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Anna Bogomolnaia1

THE MOST ORDINALLY-EFFICIENT OF RANDOM VOTING
RULES

Aziz and Stursberg [1] propose an “Egalitarian Simultaneous Reservation”rule
(ESR), a generalization of Serial rule, one of the most discussed mechanisms in
random assignment problem, to the more general random social choice domain.
We provide an alternative definition, or characterization, of ESR as the unique
most ordinally-egalitarian one.
Specifically, given a lottery p over alternatives, for each agent i we define tpi (k)
to be the total share in p of objects from her first k indifference classes. ESR
is shown to be the unique one which leximin maximizes the vector of all such
shares (tpi (k))i,k.
Serial rule is known to be characterized by the same property (see [2]). Thus,
we provide an alternative way to show that ESR, indeed, coincides with Serial
rule on the assignment domain. Moreover, since both rules are defined as the
unique most ordinally-egalitarian ones, out result shows that ESR is “the right
way”to think about generalizing Serial rule.
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1 Introduction

We consider the classical “voting”problem, when n agents have to jointly choose
one common alternative from a given set A = {a1, ..., aw}. Or goal is investigate
plausible systematic preference aggregating mechanisms (rules) for this problem,
which do not use monetary transfers.
When preferences overA differ substantially, it might be diffi cult to choose an

alternative agents would consider a good compromise. One way to overcome this
problem is to allow for an outcome to be a lottery over A, or a vector of “shares”
of alternatives, rather then a unique alternative. Potentially, any probability
distribution p = (p1, ..., pn) ∈ ∆A can be jointly chosen as an outcome. We may
interpret p as a real lottery to be performed. Hence, the final ex-post outcome
still would be a single “pure” alternative. However, agents might regard the
process (if not the outcome) as more fair. Alternatively, p may be interpreted
as a vector of “time-shares”, fractions of total time each alternative is in place.
Which interpretation is more appropriate, depends on the particular economic
situation. We abstract from it and concentrate on the formal model, which
encompasses both.
A prominent paper by Gibbard [9] on this random social choice model re-

stricts attention to the “ordinal” mechanisms. Agents are assumed to have
strict preferences over A, and are only asked about their orderings of pure al-
ternatives. It is implicitly assumed though, that they have cardinal utilities
over the alternatives, and compare lotteries based on the expected utility. This
assumption gives rise to a strong requirement of “strategy-proofness”: a rule is
non-manipulable only if an agent can never gain (no matter what are her cardi-
nal utilities behind) by altering her ordinal input. Gibbard [9] characterizes all
strategy-proof mechanisms. Follow-up works were also mainly concerned with
non-manipulability.
When we allow for indifferences in agents’preferences, assignment of pri-

vate goods becomes a particular case of voting model (each agent is indifferent
between all assignments which give her the same thing). Ordinal random as-
signment model, with indivisible goods and no monetary transfers, became a
very active area of research in recent 10-15 years. Bogomolnaia and Moulin [3]
proposed to look at the ordinal random assignment mechanisms (agents are only
required to report preferences over deterministic alternatives). They introduced,
for the strict preference domain, a new “Serial rule”, which is computed allow-
ing agents to acquire (“eat”) shares of objects simultaneously with the same
constant speed, in decreasing order of their preferences. While it only satisfies
a week version of non-manipulability, its fairness and effi ciency properties are
very strong. In particular, it is not only anonymous, but also envy-free. Serial
rule became one of the most studied ordinal mechanisms (another one is Ran-
dom Priority). Several generalizations were proposed. Bogomolnaia, Moulin
[4] introduced Egalitarian rule for the dichotomous assignment domain. Katta,
Sethuraman [10] extended the definition of Serial rule to the full domain (in-
differences are allowed), which is also an extension of the above Egalitarian
rule from dichotomous domain. Several recent papers (see, for example [6],
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[7], and, for the full domain, [8]) provided axiomatic characterizations of Serial
rule, mostly by means of effi ciency, envy-freeness, and some type of monotonic-
ity with respect to certain changes in preferences. Bogomolnaia [2] proposes an
alternative definition, or a characterization, of Serial rule, both for strict and
full domain. Given an arbitrary random assignment, one can calculate, for each
agent i, her total share ti(k) of goods from her k best indifference classes. Serial
rule happens to be the unique one which leximin maximizes vector t = (ti(k))i,k.
Thus, arguably, Serial rule emerges as the (unique) most egalitarian random
rule, when social planner is restricted to ordinal information only. This result
also serves as a justification of the extension of Serial rule to the full domain,
proposed in [10]. It shows that this generalization is indeed in the same spirit
as Serial (or Egalitarian) rule, aiming at the ordinally-egalitarian goal.
Returning to the random voting problem, now over full domain (indifferences

allowed), Aziz and Stursberg [1] propose a random social choice (voting) rule
which they call Egalitarian Simultaneous Reservation (ESR). This rule is based
on the same “simultaneous eating” ideas as Serial rule. Indeed, ESR is intro-
duced as a joint generalization of two rules. One is Serial rule, introduced in [3],
[4], and [10] for strict, dichotomous, and full private goods domain, and another
is Egalitarian random voting rule, defined in [5] on the dichotomous voting pref-
erence domain. Aziz and Stursberg [1] show that on the assignment domain ESR
coincides with Serial rule and on the dichotomous domain it coincides with the
Egalitarian voting rule. In order to show the equivalence with Serial rule for as-
signment domain, they rely on a recent characterization result, [8], which singles
out Serial rule on full domain by ordinal effi ciency, envy-freeness, and “limited
invariance” (the proof in [8] is long and complicated). Aziz and Stursberg [1]
check that ESR satisfies those three properties on the assignment domain. The
checks, while not very complicated, are also rather long and non-intuitive. Note
also, that the notion of envy-freeness looses its meaning beyond the domain of
private goods’assignment. While ESR remains ordinally effi cient and satisfies
limited invariance on the full domain, those properties do not single it out. This,
while ESR is one of possible generalizations of Serial rule, the question remains
whether it is the most appropriate one.
Current work proposes an alternative definition (or a characterization) of

ESR, along the same lines as the alternative definition of Seral rule, proposed
in Bogomolnaia [2]. It shows that ESR is the unique leximin maximizer of the
vector tp = (tpi (k))i,k (where t

p
i (k) is the total share agent i gets in lottery p

from her top k indifference classes). An immediate corollary, given the result
in Bogomolnaia [2], is an alternative, much more straightforward, way to show
that ESR is indeed an extension of Serial rule to the larger domain.
Our main result can be illustrated by the following interpretation. Fix a

lottery p. Split each agent in as many “sub-agents”as the number of indifference
classes in her preferences. Agent i’s first sub-agent only cares about her first
indifferent class, her second sub-agent only cares about her two top indifferent
classes, etc. Thus, the utility of agent i’s k-th sub-agent is measured by the total
amount of objects she gets from her first k indifference classes, i.e. tpi (k). Our
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result is that ESR rule maximizes the leximin (“Rawlsian”) collective utility
of those sub-agents. It first attempts to maximize the utility of the worst-off
sub-agent, then the utility of the second worst-off one, and so on.
Rephrasing, the ESR allocation is the most egalitarian (the Rawlsian max-

imizer) in attempting to equalize agents’shares of top ranked objects (i.e. of
upper counter sets of objects) under different cutoffs. Recall that agents only
report rankings of objects, not their relative valuations, so equalizing allocated
shares for different upper counter sets seems to be the best available instrument
for an egalitarian mechanism designer.
All the above allows us to argue that ESR is indeed the “right way” to

generalize Serial rule to the general random voting domain. Both original and
generalized rules have exactly the same nature: each gives the unique most
“ordinally-egalitarian”way to compromise between agents.

2 Model and Results

Given are a set of agentsN = {1, ..., n} and a set of alternatives A = {a1, ..., aw}.
Each agent i ∈ N has arbitrary preferences Ri, or �i, over A, which are rep-
resented by a partition of A into Ki indifference classes E1i , ..., E

Ki
i (a �i b if

and only if a ∈ Eli, b ∈ Eri , and l < r). Denote by R the set of all preference
orderings over A.
Let ∆(A) be the set of all lotteries on A. A random social choice rule is a

correspondence f : Rn ⇒ ∆(A), which is essentially single-valued. Specifically,
at any preference profile R = (R1, ..., Rn), f(R) ⊂ ∆(A), f(R) 6= ∅, and all
agents are indifferent between all outcomes in f(R).

Fix a preference profile R, once and forever. Let Ei =
{
E1i , ..., E

Ki
i

}
be the

set of agent’s i indifference classes, and let E =
⋃
Ei (the union of all indifference

classes over all agents).
Given an arbitrary lottery p = (p1, ..., pw), where pj = p(aj), we will write

p(E) =
∑
a∈E

p(a). For any agent i and any k ≤ Ki, we define ti(k) = tpi (k) =∑
r≤k

p(Eri ) =
∑

aj∈∪r≤kEr
i

pj , the total share agent i gets in lottery p of objects

from her first k indifference classes. Define vector ti = tpi = (ti(1), ..., ti(Ki)),
where Ki is the number of indifference classes in Ri.

Aziz and Stursberg [1] propose a random social choice rule which they call
Egalitarian Simultaneous Reservation (ESR).
ESR starts from the set of all feasible lotteries, and then repeatedly shrinks

this set over time interval [0, 1]. This is done by sequentially introducing (the
largest feasible) lower bounds on probabilities of certain indifference classes from
E in the final lottery. At each step, ESR only cares to guarantee each agent
the largest share of objects from her top indifference class still available for
distributing. As we will see, ESR pursues an egalitarian goal to guarantee the
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best treatment for the worst off agents. Aziz and Stursberg’s definition is given
by the following algorithm.
Each indifference class E = Eri is represented by a “tower” growing over

time, with the “ceiling” lt(E) ∈ R+ at time t. This ceiling represents the
minimal guarantee for the probability the subset E of alternatives is to receive
in the final lottery. During the course of the algorithm, agents climb up those
towers (all with the same constant speed) and in doing that push up the ceilings,
therefore increasing the lower bounds on probabilities of corresponding subsets.
All towers have ceilings zero at time τ = 0. Algorithm proceeds in stages.

In stage 1, each agent starts by climbing the tower corresponding to her top
indifference class. A tower’s height is frozen, if increasing it would result in
nonexistence of a lottery satisfying all lower bounds for all towers. Once a
tower is frozen, any agent at its ceiling falls off it, and moves to the bottom of
the tower corresponding to her next indifference class2 . Any agent in the middle
of a frozen tower will continue to climb it until the frozen ceiling. Then she will
fall off and move to her next best tower. A stage ends whenever some agent
falls off some ceiling.
Notation: Let l(k) : E →R+ be the height of the ceiling in the tower S ∈ E

at the end of stage k. Function E(k) : N → E represents the towers each agent
i climbs during stage k. Let h(k)i be the height where agent i is in her tower at
the beginning of stage k; λ(k) be the duration of stage k; N (k) ⊂ N be the set
of agents falling off at the end of stage k; τ (k) be the total time passed by the
beginning of stage k.
Assign l(0)(S) = h

(0)
i = τ (0) = 0, and E(0)(i) = E1i (the top indifference

class of agent i), for all i ∈ N and all S ∈ E .
Stage k. Compute λ(k) and N (k) (see the linear program below the algo-

rithm’s description), as well as towers to be frozen. Let τ (k+1) = τ (k) + λ(k),
and agents’heights for the beginning of the next stage be h(k+1)i = h

(k)
i + λ(k)

if i /∈ N (k), h(k+1)i = 0 if i ∈ N (k) (i.e., if agent i fell off). For any S ∈ E define
l(k+1)(S) = max

{
l(k)(S),max

{
h
(k+1)
i |E(k)(i) = S

}}
(new ceilings, defined as

maximum of the old ceiling and maximal of agents’heights over those who were
climbing this tower during stage k). For all agents who fell off, i ∈ N (k), define
E(k+1)(i) to be the agent’s i next indifference class. For remaining agents, define
E(k+1)(i) = E(k)(i).
Calculation of λ(k) and N (k) comes from solving the following Linear Pro-

gram.
First, we find λ(k) by solving maxλ subject to:∑
a∈S

p(a) ≥ l(k)(S) for all S ∈ E ;
∑

a∈E(k)(i)

p(a) ≥ h
(k)
i + λ for all i ∈ N ;∑

a∈N
p(a) ≤ 1, p(a) ≥ 0 for all a ∈ A; λ ≥ 0.

Then, for all i ∈ N we run this program again, imposing λ = λ(k), and max-

2 It might be an already frozen tower!

5



imizing the slack in the inequality
∑

a∈E(k)(i)

p(a) ≥ h
(k)
i + λ; whenever objective

function value is zero, we add corresponding i to N (k).
Thus, resulting N (k) is the largest (by inclusion) set of agents who create the

“bottleneck”(prevent increasing λ(k)). I.e., λ(k) and N (k) are computed as the
largest ones so that there still exists a lottery p ∈ ∆(A) with p(S) =

∑
a∈S

p(a) ≥

l(k+1)(S) for all S ∈ E .
Freeze (forever) ceilings of all towers which were climbed by at least one

agent from N (k).

Algorithm finishes when all towers are frozen. Once it is finished, ESR at the
profile R is the set of “remaining”lotteries p, satisfying inequalities

∑
a∈S

p(a) ≥

l(k)(S) for the last step k (and hence for all steps). It is straightforward to
show (see [1]) that for any profile R this set is essentially single-valued. Hence,
ESR is indeed a random social choice rule. Moreover, it is easy to see that for
any profile R, p ∈ ESR(R) and (q utility equivalent to p) imply q ∈ ESR(R).
Thus, ESR(R) includes all lotteries utility equivalent to any one obtained by
the algorithm above.

Definition 1 The leximin order L on Rq is defined as follows. For any x =
(x1, ..., xq) ∈ Rq, let x∗ = (x∗1, ..., x

∗
q) ∈ Rq be a permutation of the coordinates

of vector x in the increasing order: x∗1 ≤ ... ≤ x∗q . We say that xLy if there is a
j ∈ {1, ..., q} such that x∗j > y∗j , while x

∗
i = y∗i for all i < j.

Theorem 1
For all preference profiles R, ESR(R) is exactly the set of lotteries over ∆(A)
which leximin maximize the vector3 of shares t = (t1, ..., tn).

Proof.
Fix an arbitrary preference profile R. Since they are utility equivalent, all

p ∈ ESR(R) result in the the same vector tp and same permutation-vector tp∗.
Denote the corresponding permutation π : tp → tp∗.
Since k < r implies tpi (k) ≤ tpi (r), we can assume that π is such that

π (tpi (k)) < π (tpi (r)) for any i, whenever k < r.
In the algorithm, each agent i climbs towers corresponding to her indifference

classes E1i , ..., E
Ki
i successively in increasing order, and without skipping. She

only falls off a tower and moves to the next one once she reaches a frozen
ceiling. Assume at the end of stage k, at the time τ (k+1), agent i falls off
tower Emi . It means that by the time τ

(k+1) towers corresponding to E1i , ..., E
m
i

are frozen at their “final” heights l
(
E1i
)
, ..., l (Emi ) which correspond to their

maximal feasible minimal guarantees. I.e., in a final lottery probabilities of
those indifference classes will be exactly l

(
E1i
)
, ..., l (Emi ). Since our agent i

3Recall that each ti is itself a vector, ti = (ti(1), ..., ti(Ki)), where ti(k) =
∑

aj∈∪r≤kEri
pj .

Hence, t = (t1, ..., tn) is the vector of length
∑
i∈N

Ki.
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goes through each tower from bottom to top and never stops, we obtain that
the total share she gets of objects from her first m indifference classes tpi (m) =
l
(
E1i
)

+ ...+ l (Emi ) = τ (k+1).
Moreover, if instead at the beginning of stage k + 1 agent i is at the height

h
(k+1)
i > 0 in tower Emi , then t

p
i (m − 1) = l

(
E1i
)

+ ... + l
(
Em−1i

)
= τ (k+1) −

h
(k+1)
i .
We will check by induction (in stages of the algorithm), that at each stage k

the algorithm to find ESR(R) considers, for each agent i, the smallest “not yet
fixed” tpi (mi) (here mi = mi(k), we suppress the stage index), and maximizes
(“fixes”) the smallest of those. More specifically, it finds a largest µ such that it
is feasible to have min

i∈N
tpi (mi) ≥ µ and “fixes”all tpi (mi) which cannot be larger

then µ to be tpi (mi) = µ. The theorem follows immediately from this statement.
In stage 0, the algorithm starts by eliminating all lotteries, except those

which maximize the smallest among tpi (1) = p(E1i ) =
∑
a∈E1

i

p(a), i.e. the smallest

element in tp. In other words, it “fixes”(freezes) all tpi (1) with i ∈ N (k), i.e. all
tpi (1) which cannot feasibly be more then λ(1), at the level tpi (1) = λ(1).

In each next stage k + 1, the algorithm pays attention to exactly one tower
Emi
i for each agent i (the tower E(k+1)(i) she climbs during this stage), cor-
responding to her mi-th indifference class (mi = mi(k + 1), we suppress the
stage index), while all towers corresponding to agents’better indifference classes
are already frozen. Hence, all tpi (m) for all i and all m < mi, are “fixed” to
tpi (m) = l

(
E1i
)

+ ... + l (Emi ), their best minimal guarantees (by induction hy-
pothesis).
In stage k + 1 we find the largest λ such that p (Emi

i ) = p
(
E(k+1)(i)

)
=∑

a∈E(k+1)(i)

p(a) ≥ h
(k+1)
i + λ for all i. But h(k+1)i = τ (k+1) − tpi (mi − 1), so

the constraints can be rewritten as p (Emi
i ) ≥ τ (k+1) − tpi (mi − 1) + λ, or the

tpi (mi) = p (Emi
i ) + tpi (mi − 1) ≥ τ (k+1) + λ.

Thus, algorithm finds the largest amount τ (k+2) = τ (k+1) +λ(k+1) such that
all tpi (mi) are at least τ (k+2). It then freezes all towers E

mi
i = E(k+1)(i) whose

height cannot feasibly increase, i.e., “fixes” all tpi (mi) which cannot be larger
then τ (k+2) to be tpi (mi) = τ (k+2). �

The same line of argument allows us to prove a parallel characterization.
Let t′i(a) to be the total share of objects at least as good as a agent i gets. The
vector t′ = (t′i(a))i,a has fixed length nw, no matter whether preferences are
strict or not.
Theorem 1a
For all preference profiles R, ESR(R) is also exactly the set of leximin maxi-
mizers of the t = (t′i(a))i,a.

Serial rule for random assignment problem is known to be characterized by
the same property as in our Theorem 1 (see [2]). We hence obtain:
Corollary
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On the assignment domain, ESR coincides with Serial rule.
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