472 473 474 475 476 477 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 198 212 

219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 353 354 

356 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 

Classification 5 
248   17  176  460 

 120 

   1   2   6   8  10  13  29  31  32  34  35  37  41  42  49  54  60  65  68  75  88  96  97  

99 101 103 104 109 117 120 125 133 142 143 153 154 156 159 163 164 169 171 

172 173 178 185 186 187 198 212 217 219 220 222 226 230 233 248 250 267 269 

283 287 288 289 297 304 310 314 315 329 330 337 345 349 353 354 355 356 357 

359 360 362 364 365 367 368 374 376 384 387 390 391 399 412 419 421 435 436 

439 442 459 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 

477 

 180 

   3   4  14  17  21  22  23  25  26  30  40  44  45  53  58  62  64  66  67  69  74  76  

78  79  85  89  90  91  92  94 102 108 111 113 114 115 116 119 122 123 124 128 

136 137 139 145 147 148 162 165 167 168 170 175 180 181 182 188 195 197 199 

205 206 208 213 214 218 221 223 227 229 231 232 236 238 239 240 244 246 247 

249 251 252 253 255 256 257 262 266 268 271 272 273 274 275 276 278 282 285 

286 292 294 298 300 301 303 307 311 316 317 318 320 321 322 324 326 331 336 

338 339 340 343 344 346 347 352 358 361 363 366 369 370 372 373 375 377 378 

379 380 381 386 388 393 394 397 398 400 404 405 407 410 411 413 414 415 417 

418 420 422 424 425 428 429 431 433 434 437 438 440 441 445 446 448 450 452 

454 455 456 457 

 123 

   0   7   9  11  12  15  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  86  

87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 149 150 

151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 211 

215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 284 290 

291 293 295 299 302 306 308 309 312 313 319 323 325 327 328 332 333 334 341 

342 348 350 351 371 382 383 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 

  56 
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   5  16  24  27  28  39  43  47  48  55  56  57  61  70  77  81  82  83  84  93 100 110 

121 126 129 134 155 157 174 179 183 193 200 202 203 209 210 216 225 241 245 

254 258 259 281 296 305 335 385 432 443 444 447 449 451 

The shown classifications differ from one another considerably. There 

are no coinciding classifications. Write cardinality of classes for every 

classification in decreasing order:  

classification 1:  167  125  108  79; 

classification 2:  174  127  120  58; 

classification 3:  206  127    79  67; 

classification 4:  150  125  125  79; 

classification 5:  180  123  120  56. 

Even classes, containing the same numbers of objects, for instance, 127 in 

2-nd and 3-rd classifications, are coinciding not completely.  

Let us consider now 10 classifications, found by the suggested method 

for the same initial data, i.e. voting results. Among them there are 3 

different classifications: 

Classification 1 
253 

   1   3   4   5  21  22  23  24  25  26  27  28  30  34  39  40  43  44  45  47  48  53  55  

56  57  58  61  62  64  66  67  69  70  74  76  77  78  79  81  82  83  84  85  89  90  

91  92  93  94  96  97 100 102 103 108 109 110 111 113 114 115 119 121 122 124 

126 128 129 134 137 139 143 147 148 155 157 159 162 165 167 168 170 174 175 

179 180 181 182 183 186 188 193 195 197 199 200 202 203 205 208 209 210 214 

216 217 218 220 221 222 225 227 229 230 231 232 236 238 239 240 245 246 248 

251 252 253 254 255 256 257 258 259 262 266 268 271 272 273 274 275 278 281 

282 285 286 287 288 292 296 298 299 300 301 303 305 307 311 316 317 318 319 

320 321 322 324 326 331 335 336 337 338 339 340 343 344 346 347 352 355 358 

361 363 364 365 366 367 369 370 373 375 376 377 378 379 380 381 386 388 393 

394 397 398 400 404 405 407 410 411 414 415 417 420 421 422 424 425 429 431 

432 433 437 440 441 444 445 446 448 449 450 451 454 455 456 457 458 460 461 

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 198 212 

219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 353 354 

356 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 459 

 125 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80   
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86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 284 

290 291 293 295 302 306 308 309 312 313 323 325 327 328 332 333 334 341 342 

348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 443 447 453 

  22 

  14 17 116 123 136 145 206 213 223 241 244 247 249 276 294 372 413 418 428 

434 438 452 

Classification 2 
221 

   1   3   4   5  21  22  23  24  26  27  28  30  34  40  44  45  47  48  53  55  56  57  58  

61  64  67  69  70  74  77  78  79  82  84  85  89  90  91  92  93  94  96  97 100 102 

103 108 109 110 111 113 114 115 119 121 122 124 126 128 129 134 137 139 143 

147 148 155 157 159 162 165 167 168 174 175 179 180 181 182 183 186 188 195 

197 199 200 202 203 208 209 210 214 216 217 218 220 221 222 225 227 229 230 

231 232 236 238 239 240 246 248 251 252 253 257 259 262 266 268 271 272 273 

274 275 278 281 282 285 286 287 288 292 298 299 300 301 303 307 311 316 319 

320 321 324 326 331 335 337 338 339 340 343 344 346 347 352 355 358 361 364 

365 366 367 370 373 376 377 380 381 386 388 393 394 397 398 400 404 405 407 

410 411 415 417 420 421 422 424 431 432 437 440 441 444 445 446 448 449 450 

454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 471 472 473 

474 475 476 477 478 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 198 212 

219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 353 354 

356 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 459 

 125 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 284 

290 291 293 295 302 306 308 309 312 313 323 325 327 328 332 333 334 341 342 

348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 443 447 453 

  54 

  14  17  25  39  43  62  66  76  81  83 116 123 136 145 170 193 205 206 213 223 

241 244 245 247 249 254 255 256 258 276 294 296 305 317 318 322 336 363 369 

372 375 378 379 413 414 418 425 428 429 433 434 438 451 452 
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Classification 3 
243 

   1   3   4   5  14  17  21  22  23  24  26  27  28  30  34  40  44  45  47  48  53  55  56  

57  58  61  64  67  69  70  74  77  78  79  82  84  85  89  90  91  92  93  94  96  97 

100 102 103 108 109 110 111 113 114 115 116 119 121 122 123 124 126 128 129 

134 136 137 139 143 145 147 148 155 157 159 162 165 167 168 174 175 179 180 

181 182 183 186 188 195 197 199 200 202 203 206 208 209 210 213 214 216 217 

218 220 221 222 223 225 227 229 230 231 232 236 238 239 240 241 244 246 247 

248 249 251 252 253 257 259 262 266 268 271 272 273 274 275 276 278 281 282 

285 286 287 288 292 294 298 299 300 301 303 307 311 316 319 320 321 324 326 

331 335 337 338 339 340 343 344 346 347 352 355 358 361 364 365 366 367 370 

372 373 376 377 380 381 386 388 393 394 397 398 400 404 405 407 410 411 413 

415 417 418 420 421 422 424 428 431 432 434 437 438 440 441 444 445 446 448 

449 450 452 454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 

471 472 473 474 475 476 477 478 

  79 

   2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 104 

117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 187 198 212 

219 226 233 250 267 269 283 289 297 304 310 314 315 329 330 345 349 353 354 

356 357 359 360 362 368 374 384 387 390 391 399 412 419 435 436 439 442 459 

 125 

   0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  73  80  

86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 141 144 146 149 

150 151 152 158 160 161 166 176 177 184 189 190 191 192 194 196 201 204 207 

211 215 224 228 234 235 237 242 243 260 261 263 264 265 270 277 279 280 284 

290 291 293 295 302 306 308 309 312 313 323 325 327 328 332 333 334 341 342 

348 350 351 371 382 383 385 389 392 395 396 401 402 403 406 408 409 416 423 

426 427 430 443 447 453 

  32 

  25  39  43  62  66  76  81  83 170 193 205 245 254 255 256 258 296 305 317 318 

322 336 363 369 375 378 379 414 425 429 433 451 

Classifications 1 и 2 are encountered 4 times from 10, classification 3 – 

2 times. Write cardinality of classes for every classification in decreasing 

order: 

classification 1:  253  125   79   22; 

classification 2:  221  125   79   54; 

classification 3:  243  125   79   32. 

Note that some classes are found by both methods. Yet the stability of 

classifications, found by the suggested algorithm, significantly exceeds the 
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stability of classifications, found by K-means methods, for the same AC 

problem. This directly noticeable fact is established exactly by the 

algorithm of stability calculation of a classification family, considered at 

the end of subsection 3.4. Pay attention to practical absence (in 4 cases 

among 5 ones, found by K-means method) of classes, containing more 

than 200 objects, while such classes are present in all the classifications 

found by the suggested algorithm. The essence of the matter if not is 

proved but is illustrated by the example from preprint [Rubchinsky, 

2010], where the application of K-means method for the set of points, 

shown in Fig. 8, is presented. It is clear that this method cannot work in 

similar situations, which cannot be a priori excluded in real AC problems. 

At the same time in the construction of classifications based on voting 

results, such non-uniform case are occurred frequently enough.   

 
Fig. 8. K-means method for the model example 
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Instability of classifications, found by K-means method, is detected as 

well in the other checked periods, particularly, in February, 2005 and 

April, 1996. 

In order to resume the present section it should be remarked the 

following. The notion of complexity is relevant to arbitrary AC problems, 

whose solutions are considered as partitions of the initial set of objects. This  

notion itself does not bear any meaningful load.  Some AC problems from 

preprint [Rubchinsky, 2010] are complex ones in the above sense, despite 

their solutions are intuitively obvious. In examples 10 and 11 from the 

same preprint solutions are not obvious ones, while their formal 

complexity is low enough. Yet for some types of AC problems the notion 

of complexity can acquire a special interpretation. For analysis of 

political bodies making collective decisions by voting, the complexity 

corresponds to inconsistency, incoordination, irrationality of politics – 

independently of presence or absence of majority of some deputies’ 

group, even if all the members of every fraction vote similarly. For 

“tossing” deputies or ⁄ and whole fractions the corresponding classes 

become poorly distinguished and partially perplexing that results in 

relatively high value of complexity of their classifications.  

It is easy to see that in a political body, where votes of all the 

deputies always coincide, the formally calculated complexity is equal to 

1. The same is true for an opposite political body, whose deputies always 

vote at random. At the same time a body, consisting of two fractions, 

including, say, 440 and 10 deputies, whose votes completely coincide for 

deputies from one fraction, and never coincide for deputies from different 

fractions, has the minimal complexity equal to 0.  

Thus, the complexity is not defined by the results of separate votes, 

but rather by the set of all such results. The situation slightly likes the 

definition of choice functions, whose properties are not determined by the 

separate results of variants choice, but rather by interrelations between 

choices from various presented subsets of a given general set.  

 

6. Conclusion 

The main goal of the presented work consists in introducing of new 

notion of AC problem complexity and to its use in analyzing political 

processes. Many important issues concerning AC problems are not 

considered in the presented work – first of all from lack of the room as well 
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as my disinclination to overloading the exposition. It is supposed to 

consider these issues in next publications. Some topics were mentioned 

above in subsection 3.4. The other ones are briefly mentioned below. 

1. It is supposed to analyze voting results basing on AC in more 

detail, in RF Duma as well as in the other political bodies, in a special 

publication. 

2. It is supposed to apply the suggested approach to stock market 

analysis, considering changes of complexity of constructed classifications 

in an attempt to predict some events.  

3. Determination – even if the experimental one – of stochastic 

characteristics of considered classifications can allow us to obtain more 

exact and reliable estimations of the considered indices. It is supposed to 

be done in further investigations. 

4. It is desirable to elaborate an adaptive modification of the 

suggested AC algorithm for determination its essential parameters k and 

r. In particular, complexity calculation can be accomplished under 

different values of these parameters even for AC problem from the same 

family (for instance, analyzing voting results in one body in different 

periods). 

5. Informal character of AC problems requires design of a special 

interactive computer system, as it was mentioned in subsection 3.4. In the 

framework of such a system it will be possible to change algorithm 

details, visually present results, and, finally to make final choice of 

classifications. 

The author is grateful to F.T. Aleskerov for his support and attention 

to this work, B.G. Mirkin for attentive and benevolent reviewing, which 
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Рубчинский, А. А.
Дивизимно-агломеративный алгоритм и сложность задач автоматической классификации 

[Текст] : препринт WP7/2015/09 / А. А. Рубчинский ; Нац. исслед. ун-т «Высшая школа эконо-
мики». – М. : Изд. дом Высшей школы экономики, 2015. – 44 c. – (Серия WP7 «Математические 
методы анализа решений в экономике, бизнесе и политике»). – 48 экз. (на англ. яз.)

В работе излагается алгоритм решения задач автоматической классификации (далее для 
краткости АК), в которых на основании заданной матрицы «объекты-свойства» или матрицы 
схожести / несхожести требуется найти одно или несколько разбиений исходного множества 
объектов. Предлагается трехуровневая схема алгоритма. Результатом работы алгоритма являет-
ся некоторое семейство классификаций, а доля различных классификаций среди всех классифи-
каций, найденных разработанной процедурой, была принята в качестве меры сложности исхо-
дной задачи АК.

Для классификаций выборных органов по результатам голосований общее понятие слож-
ности интерпретируется как последовательность или рациональность политики, проводимой 
данным органом. При «метаниях» отдельных депутатов и / или целых фракций соответствую-
щие кластеры становятся плохо различимыми и частично перепутанными, что приводит к срав-
нительно большим значениям сложности классификаций. Наоборот, при последовательной по-
литике депутатские кластеры хорошо различимы и уровень сложности соответствующих клас-
сификаций невысок.

Указанные соображения были использованы при анализе работы 2-й, 3-й и 4-й Думы РФ 
(1996–2007 гг.). Были построены помесячные классификации (по результатам всех голосований 
в каждом отдельном месяце). Сравнение сложности для отдельных периодов работы позволяет 
предложить новые содержательные интерпретации работы разнообразных голосующих выбор-
ных органов, включая парламенты отдельных стран, международные организации и правления 
крупных корпораций.

Рубчинский Александр – Национальный исследовательский университет «Высшая школа 
экономики», Международная научно-учебная лаборатория анализа и выбора решений, Между-
народный университет «Дубна», кафедра прикладной математики и информатики.
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