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Binomial coefficients

• For any two integers n ≥ 0 and 0 ≤ k ≤ n, the number of combinations of k
elements from a given set of n objects is conventionally denoted by Ck

n or
(n

k

)
and

Ck
n =

n!

(n − k)!k!
.

This number appears, in particular, as a coefficient in binomial expansions, from
where it gets the name of a binomial coefficient.

• Arranging C0
n , . . . ,Cn

n from left to right in a row for successive values of n, we
obtain a triangular array called Pascal’s triangle.

n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

Figure: The first eight rows (n + 0, ..., 7) of Pascal’s triangle.
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Binomial coefficients

The history of the binomial coefficients dates back to 200 BC, they have many nice
properties, see for instance the websites:

- Wikipedia (13 pages): https://en.wikipedia.org/wiki/Pascals triangle

- Math is Fun: http://www.mathsisfun.com/pascals-triangle.html

- Wolfram MathWorld: http://mathworld.wolfram.com/PascalsTriangle.html
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Properties

• If n is prime, then for any k = 1, . . . , n − 1, Ck
n is divisible by this prime.

Moreover, for each n > 0 and k = 0, . . . , n − 1,

Ck
n

Ck+1
n

=
k + 1
n − k

,

i.e., for any two consecutive binomial coefficients Ck
n and Ck+1

n in row n of
Pascal’s triangle their ratio is equal to the ratio of the number k + 1 of the positions
0, . . . , k in that row from the position k to the left and the number n − k of the
positions k + 1, . . . , n in that row from the position k + 1 to the right.

For example, for n = 6 and k = 1, we have
C1

6

C2
6

=
6
15

=
2
5

=
1 + 1
6− 1

.
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1 1 1

2 1 2 1

3 1 3 3 1
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5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

Figure: The first eight rows (n + 0, ..., 7) of Pascal’s triangle.
Anna Khmelnitskaya, Gerard van der Laan, Dolf Talman Pascal graph numbers



Properties

• If n is prime, then for any k = 1, . . . , n − 1, Ck
n is divisible by this prime.

Moreover, for each n > 0 and k = 0, . . . , n − 1,

Ck
n

Ck+1
n

=
k + 1
n − k

,

i.e., for any two consecutive binomial coefficients Ck
n and Ck+1

n in row n of
Pascal’s triangle their ratio is equal to the ratio of the number k + 1 of the positions
0, . . . , k in that row from the position k to the left and the number n − k of the
positions k + 1, . . . , n in that row from the position k + 1 to the right.

For example, for n = 6 and k = 1, we have
C1

6

C2
6

=
6
15

=
2
5

=
1 + 1
6− 1

.

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

Figure: The first eight rows (n + 0, ..., 7) of Pascal’s triangle.
Anna Khmelnitskaya, Gerard van der Laan, Dolf Talman Pascal graph numbers



Properties

• If n is prime, then for any k = 1, . . . , n − 1, Ck
n is divisible by this prime.

Moreover, for each n > 0 and k = 0, . . . , n − 1,

Ck
n

Ck+1
n

=
k + 1
n − k

,

i.e., for any two consecutive binomial coefficients Ck
n and Ck+1

n in row n of
Pascal’s triangle their ratio is equal to the ratio of the number k + 1 of the positions
0, . . . , k in that row from the position k to the left and the number n − k of the
positions k + 1, . . . , n in that row from the position k + 1 to the right.

For example, for n = 6 and k = 1, we have
C1

6

C2
6

=
6
15

=
2
5

=
1 + 1
6− 1

.

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

Figure: The first eight rows (n + 0, ..., 7) of Pascal’s triangle.
Anna Khmelnitskaya, Gerard van der Laan, Dolf Talman Pascal graph numbers



Properties

• For any n ≥ 1 and 0 ≤ k ≤ n,

Ck
n = Ck−1

n−1 + Ck
n−1,

with the convention that Ck−1
n−1 = 0 if k = 0 and Ck

n−1 = 0 if k = n.
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Properties

• Let (n, k) denote position k on row n =⇒ Ck
n is the number of paths in Pascal’s

triangle that start at (0, 0) and terminate at (n, k), moving at every step
downwards either to the left or to the right.

1∗+

1∗ 1+

1 2∗ 1+

1 3∗ 3 1+

1 4∗ 6 4+ 1

1 5∗ 10 10+ 5 1

1 6 15∗ 20+ 15 6 1

1 7 21 35∗+ 35 21 7 1

Figure: Two of the paths from the apex (0, 0) to position (7, 3).

Obviously, Ck
n is also the number of paths from (n, k) to (0, 0), moving upwards

either to the left or to the right.
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Some notions

For finite set N, a graph is a pair (N,E) with N the set of nodes and
E ⊆ {{i, j} | i, j ∈ N, j 6= i} a set of edges between nodes.

A graph (N,E) is connected if for any i, j ∈ N, i 6= j , there is a path from i to j in (N,E)

A node k ∈ N is an extreme node of connected graph (N,E) if either |N| = 1, or
N\{k} is connected in (N,E).

The set of extreme nodes of a connected graph (N,E) we denote by S(N,E).

If {i, j} ∈ E , then node j is a neighbor of node i in (N,E).

Let BE
k = {i ∈ N | {i, k} ∈ E} denotee the set of neighbors of k in (N,E).

The number of neighbors of k in (N,E), denoted by dk (N,E), is degree of node k in
(N,E), i.e., dk (N,E) = |BE

k |.

A connected graph (N,E) is a line-graph, or chain, if every node has at most two
neighbors and |E | = |N| − 1.

For a graph (N,E) and node i ∈ N, we denote N\{i} by N−i and E |N−i by E−i .
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Feasible orderings

Given a finite set N, Π(N) denotes the set of linear orderings on N.

For a connected graph (N,E) and node k ∈ N, a linear ordering π ∈ Π(N),
π = (π1, . . . , π|N|), is feasible with respect to k in (N,E) if

(i) π1 = k ,

(ii) for j = 2, . . . , |N| the set of nodes {π1, . . . , πj} is connected in (N,E).

By ΠE
k (N) we denote the subset of all feasible with respect to k in (N,E) linear

orderings and its cardinality we denote by ck (N,E), i.e.,

ck (N,E) = |ΠE
k (N)|.
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Binomial coefficients revised on line-graphs
For integer n ≥ 0, consider the n + 1 positions on row n of Pascal’s triangle as nodes
on the line-graph (N,E) with N = {0, . . . , n} and E = {{k , k + 1} | k = 0, . . . , n− 1},
where to every node k , k = 0, . . . , n, the binomial coefficient Ck

n is assigned.

u u u u u u u u
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

Figure: The binomial coefficients on the line-graph induced by row 7 of Pascal’s triangle.

What are the numbers ck (N,E) for the nodes of this graph?

First, we give a new interpretation of Ck
n as the number of paths in Pascal’s triangle

from position (n, k) to apex (0, 0).

For each linear ordering π ∈ ΠE
k (N), for every j = 2, . . . , n + 1 node πj is the neighbor

of the node either on the left end or on the right end of the connected set
{π1, . . . , πj−1}.

=⇒ on the line-graph the number ck (N,E) of feasible orderings with respect to node k
is equal to the number of paths from position (n, k) to (0, 0) in Pascal’s triangle.
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Binomial coefficients revised on line-graphs

u u u u u u u u
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

1∗+

1∗ 1+

1 2∗ 1+

1 3∗ 3 1+

1 4∗ 6 4+ 1

1 5∗ 10 10+ 5 1

1 6 15∗ 20+ 15 6 1

1 7 21 35∗+ 35 21 7 1

Two of the paths from position (7, 3) to the apex (0, 0):

path + corresponds to ordering (3, 4, 5, 6, 7, 2, 1, 0) and path ∗ to (3, 2, 1, 4, 5, 6, 0, 7).
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Binomial coefficients revised on line-graphs

Theorem

For any two integers n ≥ 0 and 0 ≤ k ≤ n it holds that for the line-graph (N,E) on
N ={0, . . . , n} with E ={{k , k + 1} | k =0, . . . , n − 1}

Ck
n = |{π ∈ Π(N) | π1 = k , {π1, . . . , πj} is connected in (N,E), j = 2, . . . , n + 1}|,

i.e., Ck
n = ck (N,E).

The theorem implies that Ck
n is equal to the number of ways the line-graph (N,E) can

be constructed by starting with node k and adding at each step a node that is
connected to one of the nodes that already have been added.

Equivalently, Ck
n is the total number of ways that extreme nodes can be removed one

by one from the graph until only the node k remains.
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Binomial coefficients revised on line-graphs

Now we reconsider formula Ck
n = Ck−1

n−1 + Ck
n−1 within the framework of line-graphs.

For the line-graph (N,E) on N ={0, . . . , n} with E ={{k , k + 1} | k =0, . . . , n − 1}
consider the two line-subgraphs (N−0,E−0) and (N−n,E−n), both having n nodes and
therefore corresponding to row n − 1 of Pascal’s triangle.

For every k ∈ N−n = {0, . . . , n − 1}, ck (N−n,E−n) = |ΠE−n
k (N−n)| = Ck

n−1,

while for every k ∈ N−0 = {1, . . . , n}, ck (N−0,E−0) = |ΠE−0
k−1(N−0)| = Ck−1

n−1 .

Furthermore, we define cn(N−n,E−n) = 0 and c0(N−0,E−0) = 0.

=⇒ since ck (N,E) = |ΠE
k (N)| = Ck

n , we obtain straightforwardly

Theorem

Let (N,E) be the line-graph with N ={0, . . . , n} and E ={{k , k + 1}|k = 0, . . . , n − 1}
for some integer n ≥ 1. Then for any integer 0 ≤ k ≤ n it holds that

ck (N,E) = ck (N−0,E−0) + ck (N−n,E−n).
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Binomial coefficients revised on line-graphs

The theorem implies that the number of linear orderings feasible with respect to a node
in the line-graph (N,E) is equal to the number of linear orderings feasible with respect
to this node in the subgraph (N−0,E−0) without extreme node 0, plus the number of
linear orderings feasible with respect to this node in the subgraph (N−n,E−n) without
another extreme node n.

u u u u u u u e1 6 15 20 15 6 1 0

e u u u u u u u0 1 6 15 20 15 6 1

u u u u u u u u
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

Figure: Illustration for n = 7 that the binomial coefficient of a node of a line-graph is equal to the
sum of binomial coefficients of this node in two line-subgraphs without one of the extreme nodes.
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Pascal graph numbers

For connected graph (N,E) and node k ∈ N, ck (N,E) = |ΠE
k (N)| is defined as the

number of linear orderings π on N such that π1 = k and for j = 2, . . . , |N| the set
{π1, . . . , πj} is connected in (N,E).

For a line-graph (N,E) these numbers are the binomial coefficients on row |N| − 1 in
Pascal’s triangle.

=⇒ we call these numbers Pascal graph numbers.

Definition

For a connected graph (N,E), the Pascal graph number of node k ∈ N is the number
ck (N,E).

For arbitrary connected graph (N,E), ck (N,E) is equal to the number of ways the
graph can be constructed by starting with this node and adding at each step a node
that is connected to one of the nodes that already have been added,

or equivalently, it is the number of ways extreme nodes can be removed from the graph
one by one until only the node k remains.
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Pascal graph numbers on connected cycle-free graphs

A connected graph is cycle-free if for any i, j ∈ N, there is a unique path from i to j .

In a connected cycle-free graph (N,E) there are precisely |N| − 1 edges.

For connected cycle-free graph (N.E) and node k ∈ N, a satellite NE
kh of node k in

(N,E) determined by neighbor h ∈ BE
k is the set of nodes i ∈ N for which the unique

path from node k to node i in (N,E) contains node h.

If (N,E) is cycle-free, each neighbor of k in (N,E) induces exactly one satellite of k ,

=⇒ the number of satellites of k in (N,E) is equal to |BE
k |.

For every k ∈ N the satellites of node k in (N,E) form a partition of N−k and,
therefore,

∑
h∈BE

k
|NE

kh| = |N| − 1.

For any k ∈ N and h ∈ BE
k , we denote by (NE

kh,Ekh) the subgraph of (N,E) on NE
kh,

where Ekh = E |NE
kh

.

Each of these subgraphs is connected and cycle-free.
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Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8

u u u e u u
u u

1 2 3 4 5 6

7 8

For node 4, BE
4 = {3, 5, 8} is the set of neighbors and NE

43 = {1, 2, 3, 7}, NE
45 = {5, 6},

and NE
48 = {8} are the (three) satellites.
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Pascal graph numbers on connected cycle-free graphs

A connected cycle-free graph (N,E) with |N| ≥ 2 has at least two extreme nodes and
moreover a node is an extreme node of (N,E) if and only if it has precisely one
neighbor in (N,E).

u u u u u u
u u

1 2 3 4 5 6

7 8

S(N,E) = {1, 6, 7, 8} and all these extreme nodes have just one neighbor.

In general, a subgraph of a connected cycle-free graph (N,E) may not be connected,

but for extreme node h ∈ S(N,E) by definition the subgraph (N−h,E−h) is connected
cycle-free graph on N−h with |N−h| = |N| − 1 nodes

and moreover the set N−h is the unique satellite of node h in (N,E).
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Example of direct calculation of ck (N,E) for connected cycle-free graph

Consider node 4 in the subgraph on N′ = {3, 4, 5, 6, 8} of the graph
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For any linear ordering π feasible with respect to node 4 in (N′,E |N′ ), π1 = 4 and
there are 12 feasible ways to place nodes 3, 5, 6 and 8 after node 4, because the
positions of nodes 3, 5 and 8 can be chosen independently from each other, and node
6 has to be chosen after node 5, but not necessarily directly.

=⇒ c4(N′,E |N′ ) = 12.

For any linear ordering π feasible with respect to node 3 in (N′,E |N′ ), π1 = 3, π2 = 4,
nodes 5 and 8 can be chosen independently from each other, and node 6 has to be
chosen after node 5, but not necessarily directly.

=⇒ c3(N′,E |N′ ) = 3.
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Pascal graph numbers on connected cycle-free graphs

For positive integers nh, h = 1, . . . , k , with sum equal to n, the multinomial coefficient( n
n1,...,nk

)
is given by ( n

n1, ..., nk

)
=

n!
k∏

h=1
nh!

.

For a connected cycle-free graph (N,E) and k ∈ N,
∑

h∈BE
k
|NE

kh| = |N| − 1 =⇒ the

multinomial coefficient
( |N| − 1
|NE

kh|, h ∈ BE
k

)
=

(|N| − 1)!∏
h∈BE

k

|NE
kh|!

is well defined.
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Pascal graph numbers on connected cycle-free graphs

Theorem

For any connected cycle-free graph (N,E) it holds that for every k ∈ N

ck (N,E) =


1, |N| = 1,( |N|−1
|NE

kh|, h∈BE
k

) ∏
h∈BE

k

ch(NE
kh,Ekh), |N| ≥ 2.

In a connected cycle-free graph the Pascal graph number of a node is equal to the
multinomial coefficient of the sizes of all its satellites times the product of the Pascal
graph numbers of each of its neighbors in the subgraph on the satellite containing this
neighbor.

In case of a line-graph all these multinomials are binomials, because for every node
there are (at most) two satellites, and moreover, for any node the satellite determined
by any of its neighbors is a line-graph and therefore the Pascal graph number of each
neighbor in the subgraph on the satellite containing this neighbor is equal to 1 which
yields precisely

Ck
n =

n!

(n − k)!k!
.
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Pascal graph numbers on connected cycle-free graphs

Corollary

If k ∈ N is an extreme node of a connected cycle-free graph (N,E) and {k , h} ∈ E,
then ck (N,E) = ch(N−k ,E−k ).

Indeed, when k is an extreme node, then for his unique neighbor h, NE
kh = N−k , and

therefore, |NE
kh| = |N| − 1 and

( |N|−1
|NE

kh|, h∈BE
k

)
= 1.

The second corollary shows that similar to binomial coefficients the Pascal graph
numbers meet the prime number property.

Corollary

If |N| − 1 is a prime number, then the Pascal graph number of any node of a connected
cycle-free graph (N,E) other than an extreme node of the graph is divisible by this
prime. Moreover, the Pascal graph number of any extreme node of this graph is not
divisible by this prime.
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Pascal graph numbers on connected cycle-free graphs

Theorem

For any connected cycle-free graph (N,E) it holds that for every k ∈ N

ck (N,E) =


1, |N| = 1,( |N|−1
|NE

kh|, h∈BE
k

) ∏
h∈BE

k

ch(NE
kh,Ekh), |N| ≥ 2.

Theorem shows that the Pascal graph number of a node can be calculated from the
Pascal graph numbers of the neighboring nodes in the smaller subgraphs of the
satellites, and therefore provides an iterative procedure to find the Pascal graph
numbers for connected cycle-free graphs.

For small enough subgraphs the number of feasible linear orderings is easy to
compute, in particular it holds that eventually all satellites become line-graphs, on
which the Pascal graph numbers are binomial coefficients.
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Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8

c2(N,E) =
7!

1! 1! 5!
c1({1},E |{1}) · c7({7},E |{7}) · c3({3, 4, 5, 6, 8},E{3,4,5,6,8}).

Clearly, c1({1},E |{1}) = c7({7},E |{7}) = 1, and by Corollary 1,
c3({3, 4, 5, 6, 8},E |{3,4,5,6,8}) = c4({4, 5, 6, 8},E |{4,5,6,8}) = 3, because the
subgraph on {4, 5, 6, 8} is a line-graph. Hence,

c2(N,E) =
7!

1! 1! 5!
· 1 · 1 · 3 = 42 · 3 = 126.

c4(N,E) =
7!

4! 2! 1!
· c3({1, 2, 3, 7},E |{1,2,3,7}) · c5({5, 6},E |{5,6}) · c8({8},E |{8}).

Clearly, c8({8},E |{8}) = c5({5, 6},E |{5,6}) = 1, and, again by Corollary 1,
c3({1, 2, 3, 7},E |{1,2,3,7}) = c2({1, 2, 7},E |{1,2,7}) = 2. Hence,

c4(N,E) =
7!

4! 2! 1!
· 2 · 1 · 1 = 210.
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Pascal graph numbers on connected cycle-free graphs
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u u
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7 8
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Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8

According to Corollary 2, both c2(N,E) = 126 and c4(N,E) = 210 are divisible by the
prime number |N| − 1 = 7.

For the extreme node 1,

c1(N,E) = c2(N−1,E−1) =
6!

1!5!
c7({7},E |{7})·c3({3, 4, 5, 6, 8},E |{3,4,5,6,8}) = 6·1·3 = 18,

which according to Corollary 2 is not divisible by 7.
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Pascal graph numbers on connected cycle-free graphs
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Pascal graph numbers on connected cycle-free graphs

Let (N,E) be the star graph given by N = {0, . . . , n} and E = {{0, h} | h = 1, . . . , n},
in which each node k 6= 0 is connected to the hub at node 0.

By Theorem,
c0(N,E) = n!,

because |N| − 1 = n, BE
0 = {1, . . . , n}, ch(NE

0h,E0h) = 1 for all h = 1, . . . , n since
NE

0h = {h}.

Each node h, h = 1, . . . , n, is an extreme node connected to only node 0 and the
subgraph on its unique satellite NE

h0 = N−h is also a star graph with hub node 0, but
having in total n nodes.

=⇒ by Corollary 1 for all h = 1, . . . , n,

ch(N,E) = c0(N−h,E−h) = (n − 1)!.

Note that c0(N,E) = nch(N,E) for all h ∈ N−0.

=⇒ in a star graph the Pascal graph number of the hub is equal to the sum of the
Pascal graph numbers of all other nodes.
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Pascal graph numbers on connected cycle-free graphs

Next, let (N,E) be a generalized star graph given by N = {0, . . . , n} with the hub at
node 0 having as neighbors nodes m1, . . . ,mk , that is the graph (N,E) for which for
every h = 1, . . . , k the subgraph on the satellite NE

0mh
of node 0 is a line-graph with nh

nodes having node mh as an extreme node.

=⇒ cmh (NE
0mh

,E0mh ) = 1 for h = 1, . . . , k and
∑k

h=1 nh = n.

=⇒ by Theorem

c0(N,E) =
( n

n1, . . . , nk

)
.

=⇒ in a generalized star graph the Pascal graph number of the hub is equal to the
multinomial coefficient for the numbers of nodes in each of the satellites of the hub.
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Pascal graph numbers on connected cycle-free graphs

The next result states that for a connected cycle-free graph (N,E) the ratio between
the Pascal graph numbers of any two neighbors in the graph is equal to the ratio of the
numbers of nodes in the two subgraphs that result from deleting the edge between
these two nodes.

Theorem

For any connected cycle-free graph (N,E) and {k , h} ∈ E it holds that

ck (N,E)

ch(N,E)
=
|NE

hk |
|NE

kh|
.

For the line-graph (N,E) with N = {0, . . . , n} and E = {(k , k + 1)| k = 0, . . . , n − 1}
this result reduces to

Ck
n

Ck+1
n

=
k + 1
n − k

.

If the Pascal graph number of one node is known, then the Pascal graph numbers of
the other nodes can be calculated by successive application of the ratio property.

Starting from the node for which the Pascal graph number is known, the Pascal graph
numbers of the other nodes follow in any linear ordering which is feasible with respect
to the initial node.
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Pascal graph numbers on connected cycle-free graphs

The next result immediately follows from Theorem.

Corollary

If in a connected cycle-free graph the deletion of an edge splits the graph in two
subgraphs having the same number of nodes, then irrespective to the structure of the
two subgraphs obtained, the two nodes adjacent to that edge have equal Pascal graph
numbers. Moreover, the Pascal graph number of any other node is smaller.

Note that in Pascal’s triangle indeed Ck−1
n = Ck

n holds for k =
1
2

(n + 1) when n is odd.
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Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8

We’ve found above that c4(N,E) = 210. Since the deletion of the edge {3, 4} yields
two subgraphs with four nodes in each, due to Corollary 3 we obtain
c3(N,E) = c4(N,E) = 210. Next, by Theorem,

c2(N,E) =
3
5

c3(N,E) = 126,

which we also know from above. Continuing this way we find

c1(N,E) = c7(N,E) =
1
7

c2(N,E) = 18

and

c5(N,E) =
2
6

c4(N,E) = 70, c6(N,E) =
1
7

c5(N,E) = 10, c8(N,E) =
1
7

c4(N,E) = 30.

To summarize, the nodes 3 and 4 have equal and maximal Pascal graph numbers and
the Pascal graph numbers of the extreme nodes are not divisible by 7, whereas these
numbers for all the other nodes are divisible by 7.
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Pascal graph numbers on connected cycle-free graphs
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u u
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Pascal graph numbers on connected cycle-free graphs

The next result generalizes formula

ck (N,E) = ck (N−0,E−0) + ck (N−n,E−n).

and states that the Pascal graph number of a node in a connected cycle-free graph is
equal to the sum of the Pascal graph numbers of that node in all subgraphs obtained
by deleting one of the extreme nodes from the graph.

Theorem

For any connected cycle-free graph (N,E), for every k ∈ N,

ck (N,E) =


1, |N| = 1,∑

h∈S(N,E)

ck (N−h,E−h), |N| ≥ 2,

where ch(N−h,E−h) = 0 for all h ∈ S(N,E).

Anna Khmelnitskaya, Gerard van der Laan, Dolf Talman Pascal graph numbers



Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8

The graph has four extreme nodes, nodes 1, 6, 7, and 8.

u u u u u u
u u

18 126 210 210 70 10

18 30
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Pascal graph numbers on connected cycle-free graphs

u u u u u u
u u

1 2 3 4 5 6

7 8
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Pascal graph numbers on connected cycle-free graphs

r r r r r r
r b

h = 8 5 30 40 30 12 2

5 0

r r r r r r
b r

h = 7 3 18 45 60 24 4

0 10

r r r r r b
r r

h = 6 10 60 80 60 10 0

10 10

b r r r r r
r r

h = 1 0 18 45 60 24 4

3 10

Figure: The Pascal graph numbers for the four subgraphs (Nh, Eh), h = 1, 6, 7, 8 .
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The Pascal graph numbers and steady state probabilities

The Pascal graph numbers determine the stationary distribution of a Markov chain with
the set of nodes as the set of states.

Let (N,E) be a connected cycle-free graph and let sE be the vector of Pascal graph
numbers.

Let PE be the |N| × |N| transition matrix with the (k , h)th element, k , h ∈ N, given by

pE
kh =


|NE

kh|
|N| − 1

, if h is a neighbor of k

0, otherwise,

i.e., when being in node k , the process moves to one of the neighbors with the
probabilities proportional to the number of nodes in the satellites.
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The Pascal graph numbers and steady state probabilities

u u u u u u
u u

1 2 3 4 5 6

7 8

4/7 2/7

1/7

Figure: The transition probabilities from state 4 to the states 3, 5 and 8.
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The Pascal graph numbers and steady state probabilities

Theorem

For any connected cycle-free graph (N,E) with |N| ≥ 2 it holds that sE PE = sE , i.e.,
for every k ∈ N the normalized Pascal graph number ck (N,E)/

∑
h∈N ch(N,E) is the

steady state probability that the Markov chain with transition matrix PE is in state k.

The steady state probabilities that the Markov chain with transition matrix PE is in
states k = 3, 4 are equal to 101/346.

Corollary

For the line-graph on N = {0, . . . , n}, for every k ∈ N the normalized binomial
coefficient Ck

n/2n is the steady state probability that the Markov chain with transition
matrix PE is in state k.

It is well-known that the degrees dk (N,E), k ∈ N„ when normalized to sum equal to
one, are the steady state probabilities of the Markov chain that in any node moves with
equal probability to each of its neighbors.

This property also holds for connected graphs that are not cycle-free.
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Pascal graph numbers as centrality measure
Each linear ordering feasible with respect to some fixed node in a connected graph
induces a way to construct the graph by a sequence of increasing connected
subgraphs starting from the singleton subgraph determined by this node.

We define the connectivity centrality measure as the mapping c on G that assigns to
each connected graph (N,E) ∈ G the vector c(N,E) ∈ IRN of the Pascal graph
numbers of its nodes.

For each node in a given connected graph it measures in how many ways the graph
can be generated when starting with this node and adding one by one the other nodes
which are connected to at least one node that already has been added.

s s s s s s s s
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

r r r r r r
r r

18 126 210 210 70 10

18 30

For a star graph with n + 1 nodes, the connectivity centrality of the hub is n times as
large as the connectivity centrality of each of the n extreme nodes and is therefore
equal to the sum of the connectivity centrality of all other nodes.

A well-known centrality measure is the degree measure which assigns to any graph the
vector of degrees of its nodes.
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numbers of its nodes.

For each node in a given connected graph it measures in how many ways the graph
can be generated when starting with this node and adding one by one the other nodes
which are connected to at least one node that already has been added.
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For a star graph with n + 1 nodes, the connectivity centrality of the hub is n times as
large as the connectivity centrality of each of the n extreme nodes and is therefore
equal to the sum of the connectivity centrality of all other nodes.

A well-known centrality measure is the degree measure which assigns to any graph the
vector of degrees of its nodes.
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Pascal graph numbers as centrality measure

A centrality measure is a function f which assigns to each connected graph (N,E) a
vector f (N,E) ∈ IRN with entries fi (N,E), i ∈ N.

The entry fi (N,E) measures the centrality of node i in graph (N,E).

We show that the connectivity centrality measure on the subclass of cycle-free
connected graphs can be characterized by the three following properties.

Single node normalization A centrality measure f satisfies single node normalization if
fk (N,E) = 1 when N = {k}.

Ratio property A centrality measure f satisfies the ratio property if for every (N,E) ∈ Ĝ

and edge {k , h} ∈ E it holds that
fk (N,E)

fh(N,E)
=
|NE

hk |
|NE

kh|
.

Extreme node consistency A centrality measure f satisfies extreme node consistency if
for every (N,E) ∈ Ĝ with |N| ≥ 2 and extreme node k ∈ S(N,E) it holds that
fk (N,E) = fh(N−k ,E−k ), where h is the unique neighbor of node k in (N,E).

Theorem

A centrality measure f on the class of cycle-free connected graphs satisfies single
node normalization, the ratio property, and extreme node consistency if and only if it is
the connectivity centrality measure.
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Pascal graph numbers on arbitrary connected graphs

For a connected graph (N,E) and subset N′ ⊆ N with E ′ = E |N′ , N′/E ′ is the
collection of maximal connected subsets of N′ in (N,E), called components of N′ in
(N,E).

For a cycle-free graph (N,E) and node k ∈ N, the components of N−k are the
satellites of node k in (N,E).

For an arbitrary connected graph (N,E), k ∈ N and C ∈ N−k/E−k , the extended
subgraph of (N,E) on C with respect to node k is the graph (C,Ek

C) on C with

Ek
C = E |C ∪ {{i, j} ⊆ C | i 6= j, {i, k} ∈ E and {j, k} ∈ E}.

So, when two different nodes i and j in C do not form an edge in (N,E) but both form
an edge with node k , then edge {i, j} is added to the subgraph (C,E |C).

Theorem

For any connected graph (N,E) it holds that for every k ∈ N

ck (N,E) =


1, |N| = 1,( |N|−1
|C|, C∈N−k/E−k

) ∏
C∈N−k/E−k

∑
h∈BE

k ∩C
ch(C,Ek

C), |N| ≥ 2.
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Pascal graph numbers on arbitrary connected graphs

If k ∈ N is an extreme node of (N,E) and therefore N−k/E−k contains only N−k as its
unique element, the expression for ck (N,E) reduces to generalization of Corollary 1.

Corollary

If k is an extreme node of a connected graph (N,E) with |N| ≥ 2, then

ck (N,E) =
∑

h∈BE
k

ch(N−k ,Ek
N−k

).
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Pascal graph numbers on arbitrary connected graphs

In case k ∈ N is not an extreme node of (N,E), node k is an extreme node of the set
C+k = C ∪ {k} for any component C of N−k in (N,E).

Corollary

If k is not an extreme node of a connected graph (N,E) with |N| ≥ 2, then

ck (N,E) =
( |N| − 1
|C|, C ∈ N−k/E−k

) ∏
C∈N−k/E−k

ck (C+k ,E |C+k
).

The latter expression can also be used to express the Pascal graph number of a node
that is not an extreme node of a cycle-free connected graph. In that case a satellite C
of k in (N,E) is equal to NE

kh with h ∈ BE
k being the unique node in C connected to

node k , i.e., C+k = NE
kh ∪ {k}, and therefore ck (C+k ,E |C+k

) = ch(NE
kh,Ekh).

From the last corollary it follows that the first part of Corollary 2 still holds. When
|N| − 1 is a prime number, then the Pascal graph number of any node that is not an
extreme node of a connected graph (N,E) on N is divisible by this prime.

In case the graph contains cycles, however, it might be that the Pascal graph number of
an extreme node is divisible by this prime.

For example, if (N,E) is the complete graph, then every node is an extreme node and
its Pascal graph number is equal to (|N| − 1)!.
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Pascal graph numbers on arbitrary connected graphs

When (N,E) is cycle-free, then for any edge {k , h} ∈ E the graph (N,E \ {{k , h}})
consists of the two components NE

hk and NE
kh and the ratio property applies.

When (N,E) contains cycles, the ratio property still holds for any edge {k , h} ∈ E
which is a bridge in (N,E), i.e., deleting the edge {k , h} from E splits the remaining
graph in two disconnected subgraphs, (NE

kh,Ekh) containing h as a node and
(NE

hk ,Ehk ) containing k as a node.

Theorem

For any connected graph (N,E) and bridge {k , h} ∈ E, it holds that

ck (N,E)

ch(N,E)
=
|NE

hk |
|NE

kh|
.

Note that in a cycle-free connected graph every edge is a bridge. If the graph (N,E)
contains cycles and the edge {k , h} ∈ E is not a bridge, then the graph
(N,E\{{k , h}}) is still connected and the ratio property does not apply.

Since the ratio property may not hold in case of graphs with cycles, the results
concerning Markov chains and the connectivity centrality measure cannot be
generalized to the class of connected graphs.
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Pascal graph numbers on arbitrary connected graphs

Finally, the decomposition theorem holds for any connected graph. The proof goes
along the same lines of the proof for cycle-free case, because for any linear ordering
π ∈ Π(N) feasible with respect to a node k ∈ N in a connected graph (N,E) with
|N| ≥ 2 it holds that π|N| is an extreme node of (N,E).

Theorem

For any connected graph (N,E) it holds that for every k ∈ N

ck (N,E) =


1, |N| = 1,∑

h∈S(N,E)

ck (N−h,E−h), |N| ≥ 2,

where ch(N−h,E−h) = 0 for all h ∈ S(N,E).
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Pascal graph numbers on arbitrary connected graphs
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Thank You!
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