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1 Introduction

Profit maximization principle underlies most reasoning about rational be-
havior of agents. However, making an individual choice is necessarily based
on expectations about how other players act. This is a great source of un-
certainty in a prediction of equilibrium outcome. Nash equilibrium (NE)
concept adopts the idea that each player unilaterally maximizes her own
profit at the current game position under fixed opponent strategies. Effect
produced by actions on the opponents’ strategies is modelled by means
of multi-stage game. The appropriate interpretation for static setting is
that players are sophisticated enough to make correct predictions about
the once and for all made choice of other participants and such beliefs are
consistent in equilibrium.

Alternative approach to decision making has found an expression in
modeling iterated strategic thinking process [5]. Multistep player’s reason-
ing about possible consequent responses of opponents and her own further
actions motivate a development of various bounded rationality concepts.
A number of similar models of agents’ cognitive hierarchy, or adhering to
other terminology k-level rationality, or smartn players, are developed in
[12] [11], [33]. Some empirical studies support k-level rationality approach
([11], [26]). The important point of hierarchical models is that each player
assumes that other players have a lower level of rationality. It means that
players of level-0 are strategically naive, while k-level players (k > 0) best
respond on some beliefs about how their opponents are distributed by
lower levels of rationality.

The reasonable level of rationality is an open question, moreover, it may
be changed in the course of playing the next round of a game: ”players
iteratively adjust their depths of reasoning in response to each others’
choices, then both the choices of all participants and their expressed depths
of iterated reasoning should become closer to each other over time” [16].

The smallest but higher than Nash level of rationality is two. In this
case a player, for instance, takes into account opponents’ best responses
(see [19] for cooperative equilibrium, and [4] for equilibrium in double best
responses). But earlier well known example of such an approach is the
method of conjectural variations (CV) in modelling oligopoly (since [6]).
This approach accounts interaction among agents by means of explicit in-
cluding a reaction function in the model. Despite existing criticism [17]
pointing out an ambiguity of using formally static CV models for dynamic
modeling, CV approach has proved to be a good substitute for repeated
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oligopolistic game [10], [13]. Matching belief about the behavior of the
opponents with their actual best responses solves the problem of CV con-
sistency [9]. The crucial point in the CV approach is that a player estimates
in his mind, before she acts, the possible nearest reaction of other partic-
ipants to the changes she produces. Definitely, this can be treated as a
simple 2-level version of a general iterated strategic thinking process. The
first level here is a desire to maximize her own profit. The second level is
an attempt to predict opponents’ responses, which in turn influence the
final outcome. The generalization of the idea of reaction function is the
concept of Markov perfect equilibrium [28].

So, the problem of prediction and belief consistency is solved in sev-
eral ways: by ignoring any possible reactions (Nash approach: analysis
of responses is transferred to fully dynamic setting), by imposing condi-
tion of coinciding real responses with expected ones (CV approach), or by
constructing models with hierarchy of possibilities to predict behavior of
opponents (cognitive hierarchy models). An important feature of all these
methods is that they select the unique, the most plausible reaction and
propose relatively small sets of equilibria (we consciously avoid the phrase
”the unique equilibrium” since, in general, this is not always the case).

This paper offers an alternative principle of accounting responses: a
player doesn’t try to select any certain response of opponent and recognize
that any action that increase opponent’s utility is possible. This leads to
multiplicity of equilibrium prediction, but it can be explained by natural
limitation of making correct forecast of opponent behavior. However, such
limited rationality approach is not necessarily bad for agents. As it will be
shown in the paper, it often allows them to strategically support collusion
or some intermediate between collusive and competitive outcomes. One
extra level of farsightness in comparison with one-shot Nash rationality
even under large uncertainty on other agent behavior may play a role of
tacit communication between agents.

We develop an equilibrium concept that we call Nash-2 equilibrium.
The main part of the results covers 2-person games. In Section 2 we for-
mulate the definition of Nash-2 equilibrium in terms of modified notion of
profitable deviation accounting profitable opponent responses. We intro-
duce a natural division of Nash-2 profiles to secure and risky which reflects
the various toughness of competition between agents, the degree of tough-
ness can govern the final choice. We examine a relation of the concept to
close existing ones: sequentially stable set [15] and equilibrium in secure
strategies [20] with its modification.
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Section 3 clarifies the problem of existence of Nash-2 equilibrium. We
show that pure Nash-2 equilibrium exists in considerably wider class of
two-person games than Nash equilibrium, and for any game with bounded
payoff functions it can be obtained by a small perturbation of payoffs. One
more important point about Nash-2 equilibria is multiplicity of predicted
outcomes in most games. The problem of selection the unique equilibrium
profile from the wide set can be solved in several ways in dependence
of concrete game framework. The starting point (status quo, or a priory
expectations) significantly influence the equilibrium realized. An approach
that we offer is to construct the measure of feasibility on the set of Nash-
2 equilibrium under the assumption that initially all game profiles are
equiprobable. Several examples of how it is constructed are given.

Section 4 contains detailed analysis of several basic microeconomics
models with Nash-2 approach: quantity and price competition, and rent-
seeking model of Tullock. For the basic model of Cournot competition
equilibria obtained can be divided into two types: ones are extension of
Stackelberg leadership equilibria, and others are intermediate profiles with
various degree of competition toughness. The results for Bertrand com-
petition with imperfect substitutes and for Tullock contest demonstrate
great potential for tacit collusion between agents.

In Section 5 we introduce the formal notion of reflection network for
n players and formulate the definition of Nash-2 equilibrium for n-person
games. The intuition of how this network can arise and is interpreted is
given. We illustrate the idea with the models of Bertrand competition
and Prisoner’s dilemma and provide solutions of them for various types
of reflection network. The crucial point is that accounting of reflection
structure among players considerably affects equilibrium.

We conclude the paper by a brief discussion on the connection of pre-
sented approach with the problem of decision making under various types
of uncertainty: about probabilities of the state of the world, about the
depth of iterated thinking, about timing in the model.

2 Nash-2 equilibrium for 2-person games

2.1 Definition

Consider a 2-person non-cooperative game in the normal form

G = (i ∈ {1, 2}; si ∈ Si;ui : S1 × S2 → R),
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where si, Si and ui are the strategies, the set of all available strategies and
the payoff function, respectively, of player i, i = 1, 2. Henceforth, in this
paper we will deal only with pure strategies.

Definition 1. A deviation s′i of player i at profile s = (si, s−i) is profitable
if ui(s

′
i, s−i) > ui(si, s−i).

When a player takes Nash logic she supposes that no reaction of other
player will follow after her deviation and so such a deviation will increase
her payoff irreversibly and in a certain way. Under assumption of iterated
thinking a player expects some reaction of the opponent. We propose
that if the agent doesn’t know the depth of opponent’s iteration than
she has no grounds to make an unambiguous prediction of other player
behavior. The only reasonable guess is that the opponent will not act to
her own detriment. Such an uncertainty leads to additional requirement
for deviation to be profitable in view of possible responses and, as a result,
more cautious behavior.

Definition 2. A deviation s′i of player i at profile s = (si, s−i) is secure
if for any profitable deviation s′−i of the opponent at intermediate profile
(s′i, s−i) player i is not worse off:

ui(s
′
i, s
′
−i) ≥ ui(si, s−i).

Definition 3. A strategy profile is a Nash-2 equilibrium if no player has
a profitable and secure deviation.

We will denote the set of Nash-2 equilibria by NE-2.
In other words, players do not realize some profitable deviations so far

as they fail to remain gainful after some reasonable reaction of other player.
Obviously, any Nash equilibrium is also a Nash-2 equilibrium. Moreover,
more elegant intuitive division of Nash-2 profiles can be given. Profitable
deviations (they may exist at Nash-2 equilibrium, but they are not secure)
can be of two types. The first kind is harmful for the opponent (such
deviations are referred to as threats [20]), while the second type is not.

Definition 4. A threat of player i to player −i at strategy profile s is a
strategy s′i such that

ui(s
′
i, s−i) > ui(si, s−i) and u−i(s

′
i, s−i) < u−i(si, s−i).

The strategy profile s is said to pose a threat from player i to player −i.
A strategy profile s is secure for player i if s poses no treats from other
players to i.
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So, the set of Nash-2 equilibria can be naturally divided into two sets:
secure profiles and risky outcomes. Secure part itself forms the set of
equilibrium in secure strategies (intuitive formulation is contained in [20]).
Strictly speaking, the definition of equilibrium in secure strategies is for-
mulated as follows.

Definition 5. A strategy profile is an equilibrium in secure strategies
(EinSS) if
i) it is secure,
ii) no player has a profitable and secure deviation.

The interpretation of such a division is the following. Secure part
can be regarded as a tough competition where agents avoid any possible
threats, even non-credible. It often leads to the situations with low profits
since players in such situations have nothing to lose [22].

On the other hand, risky situations (NE-2\EinSS) are characterised by
the observation that agents have opportunities to harm one to another, but
they do not actualize these threats because of possible credible ”counter-
sanctions”. In a number of situations such a cautious (but not overly)
behavior enables agents to hold on higher profits than in case when players
also care about security. Detailed examples will be presented in Sect. 4.

2.2 Related concepts

2.2.1 Graph model of conflict resolution

The idea of accounting ambiguous responses to one’s own unilateral im-
provements has been elaborated in the graph model of conflict resolution
theory, a methodology for analyzing real-word conflicts [8]. These authors
proposed a new theory for non-cooperative games allowing players to make
moves and chains of counter-moves with some limited horizon, and to carry
out non-myopic calculations. Their analysis focuses on 2 × 2 games and
points out the importance of starting point, threat power, and abilities of
players to think ahead for prediction of stable outcomes. Motivation of
applicability of the new theory to modeling real-life situations presented
in [8] and [27] is entirely suitable for the theory of Nash-2 equilibrium that
we develop. Moreover, in contrast with graph model approach accounting
only ordinal preferences Nash-2 equilibrium allows to make more accu-
rate description of stable situations for models with a large (sometimes,
infinite) number of possible game situations.
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The most close concept to Nash-2 equilibrium within this non-myopic
theory of conflict resolution is the sequential stability concept [15]. Let
us reformulate the definition of sequentially stable state here in terms of
two-person game in normal form introduced in Sect. 2.1. (we use the
definition from [14])

Definition 6. For a two players N = {i, j} and a conflict G, an outcome
sSEQ ∈ S is sequentially stable for player i iff for every unilateral prof-
itable deviation of player i to profile s1 there exists a unilateral profitable
deviation of player j from s1 to s2 such that ui(s) ≥ ui(s2). A state
is sequentially stable for the conflict iff it is sequentially stable for both
players.

This definition differs from definition of Nash-2 equilibrium only in the
strictness of the last inequality. Obviously, in 2-person game if profile s is
a Nash-2 equilibrium, then s is a sequentially stable state.

Despite the similarity of these two concepts, the difference turns out
to be truly significant for specific models. Striking example is the basic
Bertrand model of price competition.

Example 1 (Bertrand competition with homogeneous product). Consider
two firms producing a homogeneous product with equal marginal costs
c. Let p1 and p2 be the prices proposed by firms 1 and 2, respectively.
Consumers buy the product with lowest price, the demand being a linear
function of the price Q(p) = 1−p. Firms’ profits are given by the following
function

πi(p1, p2) =

 (pi − c)(1− pi), if pi < p−i,
(pi − c)(1− pi)/2, if pi = p−i,
0, if pi > p−i,

i = 1, 2

Nash-2 concept states that an equilibrium might be with any price level
p = p1 = p2 ∈ [c, 1]. In particular, NE-2 includes the collusive (monopoly)
price level p = 1+c

2 . Indeed, without loss of generality assume that the
firm 1 proposes a prise p1 > p2, and gets zero profit. Then this firm can
undercut the firm 2 and set the prise p2 − ε with sufficiently small ε. Its
deviation from the strategy p1 to p2 − ε is profitable. Moreover, it is also
secure as the worst that can happen with the firm 1 is that the firm 2
in turn undercuts it and the firm 1 comes back to zero profit. So, any
situation with p1 6= p2 is not a Nash-2 equilibrium.

On the contrary, in case of sequential stable state a possibility for the
firm 1 to return to initial profit level immediately means that a situation
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with p1 > p2 occurs to be sequentially stable. So, according to Definition
6 any profile in Bertrand duopoly is sequentially stable.

This example demonstrates the crucial importance of allowing players
to deviate from the initial state even if there is a slight possibility to come
back to initial profit.

2.2.2 Equilibrium in secure strategies

One more game theoretical approach close to ours introduces a security
as an additional motivation for players’ behavior. Two second-stage-
foreseeing concepts that have been proposed are bargaining set based
on the notion of threats and counter-threats (for cooperative games, see
[2]) and equilibrium in secure strategies (EinSS, see [20]). The idea of
both concepts is that players worry not only about own first-stage payoffs
and opponents’ responses, but also about the absence of harmful actions
(”threats”) of the opponents. On grounds of security several attempts to
introduce the concept equivalent to Nash-2 equilibrium (independently of
our study) have been made: they are threatening-proof profile [21], equi-
librium contained by counter-threats [23], and equilibrium in threats and
counter-threats [24]. These are different names of the same as Nash-2
equilibrium concept, but motivated by security logic of decision making1.

The key point of this paper is that Nash-2 equilibrium outcomes are
supported by farsightness of agents and includes secure and non-secure sit-
uations, and they are regarded as various degrees of competition toughness
among them.

The following relation for two-person games takes place [21]: any NE is
an equilibrium in secure strategies, and any equilibrium in secure strategies
is a Nash-2 equilibrium2. The converse is generally not true.

2.2.3 Equilibrium in double best responses

In Nash-2 definition of secure deviation each player accounts all profitable
responses of the opponent. The restriction of the range of profitable oppo-
nent’s deviations to the set of her best responses is developed in [19], [4],
which introduce the similar concepts of equilibrium: cooperative equilib-

1We will accurately refer to existence results during the further exposition in case
of some intersection.

2Authors formulated this result in terms of threatening-proof profile.
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rium and equilibrium in double best responses. Let us reproduce the main
definitions from [4].

Definition 7. Best response of player i to a situation s = (si, s−i) is
an action BRi(si, s−i) = arg maxs′i∈Si

ui(s
′
i, s−i). Double best response

of player i to a situation s = (si, s−i) is an action DBRi(si, s−i) =
arg maxs′i∈Si

ui(s
′
i, BR−i(s

′
i, s−i). A profile s is an equilibrium in double

best responses if for any player i si = DBRi(s).

In other words, in equilibrium in double best responses no player has a
deviation which after opponent’s best response on it leads the player who
deviates the first to more profitable situation than the initial one. Such
a concept provides an efficient equilibrium for some class of network for-
mation games (see [4]), or for coordination games. However, the problem
of consistency of such a concept arises by analogy with the criticism of
conjectural variation approach.

Though for some games an equilibrium in double best responses coin-
cides with Nash-2 equilibrium (for instance, in 2-person Prisoner’s dilemma),
in general it is equivalent neither to Nash-2 equilibrium, nor to equilibrium
in secure strategies.

Example 2. Consider the following game which does not have pure Nash
equilibrium.

L C R
T (1.5,3) (0,0) (4.5,0)
B (2,0) (0,1) (2.5,2)

(T,L) is a Nash-2 equilibrium, but it is not an equilibrium in secure
strategies and not an equilibrium in double best responses. (B,C) is a
Nash-2 equilibrium, an equilibrium in secure strategies and an equilibrium
in double best responses. (B,R) is a Nash-2 equilibrium, an equilibrium in
double best responses, but it is not an equilibrium in secure strategies.

This example shows how all three concepts could predict the worst
equilibrium with payoffs (0,1), but only Nash-2 equilibrium concept catches
the best for player 2 outcome (T,L).

2.2.4 Explicit and tacit collusion

As it has been already stated in the paper, Nash-2 equilibrium is often
a suitable explanation for the phenomenon of tacit collusion between two
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player. Naturally, the question on the relation of Nash-2 equilibrium and
explicit collusion (cooperative behavior) arises. In the example 2 three
profiles (T,L),(T,R), and (B,R) can be chosen during cooperation; never-
theless, only (T,L) and (B,R) is supported by non-cooperative concept of
Nash-2 equilibrium. It is to be mentioned that they are risky outcomes.

In the general case of two-person game, if explicit collusion is a Nash-2
equilibrium then it is in NE-2 \ EinSS, or more strictly:

Theorem 1. If a collusion outcome is not a Nash equilibrium then it is
not a secure profile.

Proof. Let (sc1, s
c
2) = arg maxs1,s2(u1(s1, s2) + u2(s1, s2)). Assume that

it is secure. It means that it poses no threats from one to another. The
two cases are possible: there no profitable deviations and for any profitable
deviation s1 → s′i of player i the another player is not worse off u−i(s

′
i, s−i).

In the first case we deal with NE. In the second case ui(s
′
i, s−i) +

u−i(s
′
i, s−i) > u1(sc1, s

c
2) + u2(sc1, s

c
2) and this contrary to the fact that

(sc1, s
c
2) is collusive outcome.

3 Existence and multiplicity of Nash-2 equi-
librium in 2-person games

3.1 Existence for finite 2-person games

An important advantage of Nash-2 equilibrium concept is that it exists
in most games and fails to exist only in ”degenerate” cases. Let us start
with finite games and formulate this idea accurately. For this purpose we
introduce the notion of secure cycle.

Definition 8. A path of profiles {(sti, st−i)}t=1,...,T is called a secure path

of length T if each its arc (sti, s
t
−i)→ (st+1

i , st+1
−i ) = (st+1

i , st−i) is a secure

profitable deviation from sti to st+1
i for some player i. This path is called

a secure cycle if it is closed: (s1i , s
1
−i) = (sTi , s

T
−i), minimum of such a T is

called a length of cycle.

Using this notion one can easily check the following theorem providing
the criterion for the absence of Nash-2 equilibrium in some game.

Proposition 1. The finite 2-person game in normal form does not have
a Nash-2 equilibrium if and only if it contains at least one secure cycle
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of finite length, and there is a finite secure path from any profile to some
secure cycle.

Proof. Assume that no profile is a Nash-2 equilibrium, then from any pro-
file a profitable secure deviation exists at least for one player. Without loss
of generality, assume that player 1 deviates at odd steps while player 2 de-
viates at even ones. For any secure path starting from (s11, s

1
2) the following

inequalities holds

u1(s2t+1
1 , s2t+1

2 ) ≥ u1(s2t+3
1 , s2t+3

2 ), t = 0, 1, . . . ,

u1(s2t+1
1 , s2t+1

2 ) > u1(s2t+2
1 , s2t+2

2 ), t = 0, 1, . . . ,

u2(s2t1 , s
2t
2 ) ≥ u2(s2t+2

1 , s2t+2
2 ), t = 1, . . . ,

u2(s2t1 , s
2t
2 ) > u2(s2t+1

1 , s2t+1
2 ), t = 1, . . . .

Since the game is finite, at some moment Θ < ∞ (and not exceeding
the number of possible game profiles) this path necessarily starts to reach
the same situations again and forms a cycle of length T ≤ Θ. Moreover,
in order for this to be possible it is necessary and sufficient that all non-
strict inequalities above become equalities for all profiles forming the secure
cycle.

An important observation that secure cycles are very special: all nodes
where player 1 deviates should have the same payoff for this player

u1(s2t+1
1 , s2t+1

2 ) = u1(s2t+3
1 , s2t+3

2 ) ∀t,

the same is true for even nodes and player 2: (u2(s2t1 , s
2t
2 ) = u2(s2t+2

1 , s2t+2
2 )).

Corollary 1. Whenever a game does not have NE-2, any perturbation of
payoffs that breaks at least one equality for payoffs in secure cycle yields
NE-2 existence.

Example 3 (Heads or Tails).

R L
T 1 -1
B -1 1

R L
T 1.01 -1
B -1 1

Left matrix corresponds to a well-known zero-sum game ”Heads or
Tails”. In this game all profiles form a secure cycle and Nash-2 equilibrium
does not exist. But a small perturbation of just one payoff (see the right
matrix) immediately yields that (B,L) becomes a Nash-2 equilibrium.
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Every 2-person game with n strategies for player 1 and m strategies
for player 2 can be associated with a point in R2nm (ordered payoffs for
each pair of strategies are coordinates of this point). So, we can define
the measure on the set of games as a measure of corresponding subset in
Euclidean space.

The minimum length of secure cycle is four, and at least two equalities
on payoffs should take place for a game not to have a Nash-2 equilibrium.
So, the dimension of the subset of all such games does not exceed 2nm−2,
and this subset has measure 0 in R2nm. So, the following theorem holds.

Theorem 2. Nash-2 equilibrium exists in almost every 2-person finite
game.

Note that Theorem 2 demonstrates the existence of NE-2 but not the
optimal algorithm of finding it in arbitrary game.

3.2 Existence for 2-person games with infinite number
of strategies

Logic underlying discrete games can be easily extended to the case of
infinite number of strategies. Loosely speaking, we need the boundedness
of utility function and some condition ensuring the sequence of utilities in
secure path to grows up to the limit value not too slowly.

One way is to define an ε-equilibrium and claim the existence of ε-
equilibrium for 2-person games with some condition on the limit of utilities.
This approach is realized in [23, Propositions 2 and 8].

We develop other ideology for games with infinite strategy sets (con-
tinuous or discontinuous 2-person games). The only reason why the logic
of Sect. 3.1 may fail is that if players are permitted to use hardly different
strategies they may ensure very slow but infinite growth of profits. In or-
der to exclude such possibility we consider the games in which a deviation
is costly. We now assume that a player have to pay some fixed cost d ≥ 0
for any unilateral changing of her strategy, we call d a cost of deviation.

Then, definitions 1 and 2 can be rewrite as following.

Definition 9 (1?). A deviation s′i of player i at profile s = (si, s−i) is
profitable if ui(s

′
i, s−i) > ui(si, s−i) + d.

Definition 10 (2?). A deviation s′i of player i at profile s = (si, s−i) is
secure if for any profitable deviation s′−i of the opponent at intermediate
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profile (s′i, s−i) player i is not worse off:

ui(s
′
i, s
′
−i) ≥ ui(si, s−i) + d.

Note that these definitions coincide with definitions 1 and 2, respec-
tively, if d = 0. The definition of Nash-2 equilibrium remains the same.

Note that introducing any d > 0 guarantees that the game does not
contains any secure cycle. Similarly to Theorem 2, the following theorem
holds.

Theorem 3. Nash-2 equilibrium exists in every 2-person game with strictly
positive cost of deviation and utility functions bounded from above.

It is to be stressed that we do not require the continuity of utilities or
compactness of action sets. Moreover, for most games Nash-2 equilibrium
exists even in case of zero cost of deviations. Examples in Sect. 4 will
completely demonstrate this.

3.3 Selection among multiple equilibria profiles

The reverse side of existence is multiplicity of predicted outcomes. This
problem can be resolved in several ways in dependence of concrete game
framework.

In the case of tough competition between firms one can choose, for
instance, an equilibrium in secure strategies as the most attractive. In
Hotelling linear city model EinSS concept provides the unique equilibrium
corresponding to dumping pricing [22].

The totally different approach is to choose the collusion outcome like
in Bertrand or Cournot model or, at least, Pareto efficient profiles in the
set of Nash-2 profiles.

If players join the game successively, one after another, then Nash-2
equilibrium is an operative explanation why Stackelberg leadership out-
come remains stable. In games with such a history of events Stackelberg
equilibrium can be selected as a concrete Nash-2 profile. An example is
Cournot duopoly.

Alternative way of solving the problem is to introduce the measure
on the set of Nash-2 equilibria that reflects the probability with which a
concrete equilibrium can be realized. This can be done in different ways,
and we present here one of them.

We suppose that originally players randomly get into any game profile

s with equal probabilities ν0(s) = µ(s)
µ(S1×S2)

, where µ(A) is a measure
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of the set A. If the profile s is not a Nash-2 equilibrium then a secure
path from this profile to some Nash-2 profile exists. Denote the subset
of NE-2 that can be achieved from the profile s by any secure path by
NE-2s. For simplicity we assume that when a player learns the whole
range of reachable from s Nash-2 profiles she chooses each of them also
with equal probabilities. (Naturally, more complicated method is to assign
a probability proportional to the number of secure paths from s to concrete
Nash-2 equilibrium.) So, the final probability of each Nash-2 profile to be
realised is

ν(s) =
µ(s)

µ(S1 × S2)
+

∑
s̃:s∈NE-2s̃

µ(s̃)

µ(NE-2s̃)µ(S1 × S2)
, ∀s ∈ NE-2.

These probabilities form the measure of feasibility on the set NE-2.
If a Nash-2 profile s is not reachable from any point of S1×S2 (we will

call it isolated), then ν(s) = ν0(s).
For the sake of visualization in the case of discrete action sets let us

construct a directed graph Γ by the following rule. The nodes of Γ are
game profiles. The directed link from node s to node s′ exists if there is a
secure path from s to s′, and there are no secure paths starting at s′.

In this graph the nodes with zero outdegree deg+(s) are Nash-2 equilib-
ria. The links demonstrate how not Nash-2 profiles transmit their initial
probabilities to Nash-2 profiles by means of secure paths. Here for all
s ∈ NE-2 the number of all profiles from which a secure path to s ex-
ists equals to the indegree deg−(s) of s in Γ. In particular, if ∀s ∈ Γ
deg+(s) ≤ 1, then

ν(s) =
1

|S1| · |S2|
(
1 + deg−(s)

)
, ∀s ∈ NE-2,

|A| is the number of elements in the set A.
Let us give several examples.

Example 4.
In this example two situations in this game are Nash-2 equilibria, play-

ers get zero profits in both. Indeed, strategy profile (B,R) is a NE and
Nash-2 equilibrium, and profile (B,L) is a Nash-2 equilibrium, but not a
NE.

The graph Γ is shown on the right. As one can see, (B,L) is an isolated
Nash-2 profile, thus ν(B,L) = 1/4.

deg−(B,R) = 2. Thereby, ν(B,R) = 1
4 (1 + 2) = 3/4.
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L R
T 1 -1
B 0 0

The probability of NE to be realized is considerably greater than for
the another profile.

Example 5.
In this example Nash equilibrium fails to exist.

L R
T (2/3, 1/3) (-1, 2)
C (1/2, 1/2) (1, 0)
B (1, 0) (0, 1)

NE-2 set consists of two strategy profiles (C,L) and (T,L) with profits
(1/2, 1/2) and (2/3, 1/3), respectively. (T,L) is an isolated Nash-2 equilib-
rium, thus ν(T, L) = 1/6. deg−(C,L) = 4. Thereby, ν(C,L) = 1

6 (1 + 4) =
5/6.

Hence, though at first sight two Nash-2 profiles are similar, it is much
more plausible that (C,L) will occur.

Example 6 (Bertrand model with homogeneous product).
Consider the simplest model of price competition, as in Example 1.

In this case there is a secure path from each profile (p1, p2), p1 6= p2,
p1, p2 ∈ [c, 1], to Nash-2 profile (p, p) with p ∈ [c,min(p1, p2)]. Figure 1
reflects the structure of possible secure paths in this game.

Explicit calculations yield (see Figure 2)

ν(p, p) =
2

1− c

(
ln

1− c
p− c

− 1− p
1− c

)
, ∀p ∈ [c, 1].

One can think about this measure function in the sense that the proba-
bility to come into the ε-neighbourhood of the prices (p, p) is

∫ p+ε
p−ε ν(x)dx.

Note that the probability of low prices close to marginal cost is apprecia-
bly greater than that for high prices. It is caused by the high appeal of
undercutting an opponent. However, the collusion price level ( 1+c

2 , 1+c2 )
also has a positive measure of feasibility.
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Figure 1: The structure of secure paths in Bertrand model
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Figure 2: The measure of feasibility on the set NE-2 in Bertrand model
with c = 0.1

4 Examples

Let us turn now to some applications of Nash-2 equilibrium concept to
well-known microeconomics models. We will start with Cournot duopoly
with homogeneous product, linear demand, and equal marginal costs, and
demonstrate in terms of Nash-2 equilibrium whether the possibilities for
collusion or more strong competition actually exist. Then we examine
the model of price competition of firms producing imperfect substitutes.
Finally we will discuss the computational solution of rent-seeking game
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(Tullock contest) and outline the difference between secure-but-strong-
competitive and risky-but-collusive outcomes.

4.1 Cournot duopoly

Let two firms produce q1 and q2 units of homogeneous product, respec-
tively, with equal constant marginal costs c per unit. We assume the
equilibrium price p(Q) to be a linear decreasing function p(Q) = 1−Q of
total output Q = q1 + q2. The profit function of the firm i = 1, 2 is

πi(q1, q2) = qi · (p(Q)− c) = qi(1− q1 − q2 − c).

In Nash equilibrium firms produce by one third of maximal total output
which ensures positive prices on the market

q∗1 = q∗2 =
1− c

3
, π∗1 = π∗2 =

(
1− c

3

)2

.

Theorem 4. Nash-2 equilibria (q1, q2) are of two kinds:
a) they belong to the set{(

b;
1− c− b

2

)
∪
(

1− c− b
2

; b

)
| b ∈

[
1− c

3
; 1− c

)}
.

b) they are
q1 = q2 ∈ (0, (1− c)/3)

including collusive outcome (1− c)/4, (1− c)/4.

One can easily check that the equilibrium set satisfying condition (a)

consists of secure profiles. For b ∈
(

1−c
3 ; 2(1−c)

3

)
such situations are fruitful

for the firm that overproduces, and maximum is reached at b = 1−c
2 , and for

any b they are bad for the another firm (in comparison with Nash equilib-
rium profits). A special cases of secure Nash-2 equilibrium are Stackelberg
outcomes

(
1−c
2 ; 1−c

4

)
if the firm 1 is a leader, and

(
1−c
4 ; 1−c

2

)
if the firm 2

is a leader.
The set NE-2\EinSS (condition (b)) includes collusive outcome. Hence,

in Cournot duopoly collusion is strategically (tacitly) supported by the
concept of Nash-2 equilibrium. The profiles with q1 = q2 ∈

(
1−c
4 , 1−c

3

)
cover all intermediate situations between Nash competition and coopera-
tive behavior.
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Figure 3: Bold point is NE, NE-2. Bold lines are NE-2.

Proof. Reaction functions of both firms are

r1(q2) = (1− c− q2)/2, r2(q1) = (1− c− q1)/2.

Note that any decreasing of production of any player is profitable for
her opponent. It immediately yields that if for one player it is profitable to
decrease her price then another player (if she is not at her best response)
has a profitable secure deviation. Therefore, such situations are not Nash-2
equilibria.

If one player (for definiteness, the firm 1) plays exactly her best re-
sponse on the firm’s 2 output, while the firm 2 produces more than it best
response level, then such a situation is a Nash-2 equilibrium. Indeed, the
firm 1 hasn’t a profitable deviation, and any profitable deviation of the firm
2 decreases the output: q2 → q2 − ε, for some ε > 0. However, if the firm
2 deviates then the firm 1 acquires a profitable deviation q1 → q1 + ε− δ
with enough small 0 < δ < ε such that the deviation q2 − ε is not secure
for the firm 2.

Now turn out to the case when both firms produce less than best re-
sponse level: q1 ≤ (1− c− q2)/2 and q2 ≤ (1− c− q1)/2.

Assume first that q1 > q2 (the symmetric case is similar). Then the
firm 2 has the profitable secure deviation from q2 to 1−c−q1−q2−ε with
0 < ε < q1−q2. After this q1 becomes greater than new best response level
and any profitable deviation of the firm 1 decreases q1 which is acceptable
for the firm 2.
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The last possible situation is q1 = q2 = q. Let us show that (q, q),
q ≤ (1− c)/3, is a Nash-2 equilibrium. Let us carry out the reasoning for
the firm 1. Any profitable deviation of the firm 1 has a form q1 → q + ε
with 0 < ε < 1− c− 3q. After this the firm 2 has the profitable deviation
from q2 to 1−c−2q−ε−δ which leads to breaking the security requirement
for the firm 1 if 0 < δ < q

q+ε (1− c− 3q − ε).

Nash-2 equilibrium provides a number of regimes with various degree
of toughness from competitive till collusive. An explanation what outcome
will be observed can be given on the base of the oligopolistic equilibrium
[1] suitably generalizing conjectural variation approach and introducing an
extra coefficient of competitive toughness.

4.2 Bertrand competition with differentiated product

Consider more general model of price competition between two firms pro-
ducing imperfect substitutes with marginal costs equal c1 and c2, respec-
tively. The coefficient of substitution is γ ∈ [0, ∞). Firms’ demand curves
are

q1 = 1− p1 − γ(p1 − p2), q2 = 1− p2 − γ(p2 − p1).

The firms’ profits are

π1(p1, p2) = (p1 − c1)(1− p1 − γ(p1 − p2)).

π2(p1, p2) = (p2 − c2)(1− p2 − γ(p2 − p1)).

The case of γ = 0 corresponds to the monopoly. When γ → ∞ the
product becomes more and more homogeneous.

In Nash equilibrium prices are equal to

p∗1 =
2 + 3γ + 2(1 + γ)2c1 + γ(1 + γ)c2

(2 + 3γ)(2 + γ)

p∗2 =
2 + 3γ + 2(1 + γ)2c2 + γ(1 + γ)c1

(2 + 3γ)(2 + γ)
,

if p∗1 ≥ c1, p∗2 ≥ c2.

If marginal costs are equal c1 = c2 = c, then p∗1 = p∗2 = 1+(1+γ)c
2+γ > c.

As γ →∞ we face to classical Bertrand model.
Let us describe the conditions which the set of Nash-2 profiles (p1, p2)

meets.
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Note firstly that two following conditions mean that markup and de-
mand at equilibrium should be non-negative

p1 ≥ c1, p2 ≥ c2, a)

q1(p1, p2) ≥ 0, q2(p1, p2) ≥ 0. b)

The next condition states that only prices exceeding best response level
can be a Nash-2 equilibrium, i.e.

p1 ≥
1 + γp2 + c1(1 + γ)

2(1 + γ)
, p2 ≥

1 + γp1 + c2(1 + γ)

2(1 + γ)
. c)

One more claim is that in Nash-2 equilibrium the firms get not less
than their maxmin benefits

π1(p1, p2) ≥ (1− c1(1 + γ))2

4(1 + γ)
, π2(p1, p2) ≥

(1− c(1 + γ))2

4(1 + γ)
. d)

The last conditions directly state the absence of secure profitable de-
viations(

1−c1
2 − γ(1+γ)(p2−c2)

2(1+2γ)

)(
1+2γ+γ2c2−(1+γ)2c1

2(1+γ) + 3
2 (p2 − c2)

)
≤ π1(p1, p2),(

1−c2
2 − γ(1+γ)(p1−c1)

2(1+2γ)

)(
1+2γ+γ2c1−(1+γ)2c2

2(1+γ) + 3
2 (p1 − c1)

)
≤ π2(p1, p2).

e)

Proof. Let us start with the observation that, in contrast to Cournot
duopoly, any increasing price of any firm is profitable for her opponent.
From this fact it follows that if one firm assign a price that is less than best
response level then it has a profitable and secure deviation. It provides
condition (c).

Condition (d) immediately follows from the fact that if a firm gets less
than minmax value then it has a profitable secure deviation to the strategy
which ensures it.

Now look at the residual area and establish which situations are Nash-
2 equilibria. In this area firms propose prices more than at best re-
sponse level (condition (c)). Let us look on the situation by the firm 1.
Any profitable deviation of the firm 1 decreases the price p1 up to some

p̃ε1 = p1 − ε with ε ∈
(

0; 2
(
p1 − 1+γp2+c1(1+γ)

2(1+γ)

))
. The most harm-

ful response of the firm 2 is maximal decreasing the price: p2 → p̃ε2 =

2 · 1+γ(p1−ε)+c2(1+γ)2(1+γ) − p2 + δ with δ = +0.
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Figure 4: c1 = c2 = 0.5, γ = 2. Bold
point is NE, EinSS, NE-2. Shaded
area is NE-2.

Figure 5: c1 = 0.5, c2 = 0.3, γ =
2. Bold point is NE, EinSS, NE-2.
Shaded area is NE-2.

Figure 6: c1 = 0.5, c2 = 0.1, γ =
2. Bold point is NE, EinSS, NE-2.
Shaded area is NE-2.

Figure 7: c1 = c2 = 0, γ = 2. Bold
point is NE, EinSS, NE-2. Shaded
area is NE-2.
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Figure 8: c1 = c2 = 0, γ = 7. Bold
point is NE, EinSS, NE-2. Shaded
area is NE-2.

Figure 9: c1 = c2 = 0, γ = 15. Bold
point is NE, EinSS, NE-2. Shaded
area is NE-2.

If (p1, p2) is Nash-2 profile then for any ε firm 1 should get worse:

π1(p̃ε1, p̃
ε
2) < π1(p1, p2),

or, equivalently, maxε π1(p̃ε1, p̃
ε
2) < π1(p1, p2).

Explicit calculation of this maximum provides condition (e).

As we can observe the set of Nash-2 equilibria becomes more asymmet-
ric as the difference between marginal costs increases (see Fig. 4 – 6). On
the other hand it becomes narrower and elongate as γ →∞ (see Fig. 7 –
9) and this asymmetry ceases to play an important role.

Note that in the case of c1 = c2 = c the collusion profile p1 = p2 =
(1 + c)/2 is inside Nash-2 set. Nevertheless, another outcomes on the
Pareto frontier of the set of profits at Nash-2 profiles exist.

4.3 Tullock contest

In rent-seeking modeling most papers focus on the manipulation efforts
of firms to gain monopolistic advantages in the market. Tullock contest
[29] is a widespread way to examine the processes of political lobbying for
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government benefits or subsidies, or to impose regulations on competitors
in order to increase market share.

The contest success function translates the efforts x = (x1, x2) of the
players into the probabilities pi that player i will obtain the resource R.

pi(xi, x−i) =
xαi

xαi + xα−i
, x 6= 0, i = 1, 2.

If x = (0, 0) then pi = p−i = 1/2.
The payoff function of each player is:

ui(xi, x−i) = Rpi(xi, x−i)− xi.

Without loss of generality assume R = 1, xi ∈ [0, 1].
The players’ behavior essentially depends on the value α. It can be

treated as a responsiveness of the utility function to increasing the effort.
When α ≤ 2 Nash equilibrium exists and equilibrium efforts equal to α/4.
In [25] the equilibrium in secure strategies in Tullock model was obtained
for all α. Here we present the computer solution for the whole set of Nash-2
equilibrium (see Fig. 10 – 12).

Note that all equilibria in secure strategies, and in particular Nash
equilibrium, are Pareto dominated by some Nash-2 profiles (see Fig. 13)

The set NE-2 \ EinSS seems to be intuitively clear: farsighted players
in some sense are engaged in tacit collaboration and make smaller efforts
to reach the same probability of obtaining the resource. This is what we
mean by tacit collusion.

Remark 1 (on the efficiency of equilibrium obtained). By the measure of
solution efficiency in rent-seeking game a rent dissipation is often used. If
R = 1 then it is the sum of agent efforts at equilibrium. If α ≥ 2 rent
dissipation in Nash equilibrium is equal to α/2. The paper [3] shows that
when α > 2 and the strategy space is continuous full rent dissipation occurs
in symmetric mixed-strategy equilibrium. It follows from our simulations
that there are a wide range of risky Nash-2 equilibria that are more efficient
than Nash pure or mixed strategy equilibrium for any α. To be exact, for
α ≤ 2 any risky Nash-2 equilibrium together with some secure Nash-
2 equilibrium (for accurate characterization of secure part see [25]) are
more efficient. For α > 2 some part of risky Nash-2 equilibria (in which
x1+x2 < 1) and only ”monopolistic” (when only one player makes positive
efforts) secure Nash-2 equilibria are more efficient. However, it is to be
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Figure 10: α = 0.7. Bold point is
NE, EinSS, NE-2. Shaded area is
NE-2.

Figure 11: α = 1.5. Bold central
point is NE, EinSS, NE-2. Bold
curve and points on the axes are
EinSS, NE-2. Shaded area is NE-2.

Figure 12: α = 2.3. Bold points are
EinSS, NE-2. Shaded area is NE-2.
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Figure 13: α = 1.5. Efforts and profits. Bold curves and points on the axes
are profits at equilibrium in secure strategies (and Nash-2 equilibrium),
shaded area is the set of profits at risky Nash-2 profiles.

noted that sometimes zero efforts for one participant of the contest are
not allowed by rules of the contest (for instance, if in this case the tender
will not take place), then only risky Nash-2 profiles ensure smaller rent
dissipation than mixed-strategy Nash equilibrium.

5 Extension to n-person games

The idea of an extension for n players is inspired by spatial economics no-
tion of direct and indirect competitors [18]. In a game with large number of
players it is natural to assume that each player divides her opponents into
direct competitors whose reaction she worries about and tries to predict,
and indirect competitors whose strategy is believed to be fixed as in Nash
equilibrium concept. Such a selective farsightness looks more plausible
than total ignorance of reactions or perfect prediction of future behavior
of all other competitors. If we connect direct competitors by a directed
link we get the network structure (so-called, reflection network) on the
set of players. A player when decide whether to deviate or not accounts
possible unilateral profitable responses of her neighbours in the reflection
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network, including simultaneous but non-cooperative responses of several
other players.

The set of Nash-2 equilibrium crucially depends on the topology of
reflection network. We illustrate this idea with the models of Bertrand
competition and Prisoner’s dilemma [30] with n participants and provide
solutions of them for various types of reflection network.

5.1 Reflection network

Consider an n-person non-cooperative game in the normal form

G = (i ∈ I = {1, . . . , n}; si ∈ Si; ui : S1 × . . .× Sn → R),

where si, Si and ui are the strategy, the set of all available strategies and
the payoff function, respectively, of player i, i = 1, . . . , n.

Let us define the reflection network g by the following rule:

• nodes are players i in I;

• links gij = 1 from player i to j exists iff player i takes into account
possible profitable deviations of player j.

• gij = 0, otherwise.

Note that the reflection network is a directed graph. One can think about
the reflection network in the following terms:

• Agents follow up some control sample of firms (direct competitors),
taking strategies of other firms as given.

• Agents follow up geographically close competitors (spatial competi-
tion approach).

• Agents take into account reactions of only those firms, whose utility
functions are exactly known to them.

The definition of profitable deviation of player i is the same as Def. 1,
where s−i is the strategy profile of all prayers except i.

Denote by Ni(g) the set of neighbours j of player i in the graph g, such
that gij = 1.
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Definition 11 (secure deviation). A deviation s′i of player i at profile
s = (si, s−i) is secure if for any subset J ⊆ Ni(g) and any profitable
deviation s′j of every player j ∈ J at intermediate profile (s′i, s−i) even in
case of simultaneous deviations of all players from J player i is not worse
off, i.e.

ui(s
′
i, s
′
J , s−iJ) ≥ ui(s).

Here we assume that all players act independently (non-cooperative),
but they are able to deviate simultaneously, so that player i should take
this possibility into consideration.

If Ni(g) = ∅ then player i does not worry about any possible reactions,
and so every her deviation is secure by definition. We will call this situation
fully myopic behavior.

Definition 12 (NE-2). A strategy profile is a Nash-2 equilibrium if no
player has a profitable secure deviation.

It is easy to see that every Nash equilibrium profile is also a Nash-2
equilibrium irrespectively of the architecture of the reflection network.
Moreover, in the case of empty reflection network they are coincide by
definition. It is only in this sense we may regard Nash equilibrium as fully
myopic concept.

5.2 Examples

5.2.1 Bertrand competition with homogeneous product

Consider the simplest model of price competition of n firms, concentrating
at one point and producing homogeneous goods. Assume that they have
equal marginal costs, the demand is linear,

πi(p1, . . . , pn) =

{
(pi − c)(1− pi)/K, if pi = min{pj},
0, if pi > pj for some j 6= i,

where K is the number of firms setting the minimum price pi.
Nash solution yields the unique equilibrium, firms getting zero profits

and equally sharing the market. Nevertheless, in case of non-trivial reflec-
tion network equilibrium set occurs considerably wider, and in some cases
of reflection network Bertrand paradox is resolved.

Really, if each firm takes into account possible deviations of at least
one other firm, or, in graph terminology, if for all nodes i in the network g
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their out-degree is greater or equal to 1 (see Fig. 14), then any price level
greater than marginal costs is also a Nash-2 equilibrium, together with
Nash equilibrium prices.

Figure 14: Complete and cycle reflection networks with 4 players, out-
degree of every player is not less than 1

Nevertheless if at least one firm is fully myopic (see Fig. 15), then the
only Nash-2 equilibrium coincides with Nash solution.

Figure 15: The reflection networks with 4 players, player 4 is fully myopic

It is due to the threshold structure of demand: every infinitesimal
decreasing price relative to common price level leads to the immediate
winning all the market. Thus, this model is extremely sensitive to such
a myopic deviations of any firm, and even one firm acting in a fully my-
opic way can break insecure tacit cooperation. There is no ability for
cooperation among only some part of firms.

5.2.2 Prisoner’s dilemma

Consider the model of n-player prisoner’s dilemma as it introduced in [30].
Each player has two possible strategies: to cooperate with the community
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or to defect. The utility function is

ui =

{
bA/n− c, if player i cooperates,
bA/n, if player i defects,

where A is a number of cooperators in the game, each of them brings profit
b to the society, but pays the cost c. The total profit is equally divided to
all n players irrespective of their real contribution. Unilateral defection is
preferred for each individual c > b

n , nevertheless, full cooperation is more
preferred for each player than common defection b > c > 0.

According to Nash rationality, cooperation is unlikely to emerge in
the n-player prisoner’s dilemma, and the same result is predicted by the
evolutionary game theory [7].

But in the case of a non-empty reflection network cooperation is possi-
ble and, moreover, the number of cooperators depends both on the archi-
tecture of network and the relation between b and c.

First, observe that for any player who defects switching to cooperation
is never a profitable deviation. Let us find the conditions under which the
reverse deviation is insecure.

Assume that initially A players cooperate. Consider any cooperator i,
assume that she reflects about ni other cooperators. Her defection (which
is always profitable) is a non-secure deviation if

bA

n
− c > b(A− 1− ni)

n
, and

bA

n
− c > 0,

that yields

ni > n∗ =
cn

b
− 1, A >

cn

b
.

In particular, this means that a player reflecting about relatively small
number of agents never cooperates. Therefore, in Nash-2 equilibrium any
subset of players with sufficient number of links with other cooperators
(more than n∗) in the reflection network is able to cooperate while all
other defect if the number of cooperators is enough to provide positive
profits for cooperators.

If these profits are very small, then for cooperation we need a complete
reflection network among cooperators. However, if cooperative strategy
leads to material losses then nothing will force players to cooperate.

So, for supporting cooperative behavior it is important not only to pro-
vide a balance between the value of individual return and the cooperation
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cost, but also to ensure close contacts between cooperators, as in the civil
society.

Remark 2. The examples above demonstrate how significant is to take into
account the agent reflection about possible behavior of the opponents. No
matter what considerations (spatial or some others) underlie the reflection
network, it fundamentally affects possible equilibria.

6 Conclusion

The problem that we discuss closely related to the equilibrium analysis of
rational expectations under uncertainty. Classical Bayesian approach re-
quires some certain information on probabilities of ”the state of the world”.
The correctness of prediction and consistency with agents’ behavior is an
urgent field for discussion. However, process of assignment of these prob-
abilities is often ambiguous.

Moreover, we argue that some aspects of rationality lie beyond utility
function expression, namely, in a quasi-social structure of links among
non-anonymous competitors. This factors together with initial point of
consideration and natural limitations of iteration thinking depth lead us
to the equilibrium concept providing multiple predictions. We assume that
this multiplicity is a natural expression of great variety of real-life agents’
behavior.

One more source of uncertainty is a problem of appropriate timing
because of a lack of information on duration of interaction and intermediate
moments of updating strategies. Using n-stage games is sometimes a rather
rough way to treat such situations.

It is to be mentioned that the idea of constructing a measure on the
set of Nash-2 equilibrium seems to have some analogy with mixed-strategy
solution. But one should be very cautious with such conclusions as this
distributions have different origin. Introducing any measure of feasibil-
ity on NE-2 essentially depends on some extra suggestions about agents’
expectation and decision principles and thus may be defined in various
ways.

Certainly, a lot of related issues is to be clarified in the future research.
The most interesting part concerns games with many players and detecting
some patterns of reflection networks. Nevertheless, we suppose that even
simplest examples presented in this paper fully confirm that this approach
is of interest.
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В статье исследуется поведение ограниченно рациональных агентов, способных просчиты-
вать свои выигрыши после реакции оппонентов на их отклонения от текущей стратегии. По-
средством учета стратегических аспектов взаимодействия игроков реализуется обобщение кон-
цепции равновесия Нэша. Оно представляет собой компромиссное поведение – не абсолютно 
близорукое, как в концепции Нэша, и не настолько широкое, как при подходе суперигр. Это при-
водит к введению концепции дальновидного равновесия под названием «равновесие Нэша-2». 
Доказано существование равновесия Нэша-2 в почти любой игре двух лиц; также обсуждается 
проблема возможной множественности получаемых равновесий. Для ряда моделей (дуополия 
Бертрана с однородным и дифференцированным продуктом, дуополия Курно, состязание Тал-
лока) получены множества равновесий Нэша-2, в зависимости от дополнительных соображений 
безопасности они трактуются как молчаливый сговор или жесткая конкуренция. Для игр n лиц 
на основе сети рефлексии между игроками вводится идея избирательной дальновидности. При-
меры подтверждают, что топология сети рефлексии принципиальным образом влияет на воз-
можные равновесия.
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