CP Violation in charm decays with LHCb

Denis Derkach
Higher School of Economics and Yandex School of Data Analysis
on behalf of the LHCb collaborations.

LHCP’2016
Lund Sweden
16.06.2016
Why Charm?

Charm is the only up-type quark allowing full range of probes for mixing and CP Violation:
- top quarks do not hadronize;
- no π^0 oscillations possible.

CP violation is predicted to be small in charm sector, any nonzero measurement might give a significant hint towards New physics scenarios.

Unprecedented huge samples of D decays are necessary (much bigger amount than 1M events needed) in order to approach SM predictions.

LHCb has got this statistics and sensitivity.
How we do it?

There are three ways of CPV:
• in mixing (indirect), $D^0 \rightarrow \text{anti-}D^0 \neq \text{anti-}D^0 \rightarrow D^0$
• in decay amplitudes (direct), $D \rightarrow f \neq \text{anti-}D \rightarrow \text{anti-}f$
• in interference (indirect) between direct decays and decays with mixing

We use two types of charm meson decays:

Prompt:
• coming from Collision Point
• tagged by soft pion
• numerous

Secondary:
• coming from semileptonic B-meson decay
• tagged by a lepton
• cover full decay time range
Time-integrated study
Direct CP violation in two-body decays

Experimentally yields are measured

$$A_{\text{raw}}(f) = \frac{N(D^{*+} \rightarrow D^0 (\rightarrow f)\pi^+) - N(D^{*-} \rightarrow \bar{D}^0 (\rightarrow f)\pi^-)}{N(D^{*+} \rightarrow D^0 (\rightarrow f)\pi^+) + N(D^{*-} \rightarrow \bar{D}^0 (\rightarrow f)\pi^-)}$$

$$\approx A_{CP}(f) + A_D(f) + A_D(\pi) + A_P(D^*)$$

$A_D(\pi)$ soft-pion (tag) detection asymmetry

$A_D(f)$ final state detection asymmetry

$A_P(D^*)$ production asymmetry

We also check that the instrumental asymmetry is healthy:
Direct CP violation in two-body decays

We study prompt $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$. To keep detection and production asymmetries under control, we measure:

$$\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

$$\approx \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\langle t \rangle}{\tau} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

some residual experiment-dependent contribution from indirect CP violation can still be present (from $\langle t \rangle$, integrated with decay time acceptance). This contribution is estimated in data:

$$\frac{\Delta \langle t \rangle}{\tau(D^0)} = 0.1153 \pm 0.0007\,\text{(stat)} \pm 0.0018\,\text{(syst)}$$

$$\frac{\langle t \rangle}{\tau(D^0)} = 2.0949 \pm 0.0004\,\text{(stat)} \pm 0.0159\,\text{(syst)}$$

PRL116(2016)191601
Prompt two-body decays

Analysis summary:
- uses full run 1 statistics (3 fb$^{-1}$)
- tight selection for all possible sources of asymmetry (multibody background, secondary charm, instrumental asymmetries);
- simultaneous fits to D*- and D*+ samples to $\delta m = m(D^*)-m(D^0)-m(\pi)$;
- extensive checks of result stability.

$\Delta A_{CP} = (-0.10 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}) \%$

Compatible with null hypothesis with a statistical precision below 10^{-3} CP asymmetry in the charm sector from a single experiment.

Systematic uncertainty already approaching 10^{-4} level.
Two-body ΔA_{CP} world average status

New result supersedes previous published LHCb result on 0.6 fb^{-1}

$\Delta A_{\text{CP}} = (-0.82 \pm 0.21)\%$ [PRL 108(2012), 111602].

and preliminary result on 1 fb^{-1}

$\Delta A_{\text{CP}} = (-0.34 \pm 0.18)\%$ [LHCb-CONF-2013-003].

Fully compatible with independent semi-leptonic LHCb result:

$\Delta A_{\text{CP}} = (+0.14 \pm 0.16 \text{ (stat)} \pm 0.08 \text{ (syst)})\%$

Naïve weighted average (neglecting indirect CPV contribution) gives

$\Delta A_{\text{CP}} = (-0.129 \pm 0.072)\%$ fully dominated by LHCb results.
Time-dependent study
A_Γ asymmetry

Now, we deal with the time-dependent asymmetry:

$$A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)} \approx a_{CP}^{dir} - \frac{t}{\tau_{D^0}} A_\Gamma$$

with A_Γ taking contributions only from CPV in the mixing and in the decay (x, y and ϕ are mixing parameters):

$$A_\Gamma \approx (A_{CP}^{mix}/2 - A_{CP}^{dir}) y \cos \phi - x \sin \phi$$
A_Γ measurements

Measure yields asymmetry in various bin of D^0 proper time and than fit the straight line:

$$A_{CP}(t) = a_{CP}^{dir} - \frac{t}{\tau_{D^0}} A_Γ$$

muon tag analysis used 3 fb$^{-1}$

![Graph 1](image1)

![Graph 2](image2)

$$A_Γ(K^-K^+) = (-0.134 \pm 0.077^{+0.026}_{-0.034})\%$$

$$A_Γ(\pi^-\pi^+) = (-0.092 \pm 0.145^{+0.025}_{-0.033})\%$$

Consistent with $A_Γ$ from prompt decays (using 1 fb$^{-1}$):

$$A_Γ(\pi\pi)= (0.033 \pm 0.106 \pm 0.014)\%$$

$$A_Γ(KK)= (-0.035 \pm 0.062 \pm 0.012)\%$$

PRL 112 (2014) 041801

D. Derkach CPV in Charm@LHCP16
World best measurement is LHCb prompt using 1 fb$^{-1}$ of integrated luminosity.

The leading contributions are coming from LHCb.
Extensive LHCb study in the sector allowed for the SM comparison

\(\Delta A_{\text{CP}}: \)
- PRL116(2016)191601
- JHEP07(2014)041

\(A_r = -a_{\text{ind}}: \)
- PRL112(2014)041801
- JHEP04(2015)043

\(\gamma_{\text{CP}}: \)
- JHEP04(2012)129

LHCb average:
- \(a_{\text{ind}} = 0.058 \pm 0.044 \% \)
- \(\Delta a_{\text{dir}} = -0.061 \pm 0.076 \% \)

No CP-Violation from LHCb only: p-value = 0.32
Multi-body decays
Amplitude analysis of $D^0 \rightarrow K_s K\pi$

Features:
- First LHCb amplitude analysis
- Large statistics (~180K)
- Complex Dalitz plot structure
- Used GPUs

Aims:
- Isobar model is useful for CKM angle γ measurements;
- Tests of SU(3) flavour symmetry
- Model-dependent search for CPV.

S-wave: GLASS vs. LASS give consistent results
CP violation in $D^0 \rightarrow K_S K\pi$

Once you have an isobar model

$$A = \sum_R a_R e^{i\phi_R} A_R$$

Substitute

With the sign dependent on the D^0 flavour tag and refit the models

- Perform χ^2 test w.r.t. no-CPV hypothesis ($\Delta = 0$).
- Find $\chi^2/\text{ndf} = 32.3/32 = 1.01$, p-value 0.45 (including systematics).

SU(3) flavour symmetry tests:

Results in agreement between LASS and GLASS and in favour of theoretical scenario with small η-η' mixing angle.
Conclusions and Outlook

In Run I:

— Achieved statistical precision below 10^{-3} (for two-body decays), and systematics already close to the impressive value of 10^{-4}.

— This precision is already world-leading in many decay modes.

— No hints of CP-violation (or anomalies) have been found so far, however LHCb has just started to approach SM expectations.

See results for Run II:

300K of tagged prompt $D^0 \rightarrow K\pi$ decays in first 5 pb$^{-1}$ of data.

JHEP 03 (2016) 159