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1 Introduction

Empirical evidence shows that the economies of di�erent regions grow at di�erent speed, and

their growth rates are probably spatially correlated (Abreu et al., 2004). Russia is a large

and heterogeneous country, so it is natural to conjecture that the role of its geography is

essential. Are the economic di�erences between Russian spatial units due to a more favorable

geographic location? Is location a source of local economic advantage? Do spatial spillovers

across Russian regions impact substantially on regional growth rates? To answer these

questions, the literature on spatial determinants of regional economic growth in Russian

regions uses the subjects-of-Federation level data. This approach, however, is problematic,

for regions are highly heterogeneous. Moreover, because the regions are few, this creates

serious limitations in using advanced econometric methods in order to estimate the relevant

e�ects. In this paper, I suggest a way of overcoming these di�culties.

Using disaggregate geo-coded data, we study whether spatial spillovers across Russian

cities foster convergence in wages, and quantify the impact of cities' location patterns on the

wage β-convergence process. Thus, although the problem of identifying spatial determinants

of regional economic growth in Russia has already been addressed in the literature, we deviate

from previous work based on subject-of-Federation-level data by working with city-level data.

This entails having the advantage of exploiting a �ner location pattern, and creating more

room for applying modern spatial econometric tools, which allows us to design an empirical

strategy that yields robust inference and displays enough �exibility. First, we estimate spatial

econometric models of city wage convergence under three di�erent types of spatial weight

matrices. Second, we apply Bayesian spatial econometric models that allow comparison of

the estimation results for di�erent spatial weight matrices. The �exibility of our econometric

procedure is also due to the possibility of �ne-tuning the degree of the spatial weight matrix

sparsity, a property that has been argued by LeSage and Pace (2009) to be of paramount

importance in modern spatial econometrics. To the best of our knowledge, no similar setting

has ever been used in previous empirical work on Russian regional development.

Before proceeding, it is worth discussing why we should expect at all that propagation

of spillovers over space should a�ect convergence of urban economies over time. The impact

of spatial spillovers on convergence or divergence may be intuitively explained as follows.
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Think of a city which is in a very bad economic condition (e.g. it has a very low per

capita income). Hence, the current level of city economic performance is below the steady-

state level. Consequently, given that positive spatial spillovers are at work, they will foster

income growth in the unsuccessful city, which will result in a higher speed of convergence.

On the contrary, under negative spatial spillovers, the relatively high income levels in the

neighboring cities will lead to slower convergence of the poor city's income to its long-run

level. The converse argument works for prosperous cities. To sum up, positive (or negative)

spatial spillovers generate a convergence- (or divergence-) enhancing force.

My main �ndings can be summarized as follows. First, I �nd that Russian cities beta-

converge in wages. Taking the inter-cities spatial spillovers into account does not lead to

impressive changes in the convergence speed estimates. However, a dramatic consequence

of considering the spatial dimension of convergence is that it results in a striking reduction

of the half-life period. Using the Markov chain Monte Carlo methodology, I �nd that the

half-life period varies from 30 to 100 years (depending on the choice of spatial weight matrix)

versus around four hundred years in the standard non-spatial convergence estimation setting.

Second, I study the dynamics of the spatial autocorrelation index during the period 1996�

2013 and explain its non-monotone behavior over time. I also show that the scope of the

spatial externalities is almost fully captured by assuming the radius of the spatial interaction

being around 1,500 km. Third and lastly, I provide evidence for sigma converge of Russian

cities in wages, i.e. the decay of wage dispersion across cities over time.

The rest of the paper is organized as follows. Section 2 reviews the literature, which is

mostly empirical studies based on Russian regional data. In Section 3, I describe my dataset

and test whether Russian cities converge in wages in terms of sigma- and beta-convergence. In

Section 4, I construct di�erent spatial matrices and calculate spatial autocorrelation indices.

I show that spatial autocorrelation is signi�cant for city wages. Section 5 tests whether the

role of space is signi�cant for convergence. Estimates of spatial Durbin models of the city

wage growth equation are provided. Based on Bayesian methodology, I compare models with

di�erent spatial weights. Section 6 concludes.
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2 Literature review

In a seminal paper on empirical convergence studies, Baumol (1986) found that poorer

countries like Japan and Italy have substantially reduced the per capita income gap with

richer countries like the United States and Canada in the years from 1870 to 1979. Growth

rates are positively correlated with the initial gap between per capita income of a region and

the steady-state per capita income level, which is the same for all regions. Regions on the

steady growth trajectory are characterized by constant growth rates of per capita income.

According to the model, poor regions should grow at a higher pace than wealthy regions,

therefore the long-run perspective should tend to smooth regional di�erences in economic

development.

There is extensive empirical literature on convergence using di�erent datasets, ex-

planatory variables and methods (including Barro 1991, Barro and Sala-i-Martin 1992, Sala-

i-Martin 1996, Williamson 1996, Taylor 1999, etc). Combining the baseline growth model

with the fundamentals of the new economic geography, regional science literature has intro-

duced spatial dependence in the growth regression model. The earliest studies on spatial

growth models include Armstrong (1995), Bernat (1996), Fingleton and McCombie (1998).

Thorough reviews on spatial growth studies have been provided by Rey and Montouri (1999),

Arbia (2006), Fingleton and López-Bazo (2006), Ertur et al. (2006).

Empirical work on Russian regional income growth cover vary in the length of time hori-

zon. Extensive reviews on Russian regional income inequalities are provided by Glushchenko

(2010, 2012), Guriev and Vakulenko (2012). Convergence hypothesis is rejected in papers

based on the earliest post-Soviet time period data, while in more recent studies there is

growing evidence of Russian regional convergence. Results also depend on the key indica-

tor chosen for the convergence studies. While interregional GDP per capita gaps persist,

the di�erentials in incomes and wages have decreased substantially. The earliest papers on

regional income inequalities ignore any spatial localization of Russian regions and do not

exploit spatial analysis. There is, however, growing evidence that space is crucial in regional

income studies.

In general, it is fair to say that evidence provided by studies of regional income con-

vergence in Russia is inconclusive (see Table 7 in Appendix 1 for a summary). It is also

worth noting that very few papers consider two or more types of spatial matrices. Demi-

dova (2015) tests the hypothesis of a possible di�erence in the spatial e�ects in western and

eastern regions. She develops a special class of empirical growth models with a partitioned

spatial matrix (west-west, east-east, west-east, and east-west) for Russian regions over the

period 2000�2010. Her estimates for spatial externalities depend on the referent variable

and reveal the asymmetric in�uence of eastern and western regions on each other. Ivanova

(2014) estimates the Barro regression for �ve di�erent spatial matrices and tests whether a

spatial autoregressive parameter is sensitive to the spatial weights choice.

The choice of spatial weights is crucial in spatial econometrics. Harris et al. (2011)

provide an extensive review of the standard approaches in constructing the spatial weights
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matrix. There is an overview of spatial models comparison procedures in LeSage and Pace

(2009, Chapter 6). They consider spatial versus non-spatial models, models with di�erent

spatial weights, and spatial models with di�erent sets of explanatory variables. In this

study, I exploit methodology for comparing models with di�erent spatial weight matrices

based on a Markov chain Monte Carlo model composition (MC3) approach proposed for

spatial regression models by LeSage and Parent (2007).

3 Do Russian cities converge in wages?

3.1 Data description

Convergence studies are based on various regional per capita income variables; like gross

domestic product, gross value added, or total income. The Russian Statistical Agency does

not provide city level GDP per capita, and there is no available information on city-level

income per capita. The only available proxy for per capita income is the average monthly

wage in Russian cities provided by the Multistat database3. The database contains 1098

Russian cities and towns. I omit settlements of the Chechen republic, the Ingushetia republic

and observations with missing values on wages. As a consequence, the number of cities of the

main dataset for my study is 997, and they cover 78 regions of Russia. Summary statistics

for nominal wages are presented in Table 14.

Table 1: Summary statistics for nominal wages

Year Mean Standard Min Max
deviation

1996 748.68 452.29 164 4049
1997 890.45 549.07 105 5074
1998 979.63 577.86 300 5247
1999 1390.52 846.28 350 7628
2000 2055.08 1543.64 624 20284
2001 2870.15 1951.44 844 17012
2002 3872.18 2325.14 1230 19801
2003 4788.29 2831.43 1791 24347
2004 5827.33 3294.95 2200 29116
2005 7237.62 4113.06 895 48965
2006 9230.72 7000.58 1326 173403
2007 11340.14 5615.04 1544 44958
2008 14424.36 7086.00 4915 80299
2009 15751.20 7216.92 5830 57746
2010 17426.67 8000.40 6767 66024
2011 19653.85 8973.56 7957 72551
2012 22732.45 9977.81 9640 78819
2013 25736.91 10763.89 12557 84410

3
www.multistat.ru

4Wages in 1996 and 1997 are recalculated (divided by 1000) into rubles redenominated in 1998.
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I convert nominal wages into real (spatially comparable) ones. I use the regional prices

of a �xed set of goods and services for adjusting wages by PPP as follows. The real wages

measured in 2010 rubles are obtained by de�ating the nominal values of wages by the cost

of a �xed basket of goods and services in the regions (subjects of Federation). Data for the

cost of a �xed basket of goods and services in the regions has been directly available since

20025, so I use the regional consumer price index (CPI) as a proxy for the basket cost in

earlier years.

Next, I geo-coded the dataset with geographical latitudes and longitudes for each ob-

servation. Spatially comparable wages in cities are shown in Fig.1. One can see that some

dark points (i.e. cities with high wages) correspond to cities with large population: Moscow,

Saint-Petersburg, Ekaterinburg. These cities seem to generate clots of cities with big wages.

It is worth mentioning, however, that not only big cities are rich. Cities in oil and gas regions

(Tyumen oblast, Saha (Yakutia) republic etc.) also display high wages.

Figure 1: Real wages in Russian cities, 2011 (in 2010 rubles, log).

3.2 Convergence methodology

I study whether city level sigma- and beta-convergence of wages holds. The concept of

sigma-convergence refers to a reduction of wage dispersion, while beta-convergence means

that poorer cities grow faster than the richer.

I test the hypothesis of sigma-convergence using a coe�cient of variation for real wages

and performing a unit-root test for a time-detrended panel of relative city wages. The

hypothesis of beta-convergence is tested based on estimates of the Barro regression.

5www.gks.ru
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3.3 Sigma-convergence

Consider variation of real (spatially comparable) city wages. Real wages increase over time,

so I compute the coe�cient variation (a ratio of the standard deviation to the mean) in

order to exclude the scale e�ect. The dynamics of the coe�cient variation of log real wages

is depicted by Fig. 2. Uni�ed social tax with regressive taxation is introduced in 2001 in

Russia, and this may cause the change in the dynamics. Variation of log real city wages is

decreasing, which suggests that sigma-convergence of cities holds.

Figure 2: Coe�cient of variation for log real wages, 1996�2013.

In order to exclude the time trend from the real wages, I compute relative real city

wages as a ratio of a city wage to a base, where the base is the national average wage.

Consider the model (1) with a �rst-order autoregressive component

zi,t = bzi,t−1 + γi + εi,t, (1)

where zi,t - relative real wage (log) in city i = 1, ..., 997 in year t = 1996, ..., 2013, γi

� individual �xed e�ects, εi,t ∼ iid . I exploit Harris-Tsavalis panel unit root test (1999)

which is based on the OLS estimator. The null hypothesis H0 : b = 1 (panels contain unit

roots) versus the alternative Ha : |b| < 1 (panels are stationary). Estimates are as follows:
�b = 0.561, z statistics is −54.439, p-value< 0.0001, so I strongly reject the null hypothesis of

a unit root, �nding support for sigma-convergence in wages across cities.

3.4 Beta-convergence

The test of beta-convergence hypothesis is based on the cross-sectional Barro regression:

yi = α + β ln xi,0 + εi, (2)
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yi =
ln xi, t−ln xi,0

T is the average annual growth of real wages between 1996 and 2013,

xi,0 � initial real wages (for the year 1996), xi,t � real wages in 2013, T =17,

εi is the error term, εi ∼ iid with 0 mean and �nite 2nd moment.

When β is signi�cantly negative, beta-convergence holds. The dependence of yt+τ on

the initial levels of y0 disappears for large τ. The time required for this usually is analyzed

based on the so-called �half life time to convergence�:

HL = τT = −
ln 2

ln(1 + β)
T (3)

Fig. 3 depicts a scatterplot for real wages in 1996 and average annual growth of

wages between 1996 and 2013 (in logs). The slope of the line is negative. The �tted values

correspond to OLS estimates of equation (2) provided in Table 2, column 1. The coe�cient β

is negative and signi�cant, so there is beta-convergence by city wages. Because initial wages

in 1996 are measured in 2010 rubles, the result means that an increase in initial monthly

wages by 1000 rubles lowers the wage growth by 28 percent per year over the period 1996�

2013.

Figure 3: Scatterplot for real wages in 1996 and average annual growth of wages between
1996 and 2013.

Cities are not randomly located in the country's territory. In order to take their loca-

tion into account, I estimate Barro regression (2) with additional explanatory geographical

variables: longitude and latitude of each city (in logs), and the squares of these variables.

The estimation results are given by Table 2, column 2.
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Table 2: OLS estimates of the Barro regression

Dependent: Average annual growth
Variables of wages (log), 1996�2013

(1) (2)
Constant 0.397*** 3.081***

(0.007) (0.428)
Wages in 1996 (log) -0.028*** -0.031***

(0.001) (0.001)
Longitude (log) -0.063***

(0.013)
Latitude (log) -1.290***

(0.216)
Squared longitude (log) 0.008***

(0.002)
Squared latitude (log) 0.163***

(0.027)
Adjusted R2 0.444 0.480
Number of cities 997 997
τ 24.14 21.94

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The e�ect of the geographical variables on city wage growth is signi�cant. The esti-

mates of τ yield very long half life time to convergence: 24.14 rounds of 17 years without

locational variables (HL=410.38 years) and 21.94 rounds of 17 years with locational vari-

ables (HL=372.98 years). In other words, convergence is tremendously slow. In the next

two sections, I struggle to show that accounting for spatial spillovers renders the estimates

for the speed of convergence to become more realistic.

Hence, hypotheses on both sigma- and beta-convergence of Russian cities in wages

have been con�rmed. Furthermore, locational variables in the Barro regression turn out to

be highly signi�cant, i.e. location matters for convergence in wages. This raises a conjecture

that city-level wages may be spatially autocorrelated, which we test in the next section.

4 Is there spatial autocorrelation of wages?

I now come to estimating the impact of a city's location pattern on the convergence in wages

across cities.

Most researchers studying the growth of Russian regions use contiguity and distance-

based matrices. Distances between regions are measured as distances between regional cen-

tral cities, i.e. such a type of spatial matrix in the case of regions is a rather rough measure

of the spatial distribution, and this is more suitable for cities. Furthermore, in such papers

distance matrices are based on highway or railway distances, so these spatial matrices cannot

be considered as exogenous. In addition, because of the huge and non-uniformly populated
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territory, regional contiguity matrices in estimating spatial models may lead to signi�cantly

di�erent e�ects in the western and eastern parts of Russia (Demidova, 2015).

To obtain robust inference, I construct 4 types of spatial weights for cities:

1) inverse great circle distances:

w(d)
i j =

{ 1/di j if i , j,

0 if i = j,

where di j � a great circle distance between cities i and j;

2) inverse great circle distances and a cuto� distance C of spatial interaction:

w(dC )
i j =

{ 1/di j if di j < C, i , j,

0 if i = j,

3) contiguity based on a cuto� great circle distance: cities i and j are considered as

neighbors if the distance between them is less than a cuto� C:

w(neiC )
i j =

{ 1 if 0 < di j < C, i , j,

0 if i = j,

4) contiguity based on a given number N of neighbors: the N nearest (in terms of the

great circle distance) cities are considered as neighbors: w(N )
i j = 1 if j , i are N nearest

neighbors, and w(N )
i j = 0 otherwise.

In order to measure the overall degree of wage similarity between spatially close cities,

I calculate Moran's global spatial autocorrelation index I :

I =

n∑
i=1

n∑
j=1

wi j (xi − 	x)(x j − 	x)

1

n

n∑
i=1

(xi − 	x)2
n∑

i=1

n∑
j=1

wi j

(4)

where wi j are spatial weights, the (i, j)th element of the n × n spatial weights matrix

W , spatial weights wi j measure the locational similarity of units i and j; x is a variable of

interest; and 	x =
1

n

n∑
i=1

xi.

Following the literature, I use row-standardized spatial weights, so that
n∑

j=1

wi j = 1 for

each i.

Fig. 4 shows changes in the global Moran's I for log wages calculated using row-

standardized inverse great circle distance matrices with di�erent cuto� distances. All the

indices are positive and signi�cant at the 5% signi�cance level, hence, city wages are spatially

autocorrelated.
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Figure 4: Moran's I for real wages (log), inverse distance matrices with cuto�s.

Also I compute Moran's index using row-standardized contiguity distance matrices with

di�erent cuto� distances (Fig. 5). As in Fig. 4, all the spatial indexes are 5% signi�cant

and positive. The territory of Russia is huge, so it should not come as a surprise that

the measure of spatial autocorrelation becomes higher when geographically remote cities'

pairwise spatial weights are considered as zero. Changes in Moran's I for inverse distances

over the period 1996�2013 are highlighted in Fig. 5. As we can see, most similar dynamics

corresponds to neighbors within a radius of 1500 km. So, the radius of 1500 km can be

considered as the neighbors' radius capturing almost all possible interactions in terms of

spatial autocorrelation of real city wages.

Figure 5: Moran's I for real wages (log), contiguity weight matrices with cuto�s.

The fourth type of spatial matrix depending on N nearest neighbors is usually applied
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in studies of spatial autocorelation for US states and European regions. There seem to be

no empirical papers on Russian regional data that analyze regional spatial interactions of

regions based on a given number of neighbors. Moran's I for wages with spatial weights

de�ned by the number of neighbors decreases while number of neighbors becomes greater

(Fig. 6).

There are several local minimal and maximal values of the global spatial autocorrelation

index, and these correspond to di�erent values of the year variable. We can �nd local

maximums in �nancial crisis years (1998 and 2008) or a year later in all three plots with

Moran's I dynamics.

Figure 6: Moran's I for real wages (log), weights based on number of neighbors.

All the three plots display signi�cant and positive spatial autocorrelation of real city

wages. Hence, ignoring possible spatial links of observations may lead to biased estimates

of the Barro regression. Therefore, in the next section, I introduce a spatial component into

the Barro regression.

5 Spatial convergence

5.1 Spatial model speci�cation of the Barro regression

Before choosing between various spatial regression models, I run spatial diagnostic tests

(Moran's test, Lagrange multiplier error test and Lagrange multiplier lag test) for spatial

dependence in OLS residuals. These tests show signi�cant spatial autocorrelation of residuals

for most of the spatial matrices constructed in Section 4. There is a criticism of choosing a

speci�cation of the spatial model based only on formal diagnostic tests (LeSage and Fischer,

2008). The Barro regression (2) includes the only explanatory variable � the initial level
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of income � while wage dispersion cannot be explained solely by the initial levels of wages.

Hence, we face the problem of omitted explanatory variables. Moreover, statistics on Russian

cities are insu�cient for constructing the standard bunch of variables tested in conditional

beta-convergence models. The aim of the paper is to �nd spatial matrices that could explain

spatial interactions in the Barro regression in the case of omitted variables. LeSage and

Fischer (2008) argue that the SDM is a natural choice over competing alternatives of spatial

models in the case of missing explanatory variables. Following LeSage and Fischer (2008), I

include a spatial lag of the dependent variable on the right hand side of the Barro regression

in order to account for missing explanatory variables. Also I include a spatial lag of initial

values of wages. So, the regression to be estimated is a spatial Durbin model (SDM):

yi = α + β ln xi,0 + ρ

n∑
j=1

wi j y j + θ

n∑
j=1

wi j ln xi,0 + εi,t, (5)

where yi =
ln xi, t−ln xi,0

T ,

wi j are spatial weights, i, j = 1, ..., n, number of cities n = 997,

ρ is a spatial autoregressive parameter, |ρ| < 1 for conventional row-stochastic matrices,

θ is a spatial parameter of lagged initial year wages,

ε is a vector of homosñedastic and uncorrelated errors.

One more reason for considering the SDM is that the model (5) is a global spatial

spillover speci�cation. The spatial spillover arises when the value of variable x of the ob-

servation i in space has a signi�cant impact on the outcomes y j of an observation located

at position j. Global spatial spillovers mean that there is an endogenous interaction and a

spatial feedback e�ect (LeSage, 2014). Endogenous interaction implies that changes in one

observation drive a series of changes in all regions in the sample such that a new long-run

steady state equilibrium arises. In other words, equation (5) yields a simple way of capturing

the general-equilibrium e�ects. For example, high wages in city i may attract migrants from

neighboring cities j and k, so the employment rate in i will change, and employers may o�er

lower wages in i, while in cities j and k the employment rate will decrease, ceteris paribus,

which may lead to higher salaries. Neighbors of j and k may react to new wages in the same

scenario, and this will lead to a global spatial feedback e�ect.

Because of the presence of the spatial lag of the dependent variable in (5), coe�cients of

explanatory variables in the SDM cannot be interpreted as partial derivatives which describe

the magnitude of changes in the dependent variable that arise from changes in explanatory

variables. LeSage and Pace (2009) introduce direct, indirect and total e�ects for the correct

interpretation of coe�cients in spatial models (see Appendix 2).

What about the expected signs of impact? A change in the initial level of the wage of

city i will result in: 1) a direct impact on the growth rate of city i, 2) an indirect impact

arising from spatial relationships with cities j , i, because of the presence of the spatial

lag. When the wage in city i increases, i.e. the population of city i becomes richer, then,

according to beta-convergence hypothesis, it must follow that the wage in city i grows slower.
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Hence, the expected sign of the direct impact is negative. The predicted sign of the indirect

impact that comes from changes in wages in neighboring cities is negative, because when

neighboring cities become richer, then city i gets poorer than the neighboring cities, and

beta-convergence suggests that it grows faster.

Half life time to convergence in a spatial version of the Barro regression depend on not

only the coe�cient of the initial income. LeSage and Fischer (2008) provide a formula for

half life time to convergence in the case of the SDM

τ =
ln 2

ln λ
(6)

where λ = (1 + β − ρ)/(1 − ρ). Coe�cient τ stands for a number of rounds of T years

to reach a half-way point of the path to the new equilibrium steady-state, so half-life time

in years is HL = τT .

5.2 Estimates and interpretations

Estimates of the SDM with di�erent spatial matrices are in Tables 3, 4, and 5. The estimation

method that I use is Markov chain Monte Carlo model composition methodology (MC3)

introduced by Madigan and York (1995) and extended by LeSage and Parent (2007) to the

case of SDMs (see Appendix 3 for details of the estimation procedure). Posterior probabilities

of each model are provided in Tables 3, 4, 5, and can be considered as weights in a simple

linear combination of estimates presented in each table for constructing model averaged

estimates (LeSage and Fischer, 2008).

Table 3: Estimates of SDM, weights - inverse distances with cuto�s

Dependent: Annual growth of wages, log
Variables (1) (2) (3) (4)
Constant 0.026∗∗ 0.016 0.010 0.008

(0.016) (0.016) (0.015) (0.015)
Wages in 1996 (log) -0.0334∗∗∗ -0.0334∗∗∗ -0.0333∗∗∗ -0.0332∗∗∗

(0.0012) (0.0012) (0.0012) (0.0012)
ρ 0.879∗∗∗ 0.896∗∗∗ 0.906∗∗∗ 0.909∗∗∗

(0.034) (0.033) (0.032) (0.032)
θ 0.033∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.002) (0.002) (0.002) (0.002)
Direct e�ect -0.033∗∗∗ -0.033∗∗∗ -0.033∗∗∗ -0.033∗∗∗

Indirect e�ect 0.032∗∗∗ 0.041∗∗ 0.050∗∗ 0.055∗∗

Total e�ect -0.001 0.008 0.017 0.022∗

τ 2.15 1.79 1.58 1.53

Spatial weights w(d650) w(d700) w(d750) w(d800)

Model probabilities 0.0255 0.6573 0.3097 0.0070

standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates of the SDM are presented in Table 3. Spatial weights are inverse great circle
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distances with cuto�s. I estimate (5) with distance cuto�s 650, 700, 750, ..., 2000 km6,

and inverse distances without cuto�s. In Table 3, estimates are provided for models with

posterior probabilities greater than 0.0001.

The convergence parameter β is negative and signi�cant, as well as in the non-spatial

case. Estimates of β are robust to the spatial cuto� distance, and this is consistent with

LeSage and Pace (2009). I get positive and signi�cant estimates of the spatial parameter ρ

for the SDM with di�erent spatial matrices introduced above, therefore the city wage growth

is related with the growth rates of neighboring (in terms of the weights matrix) cities, after

conditioning on the e�ect of initial wages ln yi,0. Values of ρ depend on the type of the

spatial matrix.

Table 4: Estimates of SDM, weights - neighbors de�ned by cuto� distances

Dependent: Annual growth of wages, log
Variables (1) (2) (3) (4)
Constant 0.116∗∗∗ 0.099∗∗∗ 0.086∗∗∗ 0.088∗∗∗

(0.028) (0.027) (0.028) (0.030)
Wages in 1996 (log) -0.0319∗∗∗ -0.0317∗∗∗ -0.0315∗∗∗ -0.0314∗∗∗

(0.0012) (0.0012) (0.0012) (0.0012)
ρ 0.662∗∗∗ 0.705∗∗∗ 0.736∗∗∗ 0.724∗∗∗

(0.072) (0.072) (0.070) (0.077)
θ 0.025∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.003) (0.003)
Direct e�ect -0.032∗∗∗ -0.032∗∗∗ -0.031∗∗∗ -0.031∗∗∗

Indirect e�ect 0.011∗ 0.012∗ 0.013∗ 0.013∗

Total e�ect -0.021∗∗∗ -0.020∗∗ -0.018∗ -0.018∗

τ 6.99 6.10 5.46 5.74
Spatial weights w(nei650) w(nei700) w(nei750) w(nei800)

Model probabilities 0.0335 0.5287 0.4362 0.0017

standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The direct e�ects of the initial wages represent the impact of this variable on the growth

rates directly as well as the feedback e�ect of going through neighbors. Magnitudes of direct

e�ects of initial wages are close to the estimates of β, this can be explained by low values of

θ.

One of the main results from estimating the spatial Durbin model is that the indirect

e�ect of the initial wages is positive in all the cases (Tables 3, 4, 5), which suggests the exis-

tence of a global spatial spillover e�ect for Russian city wages. Changes in the explanatory

variables in the SDM leads to a series of space-time changes that result in a new equilibrium.

The time to reach the new equilibrium takes τ rounds of 17 years, which in the case of the

6Cuto� values less than 650 km are not considered because of the presence of some remote towns in Sakha
(Yakutia) Republic and Krasnoyarsk kray. The nearest observations to those towns are located at a distance
more than 600 km. Therefore, spatial matrices with a cuto� distance less than 600 km are unconnected, and
they cannot be used in the SDM.
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model with the highest posterior probability in Table 3 (cuto� distance 700 km) is equal to

HL = 1.79 × 17=30.43 years.

Estimates of the SDM with spatial contiguity weights based on cuto� distances are

presented in Table 4. In this case, the highest posterior probability model is also de�ned by

a cuto� distance of 700 km, and while also using inverse distances. The time to reach the

new equilibrium takes 6.1 rounds of 17 years, which is much greater than for spatial inverse

distance weights.

Estimates of the SDM (5) for a given number of neighbors are presented in Table 5. I

consider N=1, 2, ..., 20, while estimates of models with posterior probabilities less than 0.01

are omitted. Posterior probabilities in Table 5 indicate that the span of local externalities

varies from 11 to 15 neighbors. In terms of distances this number depends largely on the

location of the city, because the European part of the country is densely populated, and the

10-15 neighbors may envelop a radius of 100 km, while in the Asian part such distance may

be around 500 km or even longer.

Table 5: Estimates of SDM, weights de�ned by N nearest neighbors

Dependent: Annual growth of wages, log
Variables (1) (2) (3) (4) (5) (6)
Constant 0.089∗∗∗ 0.086∗∗∗ 0.081∗∗∗ 0.078∗∗∗ 0.071∗∗∗ 0.069∗∗∗

(0.013) (0.013) (0.013) (0.014) (0.014) (0.014)
Wages in 1996 (log) -0.0337∗∗∗ -0.0337∗∗∗ -0.0338∗∗∗ -0.0341∗∗∗ -0.0341∗∗∗ -0.0341∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0012) (0.0011)
ρ 0.733∗∗∗ 0.742∗∗∗ 0.749∗∗∗ 0.759∗∗∗ 0.770∗∗∗ 0.774∗∗∗

(0.029) (0.030) (0.030) (0.031) (0.031) (0.031)
θ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Direct e�ect -0.033∗∗∗ -0.033∗∗∗ -0.033∗∗∗ -0.034∗∗∗ -0.034∗∗∗ -0.034 ∗∗∗

Indirect e�ect 0.014∗∗ 0.015∗∗ 0.016∗∗ 0.017∗∗ 0.118∗∗ 0.019∗∗

Total e�ect -0.019∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.015 ∗∗ -0.015∗∗

τ 5.14 4.95 4.79 4.54 4.32 4.24
Spatial weights w(11) w(12) w(13) w(14) w(15) w(16)

Model probabilities 0.4078 0.0913 0.0776 0.0909 0.2687 0.0421

standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

To sum up, estimates of the spatial Durbin model of the Barro regression are consistent

with the expected spatial impact of initial wages on the wage growth. Spatial parameters

for spatial lags of both initial wages and growth rates are signi�cant and rather high.

5.3 Spatial sigma-convergence

In the non-spatial case, I test the hypothesis of sigma-convergence and �nd a reduction of

wage dispersion. In order to test whether the neighbors' wage dispersion also decreases,
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I consider spatial lags of log wages: νi,t =

n∑
j=1

wi j ln xi,t , where t =1996,...,2013, wi j are

row-normalized spatial weights. Wages ln xi,t increase over time, i.e. involve a time trend.

Therefore, I consider a �rst-order autoregressive component with a time trend:

vi,t = bvi,t−1 + γi + δit + εi,t, (7)

As in subsection 3.3, I exploit the Harris-Tsavalis panel unit test based on the OLS

estimator. The null hypothesis H0 : b = 1 (panels contain unit roots) versus the alternative

Ha : |b| < 1 (panels are stationary). Estimates for di�erent spatial matrices are provided in

Table 6, with p-values<0.0001.

Table 6: Panel unit root test results
Spatial weights W d1500 W d1000 W d2000 W nei500 W nei1000 W nei2000

Estimates of b 0.510 0.478 0.546 0.529 0.526 0.560
z-statistics -15.831 -20.15 -10.81 -13.22 -13.53 -8.88

Thus, I reject the null hypothesis of a unit root and �nd support for spatial sigma-

convergence in wages.

6 Conclusion

The paper studies sigma- and beta-convergence based on recent Russian city-level geocoded

data. I �nd signi�cant convergence of both types. The e�ect of the initial wage on the

wage growth is rather weak, the coe�cient β for the initial wage in the Barro regression is

about −0.03 for both non-spatial and spatial cases. Russian city wages display signi�cant

and positive spatial autocorrelation, and a radius of 1500 km can be considered as an area

of almost all possible spatial interactions of city wages in terms of the Moran's I volatility.

Estimates of the spatial Durbin model are rather robust to the speci�cation of the

spatial weights matrix. There is a positive and signi�cant spatial spillover e�ect of initial

city wage level on city wage growth, which is consistent with the choice of spatial regression.

Finally, using Bayesian spatial regression, I argue that the most intensive spatial interactions

between cities that result in changes of wage growth rates are within the distance of 700 km.

Estimates of half life period of convergence are highly dependent of the form of spatial

weight matrix. Because of heterogeneous pairwise distances between cities, wage conver-

gence patterns can be studied, for example, subdividing regions into several groups in the

spirit of Kholodilin et al. (2009), introducing spatial weights depending on the part of the

country (Demidova, 2015), or other techniques, which may shed light on the nature of spatial

interactions between Russian cities.
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Appendix 1

Table 7: Empirical papers on regional income convergence using spatial Russian
data

Paper Time period Indicator Results Space

Solanko (2003) 1992�2001 Personal

income

σ-divergence,

β-convergence

Control variable

�distance from Moscow�

Berkowitz and

DeJong (2003)

1993-1997 Personal

income

β-divergence Control variable

�distance from Moscow�

Ahrend (2005) 1990�1998 GRP,

personal

income,

industrial

production

β-convergence and

β-divergence,

depending on the

indicator

Regressions for Russia

and for its European

part

Carluer (2005) 1985�1999 Personal

income

β-convergence and

β-divergence,

depending on the

time period.

Convergence clubs

Geographical dummies

and distance from

Moscow

Buccellato

(2007)

1999�2004 Personal

income

β-convergence SAR, SEM. Contiguity

weight matrix

Lugovoy et al.

(2007)

1996�2004 GRP σ-convergence and

σ-divergence,

depending on the

time period and

methodology.

Conditional

β-convergence

Moran's I. SEM, SDM.

Spatial weights:

travelling time, inverse

distance

Zverev and

Kolomak

(2010)

1995�2006 GRP,

budget

revenue,

budget

expenses

σ-divergence.

β-convergence and

β-divergence,

depending on the

indicator

Moran's I. SEM, SAR.

Spatial weights: inverse

distances, contiguity

Kholodilin et

al. (2012)

1998�2006 GRP Weak

β-convergence.

Strong

β-convergence

among high income

regions and among

low income regions

Moran's I. SEM, SAR.

Spatial weights: inverse

squared distances

Ivanova (2014) 1996�2012 Personal

income

σ-convergence,

β-convergence

Moran's I. SAR.
Spatial weights:

contiguity, inverse great

circle distances with

cuto�s, inverse railway

distances

Notes. GRP � gross regional product. SEM � spatial error model, SAR � spatial autoregressive model,

SDM � spatial Durbin model.
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Appendix 2

Interpreting estimates of SDM

Consider an SDM

y = X β + ρW y + θW X + ε (8)

here X is an n × k matrix of explanatory variables, β is a k × 1 parameter vector, W

is a n × n spatial matrix, ρ and θ are spatial scalar parameters, ε is an n × 1 disturbance

vector. We assume that ε ∼ N (0, σ2In), here In is the identity matrix of size n. An intercept

parameter in (8) is omitted for simplicity.

The data generating process for this model is given by

y =
∑p

r=1 Sr (W )xr + (In − ρW )−1ε

Sr = (In − ρW )−1(In βr +Wθr )

where xr is the rth explanatory variable.

Impacts (e�ects) arise in changes in the rth explanatory variable in the SDM (8).

Consider the impact of changes in xir (each ith observation of xr) on the dependent

variable yi of the ith observation. These impacts mean e�ect of changes in xir directly to the

yi as well as a feedback e�ect which passing through neighbors and back to the observation

itself. The averaged sum of such impacts is equal to 1

ntr(Sr ) and called the average direct

e�ect of xr .

The indirect e�ect means impacts from changes in all observations j = 1, 2, ..., n of an

explanatory variable x jr , j , i. They are calculated as the sum of the o�-diagonal elements

of the rows i in Sr for each i. These e�ects can be considered as a numerical measure of

spatial spillovers. The average indirect e�ect of xr is equal to the average sum of the

o�-diagonal elements of the matrix Sr .

The average total e�ect of xr is calculated as the sum of the average direct e�ect

and the average indirect e�ect.

Appendix 3

Bayesian model comparison

Consider SDMs (8) with di�erent spatial matrices W1, W2, ..., Wm and equal set of explanatory

variables, denote the set of SDMs: M = M1, M2, ..., Mm. Denote prior probabilities of each

model π(Mi), i = 1, ...,m and prior distributions for the parameters of each model: π(η),
η = (β, ρ, θ, σ2), where σ2 is a constant, scalar noise variance parameter.
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Each model is equally likely a priori, i.e. π(Mi) = 1/m, i = 1, ...,m. Let D be the sample

data. Likelihood for y is conditional on distributions for the parameters of the model and

the set of models M: p(D |η, M). The joint probability for the set of models, parameters and

data:

p(M, η, D) = π(M)π(η |M)p(D |η, M)

Apply the Bayes rule and get the joint posterior probability for both models and

parameters:

p(M, η |D) =
π(M)π(η |M)p(D |η, M)

p(D)

The posterior probabilities regarding the models take the form

p(M |y) =
∫

p(M, η |y)dη (9)

LeSage and Parent (2007) provided formulas for the marginal posterior in (9) for spatial

autoregressive and spatial error models that di�er in terms of the explanatory variables

matrix X and the �xed type of the spatial matrix. LeSage and Fischer (2009) extended the

study for the case of parameters for the range of nearest neighbors in the spatial matrix and

type of distance.

The likelihood function for the parameters η = (β, ρ, θ, σ2), based on the data D =

{y, X,W } takes the form

L(η, y, X,W ) ∝ (σ2)−n/2 |In − ρW |1/2 exp
{
−

1

2σ2
ε′ε

}
,

where

ε = (In − ρW )y − X β − θW X .

There is a number of di�erent approach for assigning prior distributions for the param-

eters in η. Following LeSage (1997), LeSage and Parent (2007), use Metropolis within Gibbs

sampling procedure (Metropolis-Hastings sampling for the parameter ρ and Gibbs sampling

from the normal distribution for the parameters β, θ and normal inverse gamma distributions

for σ2). The MCMC algorithm for the SDM is provided by LeSage and Pace (2009), see

Chapter 5. In the case of homoscedastic disturbances in SDM marginal likelihoods depend

only on the parameter ρ.

The log-marginal posterior likelihoods p(M |y) are the key magnitudes for model com-

parison in the Bayesian approach. Log-marginal density vectors for each unique model found

during the MCMC are stored to calculate posterior model probabilities over the set of all

unique models covered by the sampler. The posterior model probabilities sum to unity, and

they can be used as weights to form a linear combination of estimates based on di�erent

explanatory variables.
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For each model in Tables 3, 4, 5 1,000,000 draws of the Metropolis within Gibbs

sampling procedure were carried out, excluding the �rst 200,000 draws to produce posterior

estimates.7 I run Raftery-Lewis diagnostic tests for each parameter of the chain, in order

to detect convergence to the stationary distribution and to provide a way of bounding the

variance of estimates of quantiles of functions of parameters. In the Raftery-Lewis test, q is

a quantile of the quantity of interest (e.g. 0.05), r is a level of precision desired (e.g. ±0.025),

s is a probability associated with r (e.g. 0.90), and δ is a convergence tolerance (e.g. 0.01).

The above-mentioned number of draws of the Metropolis within Gibbs sampling procedure

is su�cient for q=0.001, r=0.0005, s=0.999, and δ =0.001.

Standard errors and signi�cance levels provided in Tables 3, 4, 5, are derived from

simple descriptive statistics of the Markov chain iterations for each sample.
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