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PREFACE

Measure concentration ideas developed during the last century in various parts
of mathematics, including functional analysis, probability theory and statistical
mechanics, areas typically dealing with models involving an infinite number of
variables. After early observations, and in particular a geometric interpretation
of the law of large numbers by E. Borel, the real birth of measure concentration
took place in the early seventies with the new proof by V. Milman, relying on
Lévy’s inequality (of isoperimetric nature), of Dvoretzky’s theorem on spherical
sections of convex bodies in high dimension. The inherent concept of measure
concentration emphasized by V. Milman through this proof turned out as one
of the main achievements of analysis of the second part of the last century. It
opened a posteriori completely new perspectives and developments with appli-
cations to various fields of mathematics. In particular, prompted by the concept
and results, M. Talagrand undertook in the 80’s and 90’s a deep investigation
of concentration inequalities for product measures, emphasizing a revolution-
ary new look at independence. Viewing namely random variables depending (in
a smooth way) on the influence of many independent random variables (but
not too much on any of them) as essentially constant led him to groundbreak-
ing achievements and striking applications. With the tool in particular of the
celebrated convex distance inequality, M. Talagrand developed applications to
combinatorial probability, statistical mechanics and empirical processes. Simul-
taneously, the entropic method, relying on an early observation by I. Herbst in
the context of logarithmic Sobolev inequalities and developing information theo-
retic ideas, became a powerful additional and flexible method in the investigation
of new concentration properties.

Since then, the concentration-of-measure phenomenon spread out to an im-
pressively wide range of illustrations and applications, and became a central tool
and viewpoint in the quantitative analysis of a number of asymptotic properties
in numerous topics of interest including geometric analysis, probability theory,
statistical mechanics, mathematical statistics and learning theory, random ma-
trix theory or quantum information theory, stochastic dynamics, randomized
algorithms, complexity etc.

The book by S. Boucheron, G. Lugosi and P. Massart is a most welcome
and complete account on the modern developments of concentration inequalities
in the context of the probabilistic method. The monograph covers most of the
important and recent developments, with a constant care on illustrations and ap-
plications which make the theory so fruitful and attractive. The emphasis put on
information theoretic methods is one main features of the exposition, with con-
siderable benefit in the approach to a number of fundamental results and tools,
such as for example the convex distance inequality or sharp bounds on empirical
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processes of fundamental importance in statistical applications. The monograph
covers further basic and most illustrative examples of the current research, in-
cluding dimension reduction, random matrices, Boolean analysis, transportation
inequalities or isoperimetric-type bounds. The style adopted by the authors is a
perfect balance from basic and classical material up to the most sophisticated
and powerful results, always accessible and clearly reachable. Young and con-
firmed scientists, independently of their background, will find with this book the
ideal path to the powerful ideas and tools of concentration inequalities, suggested
and illustrated with the most relevant applications and developments.

It is an honour and a pleasure to write this preface to this wonderful book,
sure to be a huge success.

Michel Ledoux
Université de Toulouse
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7.1 Lévy’s inequalities 207
7.2 The classical isoperimetric theorem 210
7.3 Vertex isoperimetric inequality in the hypercube 214
7.4 Convex distance inequality 216
7.5 Convex Lipschitz functions revisited 221
7.6 Bin packing 222
7.7 Bibliographic remarks 224
7.8 Exercises 225

8 The transportation method 230
8.1 The bounded differences inequality revisited 232
8.2 Bounded differences in quadratic mean 234
8.3 Applications of Marton’s conditional transportation inequal-

ity 239
8.4 The convex distance inequality revisited 242
8.5 Talagrand’s Gaussian transportation inequality 243
8.6 Appendix: a general induction lemma 248
8.7 Bibliographic remarks 251
8.8 Exercises 252

9 Influences and threshold phenomena 253
9.1 Influences 253
9.2 Some fundamental inequalities for influences 255
9.3 Local concentration 261
9.4 Discrete Fourier analysis and a variance inequality 264
9.5 Monotone sets 267
9.6 Threshold phenomena 270
9.7 Bibliographic remarks 277
9.8 Exercises 278

10 Isoperimetry on the hypercube and Gaussian spaces 281
10.1 Bobkov’s inequality for functions on the hypercube 282
10.2 An isoperimetric inequality on the binary hypercube 288
10.3 Asymmetric Bernoulli distributions and threshold phenomena 289
10.4 The Gaussian isoperimetric theorem 294
10.5 Lipschitz functions of Gaussian random variables 298
10.6 Bibliographical remarks 298
10.7 Exercises 299

11 The variance of suprema of empirical processes 303
11.1 General upper bounds for the variance 306



x Contents

11.2 Nemirovski’s inequality 308
11.3 The symmetrization and contraction principles 312
11.4 Weak and wimpy variances 317
11.5 Unbounded summands 320
11.6 Bibliographic remarks 325
11.7 Exercises 326

12 Suprema of empirical processes: exponential inequalities 330
12.1 An extension of Hoeffding’s inequality 330
12.2 A Bernstein-type inequality for bounded processes 331
12.3 A symmetrization argument 333
12.4 Bousquet’s inequalityinequality!BousquetBousquet’s inequal-

ity for suprema of empirical processes 335
12.5 Non-identically distributed summands and left-tail inequali-

ties 339
12.6 Chi-square statistics and quadratic forms 341
12.7 Bibliographic remarks 342
12.8 Exercises 343

13 The expected value of suprema of empirical processes 349
13.1 Classical chaining 350
13.2 Lower bounds for Gaussian processes 353
13.3 Chaining and VC-classes 357
13.4 Gaussian and Rademacher averages of symmetric matrices 360
13.5 Variations of Nemirovski’s inequality 364
13.6 Random projections of sparse and large sets 366
13.7 Normalized processes: slicing and reweighting 374
13.8 Relative deviations for L2 distances 378
13.9 Risk bounds in classification 379
13.10Bibliographic remarks 381
13.11Exercises 384

14 Φ-entropies 397
14.1 Φ-entropy and its sub-additivity 397
14.2 From Φ-entropies to Φ-Sobolev inequalities 404
14.3 Φ-Sobolev inequalities for Bernoulli random variables 408
14.4 Bibliographical remarks 412
14.5 Exercises 412

15 Moment inequalities 414
15.1 Generalized Efron-Stein inequalities 415
15.2 Moments of functions of independent random variables 416
15.3 Some variants and corollaries 420
15.4 Sums of random variables 423
15.5 Suprema of empirical processes 426
15.6 Conditional Rademacher averages 429



Contents xi

15.7 Bibliographical remarks 430
15.8 Exercises 431

References 434
Subject Index 461
Author Index 469



1

INTRODUCTION

The topic of this book is the study of random fluctuations of functions of inde-
pendent random variables. Concentration inequalities quantify such statements,
typically by bounding the probability that such a function differs from its ex-
pected value (or from its median) by more than a certain amount.

The search for concentration inequalities has been a topic of intensive re-
search in the last decades in a variety of areas because of their importance in
numerous applications. Among the areas of applications, without trying to be
exhaustive, we mention statistics, learning theory, discrete mathematics, statisti-
cal mechanics, random matrix theory, information theory, and high-dimensional
geometry.

While concentration properties for sums of independent random variables
were thoroughly studied and fairly well understood in classical probability theory,
powerful tools to handle more general functions of independent random variables
were not introduced until the appearance of martingale methods in the 1970’s,
see Yurinskii (1976), Maurey (1979), Milman and Schechtman (1986), Shamir
and Spencer (1987), McDiarmid (1989).

A remarkable series of papers in the mid-1990’s by Michel Talagrand pro-
vided major new insight to the problem and opened many exciting new research
directions. The main principle, as summarized by Talagrand (1995), is that “a
random variable that smoothly depends on the influence of many independent
random variables satisfies Chernoff type bounds.” This book provides answers to
the natural question hidden behind this citation: what kind of smoothness condi-
tions should we put on a function f of independent random variables X1, . . . , Xn

in order to get concentration bounds for Z = f(X1, . . . , Xn) around its mean or
its median?

In this introductory chapter we briefly review the history of the subject and
outline the contents, as an appetizer for the rest of the book.

Before getting started, we emphasize that one of the main driving forces
of the development of the theory was the need of understanding random fluc-
tuations of suprema of empirical processes defined as follows. Let T be a set
that for now we assume to be finite and let X1, . . . , Xn be independent random
vectors taking values in RT . We are interested in concentration properties of
sups∈T

∑n
i=1Xi,s (where Xi = (Xi,s)s∈T ). Throughout the book we regularly

return to this example and discuss implications of the general theory.
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1.1 Sums of independent random variables and the martingale
method

The simplest and most thoroughly studied example is the sum of independent
real-valued random variables. The key to the study of this case is summarized
by the trivial but fundamental additive formulas

V ar

(
n∑

i=1

Xi

)
=

n∑

i=1

V ar (Xi)

and

ψ∑n
i=1 Xi

(λ) =

n∑

i=1

ψXi(λ) (1.1)

where ψY (λ) = logEeλY denotes the logarithm of the moment generating func-
tion of the random variable Y . These formulas allow one to derive concentration
inequalities for Z = X1+· · ·+Xn around its expectation via Markov’s inequality,
as shown in Chapter 2.

Hoeffding’s inequality

One of the basic benchmark inequalities for sums of independent bounded ran-
dom variables is Hoeffding’s inequality (Theorem 2.8). It may be proved by
noting that for a random variable Y taking values in an interval [a, b],

V ar(Y ) ≤ (b− a)
2

4

which, through an exponential change of the underlying probability measure de-
tailed in Lemma 2.2, leads to the following bound for the log-moment generating
function of Y −EY :

ψY−EY (λ) ≤ λ2(b− a)2

8
.

IfX1, . . . , Xn are independent random variables taking values in [a1, b1], . . . , [an, bn]
the additivity formula (1.1) implies that

ψZ−EZ(λ) ≤ λ2v

2
for every λ ∈ R

where v =
∑
i(bi − ai)

2/4. Since the right-hand side corresponds to the log-
moment generating function of a centered normal random variable with variance
v, Z −EZ is said to be sub-Gaussian with variance factor v. The sub-Gaussian
property implies that Z −EZ has a sub-Gaussian like tail. More precisely, as it
is proved in Section 2.6, for all t > 0,

P {|Z −EZ| ≥ t} ≤ 2e−t
2/(2v) .

In his influential paper Hoeffding (1963) already points out that the same re-
sult holds under the weaker assumption that Z is a martingale with bounded
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increments. This simple observation is at the basis of the martingale method for
proving concentration inequalities, a powerful methodology that is still actively
investigated. Hoeffding’s inequality for martingales was more explicitly stated
in the subsequent work of Azuma (1967) and Hoeffding’s inequality for mar-
tingales with bounded increments is often referred to as Azuma’s inequality or
the Azuma-Hoeffding inequality. However, it took some time before the power
of the martingale approach for the study of functions of independent variables
was realized, see McDiarmid (1989, 1998), Chung and Lu (2006a, 2006b), and
Dubhashi and Panconesi (2009) for surveys.

The bounded differences condition

One of the simplest and more natural smoothness assumptions that one may
consider is the so-called bounded differences condition. A function f : Xn → R
of n variables (all taking values in some measurable set X ) is said to satisfy the
bounded differences condition if there exists constants c1, . . . , cn > 0 such that
for every x1, . . . , xn, y1, . . . , yn ∈ Xn and for all i = 1, . . . , n,

|f (x1, . . . , xi, . . . , xn)− f (x1, . . . , xi−1, yi, xi+1 . . . , xn)| ≤ ci .

In other words, changing any of the n variables, while keeping the rest fixed,
cannot cause a big change in the value of the function. Equivalently, one may
interpret this as a Lipschitz condition. Indeed, defining the weighted Hamming
distance dc on the product space Xn as

dc(x, y) =

n∑

i=1

ci1{xi 6=yi} ,

the bounded differences condition means that f is 1-Lipschitz with respect to
the metric dc.

The sum of bounded variables is the simplest example of a function of
bounded differences. Indeed, if X1, . . . , Xn are real-valued independent random
variables such thatXi takes its values in the interval [ai, bi], then f(X1, . . . , Xn) =∑n
i=1Xi satisfies the bounded differences condition with ci = bi − ai. The basic

argument behind the martingale-based approach is that once the function f sat-
isfies the bounded differences condition, Z = f (X1, . . . , Xn) may be interpreted
as a martingale with bounded increments with respect to Doob’s filtration. In
other words, one may write

Z −EZ =

n∑

i=1

∆i (1.2)

where ∆i = E[Z|X1, . . . , Xi] − E[Z|X1, . . . , Xi−1] for i = 2, . . . , n and ∆1 =
E[Z|X1]−EZ, and notice that the bounded differences condition implies that,
conditionally on X1, . . . , Xi−1, the martingale increment ∆i takes its values in
an interval of length at most ci. Hence Hoeffding’s inequality remains valid for Z
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with v = (1/4)
∑n
i=1 c

2
i . This result is known as the bounded differences inequal-

ity, also often referred to as McDiarmid’s inequality. In this book we offer various
alternative proofs and variants of this fundamental inequality (see Sections 6.1
and 8.1).

Another approach to understanding the concentration properties of Lips-
chitz functions of independent variables is based on investigating how product
measures concentrate in high-dimensional spaces. The main ideas behind this
approach, dominant in Talagrand’s work, is briefly explained next.

1.2 The concentration-of-measure phenomenon

Isoperimetric inequalities and concentration

The classical isoperimetric theorem (see Section 7.2) states that among all com-
pact sets A ⊂ Rn with smooth boundary and a fixed volume, Euclidean balls
are the ones with smallest surface area. This result has the following equivalent
formulation that allows one to ask and investigate the same question in general
metric spaces. Writing d(x,A) = infy∈A d(x, y) and

At = {x ∈ Rn : d(x,A) < t}
for the t-blowup of A (with respect to the Euclidean distance d), the isoperimetric
theorem states that for any compact set A and a Euclidean ball B with the same
volume, λ(At) ≥ λ(Bt) for all t > 0. Here the Lebesgue measure λ and the Eu-
clidean distance d play a fundamental role but the same question may be asked
for more general measures and distance functions. For our purposes, probability
measures are closer to the heart of the matter. An equally interesting, though
somewhat less known, case is the isoperimetric problem on the sphere. The cor-
responding isoperimetric theorem is usually referred to as Lévy’s isoperimetric
theorem—proved independently by Lévy (1951) and Schmidt (1948). Again this
theorem can be stated in two equivalent ways but the one more important for
our goals is as follows: Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} denote the unit sphere in
Rn and let µ denote the uniform (i.e., rotation invariant) probability measure on
Sn−1. For any measurable set A ⊂ Sn−1, if B is a geodesic ball (i.e. a spherical
cap) with µ(B) = µ(A), then, for all t > 0,

µ(At) ≥ µ(Bt) ,

where the t-blowups At and Bt are understood with respect to the geodesic
distance on the sphere. The first appearance of the concentration-of-measure
principle may be deduced from this statement. Indeed, by considering a half-
sphere B, one may explicitly compute the measure of the spherical cap Bct and
Lévy’s isoperimetric theorem implies that for any set A ⊂ Sn−1 with µ(A) ≥ 1/2,
the complement Act of the t-blowup of A satisfies

µ (Act) ≤ e−(n−1)t2/2 .

In other words, as soon as µ(A) ≥ 1/2 , the measure of Act decreases very fast as
a function of t. This is the essence of the concentration-of-measure phenomenon
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whose importance was perhaps first fully recognized by Vitali Milman in his
proof of Dvoretzky’s theorem. Unlike the original formulation of the isoperimetric
theorem, the inequality above may be generalized to measures on abstract metric
spaces without any reference to geometry.

Lipschitz functions

Consider a metric space (X , d) and a continuous functional f : X → R. Given a
probability measure P on X , one is interested in bounding the deviation proba-
bilities

P {f(X) ≥Mf(X) + t} and P {|f(X)−Mf(X)| ≥ t}

whereX is a random variable taking values in X with distribution P and Mf(X)
is a median of f(X). Given a Borel set A ⊂ X , let

At = {x ∈ X : d(x,A) < t}

denote the t-blowup of A where t > 0. Now observe that if f is 1-Lipschitz (i.e.,
f(x)−f(y) ≤ d(x, y) for all x, y ∈ X ), then takingA = {x ∈ X : f(x) ≤Mf(X)},
for all x ∈ At,

f(x) <Mf(X) + t ,

and therefore

P {f(X) ≥Mf(X) + t} ≤ P {Act} = P {d (X,A) ≥ t} .

We can now forget what exactly the set A is and just use the fact that P {A ≥
1/2}. Indeed, defining the concentration function

α(t) = sup
A⊂X :P {A}≥ 1

2

P {d (X,A) ≥ t} ,

we obtain
P {f(X) ≥Mf(X) + t} ≤ α(t) .

Changing f into −f , one also gets

P {f(X) ≤Mf(X)− t} ≤ α(t) .

Combining these inequalities of course implies the concentration inequality

P {|f(X)−Mf(X)| ≥ t} ≤ 2α(t) .

The conclusion is that if one can control the concentration function α, as in the
case of the uniform probability measure on the sphere, then one immediately
gets a concentration inequality for any Lipschitz function.

What makes this general principle attractive is that the concentration func-
tion α may be controlled without determining the extremal sets of the isoperi-
metric problem and any upper bound for the function α yields concentration
inequalities for all Lipschitz functions.
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The Gaussian case

The principle described above is nicely illustrated on the case when (X , d) is the
n-dimensional Euclidean space Rn and P is the standard Gaussian probability
measure in Rn. Indeed, in this case the isoperimetric problem is connected to
that of the sphere via the Poincaré’s limit procedure. The Gaussian isoperimetric
problem was completely solved independently by Borell (1975) and Tsirelson
and Sudakov (1974). The Gaussian isoperimetric theorem, stated and proved in
Section 10.4, states that for any Borel set A ⊂ Rn, if H ⊂ Rn is a half-space
with P (H) = P (A), then P (Act) ≤ P (Hc

t ) for all t > 0.
The Gaussian isoperimetric theorem reveals the exact form of the concentra-

tion function. Indeed, define the standard normal tail function by

Φ(t) =
1√
2π

∫ ∞

t

e−u
2/2du ,

and for any Borel set A ⊂ Rn, let tA ∈ R be such that 1−Φ(tA) = P (A). Then,
taking H to be the half-space (−∞, tA)× Rn−1, we see that

P (A) = P (H) and P (Hc
t ) = Φ(tA + t) .

Now, if P (A) ≥ 1/2, then tA ≥ 0, and therefore P (Hc
t ) ≤ Φ(t). Hence, the

Gaussian isoperimetric theorem implies that the concentration function α of the
standard Gaussian measure P is exactly equal to the standard Gaussian tail
function Φ.

Putting things together, we see that if X is a standard Gaussian vector in
Rn and f : Rn → R is a 1-Lipschitz function, then, for all t > 0,

P {f(X)−Mf(X) ≥ t} ≤ Φ(t) ≤ e−t2/2 .

Concentration of product measures

The Gaussian isoperimetric inequality implies sharp concentration inequalities
for smooth functions of independent normal random variables. However, if we
wish to understand random fluctuations of functions of more general indepen-
dent random variables, then we need to study concentration of general product
measures. In order to do this, the first step is to define an appropriate dis-
tance on a product space Xn. A natural candidate is the Hamming distance,
or more generally, a weighted Hamming distance which offers more flexibility.
For any vector α = (α1, . . . , αn) of non-negative real numbers and for any
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn, define

dα(x, y) =

n∑

i=1

αi1{xi 6=yi} .

Let X = (X1, . . . , Xn) be a vector of independent random variables, each taking
values in X and denote by P the distribution of X. Then by a simple consequence
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of the bounded differences inequality, we have the following concentration prop-
erty of the product probability measure P with respect to the weighted Hamming
distance dα: for every A ⊂ Xn with P {X ∈ A} ≥ 1/2,

P {dα(X,A) ≥ t} ≤ e−t2/(2‖α‖2) (1.3)

where ‖α‖ denotes the Euclidean norm of the vector α. (See Section 7.4 for the
proof.)

This implies that if f : Xn → R is 1-Lipschitz with respect to the distance
dα, it satisfies to the sub-Gaussian tail bound

P {f(X) ≥Mf(X) + t} ≤ e−t2/(2‖α‖2) .

We illustrate this inequality by considering the special case of the supremum of
a Rademacher process. Let Xn = {−1, 1}n and

f(x) = max
t∈T

n∑

i=1

αi,txi =

n∑

i=1

αi,t∗(x)xi ,

where T is a finite set and (αi,t) is a collection of real numbers indexed by
i = 1, . . . , n and t ∈ T , and t∗(x) ∈ T denotes an index for which the maximum
is achieved. For all x, y ∈ {−1, 1}n,

f(x)− f(y) ≤
n∑

i=1

αi,t∗(x)(xi − yi) ≤ 2

n∑

i=1

max
t∈T
|αi,t|1{xi 6=yi} .

Thus, f is 1-Lipschitz with respect to the weighted Hamming distance dα where
αi = 2 maxt∈T |αi,t| for all i. As a consequence, if X is uniformly distributed on
the hypercube {−1, 1}n, the random variable

f(X) = max
t∈T

n∑

i=1

αi,tXi

satisfies
P {f(X) ≥Mf(X) + t} ≤ e−t2/(2v)

where the “variance factor” v is defined by v = 4
∑n
i=1 maxt∈T α2

i,t. This result
is not completely satisfactory as v can be much larger than the largest variance
of the individual random variables

∑n
i=1 αi,tXi. One would ideally expect to be

able to exchange the order of the sum and the maximum in the above definition
of v.

Indeed, such a result is possible (by paying the modest price of losing some
absolute multiplicative constant in the exponent), thanks to the celebrated con-
vex distance inequality of Talagrand (proved in Section 7.4) which is one the
major milestones of the theory.
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To see how this works, note first that setting αi(x) = 2
∣∣αi,t∗(x)

∣∣, the supre-
mum of the Rademacher process f defined above satisfies

f(x)− f(y) ≤
n∑

i=1

αi(x)1{xi 6=yi} , (1.4)

a relaxed regularity condition as compared to the Lipschitz property with respect
to some given weighted Hamming distance dα. The beauty of Talagrand’s convex
distance inequality is that it guarantees that the following uniform version of
(1.3) holds for all v > 0 and for every set A ⊂ Xn with P {X ∈ A} ≥ 1/2:

P

{
sup

α∈[0,∞)n:‖α‖2≤v
dα (X,A) ≥ t

}
≤ 2e−t

2/(4v) .

Now one can play a similar game as for the case of Lipschitz functions be-
fore. Choosing A = {x ∈ Xn : f(x) ≤Mf(X)}, for every x ∈ Xn such that
dα(x)(x,A) < t, the regularity condition (1.4) implies that f(x) < Mf(X) + t .
Hence, taking v = supx∈Xn

∑n
i=1 α

2
i (x), we have

{x ∈ Xn : f(x) ≥Mf(X) + t} ⊂
{
x ∈ Xn : dα(x)(x,A) ≥ t

}

⊂
{
x ∈ Xn : sup

‖α‖2≤v
dα(x,A) ≥ t

}
,

and therefore,

P {f(X) ≥Mf(X) + t} ≤ 2e−t
2/(4v) .

If consider again the example of the maximum of a Rademacher process, we
see that v ≤ 4 supt∈T

∑n
i=1 α

2
i,t and we obtain a concentration inequality of the

desired form. This example highlights the power of Talagrand’s convex distance
inequality and the interest of considering the relaxed regularity condition (1.4)
as opposed to Lipschitz regularity with respect to some given weighted Ham-
ming distance. Indeed, the convex distance inequality became the key tool to
obtaining improved concentration inequalities in countless applications, some of
them shown in detail in this book.

Nevertheless, this regularity condition may be too restrictive in some cases.
To understand the shortcomings of this condition, consider the fundamental
example of the supremum of an empirical process defined as follows. Let T be a
finite set and for i = 1, . . . , n, let xi = (xi,t)t∈T be a vector whose components are
indexed by T . Writing x = (x1, . . . , xn), we may define f(x) = maxt∈T

∑n
i=1 xi,t.

Note that the maximum of a Rademacher process is a special case. However, the
study of suprema of general empirical processes is more involved. Indeed, if we
try to use the approach that turned to be successful for Rademacher processes,
the increments of f are controlled by

f(x)− f(y) ≤
n∑

i=1

xi,t∗(x) − yi,t∗(x)
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where t∗(x) ∈ T is a point at which the maximum of
∑n
i=1 xi,t is achieved.

At this point we see how lucky we got in the case of Rademacher processes by
simultaneously benefiting from the special structure of xi,j = αi,jxi and the
boundedness of the xi’s to end up satisfying (1.4). Dealing with general empiri-
cal processes is a significantly more intricate issue. By a substantial deepening of
the approach that lead to the convex distance inequality, Talagrand (1996b) was
able to derive a Bennett-type concentration inequality for the suprema of empir-
ical processes (see Theorem 12.5 for a somewhat sharper version). The authors
of this book were awestruck by this achievement of Talagrand but collectively
confess that they were unable to go further than a line-by-line reading of the
proof. However, Talagrand’s work stimulated intensive research partly in search
of more transparent proofs. Today, following the path opened by Ledoux (1997),
a more accessible proof is available by what we call the entropy method. This
method, briefly sketched in the next section, is one of the central topics of this
book. We feel that many of the most important concentration inequalities can be
obtained in a principled and transparent way by the entropy method. In partic-
ular, the reader will find in this book a complete proof of Talagrand’s inequality
for empirical processes.

We would like to emphasize that, apart from an exciting mathematical chal-
lenge, the study of concentration properties of the supremum of an empirical
process is strongly motivated by applications in mathematical statistics, ma-
chine learning, and other areas. This is why we keep this example as one of the
recurring themes of this book.

1.3 The entropy method

The entropy method replaces Talagrand’s subtle induction arguments by sub-
additive inequalities (often called “tensorization” inequalities in the literature)
that follow naturally from the convexity of entropy and related quantities like
the variance.

The Efron-Stein inequality

Perhaps the simplest inequality of this type is the Efron-Stein inequality that, in
spite of its simplicity, turns out to be a surprisingly powerful tool for bound-
ing the variance of general functions of independent random variables. This
inequality, studied in depth in Chapter 3, can be stated as follows. Let X =
(X1, . . . , Xn) be a vector of independent random variables and denote by X(i) =
(X1, . . . , Xi−1, Xi+1, . . . , Xn) the (n − 1)-vector obtained by dropping Xi. Let

E(i) and V ar(i) denote the conditional expectation and variance operators given
X(i). Then Z = f(X1, . . . , Xn) satisfies

V ar(Z) ≤ E

n∑

i=1

V ar(i)(Z) .

This inequality was proved by Efron and Stein (1981) under the additional as-
sumption that f is symmetric and by Steele (1986) in the general case. As pointed
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out by Rhee and Talagrand (1986), the Efron-Stein inequality may be viewed
as a martingale inequality. The argument, detailed in Section 3.1, may be sum-
marized as follows. Since the martingale increments are orthogonal in L2, the
decomposition (1.2) implies that

V ar(Z) =

n∑

i=1

E∆2
i .

Now using the independence of the Xi, the martingale increments may be rewrit-

ten as ∆i = E
[
Z −E(i)Z|X1, . . . , Xi

]
and the Efron-Stein inequality is obtained

by a simple use of Jensen’s inequality. This proof emphasizes the role of the Efron-
Stein inequality as a substitute of the additivity of the variance for independent
random variables.

Sub-additivity of entropy

The Efron-Stein inequality has an interpretation that gives rise to far-reaching
generalizations. In particular, it paves the way to appropriate generalizations
of (1.1) which was the key to exponential inequalities for sums of independent
random variables. Indeed the variance may be viewed as a special case of a Φ-
entropy defined as follows. If Φ denotes a convex function defined on an interval I
and Y is an integrable random variable taking its values in I, then the Φ-entropy
of Y is defined by

HΦ(Y ) = EΦ(Y )− Φ(EY ) .

By Jensen’s inequality, the Φ-entropy is non-negative and it is finite if and only
if φ(Y ) is integrable. The variance corresponds to the choice Φ(x) = x2, while
taking Φ(x) = x log x leads to the definition of the “usual” notion of entropy
Ent(Y ) of a non-negative random variable Y .

As it turns out, the sub-additive property of the variance expressed by the
Efron-Stein inequality remains true for a large class of Φ-entropies (characterized
in Chapter 14) that includes the ordinary entropy. More precisely, if Y is a non-
negative function of the independent random variables X1, . . . , Xn, then

Ent(Y ) ≤ E

n∑

i=1

Ent(i)(Y )

where Ent(i)(Y ) = E(i)Φ(Y ) − Φ
(
E(i)(Y )

)
with Φ(x) = x log x. Applying this

sub-additive inequality to the random variable Y = eλZ is at the basis of the
entropy method.

Herbst’s argument

The sub-additivity property of entropy seems to have appeared first in the proof
of the Gaussian logarithmic Sobolev inequality of Gross (1975). In fact, the
Gaussian logarithmic Sobolev inequality, combined with an elegant argument
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attributed to Herbst, leads smoothly to the Gaussian concentration inequality.
We sketch the argument here and refer to Chapter 5 for the details. To handle
distributions other than Gaussian, one needs to modify the argument as the log-
arithmic Sobolev inequality does not hold in general. This is done in Chapter
6.

The Gaussian logarithmic Sobolev inequality states that if X is a standard
Gaussian vector in Rn and g : Rn → R is a continuously differentiable function,
then

Ent
(
g2(X)

)
≤ 2E

[
‖∇g(X)‖2

]
.

The proof of this inequality relies on the sub-additivity of entropy. The connec-
tion between the Gaussian logarithmic Sobolev inequality and concentration is
established by Herbst’s argument that we will face in various contexts. In the
Gaussian framework it is especially simple to explain.

Indeed, if f : Rn → R is a continuously differentiable 1-Lipschitz function,
then for all x ∈ Rn, ‖∇f(x)‖ ≤ 1, and for any λ > 0, we may apply the Gaussian
logarithmic Sobolev inequality to the function g = eλf/2. Since for all x ∈ R,

‖∇g(x)‖2 =
λ2

4
‖∇f(x)‖2 eλf(x) ≤ λ2

4
eλf(x) ,

we derive from the Gaussian logarithmic Sobolev inequality that

Ent
(
eλf(X)

)

Eeλf(X)
≤ λ2

2
.

Now the next crucial observation is that, defining F (λ) = logEeλ(f(X)−Ef(X)),

Ent
(
eλf(X)

)

Eeλf(X)
= λF ′(λ)− F (λ) .

This way we obtain the following differential inequality for the logarithm of the
moment generating function

d

dλ

(
F (λ)

λ

)
=
F ′(λ)

λ
− F (λ)

λ2
≤ 1

2

which one can integrate and obtain that for all λ > 0,

F (λ) ≤ λ2

2
.

This leads to the Gaussian concentration bound

P {f(X)−Ef(X) ≥ t} ≤ e−t2/2 .

This bound has the same flavor as what we obtained from the Gaussian isoperi-
metric theorem, except that the median is replaced by the mean. This is typically
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what happens when one uses the entropy method rather than the isoperimetric
method. If one does not care too much about absolute constants in the expo-
nential bounds, this difference is negligible since starting from a concentration
inequality around the median one can obtain a concentration inequality around
the mean and vice versa, simply because the difference between the median and
the mean is under control.

1.4 The transportation method

We also discuss an alternative way of proving concentration inequalities, the
so-called transportation method. The method was initiated by Marton (1986)
who built on ideas from information theory due to Ahlswede, Gács and Körner
(1976) and Csiszár and Körner (1981). The method is based on a beautiful
coupling idea. Given some cost function d, the transportation cost between two
probability measures P and Q is defined by

min
P∈P(P,Q)

EP d(X,Y ) ,

where P(P,Q) denotes the class of joint distributions of the random variables
X and Y such that the marginal distribution of X is P and that of Y is Q.
The transportation cost measures the amount of effort required to “transport” a
mass distributed according to P into a mass distributed according toQ, relatively
to the cost function d. The transportation problem consists in constructing an
optimal coupling P ∈ P (P,Q), that is, a minimizer of EP d(X,Y ). In order to
explain the link between the transportation cost problem and concentration, we
describe the main ideas within the Gaussian framework.

The core of this connection lies in bounding the transportation cost by some
function of the Kullback-Leibler divergence D(Q‖P ) where we recall that when-
ever Q is absolutely continuous with respect to P , D(Q‖P ) = Ent(dQ/dP ). In
the Gaussian case such a transportation inequality is available for the quadratic
cost. In particular, the following inequality, due to Talagrand (1996d), is proved
in Section 8.5: Let P be the standard Gaussian probability measure on Rn and
let Q be any probability measure which is absolutely continuous with respect to
P . Then

min
P∈P(P,Q)

n∑

i=1

EP (Xi − Yi)2 ≤ 2D(Q‖P ) .

The Gaussian concentration inequality may now be derived from this transporta-
tion inequality by an argument due to Bobkov and Götze (1999). The sketch of
the argument is as follows: assume that f : Rn → R is a 1-Lipschitz function,
that is,

f(y)− f(x) ≤
(

n∑

i=1

(xi − yi)2

)1/2

for all x, y ∈ Rn .

Then Jensen’s inequality implies that for any probability distribution P coupling
P to Q� P , one has
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EQf − EP f = EP [f(Y )− f(X)] ≤
(

n∑

i=1

EP (Xi − Yi)2

)1/2

.

Hence, the transportation inequality implies that

EQf − EP f ≤
√

2D(Q‖P ) .

Now the concentration of the random variable Z = f(X) (where X is a standard
Gaussian random vector) may be obtained by the following classical duality
formula for entropy that we prove in Section 4.9:

ψ
Z−EZ

(λ) = sup
Q�P

[λ (EQf − EP f)−D(Q‖P )] .

Combining the last two inequalities, we get that for any λ > 0,

ψ
Z−EZ

(λ) ≤ sup
Q�P

[
λ
√

2D(Q‖P )−D(Q‖P )
]
≤ λ2

2
,

simply because 2ab − a2 ≤ b2. This implies the same Gaussian concentration
inequality as the one derived from the Gaussian logarithmic Sobolev inequality
and Herbst’s argument.

In Chapter 8 we offer a detailed account of the transportation method for
proving concentration inequalities, pioneered by Marton (1996a, 1996b). In par-
ticular, we show how this method allows one to prove not only the bounded
differences inequality but also Talagrand’s convex distance inequality.

As far as we know, there is no clear hierarchy between the entropy method
and the transportation method. As we will see, there are various results that one
can prove by using one method or the other and there are also results that one
can get by one method but not the other. The entropy method is quite versatile,
easy to use and, and performs especially well when dealing with suprema of
empirical processes. However, the entropy method often faces difficulties when
one tries to use it to prove inequalities for the left tail (i.e., upper bounds for
P {Z < EZ − t} for t > 0). On the other hand, the transportation method is
often more efficient for left tails but turns out to be less flexible than the entropy
method, especially when for empirical processes.

1.5 Reading guide

We were guided by two principles while organizing the material of this book.
First, we tried to keep the exposition as elementary as possible and illustrate the
theory with numerous examples and applications. Our intention was to make
most of the material accessible to researchers and mathematically mature grad-
uate students and to introduce the reader to the main ideas of theory while
keeping technicalities at a minimal level, at least in the first half of the book.
This led us to a somewhat nonlinear structure in which the same topic is re-
visited several times along the book, but with different degrees of depth. Very
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6. The entropy method
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8. The transportation method

9. Influences and threshold phenomena

10. Isoperimetry on the hypercube and Gaus-
sian spaces

11. The variance of suprema of empirical pro-
cesses

12. Suprema of empirical processes: exponen-
tial inequalities

13. The expected value of suprema of empiri-
cal processes

14. Φ-entropies

15. Moment inequalities

Fig. 1.1. Dependence structure of the chapters.

roughly, the material may be split in two parts going from Chapter 1 to 9 and
from Chapter 10 to 15. The first chapters expose the general tools required
to prove concentration inequalities together with applications of the theory to
many examples. Chapters 2, 3, and 4 include inequalities for sums of inde-
pendent random variables (such as Hoeffding’s inequality that we introduced
above), variance bounds for functions of independent variables related to the
Efron-Stein inequality, and the basic information-theoretic tools needed to de-
velop the entropy method, such as the sub-additive inequality for entropy. In
Chapters 5 and 6 we present the essence of the entropy method building upon
logarithmic Sobolev inequalities (or their modifications) and Herbst’s argument.
In Chapter 7 we investigate the connection between isoperimetry and concen-
tration while Chapter 8 is devoted to the transportation method. Chapter 9 is
entirely dedicated to the intricate concentration and isoperimetric properties of
the simplest product space, the binary hypercube. We describe some fascinating
applications to the study of threshold phenomena. More precisely, we consider
general monotone functions f : {−1, 1}n → {0, 1} of several binary random
variables and consider independent binary random variables X1, . . . , Xn with
distribution P {Xi = 1} = 1 − P {Xi = −1} = p. We are interested in the be-
havior of P {f(X1, . . . , Xn) = 1} as a function of the parameter p ∈ [0, 1]. If f
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is increasing in each variable (and not constant), this probability grows mono-
tonically from 0 to 1. Using the technology based on logarithmic Sobolev and
isoperimetric inequalities, we establish surprisingly general sufficient conditions
under which P {f(X1, . . . , Xn) = 1} “jumps” from near 0 to near 1 in a very
short interval of the value of the parameter p.

The second half of the book contains some more advanced material. It in-
cludes a deepening of the general tools and their applications. In Chapter 10 we
further investigate isoperimetric problems in the binary hypercube and Gaus-
sian spaces. In particular, we reproduce Bobkov’s elegant proof of the Gaussian
isoperimetric theorem.

Chapters 11–13 are devoted to our canonical example; the supremum of an
empirical process. Chapter 11 covers inequalities for the variance of the max-
imum, mostly building on the Efron-Stein inequality, while in Chapter 12 we
derive various exponential inequalities. In Chapter 13 we present some tools to
control the expectation of the supremum of an empirical process and combine
them with the concentration inequalities established in the previous chapters.

Finally, in Chapters 14 and 15 we describe a method for proving moment
inequalities for functions of independent random variables. The method is based
on a natural extension of the entropy method that leads to moment inequalities
interpolating between the Efron-Stein inequality and exponential concentration
inequalities.

Each chapter is supplemented by a list of exercises. These exercise sections
have a multiple role. Some ask the reader to complete arguments only sketched
in the text. Our intention was to make the main text as self-contained as possible
but the proof of a few results that are somewhat technical and not crucial for
the main stream of the arguments are relegated to the exercise sections. Most of
these exercises come with detailed hints and the reader should not have major
difficulties in filling in the details. Many other exercises describe related results
from the literature whose proof may be more difficult. In all cases, the exercises
provide important supplementary information and we encourage the reader to
look at them.

In order to avoid interrupting the flow of the arguments with references to
the literature, we postpone all bibliographical remarks to the end of each chapter
where the reader may find the source of the material described in the chapter
and pointers for further reading and related material.

We emphasize at this point that the reader looking for a comprehensive ac-
count of concentration inequalities will be disappointed as there are large chunks
of the literature that we do not cover. For example, we only superficially touch
the martingale method, the “classical” approach to concentration inequalities.
Martingales are still the most adequate tool for some problems and the interested
reader is referred to the surveys of McDiarmid (1989, 1998), Schechtman (2003),
Chung and Lu (2006a, 2006b), and Dubhashi and Panconesi (2009).

An important extension that we entirely avoid in this book concerns concen-
tration inequalities for functions of dependent random variables. For concentra-
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tion inequalities for functions of mixing processes, Markov chains, and Markov
random fields, we refer the reader to Marton (1996b, 2003, 2004), Rio (2000),
Samson (2000), Catoni (2003), Külske (2003), Collet (2006), Chazottes, Collet,
Külske and Redig (2007), and Kontorovich and Ramanan (2008), just to name
some important papers from a continuously growing body of research. The meth-
ods used in the above-mentioned papers range from combinations of martingale
methods with coupling techniques to refinements of the transportation method.
Chatterjee (2007) developed a general, elegant, and powerful method for proving
concentration bounds for dependent random variables, based on an adaptation
of Stein’s method; see also Chatterjee and Dey (2010).

Mostly motivated by the need of understanding the behavior of the number
of copies of small subgraphs (such as triangles) in a random graph, an important
body of research, that we do not cover in this book, is devoted to finding sharp
concentration inequalities for low-degree polynomials of independent Bernoulli
random variables. The interested reader may find a long and fascinating story
unfold in the series of papers of Kim and Vu (2000, 2004), Vu (2000, 2001),
Janson and Ruciński (2004, 2002), Janson, Oleszkiewicz, and Ruciński (2004),
Bolthausen, Comets, and Dembo (2009), Döring and Eichelsbacher (2009), Chat-
terjee (2010), DeMarco and Kahn (2010), and Schudy and Sviridenko (2012).

A related important subject that we only tangentially touch upon is the the-
ory of U -statistics and U -processes. Introduced by Hoeffding (1948), this special
class of functions of independent random variables has attracted considerable
attention. We only discuss briefly some special cases such as a Gaussian chaos of
order two (see Example 2.12). For general moment and exponential inequalities
for U -statistics, we refer the interested reader to the book of de la Peña and
Giné (1999). For a sample of concentration inequalities for U -statistics and U -
processes, some of which are established with the help of the general techniques
described in this book, see Adamczak (2006), Clémençon, Lugosi, and Vayatis
(2008), Giné, Lata la, and Zinn (2000), Houdré and Reynaud-Bouret (2003), Ma-
jor (2005, 2006, 2007), and Verzelen (2010).

Many important geometrical aspects of the concentration-of-measure phe-
nomenon omitted from this book are treated in the outstanding monograph
of Ledoux (2001). Ledoux’s book describes the concentration-of-measure phe-
nomenon from the perspective of geometry and functional analysis. A decade
earlier, the influential book by Ledoux and Talagrand (1991) emphasized the
use of concentration arguments in the analysis of sums of independent random
vectors. During the 90’s, it became clear that functional inequalities may lead
to powerful concentration inequalities and even to sharp isoperimetric estimates
(see, e.g., Chapter 10).
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BASIC INEQUALITIES

Our main concern in this book is to understand under what conditions random
variables are concentrated around their expected values. The random variables
we focus on are functions of several independent random variables. In a certain
sense, this book is a study of independence, possibly the most important notion
of probability theory.

The most basic concentration results are the laws of large numbers that
state that averages of independent random variables are, under mild integrability
conditions, close to their expectations with high probability. Of course, laws of
large numbers have been thoroughly studied in classical probability theory. More
recent results reveal that such a concentration behavior is shared by a large class
of general functions of independent variables, and this is precisely the subject of
this book.

While laws of large numbers are asymptotic in nature, we are interested
in more quantitative results. Throughout the book we focus on concentration
inequalities that hold for a fixed sample size. In this first chapter we recall some
useful inequalities for sums (or averages) of independent random variables. This
exercise is useful not only because these results will serve as a reference for
comparison with other, more general, concentration inequalities, but also because
some of the basic proof techniques appear in the more general contexts.

Concentration properties of sums of independent variables are sensitive to
the integrability of the individual terms. In the most favorable situations one
can derive exponential tail bounds. We pay special attention to the cases when
the sums exhibit a certain sub-Gaussian behavior though often tail probabilities
decrease significantly slower than those of a Gaussian random variable. In such
problems inequalities for moments of the random variable in focus may turn out
to be useful.

We start this chapter by reviewing some elemantary facts about tail proba-
bilities. Then, in Section 2.2, we describe the so-called Cramér-Chernoff method,
the basic technique for deriving exponential upper bounds for tail probabilities.
In Sections 2.3 and 2.4 we single out two types of tail behaviors that we will
often face. We call these sub-Gaussian and sub-gamma random variables and we
characterize them in terms of the behavior of their moments.

In Section 2.5 a simple useful inequality is presented for bounding the ex-
pected maximum of random variables.

Hoeffding’s inequality, Bennett’s inequality and Bernstein’s inequality are
three classical benchmark inequalities for sums of independent random variables
that are shown and proved in Sections 2.6, 2.7, and 2.8.
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In Section 2.9 we describe the Johnson-Lindenstrauss lemma as an interesting
application of concentration of sums of independent random variables. Later in
this book we return to this example and its modifications to illustrate some of
the results.

Finally, some simple association inequalities are presented in Section 2.10
while Minkowski’s inequality is the subject of Section 2.11.

2.1 From moments to tails

In this book, by a concentration inequality we most often mean an upper bound
for the probability that a real-valued random variable Z differs from its expected
value by more than a certain amount. In other words, we seek upper bounds for
tail probabilities of the form

P {Z −EZ ≥ t} and P {Z −EZ ≤ −t}

where t > 0. Of course, here we assume implicitly that the expected value EZ
exists.

An elementary, yet powerful device to bound such tail probabilities is based
on Markov’s inequality. To derive Markov’s inequality, simply note that, given
a nonnegative random variable Y , for all t > 0, Y 1{Y≥t} ≥ t1{Y≥t}. Taking
expectations of both sides of this inequality, we get Markov’s inequality:

P {Y ≥ t} ≤ E
[
Y 1{Y≥t}

]

t
≤ EY

t
.

Of course, this inequality is interesting only if EY <∞, that is, if Y is integrable.
An obvious way of using Markov’s inequality to obtain concentration inequalities
is to apply it to Y = |Z−EZ|. However with a simple trick Markov’s inequality
can be boosted, leading to much sharper estimates. Such an improvement is
possible whenever Z satisfies stronger integrability conditions. The idea is to
apply Markov’s inequality to a convenient transformation of Z − EZ rather
than to just |Z − EZ|. If φ denotes a nondecreasing and nonnegative function
defined on a (possibly infinite) interval I ⊂ R and if Y denotes a random variable
taking values in I, then Markov’s inequality implies that for every t ∈ I with
φ(t) > 0,

P {Y ≥ t} ≤ P {φ(Y ) ≥ φ(t)} ≤ Eφ(Y )

φ(t)
. (2.1)

The most common application of this is Chebyshev’s inequality, obtained by
taking φ(t) = t2 over I = (0,∞) and Y = |Z −EZ|. In this case we get

P {|Z −EZ| ≥ t} ≤ V ar(Z)

t2
.

More generally, we may take φ(t) = tq for some q > 0. Then for all t > 0 we have

P {|Z −EZ| ≥ t} ≤ E [|Z −EZ|q]
tq

.
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If the random variable Z is such that E|Z|q < ∞ for all q > 0 then one may
choose the value of q to optimize the obtained upper bound.

The prominent role of Chebyshev’s inequality is not only explained by his-
torical reasons but also because among all the absolute moments of the form
E [|Z −EZ|q], the variance is typically the easiest to handle. This is certainly
the case when Z is a sum of independent random variables Z = X1 + · · ·+Xn. In
this case, since the expected value of a product of independent random variables
equals the product of their expectations, we have

V ar(Z) =

n∑

i=1

V ar(Xi)

and Chebyshev’s inequality becomes

P

{
1

n

∣∣∣∣∣
n∑

i=1

(Xi −EXi)

∣∣∣∣∣ ≥ t
}
≤ σ2

nt2
,

where σ2 = n−1
∑n
i=1 V ar (Xi).

There is a whole family of choices of the function φ for which the upper tail
bound obtained by Markov’s inequality can be conveniently handled for sums
of independent random variables. These are exponential functions of the form
φ(t) = eλt where λ is a positive number. In this case Markov’s inequality implies

P {Z ≥ t} ≤ EeλZ

eλt
,

that is, the moment generating function F (λ) = EeλZ , defined for all λ ∈ R,
appears in the upper bound. If Z = X1 + · · · + Xn is a sum of independent
random variables, then by independence,

Eeλ
∑n
i=1(Xi−EXi) =

n∏

i=1

Eeλ(Xi−EXi) .

This simple observation is at the basis of the Cramér-Chernoff method that we
study in the next section. The main idea is to control the moment generating
function of a random variable and then to optimize, in λ, the tail bound ob-
tained by Markov’s inequality. Even though moment bounds are sharper than
the ones obtained by the Cramér-Chernoff method (see Exercise 2.5), the advan-
tages offered by the equation above make the -Chernoff method an attractive and
convenient tool for bounding tail probabilities of sums of independent random
variables. When the moment generating function exists for non-zero values of λ,
this technique leads to exponential bounds for the tail

P {|Z −EZ| ≥ t} .

Since this probability is bounded by
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P {Z −EZ ≥ t}+ P {EZ − Z ≥ t} ,

considering either Z̃ = Z − EZ or Z̃ = EZ − Z, we can focus on exponential
bounds for P {Z ≥ t} where Z is a centered random variable.

2.2 The Cramér-Chernoff method

In this section we describe and formalize the Cramér-Chernoff bounding method.
This method determines the best possible bound for a tail probability that one
can possibly obtain by using Markov’s inequality with an exponential function
φ(t) = eλt in (2.1). This simple technique leads to surprisingly sharp bounds in
many cases. We work out some simple examples.

Let Z be a real-valued random variable. For λ ≥ 0, Markov’s inequality (2.1)
implies

P {Z ≥ t} ≤ e−λtEeλZ .

Since this inequality holds for all values of λ ≥ 0, one may choose λ to minimize
the upper bound. Defining the logarithm of the moment generating function as

ψZ (λ) = logEeλZ for all λ ≥ 0 ,

and introducing
ψ∗Z (t) = sup

λ≥0
(λt− ψZ (λ)) ,

we obtain Chernoff’s inequality:

P {Z ≥ t} ≤ exp (−ψ∗Z (t)) .

The function ψ∗Z is called the Cramér transform of Z. Since ψZ (0) = 0, ψ∗Z
is a nonnegative function. If EZ exists, then the convexity of the exponential
function and Jensen’s inequality imply that ψZ (λ) ≥ λEZ and therefore, for all
negative values of λ, λt−ψZ (λ) ≤ 0 whenever t ≥ EZ. This means that we may
formally extend the supremum over all λ ∈ R in the definition of the Cramér
transform:

ψ∗Z (t) = sup
λ∈R

(λt− ψZ (λ)) .

The expression of the right-hand side is known as the Fenchel-Legendre dual
function of ψZ . Thus, at every t ≥ EZ, the Cramér transform ψ∗Z (t) coincides
with the Fenchel-Legendre dual.

Of course Chernoff’s inequality is trivial whenever ψ∗Z (t) = 0. This is the
case if ψZ (λ) =∞ for all positive λ or if t ≤ EZ (using again the lower bound
ψZ(λ) ≥ λEZ). To avoid such trivialities, we assume that there exists a λ > 0
such that EeλZ <∞. It is easy to see (e.g., by applying Hölder’s inequality) that
the set of all such positive values of λ is an interval whose left end point equals
0. Denote by b the supremum of this interval so that 0 < b ≤ ∞. Then ψZ is
convex (strictly convex whenever Z is not almost surely constant) and infinitely
many times differentiable on I = (0, b).
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The case when Z is centered (i.e., EZ = 0) is of special interest. In such a
case ψZ is continuously differentiable on [0, b) with ψ′Z(0) = ψZ(0) = 0 and we
can also write the Cramér transform as ψ∗Z(t) = supλ∈I (λt− ψZ(λ)). We leave
the proof of these basic properties of ψZ to the reader (see Exercise 2.6).

Differentiability of ψZ implies that the Cramér transform can be computed
by differentiating λt − ψZ(λ). with respect to λ. The optimizing value of λ is
found by setting the derivative to zero, that is,

ψ∗Z(t) = λtt− ψZ(λt)

where λt is such that ψ′Z(λt) = t. The strict convexity of ψZ implies that ψ′Z
has an increasing inverse (ψ′Z)−1 on the interval ψ′Z(I)

def
= (0, B) and therefore,

for any t ∈ (0, B),

λt = (ψ′Z)
−1

(t) .

In the rest of this section we use this simple formula to compute the Cramér
transform explicitly in three illustrative cases.

Normal random variables. Let Z be a centered normal random variable with
variance σ2. Then

ψZ(λ) =
λ2σ2

2
and λt =

t

σ2

and therefore, for every t > 0,

ψ∗Z(t) =
t2

2σ2
.

Hence, Chernoff’s inequality implies, for all t > 0,

P {Z ≥ t} ≤ e−t2/(2σ2) .

Apparently, Chernoff’s inequality is quite sharp in this case. In fact, one can
show that it cannot be improved uniformly by more than a factor of 1/2 (see
Exercise 2.7).

Poisson random variables. Let Y be a Poisson random variable with parameter
v, that is, P {Y = k} = e−vvk/k! for all k = 0, 1, 2, . . .. Let Z = Y − v be the
corresponding centered variable. Then by direct calculation,

EeλZ = e−λv
∞∑

k=0

eλke−v
vk

k!
= e−λv−v

∞∑

k=0

(
veλ
)k

k!
= e−λv−veve

λ

,

and consequently,

ψZ(λ) = v
(
eλ − λ− 1

)
and λt = log

(
1 +

t

v

)
.
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Therefore the Cramér transform equals, for every t > 0,

ψ∗Z(t) = vh

(
t

v

)

where the function h is defined, for all x ≥ −1, by h(x) = (1 + x) log(1 + x)− x.
Similarly, for every t ≤ v,

ψ∗−Z(t) = vh

(
− t
v

)
.

Bernoulli random variables. In our third principal example, let Y be a Bernoulli
random variable with probability of success p, that is, P {Y = 1} = 1− P {Y =
0} = p. Denote by Z = Y −p the centered version of Y . If 0 < t < 1−p, we have

ψZ(λ) = log
(
peλ + 1− p

)
− λp and λt = log

(1− p) (p+ t)

p (1− p− t)

and therefore, for every t ∈ (0, 1− p),

ψ∗Z(t) = (1− p− t) log
1− p− t

1− p + (p+ t) log
p+ t

p
.

Equivalently, setting a = t+ p for every a ∈ (p, 1),

ψ∗Z(t) = hp (a)
def
= (1− a) log

1− a
1− p + a log

a

p
.

We note here that hp(a) is just the Kullback-Leibler divergence D(Pa‖Pp) be-
tween a Bernoulli distribution Pa of parameter a and a Bernoulli distribution Pp
of parameter p (see Chapter 4 for the definition).

Sums of independent random variables. The reason why Chernoff’s inequality
became popular is that it is very simple to use when it is applied to a sum of
independent random variables. As an illustration, assume that Z = X1 + · · · +
Xn where X1, . . . , Xn are independent and identically distributed real-valued
random variables. Denote the logarithm of the moment generating function of
theXi by ψX(λ) = logEeλXi and the corresponding Cramér transform by ψ∗X(t).
Then by independence, for all λ for which ψX(λ) <∞,

ψZ(λ) = logEeλ
∑n
i=1 Xi = log

n∏

i=1

EeλXi = nψX(λ)

and consequently,

ψ∗Z(t) = nψ∗X

(
t

n

)
.

As an example, consider a random variable Y with binomial distribution with
parameters n and p. In other words, Y is the sum of n independent and identically
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distributed Bernoulli(p) random variables. Then, for all 0 < t < n(1 − p), the
Cramér transform of Z = Y − np equals

ψ∗Z(t) = nhp(t/n+ p)

and therefore, by Chernoff’s inequality,

P {Z ≥ t} ≤ exp (−nhp(t/n+ p)) .

We refer to the exercises for several simple versions of Chernoff’s inequality for
binomial random variables.

2.3 Sub-Gaussian random variables

Many important classes of random variables have tail probabilities decreasing at
least as rapidly as normally distributed random variables. In order to facilitate
the exploration of this phenomenon, we find it useful to formalize the notion of a
sub-Gaussian random variable. There are several ways to do this and we propose
the following definition, based on the logarithmic moment generating function
ψX(λ) = logEeλX of a random variable X: A centered random variable X is
said to be sub-Gaussian with variance factor v if

ψX(λ) ≤ λ2v

2
for every λ ∈ R .

We denote the collection of such random variables by G(v).
Note that this definition does not require the variance of X to be equal to v

but just that it is bounded by v (see Exercise 2.16). This definition is natural since
we know from the previous section that exp

(
λ2v/2

)
is the moment generating

function of a centered normal random variable Y with variance v. Hence, the
above definition says that a centered random variable X belongs to G (v) if
the moment generating function of X is dominated by the moment generating
function of Y . This notion is also convenient because it is naturally stable under
convolution in the sense that if X1, . . . , Xn are independent such that for every
i, Xi ∈ G (vi), then

∑n
i=1Xi ∈ G (

∑n
i=1 vi).

Characterization. Next we connect the notion of a sub-Gaussian random vari-
able with some other standard ways of defining sub-Gaussian distributions. First
observe that Chernoff’s inequality implies that the tail probabilities of a sub-
Gaussian random variable are dominated by the corresponding Gaussian tail
probabilities. More precisely, if X belongs to G(v) then for every t > 0,

P {X > t} ∨ P {−X > t} ≤ e−t2/(2v)

where a ∨ b denotes the maximum of a and b. In fact, one can characterize sub-
Gaussian variables in terms of their tail probabilities and also in terms of the
growth of their moments, as summarized in the following theorem.
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Theorem 2.1 Let X be a random variable with EX = 0. If for some v > 0

P {X > x} ∨ P {−X > x} ≤ e−x2/(2v) for all x > 0 (2.2)

then for every integer q ≥ 1,

E
[
X2q

]
≤ 2q!(2v)q ≤ q!(4v)q . (2.3)

Conversely, if for some positive constant C

E
[
X2q

]
≤ q!Cq ,

then X ∈ G(4C) (and therefore (2.2) holds with v = 4C).

Proof Assume first (2.2). We may assume that v = 1 since otherwise one can
apply the result for the random variable X/

√
v. We have

E
[
X2q

]
=

∫ ∞

0

P
{
|X|2q > x

}
dx

= 2q

∫ ∞

0

x2q−1P {|X| > x} dx ≤ 4q

∫ ∞

0

x2q−1e−x
2/2dx .

By setting x =
√

2t, the previous inequality becomes

E
[
X2q

]
≤ 4q

∫ ∞

0

(2t)q−1e−tdt = 2q+1q! ,

which implies (2.3). Conversely, assume E
[
X2q

]
≤ q!Cq and introduce an inde-

pendent copy X ′ of X. Then by symmetry of X −X ′ we have

EeλXEe−λX = Eeλ(X−X
′) =

∞∑

q=0

λ2qE
[
(X −X ′)2q

]

(2q)!

for every λ ∈ R. Now by convexity of x→ x2q,

E
[
(X −X ′)2q

]
≤ 22q−1

(
E
[
X2q

]
+ E

[
X ′2q

])
= 22qE

[
X2q

]

and therefore, using our assumption for the moments of X, we have

EeλXEe−λX =

∞∑

q=0

λ2qE
[
(X −X ′)2q

]

(2q)!
≤
∞∑

q=0

λ2q22qCqq!

(2q)!
.

Observe that since X is centered, Ee−λX ≥ 1 and that for every integer q ≥ 1,

(2q)!

q!
=

q∏

j=1

(q + j) ≥
q∏

j=1

(2j) = 2qq! .
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Using these observations, we conclude that

EeλX ≤
∞∑

q=0

λ2q2qCq

q!
= e2λ2C ,

that is, X ∈ G (4C). 2

Finally, we mention that the growth condition for the moments of X given in
Theorem 2.1 is equivalent to another condition that is often used as an alternative
definition of sub-Gaussian variables. This condition states that for some α > 0,

E exp
(
αX2

)
≤ 2 . (2.4)

Then clearly
∞∑

q=1

αqE
[
X2q

]

q!
≤ 1

which implies that E
[
X2q

]
≤ α−qq! (and therefore that X ∈ G (4/α)). Con-

versely, if E
[
X2q

]
≤ Cqq! for every integer q (which holds with C = 4v whenever

X ∈ G(v)), then, setting α = 1/(2C),

E exp
(
αX2

)
=

∞∑

q=0

αqE
[
X2q

]

q!
≤
∞∑

q=0

2−q = 2 .

Therefore, for a centered random variable X, condition (2.4) holds for some
positive α if and only if X is sub-Gaussian with variance factor v, for some
v ∈ [2/α, 4/α].

Bounded variables. Bounded variables are an important class of sub-Gaussian
random variables. The sub-Gaussian property of bounded random variables is
established by the following lemma:

Lemma 2.2 (hoeffding’s lemma.) Let Y be a random variable with EY =
0, taking values in a bounded interval [a, b] and let ψY (λ) = logEeλY . Then
ψ′′Y (λ) ≤ (b− a)2/4 and Y ∈ G

(
(b− a)2/4

)
.

Proof Observe first that
∣∣∣∣Y −

(b+ a)

2

∣∣∣∣ ≤
(b− a)

2

and therefore

V ar (Y ) = V ar (Y − (b+ a) /2) ≤ (b− a)
2

4
.

Now let P denote the distribution of Y and let Pλ be the probability distribution
with density

x→ e−ψY (λ)eλx
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with respect to P . Since Pλ is concentrated on [a, b], the variance of a random
variable Z with distribution Pλ is bounded by (b−a)2/4. Hence, by an elementary
computation,

ψ′′Y (λ) = e−ψY (λ)E
[
Y 2eλY

]
− e−2ψY (λ)

(
E
[
Y eλY

])2

= V ar(Z) ≤ (b− a)2

4
.

The sub-Gaussian property follows by noting that ψY (0) = ψ′Y (0) = 0, and by
Taylor’s theorem that implies that, for some θ ∈ [0, λ],

ψY (λ) = ψY (0) + λψ′Y (0) +
λ2

2
ψ′′Y (θ) ≤ λ2(b− a)2

8
.

2

The upper bound on the variance factor is sharp in the special case of a
Rademacher random variable X whose distribution is defined by P {X = −1} =

P {X = 1} = 1/2. Then one may take a = −b = 1 and V ar(X) = 1 = (b− a)
2
/4.

2.4 Sub-gamma random variables

Apart from sub-Gaussian random variables, we will often encounter random
variables that are not quite sub-Gaussian but nearly. In order to understand
these variables, here we consider a somewhat less stringent condition on the
moment generating function. A real-valued centered random variable X is said
to be sub-gamma on the right tail with variance factor v and scale parameter c
if

ψX(λ) ≤ λ2v

2(1− cλ)
for every λ such that 0 < λ < 1/c .

We denote the collection of such random variables by Γ+(v, c). Similarly, X is
said to be sub-gamma on the left tail with variance factor v and scale parameter
c if −X is sub-gamma on the right tail with variance factor v and tail parameter
c. We denote the collection of such random variables by Γ−(v, c). Finally, X is
simply said to be sub-gamma with variance factor v and scale parameter c if X is
sub-gamma both on the right and left tails with the same variance factor v and
scale parameter c. The collection of such random variables is denoted by Γ(v, c).
Observe that Γ(v, 0) = G(v). To explain the terminology, consider a random
variable Y with gamma distribution with parameters a, b ≥ 0. Then its centered
version X = Y −EY is a typical example of a sub-gamma variable. To see this,
recall first that Y has density

f(x) =
xa−1e−x/b

Γ(a)ba
, x ≥ 0

where Γ(a) =
∫∞

0
xa−1e−xdx is Euler’s Gamma function. It is easy to see that

EY = ab and V ar(Y ) = ab2. Then, for all λ < 1/b,
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EeλX =

∫ ∞

0

eλ(x−ab)f(x)dx = exp (−λab− a ln(1− λb)) .

It is easy to see that for all u ∈ (0, 1),

− ln(1− u)− u ≤ u2

2(1− u)

(see Exercise 2.8), so the logarithmic moment generating function of X may be
bounded, for all λ ∈ (0, 1/b), as

ψX(λ) = a (− ln(1− λb)− λb) ≤ λ2v

2(1− cλ)

where v = ab2 and c = b. This shows that X is a sub-gamma random variable
on the right tail, with variance factor ab2 and scale parameter b, that is, X
belongs to Γ+

(
ab2, b

)
. Since the distribution of X is not symmetric around 0,

the behavior of X on the left tail is a bit different. Indeed, for all u < 0,

− ln(1− u)− u ≤ u2

2
,

and therefore, for all λ < 0,

ψX(λ) = a (− ln(1− λb)− λb) ≤ λ2v

2

where v = ab2. This shows that X is more concentrated on the left tail than on
the right tail. In fact, the left tail of X has a sub-Gaussian behavior. X belongs
to Γ−

(
ab2, 0

)
and to Γ+

(
ab2, b

)
and therefore to Γ

(
ab2, b

)
.

Characterization. Similarly to the sub-Gaussian property, the sub-gamma prop-
erty can be characterized in terms of tail or moment conditions. We start by
computing the Fenchel-Legendre dual function of

ψ(λ) =
vλ2

2 (1− cλ)
.

Setting
h1(u) = 1 + u−

√
1 + 2u for u > 0 ,

it follows by elementary calculation that for every x > 0,

ψ∗(t) = sup
λ∈(0,1/c)

(
tλ− λ2v

2(1− cλ)

)
=

v

c2
h1

(
ct

v

)
. (2.5)

Since h1 is an increasing function from (0,∞) onto (0,∞) with inverse function
h−1

1 (u) = u+
√

2u for u > 0, we finally get
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ψ∗−1(u) =
√

2vu+ cu .

Hence, Chernoff’s inequality implies that whenever X is a sub-gamma random
variable on the right tail with variance factor v and scale parameter c, for every
t > 0, we have

P {X > t} ≤ exp

(
− v

c2
h1

(
ct

v

))
,

or equivalently, for every t > 0,

P
{
X >

√
2vt+ ct

}
≤ e−t .

Therefore, if X belongs to Γ(v, c), then for every t > 0,

P
{
X >

√
2vt+ ct

}
∨ P

{
−X >

√
2vt+ ct

}
≤ e−t .

Such a behavior for the tails essentially characterizes sub-gamma random vari-
ables. More precisely, we have the following.

Theorem 2.3 Let X be a centered random variable. If for some v > 0

P
{
X >

√
2vt+ ct

}
∨ P

{
−X >

√
2vt+ ct

}
≤ e−t for every t > 0 , (2.6)

then for every integer q ≥ 1

E
[
X2q

]
≤ q!(8v)q + (2q)!(4c)2q . (2.7)

Conversely, if for some positive constants A and B,

E
[
X2q

]
≤ q!Aq + (2q)!B2q , (2.8)

then X ∈ Γ
(
4
(
A+B2

)
, 2B

)
(and therefore (2.6) also holds with v = 4

(
A+B2

)

and c = 2B).

Proof Assume first that (2.6) holds. By integration by parts,

E
[
X2q

]
= 2q

∫ ∞

0

x2q−1P {|X| > x} dx .

Setting x =
√

2vt+ ct and using (2.6), this implies

E
[
X2q

]
≤ 4q

∫ ∞

0

(√
2vt+ ct

)2q−1
(√

2vt+ 2ct

2t

)
e−tdt

≤ 2q

∫ ∞

0

(√
2vt+ 2ct

)2q e−t

t
dt .

By convexity of x2q, (a+ b)2q ≤ 22q−1
(
a2q + b2q

)
, and therefore
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E
[
X2q

]
≤ q22q

∫ ∞

0

(
(2tv)q + (2ct)2q

)
e−tdt

≤ 22q

(
q!2qvq +

(2q)!

2
(2c)2q

)
,

so (2.7) holds. Conversely, assuming (2.8), we may use the same symmetriza-
tion trick as for the characterization of the sub-gaussian propoperty in terms of
moments. Considering an independent copy X ′ of X, we have

EeλXEe−λX = Eeλ(X−X
′) =

∞∑

q=0

λ2qE
[
(X −X ′)2q

]

(2q)!
.

By convexity again we note that

E
[
(X −X ′)2q

]
≤ 22q−1

(
E
[
X2q

]
+ E

[
X ′2q

])
= 22qE

[
X2q

]

and plugging this inequality together with (2.8) into the previous equation leads
to

EeλXEe−λX ≤
∞∑

q=0

λ2q22q
(
Aqq! +B2q(2q)!

)

(2q)!
.

Using again q!/(2q)! ≤ 2−q/q! and that EX = 0 implies Ee−λX ≥ 1, we get that
for every λ with 2B |λ| < 1,

EeλX ≤ e2Aλ2

+
4B2λ2

1− 4B2λ2
≤ e2Aλ2

+
4B2λ2

1− 2B |λ| .

The final result follows from the elementary inequality

ex + y ≤ ex+y

which holds for all x, y > 0. 2

2.5 A maximal inequality

The purpose of this section is to show how information on the Cramér transform
of random variables in a finite collection can be used to bound the expected
maximum of these random variables.

The main idea is perhaps most transparent if we consider sub-Gaussian ran-
dom variables. Let Z1, . . . , ZN be real-valued random variables such that there
exists a v > 0 such that for every i = 1, . . . , N , the logarithm of the moment
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generating function of Zi satisfies ψZi(λ) ≤ λ2v/2 for all λ > 0. Then by Jensen’s
inequality,

exp

(
λE max

i=1,...,N
Zi

)
≤ E exp

(
λ max
i=1,...,N

Zi

)
= E max

i=1,...,N
eλZi

≤
N∑

i=1

EeλZi ≤ Neλ2v/2 .

Taking logarithms on both sides, we have

E max
i=1,...,N

Zi ≤
logN

λ
+
λv

2
.

The upper bound is minimized for λ =
√

2 logN/v which yields

E max
i=1,...,N

Zi ≤
√

2v logN .

This simple bound is asymptotically sharp if the Zi are i.i.d. normal random
variables, see Exercise 2.17.

Of course, the argument above may be generalized beyond sub-Gaussian vari-
ables. Next we formalize such a general inequality but first we start with a techni-
cal result that establishes a useful formula for the inverse of the Fenchel-Legendre
dual of a smooth convex function.

Lemma 2.4 Let ψ be a convex and continuously differentiable function defined
on the interval [0, b) where 0 < b ≤ ∞. Assume that ψ (0) = ψ′ (0) = 0 and set,
for every x ≥ 0,

ψ∗(t) = sup
λ∈(0,b)

(λt− ψ(λ)) .

Then ψ∗ is a nonnegative convex and nondecreasing function on [0,∞). More-
over, for every y ≥ 0, the set {t ≥ 0 : ψ∗(t) > y} is non-empty and the generalized
inverse of ψ∗, defined by

ψ∗−1(y) = inf {t ≥ 0 : ψ∗(t) > y} ,

can also be written as

ψ∗−1(y) = inf
λ∈(0,b)

[
y + ψ(λ)

λ

]
.

Proof By definition, ψ∗ is the supremum of convex and nondecreasing functions
on [0,∞) and ψ∗(0) = 0, and therefore ψ∗ is a nonnegative, convex, and nonde-
creasing function on [0,∞). Moreover, given λ ∈ (0, b), since ψ∗(t) ≥ λt− ψ(λ),
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ψ∗ is unbounded which shows that for every y ≥ 0, the set {t ≥ 0 : ψ∗(t) > y} is
non-empty. Defining

u = inf
λ∈(0,b)

[
y + ψ(λ)

λ

]
,

for every t ≥ 0, we have u ≥ t if and only if for every λ ∈ (0, b)

y + ψ(λ)

λ
≥ t .

Since this inequality implies y ≥ ψ∗(t), we have {t ≥ 0 : ψ∗(t) > y} = (u,∞).
This proves that u = ψ∗−1(y) by definition of ψ∗−1. 2

The next result offers a convenient bound for the expected value of the max-
imum of finitely many exponentially integrable random variables. This type of
bound has been used in so-called chaining arguments for bounding suprema of
Gaussian or empirical processes (see Chapter 13).

Theorem 2.5 Let Z1, . . . , ZN be real-valued random variables such that for ev-
ery λ ∈ (0, b) and i = 1, . . . , N , the logarithm of the moment generating function
of Zi satisfies ψZi(λ) ≤ ψ(λ) where ψ is a convex and continuously differentiable
function on [0, b) with 0 < b ≤ ∞ such that ψ(0) = ψ′(0) = 0. Then

E max
i=1,...,N

Zi ≤ ψ∗−1(logN) .

In particular, if the Zi are sub-Gaussian with variance factor v, that is, ψ(λ) =
λ2v/2 for every λ ∈ (0,∞), then

E max
i=1,...,N

Zi ≤
√

2v logN .

Proof By Jensen’s inequality,

exp

(
λE max

i=1,...,N
Zi

)
≤ E exp

(
λ max
i=1,...,N

Zi

)
= E max

i=1,...,N
exp (λZi)

for any λ ∈ (0, b). Thus, recalling that ψZi(λ) = logE exp (λZi),

exp

(
λE max

i=1,...,N
Zi

)
≤

N∑

i=1

E exp (λZi) ≤ N exp (ψ(λ)) .

Therefore, for any λ ∈ (0, b),

λE max
i=1,...,N

Zi − ψ(λ) ≤ logN ,

which means that

E max
i=1,...,N

Zi ≤ inf
λ∈(0,b)

(
logN + ψ(λ)

λ

)

and the result follows from Lemma 2.4. 2

We may also apply Theorem 2.5 to establish a bound for the expected max-
imum of sub-gamma random variables.
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Corollary 2.6 Let Z1, . . . , ZN be real-valued random variables belonging to Γ+(v, c)
(see Section 2.4 for the definition). Then

E max
i=1,...,N

Zi ≤
√

2v logN + c logN .

Example 2.7 (chi-squared distribution.) An important example of gamma
distributed random variables is a chi-square random variable. If p is a positive
integer, a gamma random variable with parameters a = p/2 and b = 2 is said to
have chi-square distribution with p degrees of freedom. (Note that if Y1, . . . , Yp
are independent standard normal random variables then

∑p
i=1 Y

2
i has chi-square

distribution with p degrees of freedom.) Corollary 2.6 implies that if X1, . . . , XN

have chi-square distribution with p degrees of freedom, then

E

[
max

i=1,...,N
Xi − p

]
≤ 2
√
p logN + 2 logN .

2.6 Hoeffding’s inequality

In the next few sections we establish some of the classical inequalities for tail
probabilities of sums of independent real-valued random variables. The Cramér-
Chernoff method is especially relevant in this case. In fact, it was invented for the
study of sums of independent random variables. The key to success is that the
exponential moment generating function converts sums into products and the
expected value of a product of independent random variables is just the product
of their expected values. Indeed if X1, . . . , Xn are independent random variables
with finite mean such that for some non-empty interval I, EeλXi is finite for all
i ≤ n and all λ ∈ I, then defining

S =

n∑

i=1

(Xi −EXi) ,

by independence, for all λ ∈ I,

ψS(λ) =

n∑

i=1

logEeλ(Xi−EXi) .

This expression may now be bounded under various assumptions on the Xi and
Chernoff’s inequality may be used. We start with the perhaps simplest version,
for sums of bounded random variables. Recall that Hoeffding’s lemma (Lemma
2.2) establishes a sub-Gaussian property of bounded random variables. Hoeffd-
ing’s inequality is a straightforward consequence of Hoeffding’s lemma and Cher-
noff’s inequality.

Indeed, if Xi takes its values in a bounded interval [ai, bi], for all i ≤ n, then
by Lemma 2.2,

ψS(λ) ≤ λ2

8

n∑

i=1

(bi − ai)2
.

The obtained tail inequality is the following.
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Theorem 2.8 (hoeffding’s inequality.) Let X1, . . . , Xn be independent ran-
dom variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n.
Let

S =

n∑

i=1

(Xi −EXi) .

Then for every t > 0,

P {S ≥ t} ≤ exp

(
− 2t2∑n

i=1 (bi − ai)2

)
.

We may apply Hoeffding’s inequality to sums of random variables of the form
Xi = εiαi where ε1, . . . , εn are independent Rademacher random variables (i.e,
symmetric sign variables with P {εi = 1} = P {εi = −1} = 1/2) and α1, . . . , αn
are real numbers. We get

P {S ≥ t} ≤ exp

(
− t2

2
∑n
i=1 α

2
i

)
.

Since in this case V ar(S) =
∑n
i=1 α

2
i , Hoeffding’s inequality implies a bona

fide sub-Gaussian tail inequality. In general, however, the variance of S may be
much smaller than

∑n
i=1 (bi − ai)2

. In such cases sharper bounds are called for.
Bennett’s and Bernstein’s inequalities discussed in the next sections provide such
improvements.

2.7 Bennett’s inequality

Just like in the proof of Hoeffding’s inequality, our starting point is the fact that
the logarithmic moment generating function of an independent sum equals the
sum of the logarithmic moment generating functions of the centered summands,
that is,

ψS(λ) =

n∑

i=1

(
logEeλXi − λEXi

)
.

Using log u ≤ u− 1 for u > 0,

ψS(λ) ≤
n∑

i=1

E
[
eλXi − λXi − 1

]
. (2.9)

Both Bennett’s and Bernstein’s inequalities may be derived from this bound,
under different integrability conditions for the Xi.
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Theorem 2.9 (bennett’s inequality.) Let X1, . . . , Xn be independent ran-
dom variables with finite variance such that Xi ≤ b for some b > 0 almost surely
for all i ≤ n. Let

S =

n∑

i=1

(Xi −EXi)

and v =
∑n
i=1 E

[
X2
i

]
. If we write φ(u) = eu − u − 1 for u ∈ R, then, for all

λ > 0,

logEeλS ≤ n log
(

1 +
v

nb2
φ(bλ)

)
≤ v

b2
φ(bλ) ,

and for any t > 0,

P {S ≥ t} ≤ exp

(
− v

b2
h

(
bt

v

))

where h(u) = (1 + u) log(1 + u)− u for u > 0.

Proof By homogeneity we may assume that b = 1. Note that u−2φ(u) is a non-
decreasing function of u ∈ R (where at 0 we continuously extend the function).
Hence, for all i ≤ n and λ > 0,

eλXi − λXi − 1 ≤ X2
i

(
eλ − λ− 1

)

which, taking expectations, yields

EeλXi − λEXi − 1 ≤ E
[
X2
i

]
φ(λ) .

Here, we refrain from invoking log u ≤ u − 1, and sum these inequalities for
i = 1, . . . , n so as to get,

ψS(λ) ≤
n∑

i=1

(
log
(
1 + λEXi + E

[
X2
i

]
φ(λ)

)
− λEXi

)
.

Now, using the concavity of the logarithm,

ψS(λ) ≤ n
(

log

(
1 + λ

∑n
i=1 EXi

n
+
v

n
φ(λ)

)
− λ

∑n
i=1 EXi

n

)
.

Finally, using log(1 + u) ≤ u, the latter inequality entails

ψS(λ) ≤ vφ(λ) .

Recall from Section 2.2 that the upper bound is just the logarithm of the moment
generating function of a centered Poisson random variable with parameter v.
Therefore, the Cramér transform of S is also bounded by that of a corresponding
Poisson random variable, that is,

ψ∗S(t) ≥ vh
(
t

v

)

which proves the theorem via Chernoff’s inequality. 2
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The easy-to-prove inequality

h(u) ≥ u2

2(1 + u/3)

(see Exercise 2.8) may help interpret Bennett’s inequality. This inequality implies
that, under the conditions of Theorem 2.9,

P {S ≥ t} ≤ exp

(
− t2

2(v + bt/3)

)
. (2.10)

This is known as Bernstein’s inequality. For t � v/b, it loses a logarithmic
factor in the exponent with respect to Bennett’s inequality. On the other hand,
if v is the dominant term in the denominator of the exponent, Bennett’s and
Bernstein’s inequalities are almost equivalent and both provide a sub-Gaussian
type inequality.

In the next section we show that Bernstein’s inequality holds under weaker
assumptions than boundedness.

2.8 Bernstein’s inequality

The next inequality is somewhat more general than the classical form of Bern-
stein’s inequality, shown in the previous section. Here, instead of boundedness,
we only require an appropriate control of moments.

Theorem 2.10 (bernstein’s inequality). Let X1, . . . , Xn be independent real-
valued random variables. Assume that there exist positive numbers v and c such
that

∑n
i=1 E

[
X2
i

]
≤ v and

n∑

i=1

E
[
(Xi)

q
+

]
≤ q!

2
vcq−2 for all integers q ≥ 3 .

If S =
∑n
i=1 (Xi −EXi), then for all λ ∈ (0, 1/c) and t > 0,

ψS(λ) ≤ vλ2

2(1− cλ)

and

ψ∗S(t) ≥ v

c2
h1

(
ct

v

)
,

where h1(u) = 1 + u−
√

1 + 2u for u > 0. In particular, for all t > 0,

P
{
S ≥

√
2vt+ ct

}
≤ e−t .



Bernstein’s inequality 37

Proof Recall the notation φ(u) = eu − u− 1 and observe that for u ≤ 0,

φ(u) ≤ u2

2
.

Hence, for λ > 0, we have, for all i ≤ n,

φ (λXi) ≤
λ2X2

i

2
+

∞∑

q=3

λq (Xi)
q
+

q!

which implies, by the monotone convergence theorem,

Eφ (λXi) ≤
λ2E

[
X2
i

]

2
+

∞∑

q=3

λqE
[
(Xi)

q
+

]

q!
,

and therefore, by the assumptions of the theorem,
n∑

i=1

Eφ (λXi) ≤
v

2

∞∑

q=2

λqcq−2 .

This proves, on the one hand, that for any λ ∈ (0, 1/c), eλXi is integrable for all
i ≤ n, and on the other hand, using inequality (2.9), that for λ ∈ (0, 1/c),

ψS(λ) ≤
n∑

i=1

Eφ (λXi) ≤
vλ2

2(1− cλ)
.

Therefore,

ψ∗S(t) ≥ sup
λ∈(0,1/c)

(
tλ− λ2v

2(1− cλ)

)

and the stated bound for ψ∗S(t) follows from (2.5). The tail inequality of the
theorem follows easily from Chernoff’s inequality and the calculations shown at
the beginning of Section 2.4. 2

In some cases the following form of Bernstein’s inequality is more convenient,

Corollary 2.11 Let X1, . . . , Xn be independent real-valued random variables
satisfying the conditions of Theorem 2.10 and let S =

∑n
i=1 (Xi −EXi). Then

for all t > 0,

P {S ≥ t} ≤ exp

(
− t2

2(v + ct)

)
.

Proof The corollary follows from the elementary inequality

h1(u) ≥ u2

2(1 + u)
, u > 0

(see Exercise 2.8). Thus, Theorem 2.10 implies that

ψ∗S(t) ≥ t2

2(v + ct)

and the statement follows from Chernoff’s inequality. 2
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Finally, note that one may recover (2.10) from Corollary 2.11. Indeed if
X1, . . . , Xn are independent such that Xi ≤ b almost surely for all i ≤ n, then
the conditions of Theorem 2.10 hold with

v =

n∑

i=1

E
[
X2
i

]
and c = b/3 .

Example 2.12 (gaussian chaos of order two.) As an illustrating example,
we derive tail bounds for a special second-order Gaussian U -statistics, known as
Gaussian chaos. Let X = (X1, . . . , Xn) be a vector of independent standard
normal random variables and let A = (ai,j)n×n be a symmetric matrix with
zeroes in its diagonal, that is, ai,i = 0 for i = 1, . . . , n. Then the quadratic form

Z = XTAX =

n∑

i=1

n∑

j=1

ai,jXiXj

is a zero-mean random variable. To derive a concentration inequality for Z, we
use the fact that a symmetric matrix can be diagonalized, that is, decomposed
as A = BTΛB where B is an n×n orthogonal matrix (i.e., the columns of B are
orthogonal vectors of norm 1) such that B−1 = BT and Λ is a diagonal matrix
with the eigenvalues µ1 . . . , µn of A in the diagonal entries. Denoting by bi,j the
entries of the matrix B, we have

Z =

n∑

i=1

µiY
2
i where Yi =

n∑

j=1

bi,jXj , i = 1, . . . , n .

By the rotational invariance of the standard multivariate normal distribution,
we see that the distribution of Y = (Y1, . . . , Yn) is the same as that of X, that
is, Y1, . . . , Yn are independent standard normal random variables. This implies
that Z has the same distribution as

n∑

i=1

µiX
2
i =

n∑

i=1

µi(X
2
i − 1)

where we used the fact that
∑n
i=1 µi equals the trace of the matrix A which is

zero since we assumed that A has zeros in its diagonal. As we have seen it in
Section 2.5, the logarithmic moment generating function of X2

i − 1 equals, for
all λ < 1/2,

logEeλ(X2−1) =
1

2
(− log(1− 2λ)− 2λ) ≤ λ2

1− 2λ
.

Therefore, the logarithmic moment generating function of the Gaussian chaos
becomes, for all λ ∈ (0, 1/(2 maxi µi)),
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ψZ(λ) =

n∑

i=1

1

2
(− log(1− 2µiλ)− 2µiλ) ≤

n∑

i=1

µ2
iλ

2

1− 2(µi)+λ
≤ λ2‖A‖2hs

1− 2λ‖A‖

where ‖A‖hs =
(∑n

i=1 µ
2
i

)1/2
is the so-called Hilbert-Schmidt norm (or Frobenius

norm) of the matrix A and ‖A‖ = maxi |µi| is the operator norm. Now we may
use (2.5) to obtain the following bound for the upper tail: for all t > 0,

P
{
Z > 2‖A‖hs

√
t+ 2‖A‖t

}
≤ e−t ,

or, by Exercise 2.8,

P {Z > t} ≤ exp

( −t2
4(‖A‖2hs + ‖A‖t)

)
.

2.9 Random projections and the Johnson-Lindenstrauss lemma

Next we describe an application in which Chernoff’s inequality for sums of in-
dependent sub-Gaussian random variables plays a crucial role, in a perhaps un-
expected situation. This application is an example for the power and elegance
of the probabilistic method that has played such a important role in a large va-
riety of applications ranging from combinatorics to the asymptotic geometry of
Banach spaces.

The celebrated Johnson-Lindenstrauss lemma states roughly that, given an
arbitrary set of n points in a (high-dimensional) Euclidean space, there exists a
linear embedding of these points in a d-dimensional Euclidean space such that
all pairwise distances are preserved within a factor of 1 ± ε if d is proportional
to (log n)/ε2. It is remarkable that this result does not involve the dimension of
the space to which the n points belong. In fact, the dimension of this space may
even be infinite.

To describe the problem more rigorously, consider an arbitrary set A ⊂ RD
where typically D is a large positive integer. We note here that, in fact, RD can
be replaced by any (separable) Hilbert space by a straightforward generalization
of the argument. For simplicity, we stick to the finite-dimensional framework. In
this section we consider the special case when A = {a1, . . . , an} is a finite set of
n elements, but in Sections 5.6 and 13.6 we return to the case of general subsets.
Given ε ∈ (0, 1), a map f : RD → Rd is called an ε-isometry on A if for every
pair a, a′ ∈ A, we have

(1− ε) ‖a− a′‖2 ≤ ‖f(a)− f(a′)‖2 ≤ (1 + ε) ‖a− a′‖2 .

Now a natural question is to find the smallest possible value of d for which a
linear ε-isometry exists on A. The Johnson-Lindenstrauss lemma, stated and
proved below, ensures that when A is a finite set with cardinality n, a linear
ε-isometry exists whenever d ≥ κε−2 log n, where κ is an absolute constant. We
emphasize again the remarkable fact that this value does not depend on the
dimension D of the space.



40 Basic inequalities

The idea of the proof is as simple as it gets: just try a random linear function
and see if it is an ε-isometry. While one might think that this is like looking for
a needle in a haystack, it may come as a surprise that, if the distribution of the
random choice is chosen properly, most random tries will work. This phenomenon
is not uncommon in applications of the probabilistic method.

In other words, we prove below that a randomly chosen projection of RD to
Rd is, with large probability, an ε-isometry on the finite set A if d is at least a
constant times ε−2 log n.

The basic idea is to construct a random projection W : RD → Rd (i.e., a
linear mapping) that is an exact isometry “in expectation”, that is, for every
α ∈ RD,

E
[
‖W (α)‖2

]
= ‖α‖2 .

In other words, denoting by L2,d the space of square-integrable Rd-valued random
vectors, W is an isometry from RD into L2,d.

To construct W , let Xi,j , i = 1, . . . , d, j = 1, . . . , D be independent and
identically distributed real-valued random variables such that EXi,j = 0 and
V ar(Xi,j) = 1. For every α = (α1, . . . , αD) ∈ RD and i ∈ {1, . . . , d}, define

Wi(α) =

D∑

j=1

αjXi,j .

Wi(α)/
√
d is the i-th component of the random vector W (α), that is, the W is

defined by

W (α) =

(
1√
d
Wi(α)

)d

i=1

.

Observe that by independence of the Xi,j , for every i = 1, . . . , d,

E
[
Wi(α)2

]
=

D∑

j=1

α2
jE
[
X2
i,j

]
= ‖α‖2 .

Therefore, for every α ∈ RD,

E
[
‖W (α)‖2

]
=

1

d

d∑

i=1

E
[
Wi(α)2

]
= ‖α‖2 ,

and indeed, W is an isometry from RD into L2,d.
It remains to show that on a sufficiently small subset A ⊂ RD, the random

projection W defines an approximate isometry with large probability. To this
end, we need convenient exponential integrability conditions on the distribution
of the Xi,j . Traditionally the Xi,j are taken to be standard normal variables.
Here we show that it suffices if they are sub-Gaussian.
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Theorem 2.13 (johnson-lindenstrauss lemma.) Let A be a finite subset
of RD with cardinality n. Assume that for some v ≥ 1, Xi,j ∈ G(v) and let

ε, δ ∈ (0, 1). If d ≥ 32vε−2 log
(
n/
√
δ
)

, then with probability at least 1− δ, W is

an ε-isometry on A.

Proof Denote by S the unit sphere of RD and let T be the subset of S defined
by

T =

{
a− a′
‖a− a′‖ : a, a′ ∈ A, a 6= a′

}
.

Then T has cardinality N ≤ n(n−1)/2. We need to show that, under the stated
condition for d,

sup
α∈T

∣∣‖W (α)‖2 − 1
∣∣ ≤ ε .

First note that for all α ∈ S and i ≤ d, using the fact that the Xi,j are sub-
Gaussian,

E exp (λWi(α)) = E exp


λ

D∑

j=1

αjXi,j




=

D∏

j=1

E exp (λαjXi,j)

≤ exp


λ2

D∑

j=1

α2
jv/2




= exp
(
λ2v/2

)

and therefore Wi(α) ∈ G(v). Thus, by Theorem 2.1, for every integer q ≥ 2,

E
[
Wi(α)2q

]
≤ q!

2
× 4(2v)q ≤ q!

2
(4v)q .

Hence, since for each α, the random variables Wi(α), i = 1, . . . , d are indepen-

dent, we may use Bernstein’s inequality (Theorem 2.10) for
∑d
i=1Wi(α)2 with

v ← 4dv and c← 4v to obtain, for every α ∈ T and t > 0,

P

{∣∣∣∣∣
d∑

i=1

(
Wi(α)2 − 1

)
∣∣∣∣∣ ≥
√

8vdt+ 4vt

}
≤ 2e−t .

This implies, by the union bound,

P

{
sup
α∈T

∣∣∣∣∣
d∑

i=1

(
Wi(α)2 − 1

)2
∣∣∣∣∣ ≥
√

8vdt+ 4vt

}
≤ 2Ne−t ≤ n2e−t .
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Setting t = log
(
n2/δ

)
, we have

P

{
sup
α∈T

∣∣∣∣∣
d∑

i=1

(
Wi(α)2 − 1

)
∣∣∣∣∣ ≥ 4

√
vd log

(
n/
√
δ
)

+ 8v log
(
n/
√
δ
)}
≤ δ

or, equivalently,

P





sup
α∈T

∣∣‖W (α)‖2 − 1
∣∣ ≥ 4

√√√√v log
(
n/
√
δ
)

d
+

8v log
(
n/
√
δ
)

d




≤ δ .

Finally, we see that d ≥ 32vε−2 log
(
n/
√
δ
)

implies that

4

√√√√v log
(
n/
√
δ
)

d
+

8v log
(
n/
√
δ
)

d
≤ ε√

2
+
ε2

4
≤ ε

and therefore, with probability at least 1− δ,

sup
α∈T

∣∣‖W (α)‖2 − 1
∣∣ ≤ ε

and this is exactly what we wanted to prove. 2

Remark 2.11 Note that by working with the general assumption of sub-Gaussian
random variables, one loses a constant factor in the bound of the Johnson-
Lindenstrauss lemma. Indeed, if we assume that the Xi,j are standard normal,

then
∑d
i=1Wi(α)2 is a chi-squared random variable with d degrees of freedom

and the inequality shown in Example 2.7 for gamma random variables implies

P

{∣∣∣∣∣
d∑

i=1

(
Wi(α)2 − 1

)
∣∣∣∣∣ ≥ 2

√
dt+ 2t

}
≤ 2e−t .

This implies that, with probability at least 1 − δ, W is an ε-isometry on A

whenever d ≥ 8ε−2 log
(
n/
√
δ
)

. In Section 5.6 we take a closer look at random

projections based on standard normal variables.

2.10 Association inequalities

Next we recall some simple association inequalities. The first result states that
if f and g are both increasing functions of a real variable then for any random
variable X, the correlation of f(X) and g(X) is positive.
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Theorem 2.14 (chebyshev’s association inequality.) Let f and g be non-
decreasing real-valued functions defined on the real line. If X is a real-valued
random variable and Y is a nonnegative random variable, then

E[Y ]E[Y f(X)g(X)] ≥ E[Y f(X)]E[Y g(X)] .

If f is nonincreasing and g is nondecreasing then

E[Y ]E[Y f(X)g(X)] ≤ E[Y f(X)]E[Y g(X)] .

Remark 2.12 This is a slight generalization of what is usually referred to as
Chebyshev’s association inequality which can be recovered by taking Y ≡ 1.

Proof Let the pair of random variables (X ′, Y ′) be distributed as the pair
(X,Y ) and independent of it. If f and g are nondecreasing, Y Y ′(f(X)−f(X ′))(g(X)−
g(X ′)) ≥ 0, so obviously,

E[Y Y ′(f(X)− f(X ′))(g(X)− g(X ′))] ≥ 0 .

Expand this expectation to obtain the first inequality. The proof of the second
is similar. 2

An important generalization of Chebyshev’s association inequality is de-
scribed as follows. A real-valued function f defined on Rn is said to be non-
decreasing (nonincreasing) if it is nondecreasing (nonincreasing) in each variable
while keeping all other variables fixed at any value.

Theorem 2.15 (harris’ inequality.) Let f, g : Rn → R be nondecreasing
functions. Let X1, . . . , Xn be independent real-valued random variables and define
the random vector X = (X1, . . . , Xn) taking values in Rn. Then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)] .

Similarly, if f is nonincreasing and g is nondecreasing then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)] .

Proof Again, it suffices to prove the first inequality. We proceed by induction.
For n = 1 the statement is just Chebyshev’s association inequality. Now suppose
the statement is true for m < n. Then

E[f(X)g(X)] = EE[f(X)g(X)|X1, . . . , Xn−1]

≥ E [E[f(X)|X1, . . . , Xn−1]E[g(X)|X1, . . . , Xn−1]]

because givenX1, . . . , Xn−1, both f and g are nondecreasing functions of the n-th
variable. Now it follows by independence that the functions f ′, g′ : Rn−1 → R de-
fined by f ′(x1, . . . .xn−1) = E[f(X)|X1 = x1, . . . , Xn−1 = xn−1] and g′(x1, . . . .xn−1) =



44 Basic inequalities

E[g(X)|X1 = x1, . . . , Xn−1 = xn−1] are nondecreasing functions, so by the in-
duction hypothesis,

E[f ′(X1, . . . , Xn−1)g′(X1, . . . , Xn−1)]

≥ E[f ′(X1, . . . , Xn−1)]E[g′(X1, . . . , Xn−1)]

= E[f(X)]E[g(X)]

as desired. 2

2.11 Minkowski’s inequality

We close this chapter by proving a general version of Minkowski’s inequality. The
best known versions of this inequality may be considered as triangle inequalities
for Lq norms of vectors or random variables. For example, one version states
that if X1 and X2 are two real-valued random variables, then for q ≥ 1,

E [|X1 +X2|q]1/q ≤ E [|X1|q]1/q + E [|X2|q]1/q .

In this book (see Chapters 5 and 10), we will need the following, more general,
formulation of Minkowski’s inequality:

Theorem 2.16 (minkowski’s inequality.) Let X and Y be independent ran-
dom variables taking their values in the sets X and Y, respectively. Let f :
X ×Y → R be a real-valued measurable function and define the random variable
Z = f(X,Y ). If q ≥ 1, then

(EX [|EY Z|q])1/q ≤ EY

[
(EX |Z|q)1/q

]
.

where EX and EY denote expectations taken with respect to the distributions of
X and Y , respectively (i.e., EXZ = E[Z|Y ] and EY Z = E[Z|X]).

Before proving the theorem, note that the classical version of Minkowski’s
inequality cited above may be recovered by letting Y be uniformly distributed on
the set Y = {1, 2} and defining X = (X1, X2), f(X, 1) = X1, and f(X, 2) = X2.

Proof The inequality is obvious for q ∈ {1,∞} so we may assume that 1 < q <
∞. Without loss of generality, we may assume that Z is nonnegative. Let Y ′ be
an independent copy of Y , independent of X as well. Then
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EX [(EY Z)q] = EX

[
(EY ′f(X,Y ′))

q−1
EY f(X,Y )

]

= EX

[
EY

[
(EY ′f(X,Y ′))

q−1
f(X,Y )

]]

= EY

[
EX

[
(EY ′f(X,Y ′))

q−1
f(X,Y )

]]

(by Fubini’s theorem)

≤ EY

[(
EX

[
(EY ′f(X,Y ′))

q])(q−1)/q
(EX [fq(X,Y )])

1/q
]

(by Hölder’s inequality)

=
(
EX

[
(EY ′f(X,Y ′))

q])1−1/q
EY

[
(EXf

q(X,Y ))
1/q
]

= (EX [(EY Z)q])
1−1/q

EY

[
(EXZ

q)
1/q
]
.

Dividing both sides by (EX [(EY Z)q])
1−1/q

, we obtain the desired inequality.
2

2.12 Bibliographical remarks

Exponential tail inequalities for sums of independent random variables have been
proved from the early days of mathematical probability theory. Among the pi-
oneers we mention Bernstein(1946), Craig (1933), Uspensky (1937), Chernoff
(1952), Okamoto (1958), Bennett (1962), and Hoeffding (1963).

The proof of the maximal inequality of Theorem 2.5 is based on an argument
used by Pisier (1983) to control the expectation of the supremum of variables
belonging to some Orlicz space. For exponentially integrable variables it is pos-
sible to optimize Pisier’s argument with respect to the parameter involved in the
definition of the moment generating function. This is exactly what is done in
Theorem 2.5.

Hoeffding’s lemma (Lemma 2.2) and Hoeffding’s inequality (Theorem 2.8)
are due to Hoeffding (1963). Bennett’s inequality is taken from Bennett (1962),
while Bernstein’s inequality in its original form is in Bernstein (1946). Bernstein’s
inequality for unbounded variables can be found in Uspensky (1937). Theorem
2.10 appears in Birgé and Massart (1998). Note that the usual assumption in
Bernstein’s inequality involves conditions for the absolute moments of the Xi,
instead of their positive part as in Theorem 2.10. This refinement has been
suggested to us by Emmanuel Rio.

The inequality derived in Example 2.12 for a Gaussian chaos of order 2 goes
back to Hanson and Wright (1971). The fact that a quadratic form of standard
normal random variables has the same distribution as a weighted sum of inde-
pendent random variables with chi-squared distribution is usually referred to as
Cochran’s theorem. For extensions to higher-order chaoses, we refer to Arcones
and Giné (1993) and Lata la (2006).
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The Johnson-Lindenstrauss lemma first appears in Johnson and Linden-
strauss (1984), though its original proof is not probabilistic. The idea of ran-
dom projections was introduced by Frankl and Maehara (1988, 1990), see also
Dasgupta and Gupta (2002) for a particularly simple proof. Achlioptas (2003)
considered projections based on Rademacher random variables. The proof of
Theorem 2.13 is adapted from the arguments of Achlioptas. Random projec-
tions have been used successfully in a variety of applications, see, for example,
Linial, London, and Rabinovich (1995), Kleinberg (1997), and Indyk and Mot-
wani (1998). For a survey we refer the reader to the book of Vempala (2004).

Theorem 2.14 is due to Chebyshev (see, e.g., Hall, Littlewood and Pólya
(1952)). We note here that association properties may often be used to derive
concentration properties. We refer the reader to the survey of Dubhashi and
Ranjan (1998). Theorem 2.15 is due to Harris (1960), though sometimes it is
referred to as the fkg inequality because of a generalization due to Fortuin,
Kasteleyn, and Ginibre (1971).

The proof of the generalized Minkowski inequality (Theorem 2.16) presented
here goes back to F. Riesz, see Steele (2004), Zygmund (1959).

2.13 Exercises

Exercise 2.1 Let MZ be a median of the square-integrable random variable Z (i.e.,
P {Z ≥MZ} ≥ 1/2 and P {Z ≤MZ} ≥ 1/2). Show that

|MZ −EZ| ≤
√
V ar(Z) .

Exercise 2.2 Let X be a random variable with median MX such that there exist
positive constants a and b such that for all t > 0,

P {|X −MX| > t} ≤ ae−t
2/b .

Show that |MX −EX| ≤ min
(√

ab, a
√
bπ/2

)
.

Exercise 2.3 (chebyshev-cantelli inequality.) Prove the following one-sided im-
provement of Chebyshev’s inequality: for any real-valued random variable Y and t > 0,

P {Y −EY ≥ t} ≤ V ar(Y )

V ar(Y ) + t2
.

Exercise 2.4 (paley-zygmund inequality.) Show that if Y is a nonnegative random
variable, then for any a ∈ (0, 1),

P {Y ≥ aEY } ≥ (1− a)2 (EY )2

E[Y 2]
.

Exercise 2.5 (moments vs. chernoff bounds.) Show that moment bounds for tail
probabilities are always better than Cramér-Chernoff bounds. More precisely, let Y be
a nonnegative random variable and let t > 0. The best moment bound for the tail
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probability P {Y ≥ t} is minq E[Y q]t−q where the minimum is taken over all positive
integers. The best Cramér-Chernoff bound is infλ>0 Ee

λ(Y−t). Prove that

min
q

E[Y q]t−q ≤ inf
λ>0

Eeλ(Y−t) .

(See Philips and Nelson (1995).)

Exercise 2.6 Let Z be a real-valued random variable. Show that the set of positive
numbers S =

{
λ > 0 : EeλZ <∞

}
is either empty or an interval with left end point

equal to 0. Let b = supS. Show that ψZ(λ) = logEeλZ is convex and infinitely many
times differentiable on I = (0, b). Show that if EZ = 0, ψZ is continuously differentiable
on [0, b) with ψ′Z(0) = ψZ(0) = 0 and the Cramér transform of Z equals ψ∗Z(t) =
supλ∈I (λt− ψZ(λ)).

Exercise 2.7 Prove that if Z is a centered normal random variable with variance σ2

then

sup
t>0

(
P {Z ≥ t} exp

(
t2

2σ2

))
=

1

2
.

Exercise 2.8 (elementary inequalities.) Prove the following inequalities appear-
ing in the text:

− log(1− u)− u ≤ u2

2(1− u)
for u ∈ (0, 1) ;

h(u) = (1 + u) log(1 + u)− u ≥ u2

2(1 + u/3)
for u > 0 ;

h1(u) = 1 + u−
√

1 + 2u ≥ u2

2(1 + u)
, for u > 0 .

Exercise 2.9 (sub-gaussian lower tail for nonnegative random variables.)
Let X be a nonnegative random variable with finite second moment. Show that for

any λ > 0, Ee−λ(X−EX) ≤ eλ
2E[X2]/2. In particular, if X1, . . . , Xn are independent

nonnegative random variables, then for any t > 0,

P {S ≤ −t} ≤ exp

(
−t2

2v

)
where S =

∑n
i=1(Xi −EXi) and v =

∑n
i=1 E

[
X2
i

]
.

Exercise 2.10 Let X1, . . . , Xn be independent Bernoulli random variables with pa-
rameters p1, . . . , pn, respectively. Let p = (1/n)

∑n
i=1 pi and Sn =

∑n
i=1 Xi. Prove

that

P {Sn − np ≥ nε} ≤ e−npε
2/3 and P {Sn − np ≤ −nε} ≤ e−npε

2/2

(Angluin and Valiant (1979), see also Hagerup and Rüb (1990)).
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Exercise 2.11 Let B be binomially distributed with parameters (n, p). Show that for
p ≤ a < 1,

P {B > an} ≤

((p
a

)a(1− p
1− a

)1−a
)n
≤
((p

a

)a
ea−p

)n
.

Show that for 0 < a < p the same upper bounds hold for P {B ≤ an} (Karp (1988),
see also Hagerup and Rüb (1990)).

Exercise 2.12 Let B be binomially distributed with parameters (n, p). Show that if
p ≥ 1/2,

P {B − np ≥ nε} < e
− nε2

2p(1−p) ,

and if p ≤ 1/2,

P {B − np ≤ −nε} < e
− nε2

2p(1−p)

(Okamoto (1958)).

Exercise 2.13 Let B be binomially distributed with parameters (n, p). Prove that

P {
√
B −√np ≥ ε

√
n} < e−2nε2 ,

and
P {
√
B −√np ≤ −ε

√
n} < e−nε

2

(Okamoto (1958)).

Exercise 2.14 Let D and n be positive integers with 1 ≤ D ≤ n. Show that

D∑
j=0

(
n

j

)
≤
(en
D

)D
.

Hint: Observe that the left-hand side is 2n times a tail probability of a symmetric
binomial random variable and use Chernoff’s inequality.

Exercise 2.15 (alternative proof of bennett’s inequality.) As in the proof of
Lemma 2.2, show that if Y is a centered random variable with finite variance v such
that Y ≤ 1, that

ψY (λ) = logEeλY ≤ log
(

1 + v
(
eλ − λ− 1

))
for λ ∈ R by solving a differential inequality . Hint: Let P denote the distribution of Y
and let Pλ be the probability distribution with density e−ψY (λ)eλx with respect to P.
Let Z have distribution Pλ. Check first that V ar(Z) ≤ veλ.

Exercise 2.16 Prove that if X is a sub-Gaussian random variable with variance factor
v then V ar(X) ≤ v.

Exercise 2.17 Let G1, . . . , GN be independent standard normal random variables.
Then

lim
N→∞

E maxi=1,...,N Gi√
2 logN

= 1 .

(See Galambos (1987).)
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Exercise 2.18 (maximum of independent poisson random variables.) LetX1, . . . , Xn
be independent Poisson random variables with expectation 1. The Lambert W function
is defined over [−1/e,∞) by the equation W (x)eW (x) = x. Prove that

E max
i=1,...,n

Xi ≤
log(n/e)

W (log(n/e)/e)

Prove that for z ≥ e, W (z) ≥ log(z)− log log(z) and that for n ≥ e3,

E max
i=1,...,n

Xi ≤
log(n/e)

log(log(n/e)/e)− log(log(log(n/e)/e))
.

The following upper bound may be more manageable:

E max
i=1,...,n

Xi ≤
2 logn

log(log(en))
.

Hint: use Theorem 2.4.

Exercise 2.19 (maximum of independent binomial random variables.) Let
X1, . . . , Xn be independent Binomial (m, p) random variables. Prove that

E max
i=1,...,n

Xi ≤ mpe1+W ((log(n)−mp)/(emp)) ,

where W is defined in Exercise 2.18.

Exercise 2.20 (random allocations.) Suppose we throw m balls into n bins uni-
formly independently at random. Let M be the maximum number of balls in any bin.
Prove that

EM ≤ m

n
e1+W ((log(n)−m/n)/(em/n)) .

Deduce from this that if m = cn log(n) for c > 0,

EM ≤ c log(n)e1+W ((1−c)/(ce)) .

Conclude that if m = cn for c > 0, if logn > c,

EM ≤ log(n)− c
log((log(n)− c)/(ec))− log(log((log(n)− c)/(ec))) .

Hint: use Theorem 2.4 and Exercises 2.18 and 2.19. See Raab and Steger (1998) for
related results and asymptotics.

Exercise 2.21 (sub-gamma random variables: one-sided bounds). Let X be a
centered random variable (i.e., EX = 0) in Γ+(v, c). Show that V ar(X) ≤ v and there

exists a constant C such that for every integer q ≥ 2,
(
E
[
Xq

+

])1/q ≤ C
(√
qv + cq

)
.

Conversely, suppose that X is a centered random variable such that there exist con-

stants A and B such that V ar(X) ≤ A and
(
E
[
Xq

+

])1/q ≤ √qA + Bq for all q ≥ 2.
Show that there exists a constant C such that X is in Γ+(v, c) with v = C(A + B2)
and c = CB.
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Exercise 2.22 (subexponential random variables). A nonnegative random vari-
able X has exponential distribution with parameter a > 0 if X has a density ae−ax,
x ≥ 0. The moment generating function of X is then EeλX = 1/(1−λ/a) for λ ∈ (0, a).
Show that if q is a positive integer, the q-th moment of X equals E[Xq] = q!/aq. We
say that a nonnegative random variable X has a sub-exponential distribution if there
exists a constant a > 0 such that for all 0 < λ < a, EeλX ≤ 1/(1− λ/a). Show that if
X is subexponential, then for every positive integer q,

E[Xq] ≤ 2q+1 q!

aq
.

Exercise 2.23 (subexponential distribution–continued.) Let X be a random
variable such that there exists a constant a > 0 such that for every positive integer q,

E[Xq] ≤ q!

aq
.

Show that X is subexponential. More precisely, show that for any 0 < λ < a, EeλX ≤
1/(1− λ/a).

Exercise 2.24 (a tail-comparison inequality.) Let X and Y be two real-valued
random variables such that for any real a,

E [(X − a)+] ≤ E [(Y − a)+]

while for some κ ≥ 1 and b > 0, for all t ≥ 0,

P {Y ≥ t} ≤ κe−bt .

Prove that for all t ≥ 0,
P {X ≥ t} ≤ κ e1−bt

(see Panchenko (2003)).

Exercise 2.25 Consider the Gaussian chaos of order two Z defined in Example 2.12.
Show that there exists positive constants c and C such that for all q ≥ 2 and n ≥ 1,

c (
√
q‖A‖hs + q‖A‖) ≤ (E [|Z|q])1/q ≤ C (

√
q‖A‖hs + q‖A‖)

(see Lata la (1999)).

Exercise 2.26 Let f be a nonnegative nonincreasing and g a nondecreasing real-
valued function. Let h be a nonnegative function with finite expectation, such that
E[h(X)f(X)] ≤ E[h(X)]. Then

E[f(X)g(X)h(X)] ≤ E[h(X)g(X)] .

Exercise 2.27 (between sub-gamma and gaussian.) Let X1, . . . , Xn be identically
distributed independent random variables such that

P {|Xi| ≥ u} ≤ e−u
p
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for some p ≥ 1. Let q = p/(p− 1) be the conjugate of p. Let s = (s1 . . . , sn) ∈ Rn. Let
Z =

∑n
i=1 siXi. Prove that there exists a constant L (that depends on p but not on n)

such that

P {Z ≥ t} ≤ L exp

(
− 1

L
min

(
t2

‖s‖22
,
tp

‖s‖pq

))
where ‖s‖pp =

∑n
i=1 |si|

p (if p <∞) or max(|si|) (if p =∞).

Exercise 2.28 (moments of the gumbel distribution.) Let X be distributed ac-
cording to the Gumbel distribution: P {X ≤ t} = exp(− exp(−t)). Prove that EX
equals the Euler-Mascheroni constant (limn→∞

∑n
i=1 1/i − logn), that V ar(X) =

π2/6 = limn→∞
∑n
i=1 1/i2, and that for all λ ≥ 0, logE exp(λ(X−EX)) ≤ V ar(X)λ2/(2(1−

λ)). Hint: use Rényi’s representation of order statistics of samples of the exponential dis-
tribution, described as follows: if Y1, . . . , Yn are independent exponentially distributed
random varibles, then max(X1, . . . , Xn) is distributed as

∑n
i=1 Yi/i, and max(Y1, . . . , Yn)−

logn converges in distribution to the Gumbel distribution.
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BOUNDING THE VARIANCE

The purpose of this chapter is to introduce a simple, yet powerful, inequality
which offers a useful upper bound for the variance of a general function of several
independent random variables.

Formally, let f : Xn → R be a real-valued function of n variables, where X is
some measurable space. If X1, . . . , Xn are independent random variables taking
values in X , then we may define the real-valued random variable

Z = f (X1, . . . , Xn) .

We emphasize that the Xi may have different distributions, the only essential
assumption is independence. Throughout this chapter we assume that Z has a
finite variance, and our purpose is to find general upper bounds.

The basic result—the Efron-Stein inequality—, presented in Section 3.1, pro-
vides a bound in terms of “local” variations of the function f . This inequality is
a prologue to the numerous results presented in this book in which concentration
properties may be controlled by studying the local behavior of the function at
hand.

A large part of this chapter (Sections 3.2–3.5) is devoted to applications
of the Efron-Stein inequality for bounding the variance of complex functions
of independent random variables. We hope that the elementary arguments will
convince the reader of the versatility and power of this simple inequality.

Once the variance of Z is controlled, one may use Chebyshev’s inequality to
derive upper bounds for the tail probabilities P {Z > EZ+t}. However, interest-
ingly, by a simple trick shown in Section 3.6, the Efron-Stein inequality may also
be used to derive exponential bounds for the tail probability. These bounds are
not optimal in the sense that they do not capture the right exponential rate of
decrease of the tails. In subsequent chapters we show how these tail inequalities
can be significantly sharpened to prove tail bounds which cannot be revealed
by looking at the variance only. However, the techniques used in this chapter
present many of the main ideas used later in a simple, digestible form.

In Section 3.7 we show how the Efron-Stein inequality implies the Gaussian
Poincaré inequality, a classical result for smooth functions of independent normal
random variables.

We close this chapter by providing an alternative proof of the Efron-Stein
inequality, based on a duality argument, which opens the door to generalizations
presented in subsequent chapters, notably in Section 4.9.
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3.1 The Efron-Stein inequality

One of the main messages of this book is that, in a certain sense, sums of indepen-
dent random variables have an extremal place in the world of general functions
of independent random variables. Before deriving a bound for the variance of
a general function Z of independent random variables (this problem, of course,
only makes sense when Z is square integrable), we can gain some insight by con-
sidering first the very special case when the variables X1, . . . , Xn are real-valued
and Z = X1 + · · ·+Xn. In this case we can use the exact formula

V ar (Z) =

n∑

i=1

V ar (Xi) .

Of course, the proof of this formula uses independence only through the pair-
wise orthogonality (in L2) of the variables Xi − EXi. Now it is a natural idea
to bound the variance of a general function by expressing Z −EZ as a sum of
martingale differences for the Doob filtration and use the orthogonality of these
differences. More precisely, if we denote by Ei the conditional expectation op-
erator, conditioned on (X1, . . . , Xi), and use the convention E0 = E, then we
may define

∆i = EiZ −Ei−1Z

for every i = 1, . . . , n. Starting from the decomposition

Z −EZ =

n∑

i=1

∆i

one has

V ar (Z) = E



(

n∑

i=1

∆i

)2

 =

n∑

i=1

E
[
∆2
i

]
+ 2

∑

j>i

E [∆i∆j ] .

Now if j > i, Ei∆j = 0 implies that

Ei [∆j∆i] = ∆iEi∆j = 0 ,

and, a fortiori, E [∆j∆i] = 0. Thus, we obtain the following analog of the addi-
tivity formula of the variance:

V ar (Z) = E



(

n∑

i=1

∆i

)2

 =

n∑

i=1

E
[
∆2
i

]
.

Up to now, we have not made any use of the fact that Z is a function of indepen-
dent variables X1, . . . , Xn. Indeed, the above formula holds for any martingale.
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Independence may be used as in the following argument: for any integrable func-
tion Z = f (X1, . . . , Xn) one may write, by Fubini’s theorem,

EiZ =

∫

Xn−i
f (X1, . . . , Xi, xi+1, . . . , xn) dµi+1 (xi+1) . . . dµn (xn) ,

where, for every j = 1, . . . , n, µj denotes the probability distribution of Xj .

Also, if we denote by E(i) the conditional expectation operator conditioned on
X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn), we have

E(i)Z =

∫

X
f (X1, . . . , Xi−1, xi, Xi+1, . . . , Xn) dµi (xi) .

Then, again by Fubini’s theorem,

Ei

[
E(i)Z

]
= Ei−1Z. (3.1)

This observation is the key in the proof of the main result of this chapter which
we state next:

Theorem 3.1 (efron-stein inequality.) Let X1, . . . , Xn be independent ran-
dom variables and let Z = f(X) be a square-integrable function of X = (X1, . . . , Xn).
Then

V ar (Z) ≤
n∑

i=1

E

[(
Z −E(i)Z

)2
]

def
= v .

Moreover if X ′1, . . . , X
′
n are independent copies of X1, . . . , Xn and if we define,

for every i = 1, . . . , n,

Z ′i = f (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) ,

then

v =
1

2

n∑

i=1

E
[
(Z − Z ′i)

2
]

=

n∑

i=1

E
[
(Z − Z ′i)

2
+

]
=

n∑

i=1

E
[
(Z − Z ′i)

2
−

]

where x+ = max(x, 0) and x− = max(−x, 0) denote the positive and negative
parts of a real number x. Also,

v = inf
Zi

n∑

i=1

E
[
(Z − Zi)2

]
,

where the infimum is taken over the class of all X(i)-measurable and square-
integrable variables Zi, i = 1, . . . , n.
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Proof We begin with the proof of the first statement. Note that, using (3.1),
we may write

∆i = Ei

[
Z −E(i)Z

]
.

By Jensen’s inequality, used conditionally,

∆2
i ≤ Ei

[(
Z −E(i)Z

)2
]
.

Using V ar(Z) =
∑n
i=1 E

[
∆2
i

]
, we obtain the desired inequality. To prove the

identities for v, denote by V ar(i) the conditional variance operator conditioned
on X(i). Then we may write v as

v =

n∑

i=1

E
[
V ar(i) (Z)

]
.

Now note that one may simply use (conditionally) the elementary fact that if
X and Y are independent and identically distributed real-valued random vari-
ables, then V ar(X) = (1/2)E[(X − Y )2]. Since conditionally on X(i), Z ′i is an
independent copy of Z, we may write

V ar(i) (Z) =
1

2
E(i)

[
(Z − Z ′i)

2
]

= E(i)
[
(Z − Z ′i)

2
+

]
= E(i)

[
(Z − Z ′i)

2
−

]

where we used the fact that the conditional distributions of Z and Z ′i are iden-
tical. The last identity is obtained by recalling that, for any real-valued random
variable X, V ar(X) = infa∈R E[(X−a)2]. Using this fact conditionally, we have,
for every i = 1, . . . , n,

V ar(i) (Z) = inf
Zi

E(i)
[
(Z − Zi)2

]
.

Note that this infimum is achieved whenever Zi = E(i)Z. 2

Observe that in the case when Z =
∑n
i=1Xi is a sum of independent ran-

dom variables (with finite variance) then the Efron-Stein inequality becomes
an equality. Thus, the bound in the Efron-Stein inequality is, in a sense, not
improvable.

Remark 3.2 (the jackknife estimate.) We should note here that the Efron-
Stein inequality was first motivated by the study of the so-called jackknife es-
timate of statistics. To describe this estimate, assume that X1, . . . , Xn are i.i.d.
random variables and one wishes to estimate a functional θ of the distribution
of the Xi by a function Z = f(X1, . . . , Xn) of the data. The quality of the esti-
mate is often measured by its bias EZ − θ and its variance V ar(Z). Since the
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distribution of the Xi’s in unknown, one needs to estimate the bias and variance
from the same sample. The jackknife estimate of the bias is defined by

n− 1

n

n∑

i=1

Zi − Z

where Zi is an appropriately defined function ofX(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn)
(see Exercise 3.4). X(i) is often called the i-th jackknife sample while Zi is the
so-called jackknife replication of Z. In an analogous way, the jackknife estimate
of the variance is defined by

n∑

i=1

(Z − Zi)2 .

(Sometimes this sum is multiplied by (n−1)/n.) Using this language, the Efron-
Stein inequality simply states that the jackknife estimate of the variance is always
positively biased. In fact, this is how Efron and Stein originally formulated their
inequality.

In the next sections we illustrate the usage of the Efron-Stein inequality
for various prototypical examples. For many of these examples we will be able
to prove much stronger exponential tail estimates. However, the bases of the
methodology are laid down here and the arguments presented in this chapter
will be of great use in establishing sharper bounds. Also, useful bounds for the
variance can often be derived under significantly more general conditions than
sharper tail bounds.

3.2 Functions with bounded differences

We say that a function f : Xn → R has the bounded differences property if for
some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,
x′i∈X

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

In other words, if we change the i-th variable of f while keeping all the others
fixed, the value of the function cannot change by more than ci. Then the Efron-
Stein inequality implies the following:

Corollary 3.2 If f has the bounded differences property with constants c1, . . . , cn,
then

V ar(Z) ≤ 1

4

n∑

i=1

c2i .
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Proof From the Efron-Stein inequality,

V ar(Z) ≤ inf
Zi

n∑

i=1

E
[
(Z − Zi)2

]
,

where the infimum is taken over the class of all X(i)-measurable and square-
integrable variables Zi. Here we choose

Zi =
1

2

(
sup
x′i∈X

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)

+ inf
x′i∈X

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)

)
.

Hence

(Z − Zi)2 ≤ c2i
4
,

and the proposition follows. 2

Next we list some interesting applications of this corollary. In all cases the
bound for the variance is obtained effortlessly, while a direct estimation of the
variance may be quite involved.

Example 3.3 (bin packing.) This is one of the basic operations research prob-
lems. Given n numbers x1, . . . , xn ∈ [0, 1], the question is the following: what
is the minimal number of “bins” into which these numbers can be packed such
that the sum of the numbers in each bin doesn’t exceed one. Let f(x1, . . . , xn)
be this minimum number. Now clearly by changing one of the xi’s, the value
of f(x1, . . . , xn) cannot change by more than one, so whenever X1, . . . , Xn are
independent, Z = f(X1, . . . , Xn) satisfies

V ar(Z) ≤ n

4
.

This upper bound is not improvable because if the Xi are symmetric Bernoulli
random variables (i.e., P {Xi = 0} = P {Xi = 1} = 1/2) then Z is binomially
distributed with parameters n and 1/2 and therefore V ar(Z) = n/4. On the
other hand, sharper bounds, which depend on the distribution of the Xi, may
be proved by using Talagrand’s convex distance inequality discussed in Chapter
7.

Example 3.4 (longest common subsequence.) The simplest version of the
longest common subsequence problem is the following: letX1, . . . , Xn and Y1, . . . , Yn
be two sequences of coin flips. Define Z as the length of the longest subsequence
which appears in both sequences, that is,

Z = max{k : Xi1 = Yj1 , . . . , Xik = Yjk ,

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n} .
The behavior of EZ has been investigated in many papers. It is known that
EZ/n converges to some number γ, whose value is unknown. It is conjectured
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to be 2/(1 +
√

2), and it is known to fall between 0.75796 and 0.83763. Here we
are concerned with the concentration of Z. A moment of thought reveals that
changing one bit can’t change the length of the longest common subsequence
by more than one, so Z satisfies the bounded differences property with ci = 1.
Consequently,

V ar(Z) ≤ n

2
.

Thus, by Chebyshev’s inequality, with large probability, Z is within a constant
times

√
n of its expected value. In other words, it is strongly concentrated around

the mean, which means that results on EZ faithfully describe the behavior of
the longest common subsequence of two random strings.

Example 3.5 (kernel density estimation.) Let X1, . . . , Xn be i.i.d. sam-
ples drawn according to some (unknown) density φ on the real line. The density
is estimated by the kernel estimate

φn(x) =
1

nhn

n∑

i=1

K

(
x−Xi

hn

)
,

where hn > 0 is a smoothing parameter, and K is a nonnegative function with∫
K = 1. The performance of the estimate is typically measured by the L1 error

Z(n) = f(X1, . . . , Xn) =

∫
|φ(x)− φn(x)|dx .

It is easy to see that

|f(x1, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ 1

nhn

∫ ∣∣∣∣K
(
x− xi
hn

)
−K

(
x− x′i
hn

)∣∣∣∣ dx

≤ 2

n
,

so without further work we get

V ar(Z(n)) ≤ 1

n
.

It is known that for every φ,
√
nEZ(n) → ∞ which implies, by Chebyshev’s

inequality, that for every ε > 0

P

{∣∣∣∣
Z(n)

EZ(n)
− 1

∣∣∣∣ ≥ ε
}

= P {|Z(n)−EZ(n)| ≥ εEZ(n)} ≤ V ar(Z(n))

ε2(EZ(n))2
→ 0

as n→∞. That is, Z(n)/EZ(n)→ 1 in probability, or in other words, Z(n) is
relatively stable. This means that the random L1-error essentially behaves like
its expected value.
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Example 3.6 (rademacher averages.) Rademacher averages and processes
have played an important role in a large variety of applications ranging from
empirical process theory through geometry to statistical learning theory. Here
we derive bounds for the variance of the supremum of a Rademacher process,
using the Efron-Stein inequality.

To define Rademacher averages, let (αi,t) be a collection of real numbers
indexed by i = 1, . . . , n and t ∈ T where T is some set. If X1, . . . , Xn are
independent symmetric random signs (i.e, with P {Xi = −1} = P {Xi = 1} =
1/2), then one may define Z = supt∈T

∑n
i=1Xiαi,t The Xi are often called

Rademacher variables and Z is a Rademacher average. The size of the expected
value of Z depends, in a delicate manner, on the αi,t. However, it is immediate
to see that by changing one Xi, Z can change by at most 2 supt∈T |αi,t|, so
regardless of the behavior of EZ, by Corollary 3.2 we always have

V ar(Z) ≤
n∑

i=1

sup
t∈T

α2
i,t .

Next we show how a closer look at the Efron-Stein inequality implies a signifi-
cantly better bound for the variance of Z. Let X ′1, . . . , X

′
n be independent copies

of X1, . . . , Xn. Then

Z ′i = sup
t∈T






n∑

j:j 6=i
Xjαj,t


+X ′iαi,t


 .

Let t∗ be a (random) index such that supt∈T
∑n
j=1Xjαj,t =

∑n
j=1Xjαj,t∗ . Then,

for every i = 1, . . . , n,
Z − Z ′i ≤ (Xi −X ′i)αi,t∗

which implies

(Z − Z ′i)
2
+ ≤ (Xi −X ′i)

2
α2
i,t∗ .

By independence of X ′i and (X1, . . . , Xn),

E
[
(Z − Z ′i)

2
+

]
≤ E

[
E
[(

(Xi −X ′i)2
)
α2
i,t∗ |X1, . . . , Xn

]]
= 2E

[
α2
i,t∗
]
.

Hence, the Efron-Stein inequality implies

V ar (Z) ≤ 2E

[
n∑

i=1

α2
i,t∗

]
≤ 2σ2 ,

where σ2 = supt∈T
∑n
i=1 α

2
i,t. Note that, while we lost a factor of 2, the supre-

mum is now outside of the sum and this bound may be a significant improvement
on what we obtained as an immediate corollary of the bounded differences prop-
erty.
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3.3 Self-bounding functions

Another simple property which is satisfied for many important examples is the
so-called self-bounding property. We say that a nonnegative function f : Xn →
[0,∞) has the self-bounding property if there exist functions fi : Xn−1 → R
such that for all x1, . . . , xn ∈ X and all i = 1, . . . , n,

0 ≤ f(x1, . . . , xn)− fi(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1

and also

n∑

i=1

(f(x1, . . . , xn)− fi(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ f(x1, . . . , xn) .

For self-bounding functions we clearly have

n∑

i=1

(f(x1, . . . , xn)− fi(x1, . . . , xi−1, xi+1, . . . , xn))
2 ≤ f(x1, . . . , xn) .

and therefore the last expression of v in Theorem 3.1 implies the following:

Corollary 3.7 If f has the self-bounding property, then

V ar(Z) ≤ EZ .

Next we mention some applications of this simple corollary. It turns out that
in many cases the obtained bound is a significant improvement over what we
would obtain by using simply Corollary 3.2.

Remark 3.3 (relative stability.) A sequence of nonnegative random vari-
ables (Z(n))n∈N is said to be relatively stable if Z(n)/EZ(n)→ 1 in probability.
This property guarantees that the random fluctuations of Z(n) around its ex-
pectation are of negligible size when compared to the expectation, and therefore
most information about the size of Z(n) is given by EZ(n). Bounding the vari-
ance of Z(n) by its expected value implies, in many cases, the relative stability
of (Z(n))n∈N. If Z(n) has the self-bounding property, then, by Chebyshev’s in-
equality, for all ε > 0,

P

{∣∣∣∣
Z(n)

EZ(n)
− 1

∣∣∣∣ > ε

}
≤ V ar(Z(n))

ε2(EZ(n))2
≤ 1

ε2EZ(n)
.

Thus, for relative stability, it suffices to have EZ(n)→∞.

An important class of functions satisfying the self-bounding property consists
of the so-called configuration functions.

Assume that we have a property Π defined over the union of finite products
of a set X , that is, a sequence of sets Π1 ⊂ X ,Π2 ⊂ X × X , . . . ,Πn ⊂ Xn. We
say that (x1, . . . xm) ∈ Xm satisfies the property Π if (x1, . . . xm) ∈ Πm. We
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assume that Π is hereditary in the sense that if (x1, . . . xm) satisfies Π then so
does any subsequence (xi1 , . . . xik) of (x1, . . . xm). The function f that maps any
vector x = (x1, . . . xn) to the size of a largest subsequence satisfying Π is the
configuration function associated with property Π.

Corollary 3.7 implies the following result:

Corollary 3.8 Let f be a configuration function, and let Z = f(X1, . . . , Xn),
where X1, . . . , Xn are independent random variables. Then

V ar(Z) ≤ EZ .

Proof By Corollary 3.7 it suffices to show that any configuration function is
self bounding. Let Zi = f(X(i)) = f(X1, . . . , Xi−1, Xi+1, . . . , Xn). The condition
0 ≤ Z − Zi ≤ 1 is trivially satisfied. On the other hand, assume that Z = k and
let {Xi1 , . . . , Xik} ⊂ {X1, . . . , Xn} be a subsequence of cardinality k such that
fk(Xi1 , . . . , Xik) = k. (Note that by the definition of a configuration function
such a subsequence exists.) Clearly, if the index i is such that i /∈ {i1, . . . , ik}
then Z = Zi, and therefore

n∑

i=1

(Z − Zi) ≤ Z

is also satisfied, which concludes the proof. 2

To illustrate the fact that configuration functions appear rather naturally in
various applications, we describe some examples originating from different fields.

Example 3.9 (number of distinct values in a discrete sample.) Let
X1, . . . , Xn be independent, identically distributed random variables taking their
values in the set of positive integers such that P {X1 = k} = pk, and let Z(n)
denote the number of distinct values taken by these n random variables. Then
we may write

Z(n) =

n∑

i=1

1{{Xi 6=X1,...,Xi 6=Xi−1}} ,

so the expected value of Z(n) may be computed easily:

EZ(n) =

n∑

i=1

∞∑

j=1

(1− pj)i−1pj .

It is easy to see that E[Z(n)]/n → 0 as n → ∞ (see Exercise 3.8). But how
concentrated is the distribution of Z(n)? Clearly, Z(n) satisfies the bounded
differences property with ci = 1, so Corollary 3.2 implies V ar(Z(n)) ≤ n/4
and therefore Z(n)/n → 0 in probability by Chebyshev’s inequality. On the
other hand, it is obvious that Z(n) is a configuration function associated to the
property of “distinctness,” and by Corollary 3.8 we have

V ar(Z(n)) ≤ EZ(n)

which is a significant improvement since EZ(n) = o(n).
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Example 3.10 (vc dimension.) One of the central quantities in statistical
learning theory is the Vapnik-Chervonenkis dimension. Let A be an arbitrary
collection of subsets of X , and let x = (x1, . . . , xn) be a vector of n points of X .
Define the trace of A on x by

tr(x) = {A ∩ {x1, . . . , xn} : A ∈ A} .

The shatter coefficient, (or Vapnik-Chervonenkis growth function) of A in x is
T (x) = |tr(x)|, the size of the trace. T (x) is the number of different subsets of the
n-point set {x1, . . . , xn} generated by intersecting it with elements of A. A subset
{xi1 , . . . , xik} of {x1, . . . , xn} is said to be shattered if 2k = T (xi1 , . . . , xik). The
vc dimension D(x) of A (with respect to x) is the cardinality k of the largest
shattered subset of x. From the definition it is obvious that f(x) = D(x) is
a configuration function (associated to the property of “shatteredness”) and
therefore if X1, . . . , Xn are independent random variables, then

V ar(D(X)) ≤ ED(X) .

Example 3.11 (increasing subsequences.) Consider a vector x = (x1, . . . , xn)
of n distinct numbers in [0, 1]. The positive integers i1 < i2 < · · · < im form
an increasing subsequence if xi1 < xi2 < · · · < xim (where i1 ≥ 1 and im ≤ n).
Let L(x) denote the length of a longest increasing subsequence. Clearly, L(x) is
a configuration function (associated with the “increasing sequence” property),
and therefore if X1, . . . , Xn are independent random variables such that they are
different with probability one (this is warranted if every Xi has an absolutely
continuous distribution) then V ar(L(X)) ≤ EL(X). If the Xi’s are uniformly
distributed in [0, 1] then it is known that EL(X) ∼ 2

√
n. The obtained bound for

the variance turns out to be quite loose, the right order is V ar(L(X)) = O(n1/3),
an apparently difficult result.

In a variation of the problem, X1, . . . , Xn take their values in a finite set
{1, . . . ,m}. Here we define L(m)(X) to be the length of the longest increasing
subsequence of X = (X1, . . . , Xn), that is, the largest positive integer k for
which there exist 1 ≤ i1 < · · · < ik ≤ n such that Xi1 ≤ Xi2 ≤ . . . ≤ Xik .
The analysis of the variance remains unchanged, and just like above, we have
V ar(L(m)(X)) ≤ EL(m)(X). This estimate has the right order of magnitude as
it is known that if the Xi are uniformly distributed, (L(m)(X)− n/m)/

√
2n/m

converges, in distribution, to a random variable whose distribution depends on
m.

Example 3.12 (conditional rademacher averages.) An example of self-
bounding functions which is not a configuration function is the one of Rademacher
averages. Let X1, . . . , Xn be independent random variables taking values in
[−1, 1]d and denote the components of Xi by Xi,1 . . . , Xi,d, i = 1, . . . , n. If
ε1, . . . , εn denote independent symmetric {−1, 1}-valued random variables, in-
dependent of the Xi’s (the so-called Rademacher random variables), then we
define the conditional Rademacher average as
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Z = E

[
max

j=1,...,d

n∑

i=1

εiXi,j |X1, . . . , Xn

]
.

(Thus, the expected value is taken with respect to the Rademacher variables
and Z is a function of the Xi’s.) Quantities like Z have been known to measure
effectively the complexity of model classes in statistical learning theory. It is
immediate that Z has the bounded differences property and Corollary 3.2 implies
V ar(Z) ≤ n/4. However, this bound may be improved by observing that Z also
has the self-bounding property, and therefore V ar(Z) ≤ EZ. Indeed, defining

Zi = E


 max
j=1,...,d

n∑

k=1

k 6=i

εiXk,j |X(i)




it is easy to see that 0 ≤ Z −Zi ≤ 1 and
∑n
i=1(Z −Zi) ≤ Z (the details are left

as an exercise). The improvement provided by Lemma 3.7 is essential since it
is well-known in empirical process theory and statistical learning theory that in
many circumstances, EZ may be bounded by Cn1/2 where the constant C that
does not depend on n, see for example Section 13.3.

3.4 More examples and applications

Example 3.13 (first passage percolation.) Consider a graph such that a
weight Xi is assigned to each edge ei such that the Xi are nonnegative indepen-
dent random variables with second moment EX2

i = σ2. Let v1 and v2 be fixed
vertices of the graph. We are interested in the total weight of the path from v1

to v2 with minimum weight. (The weight of a path is defined as the sum of the
weights of the edges on the path.) Thus,

Z = min
P

∑

ei∈P
Xi

where the minimum is taken over all paths P from v1 to v2. Denote the optimal
path by P ∗. By replacingXi withX ′i, the total minimum weight can only increase
if the edge ei is on P ∗, and therefore

(Z − Z ′i)2
− ≤ (X ′i −Xi)

2
+1{ei∈P∗} ≤ X ′i

2
1{ei∈P∗} .

Thus,

V ar(Z) ≤ E
∑

i

X ′i
2
1{ei∈P∗} = σ2E

∑

i

1{ei∈P∗} ,

that is, the variance of Z is bounded by σ2 times the expected number of edges
in the minimum-weight path. Under general conditions, this is bounded by a
constant time the graph distance between v1 and v2 (see the exercises). This
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linear bound, however, is known to be loose in some important special cases
such as percolation on Zd. To prove bounds of the correct order for this special
case remains to be a challenge.

Example 3.14 (the largest eigenvalue of a random symmetric ma-
trix.) Let A be a symmetric real matrix whose entries Xi,j , 1 ≤ i ≤ j ≤ n are
independent random variables with absolute value bounded by 1. Let Z = λ1

denote the largest eigenvalue of A. The property of the largest eigenvalue we
need in order to bound the variance of Z is that if v = (v1, . . . , vn) ∈ Rn is an
eigenvector corresponding to the largest eigenvalue λ1 with ‖v‖ = 1, then

λ1 = vTAv = sup
u:‖u‖=1

uTAu .

To use Theorem 3.1, consider the symmetric matrix A′i,j obtained by replacing
Xi,j in A by the independent copy X ′i,j , while keeping all other variables fixed.
Let Z ′i,j denote the largest eigenvalue of the obtained matrix. Then by the above-
mentioned property of the largest eigenvalue,

(Z − Z ′i,j)+ ≤
(
vTAv − vTA′i,jv

)
1{Z>Z′i,j}

=
(
vT (A−A′i,j)v

)
1{Z>Z′i,j} ≤ 2

(
vivj(Xi,j −X ′i,j)

)
+

≤ 4|vivj | .

Therefore,

∑

1≤i≤j≤n
(Z − Z ′i,j)2

+ ≤
∑

1≤i≤j≤n
16|vivj |2 ≤ 16

(
n∑

i=1

v2
i

)2

= 16 .

Taking expectations of both sides and using the Efron-Stein inequality, we have
V ar(Z) ≤ 16. Thus, the variance is bounded by a constant regardless of the size
of the matrix and the distribution of the entries. The only condition we needed is
independence and boundedness of the entries, they don’t even need to have the
same distribution. Notice that the same proof works for the smallest eigenvalue
as well.

Example 3.15 (minimum weight spanning tree.) Consider the random vari-
able Tm defined as the sum of weights on the minimum spanning tree of the
complete graph Km with independent uniformly distributed (on [0, 1]) weights
Xi,j (1 ≤ i < j ≤ m) on the edges. (Thus, Tm is a function of n =

(
m
2

)
in-

dependent random variables.) It is well known that the expected value of Tm
converges to a constant ζ(3) =

∑∞
i=1 i

−3. Here we bound the variance of Tm.
Using the Efron-Stein inequality directly gives a loose bound but a simple trick
will take us close to the truth. The idea is that the largest weight of any edge
in the minimum spanning tree is small, at most of the order logm/m, with high
probability. This observation allows us to replace Tm by the related random vari-
able Tm obtained when the Xi,j are replaced by min(Xi,j , δm) where δm > 0
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is a small positive number. Note that if δm = c logm/m for some c > 1 then
Tm = Tm with high probability. In order to see this just observe that Tm 6= Tm
implies that the largest edge weight in the minimum spanning tree is greater
than δm. But this is just the probability that the Erdős-Rényi random graph
G(m, δm) (i.e., a graph on m vertices in which each of the possible

(
m
2

)
edges

is present independently with probability δm) is not connected which is at most

2
(
em

(1−c)/2 − 1
)

+ 2m+1m−(c−1)m/4 (see Exercise 3.12) which is bounded by

4m−c/4, if c ≥ 2. Since

V ar(Tm) = E
[
T 2
m

]
− (ETm)2

= E
[
T 2
m1{Tm=Tm}

]
+ E

[
T 2
m1{Tm 6=Tm}

]
− (ETm)2

≤ V ar(Tm) +m2P
{
Tm 6= Tm

}

≤ V ar(Tm) + 4m2−c/4 ,

it suffices to bound the variance of Tm. Here it is advantageous to use the variant
of the Efron-Stein inequality which states

V ar(Tm) ≤ E

n∑

i,j=1

i 6=j

(
Tm − T

′
m,(i,j)

)2

−

where T
′
m,(i,j) is obtained by replacing Xi,j by an independent copy. Clearly, if

one replaces the weight Xi,j then Tm can only decrease if the edge (i, j) is in
the minimum weight spanning tree. Since there are m − 1 such edges and the
change cannot be more than δm,

n∑

i,j=1

i 6=j

(
Tm − T

′
m,(i,j)

)2

−
≤ mδ2

m .

In summary,

V ar(Tm) ≤ mδ2
m + 4m2−c/4 =

144 log2m

m
+

4

m

where we chose c = 12. This bound is not quite of the correct order, since it is
known that, asymptotically, V ar(Tm) ∼ (6ζ(4)− 4ζ(3))/m. (In fact,

√
m(Tm −

ζ(3)) converges, in distribution, to a centered normal random variable with vari-
ance 6ζ(4)− 4ζ(3).) However, this argument illustrates how the Efron-Stein in-
equality can be used in a simple way to obtain powerful nonasymptotic inequal-
ities.

Example 3.16 (packet routing in parallel computation.) Here we de-
scribe a simple routing problem for massive parallel computation. Let N be an
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integer and suppose that 2N processors are arranged in a binary hypercube.
More precisely, consider the graph with vertex set {−1, 1}N in which two ver-
tices are joined by an edge if and only if the corresponding binary N -vectors
differ in exactly one bit. Each vertex represents a processor and processors with
neighboring vertices are joined with a direct communication link. During the ex-
ecution of a parallel computing task, processors need to communicate with each
other. In the simple model considered here, at a certain point in time, every
processor u ∈ {−1, 1}N needs to send a packet to another processor v = σ(u)
where σ is a permutation over {−1, 1}N . Thus, for each vertex u, a path from
u to v = σ(u) has to be found on the graph, and the packet is sent from u to
v along the chosen path. In total, 2N paths are chosen (one for each vertex),
some of which may intersect in certain edges of the graph. If some edge is con-
tained in various paths, then congestion occurs and computation suffers a delay
proportional to the number of paths going through the edge. Thus, the routing
problem is to assign paths so that the maximum number of paths going through
any single edge is as small as possible. Formally, a routing strategy is a mapping
p from pairs of vertices to paths. The length of a path is the number of edges it
goes through.

The simplest routing strategy one may think of is the following “shortest-
path” strategy: for a given pair (u, v) of vertices with Hamming distance ρ =
d(u, v) (with v = σ(u)), choose the path u0 = u, u1, . . . , uρ = v defined recur-
sively for i = 1, . . . , ρ such that ui+1 differs from ui according to the ith position
in which u and v differ. It is easy to see (Exercise 3.14) that this strategy may
have a maximal congestion that is exponentially large in N. Now consider the
following randomized solution. Given a routing task σ, every vertex u chooses an
intermediate vertex W (u) independently, uniformly at random, among all possi-
ble 2N vertices. Then u is first routed to W (u) and then W (u) to σ(u) using the
shortest path strategy described above. One may show that the expected value
of the maximal congestion of this scheme is O(N) (see Exercise 3.15). On the
other hand, the random variable Z(σ) defined as the maximal congestion of any
edge, may be considered as a function of the 2N independent random variables
W (u). Now it is easy to see that Z(σ) is a configuration function and there-
fore V ar(Z(σ)) ≤ EZ(σ) = O(N). Thus, with high probability, Z(σ) remains
bounded by a linear function of N , an exponential improvement compared to
the worst-case performance of a deterministic routing strategy.

3.5 A convex Poincaré inequality

In Section 3.7 below we will use the Efron-Stein inequality to prove a classical
result stating that any Lipschitz function of a canonical Gaussian vector has a
standard deviation bounded by the Lipschitz constant. Here we point out an
analogous bound for functions of n independent random variables taking values
in [0, 1]n. The price we have to pay for this generality is an extra convexity
condition on the function.
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We assume that f : [0, 1]n → R is a separately convex function, that is, for
any i = 1, . . . , n and fixed x1, . . . , xi−1, xi+1, . . . , xn, f is a convex function of its
i-th variable. We also assume that the partial derivatives of f exist, though this
last condition may be removed by a routine approximation argument which we
do not detail here.

Theorem 3.17 Let X1, . . . , Xn be independent random variables taking values
in the interval [0, 1] and let f : [0, 1]n → R be a separately convex function whose
partial derivatives exist. Then f(X) = f(X1, . . . , Xn) satisfies

V ar(f(X)) ≤ E
[
‖∇f(X)‖2

]
.

Proof The proof is an easy consequence of the Efron-Stein inequality, because
by Theorem 3.1 it suffices to bound the random variable

∑n
i=1(Z − Zi)2 where

Zi = infx′i f(X1, . . . , x
′
i, . . . , Xn). Denote by X ′i the value of x′i for which the

minimum is achieved. This is guaranteed by continuity and the compactness of

the domain of f . Then, writing X
(i)

= (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), we have

n∑

i=1

(Z − Zi)2 =

n∑

i=1

(f(X)− f(X
(i)

)2

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

(Xi −X ′i)2

(by separate convexity)

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

= ‖∇f(X)‖2 .

2

Example 3.18 (the largest singular value of a random matrix.) Let
A be an m×n matrix with entries Xi,j (i = 1, . . . ,m, j = 1, . . . , n) of independent
random variables taking values in [0, 1]. We are interested in concentration of the
largest singular value Z of A, defined as the square root of the largest eigenvalue
of the symmetric n× n matrix ATA. Thus,

Z =
√
λ1(ATA) =

√
sup

u∈Rn:‖u‖=1

uTATAu = sup
u∈Rn:‖u‖=1

‖Au‖ .

For each fixed vector u, ‖Au‖ is a convex function of the mn-dimensional vector
formed by the Xi,j and since the supremum of convex functions is convex, we
see that Z is a convex function of the Xi,j . In order to apply Theorem 3.17,
we may use Lidskii’s inequality, a classical result of linear algebra, which states
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that if A = (xi,j)m×n and B = (yi,j)m×n are two matrices then, denoting by
s1(M) ≥ · · · ≥ sn(M) the singular values of an m× n matrix M ,

(s1(A)− s1(B))
2 ≤

n∑

i=1

(si(A)− si(B))
2 ≤

n∑

i=1

si(A−B)2

= tr((A−B)T (A−B)) =

m∑

i=1

n∑

j=1

(xi,j − yi,j)2

(see Exercise 3.16). Therefore, the largest singular value is a Lipschitz function
with Lipschitz constant L = 1 and by Theorem 3.17,

V ar(Z) ≤ 1 .

3.6 Exponential tail bounds via the Efron-Stein inequality

The purpose of this section is to show two different ways of how the Efron-Stein
inequality may be used in a simple and elementary way to prove exponential
bounds for the tail probabilities of functions with bounded differences. These
bounds turn out to be suboptimal but the main ideas will be used later to prove
sharper bounds. Also, our intention is to give another evidence of the surprising
power of the Efron-Stein inequality.

In the arguments, in fact, we need less than bounded differences, just the
property that there exists a positive constant v such that

n∑

i=1

(Z − Z ′i)2
+ ≤ v (3.4)

holds with probability one. Recall that, for example, the largest eigenvalue of
a random symmetric matrix satisfies this condition with v = 16, see Example
3.14. We establish exponential tail inequalities by deriving upper bounds for the
distance between quantiles of Z. Define, for any α ∈ (0, 1), the α-quantile of
Z = f(X) = f(X1, . . . , Xn) by

Qα = inf{z : P {Z ≤ z} ≥ α} .

In particular, we denote the median of Z by MZ = Q1/2.
The trick of the first method is to use the Efron-Stein inequality for the

random variable ga,b(X) = ga,b(X1, . . . , Xn) where b ≥ a and the function ga,b :
Xn → R is defined as

ga,b(x) =




b if f(x) ≥ b
f(x) if a < f(x) < b
a if f(x) ≤ a

First observe that if a ≥MZ, then Ega,b(X) ≤ (a+ b)/2 and therefore
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V ar(ga,b(X)) ≥ P {ga,b(X) = b}
4

(b− a)2 =
P {Z ≥ b}

4
(b− a)2 .

On the other hand, we may use the Efron-Stein inequality to obtain an upper
bound for the variance of ga,b(X). To this end, observe that if f(x) ≤ a then
ga,b(x̃

(i)) ≥ ga,b(x), for x̃(i) = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) and so

n∑

i=1

E
(
ga,b(X)− ga,b(X̃(i))

)2

= 2

n∑

i=1

E
(
ga,b(X)− ga,b(X̃(i))

)2

+

≤ 2E

[
1{Z>a}

n∑

i=1

(
ga,b(X)− ga,b(X̃(i))

)2

+

]

≤ 2vP {Z > a}

where in the last step we used the fact that condition (3.4) implies that

n∑

i=1

(
ga,b(X)− ga,b(X̃(i))

)2

+
≤

n∑

i=1

(
f(X)− f(X̃(i))

)2

+
≤ v .

Comparing the obtained upper and lower bounds for V ar(ga,b(X)), we get

b− a ≤
√

8v
P {Z > a}
P {Z ≥ b} .

We may use this inequality to bound the distance between quantiles of Z. To
this end, let 0 < δ < γ ≤ 1/2 and choose a = Q1−γ and b = Q1−δ. Then
P {Z > a} ≤ γ and P {Z ≥ b} ≥ δ and therefore the distance between any two
quantiles of Z (to the right of the median) can be bounded as

Q1−δ −Q1−γ ≤
√

8vγ

δ
.

It is instructive to choose γ = 2−k and δ = 2−(k+1) for some integer k ≥ 1. Then,
denoting ak = Q1−2−k , we get

ak+1 − ak ≤ 4
√
v ,

so the difference between consecutive quantiles corresponding to exponentially
decreasing tail probabilities is bounded by a constant. In particular, by summing
this inequality for k = 1, . . . ,m, we have am+1 ≤ MZ + 4m

√
v which implies

that for all t > 0,
P {Z >MZ + t} ≤ 2−t/(4

√
v) .

In Chapter 6 we will be able to improve this tail bound by showing that the
exponent is, in fact, of the order of −t2/v, that is, tail probabilities of functions
satisfying condition (3.4) decrease in a sub-Gaussian manner. We emphasize
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that we have derived more than just bounds for tail probabilities as we have
obtained explicit, nonasymptotic bounds for the distance between quantiles. We
may call these “local” tail bounds. In many cases, these local bounds can also
be sharpened to reveal the sub-Gaussian nature of the tails. This will be shown
in Section 9.3 building on hypercontractivity arguments.

An alternative route to obtain exponential bounds is by applying the Efron-
Stein inequality to exp (λZ/2) with λ > 0. Then by the mean-value theorem,

EeλZ −
(
E
[
eλZ/2

]2)
≤ E

[
n∑

i=1

(
eλZ/2 − eλZ′i/2

)2

+

]

≤ λ2

4
E

[
n∑

i=1

eλZ (Z − Z ′i)
2
+

]
.

Now we may use our condition (3.4) to derive that

EeλZ −
(
E
[
eλZ/2

])2

≤ vλ2

4
EeλZ

or equivalently (
1− vλ2

4

)
F (λ) ≤ (F (λ/2))

2
,

where F (λ) = Eeλ(Z−EZ). We may now use the above functional inequality to
control the moment generating function. The solution is based on elementary
calculus and is summarized in the following lemma.

Lemma 3.19 Let g : (0, 1)→ (0,∞) be a function such that limx→0 (g(x)− 1) /x =
0. If for every x ∈ (0, 1)

(
1− x2

)
g(x) ≤ g(x/2)2 ,

then

g(x) ≤
(
1− x2

)−2
.

Proof We easily derive by induction that

g (x) ≤
(
g
(
x2−k

))2k k∏

j=0

(
1−

(
x2−j

)2)−2j

.

The assumption on the behavior of the function g at 0 ensures that limk→∞
(
g
(
x2−k

))2k
=

1. Hence, the previous inequality implies that

log g (x) ≤
∞∑

j=0

2j
[
− log

(
1−

(
x2−j

)2)]
. (3.5)
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Now by concavity of the logarithm, −u−1 log(1−u) is a non-decreasing function
of u ∈ (0, 1) and therefore, for every integer j,

− log
(

1−
(
x2−j

)2) ≤ 2−2j
[
− log

(
1− x2

)]
.

Plugging this inequality in (3.5) leads to

log g (x) ≤
[
− log

(
1− x2

)] ∞∑

j=0

2−j

and the result follows. 2

Since F (0) = 1 and F ′(0) = 0, we may apply Lemma 3.19 to the function
x→ F

(
2xv−1/2

)
and get, for every λ ∈

(
0, 2v−1/2

)
,

F (λ) ≤
(

1− λ2v

4

)−2

. (3.6)

Thus, the Efron-Stein inequality may be used to prove exponential integrability
of Z. Moreover, since by (3.6) F

(
v−1/2

)
≤ 2, by Markov’s inequality, for every

t > 0,
P {Z −EZ ≥ t} ≤ 2e−t/

√
v .

This inequality has the same form as the one derived using the first method of
this section but now we bound deviations from the mean instead of the median
and the constants are somewhat better.

In Chapter 6 we derive Gaussian instead of exponential-like tail bounds.
Another way of exploiting (3.6) is to bound − log (1− u) by u (1− u)

−1
and

conclude that for every λ ∈
(
0, 2v−1/2

)

logF (λ) ≤ λ2v

2 (1− (λ2v/4))
≤ λ2v

2 (1− (λ
√
v/2))

.

This bound for the moment generating function means that Z − EZ is a sub-
gamma random variable with variance factor v and scale parameter c =

√
v/2,

as introduced in Section 2.4. The calculations of that section show that for all
t > 0,

P
{
Z −EZ ≥

√
2vt+ ct

}
≤ e−t . (3.7)

Since c =
√
v/2, we see that as soon as t is not too small (say, t ≥ 1), the linear

term in the expression
√

2vt+ct dominates the other one. This is the reason why
one cannot interpret (3.7) as a sub-Gaussian inequality. In subsequent chapters
we establish inequalities like (3.7) with much more interesting values for c. The
case c = 0 is of course the most interesting one but in some circumstances we
will get moderate values for c, typically depending on a uniform bound on the
increments Z − Z ′i.
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3.7 The Gaussian Poincaré inequality

The Efron-Stein inequality can be successfully applied to prove a sharp bound
for the variance of a smooth function of a standard Gaussian random vector,
known as the Gaussian Poincaré inequality. This result is a prelude to various
related inequalities discussed in Chapter 5.

Theorem 3.20 (gaussian poincaré inequality.) Let X = (X1, . . . , Xn) be
a vector of i.i.d. standard Gaussian random variables (i.e., X is a Gaussian
vector with zero mean vector and identity covariance matrix). Let f : Rn → R
be any continuously differentiable function. Then

V ar (f(X)) ≤ E
[
‖∇f(X)‖2

]
.

Proof We may assume that E ‖∇f(X)‖2 < ∞ since otherwise the inequality
is trivial. The proof is based on a double use of the Efron-Stein inequality. A
first straightforward use of it reveals that it suffices to prove the theorem when
the dimension n equals 1. Thus, the problem reduces to show that

V ar (f(X)) ≤ E
[
f ′(X)2

]
, (3.8)

where f : R → R is any continuously differentiable function on the real line
and X is a standard normal random variable. First notice that it suffices to
prove this inequality when f has a compact support and is twice continuously
differentiable. Now let ε1, . . . , εn be independent Rademacher random variables
and introduce

Sn = n−1/2
n∑

j=1

εj .

Since for every i

V ar(i) (f (Sn)) =
1

4

(
f

(
Sn +

1− εi√
n

)
− f

(
Sn −

1 + εi√
n

))2

,

applying the Efron-Stein inequality again, we obtain

V ar (f (Sn)) ≤ 1

4

n∑

i=1

E

[(
f

(
Sn +

1− εi√
n

)
− f

(
Sn −

1 + εi√
n

))2
]

. (3.9)

The central limit theorem implies that Sn converges in distribution to X, where
X has the standard normal law. Hence V ar (f (Sn)) converges to V ar(f(X)).
Let K denote the supremum of the absolute value of the second derivative of f .
Taylor’s theorem implies that, for every i,

∣∣∣∣f
(
Sn +

1− εi√
n

)
− f

(
Sn −

1 + εi√
n

)∣∣∣∣ ≤
2√
n
|f ′ (Sn)|+ 2K

n



A proof of the Efron-Stein inequality based on duality 73

and therefore

n

4

(
f

(
Sn +

1− εi√
n

)
− f

(
Sn −

1 + εi√
n

))2

≤ f ′ (Sn)
2

+
2K√
n
|f ′ (Sn)|+ K2

n
.

This and the central limit theorem imply that

lim sup
n→∞

1

4

n∑

i=1

E

[(
f

(
Sn +

1− εi√
n

)
− f

(
Sn −

1 + εi√
n

))2
]

= E
[
f ′ (X)

2
]

,

which means that (3.9) leads to (3.8) by letting n go to infinity. 2

A straightforward consequence of the Gaussian Poincaré inequality is that,
whenever f : Rn → R is Lipschitz, that is, for all x, y ∈ Rn

|f(x)− f(y)| ≤ ‖x− y‖

and X is a standard Gaussian random vector, then

V ar (f(X)) ≤ 1 .

Indeed, using an approximation argument (like convolution with a smooth ker-
nel) one may always assume that f is differentiable and if it is the case then
supx ‖∇f (x)‖ ≤ 1 and the inequality easily follows from Theorem 3.20.

3.8 A proof of the Efron-Stein inequality based on duality

The Efron-Stein inequality is the first example of various closely related concen-
tration inequalities. In order to better prepare similar results in a more general
context, we provide an alternative proof based on a duality, rather than an or-
thogonality, argument.

Consider first the following elementary duality formula:

Proposition 3.21 If Y is a real-valued square-integrable random variable (Y ∈
L2 in short), then

V ar (Y ) = sup
T∈L2

(2Cov (Y, T )− V ar (T )) .

Proof The proof is simple: since V ar(Y − T ) ≥ 0, and

V ar(Y − T ) = V ar(Y )− 2Cov(Y, T ) + V ar(T ) ,

we have
V ar (Y ) ≥ 2Cov (Y, T )− V ar (T )

and since this inequality becomes an equality whenever T = Y , the duality
formula follows. 2



74 Bounding the variance

Now we may consider the telescoping sum

Z2 − (EZ)
2

=

n∑

i=1

(
(EiZ)

2 − (Ei−1Z)
2
)
,

which leads to

V ar (Z) =

n∑

i=1

E
[
(EiZ)

2 − (Ei−1Z)
2
]
.

Note that, on the one hand, this decomposition does not require any orthogo-
nality argument. On the other hand, it is equivalent to the identity V ar(Z) =∑n
i=1 E

[
∆2
i

]
which served as our starting point in proving Theorem 3.1. Indeed,

for every i = 1, . . . , n, by orthogonality between Ei−1Z and ∆i, the Pythagorean
theorem implies that

E
[
∆2
i

]
= E

[
(EiZ)

2 − (Ei−1Z)
2
]
.

Similarly to our first proof of the Efron-Stein inequality, the independence of the
variables X1, . . . , Xn is used by noting that

Ei−1Z = E(i) [EiZ]

and therefore

E
[
(EiZ)

2 − (Ei−1Z)
2
]

= E
[
V ar(i) (EiZ)

]
.

In other words, we have proven the following alternative formulation (using in-
dependence but without using the orthogonality structure of the martingale dif-
ferences):

V ar (Z) =

n∑

i=1

E
[
V ar(i) (EiZ)

]
. (3.10)

It remains to commute the V ar(i) and Ei operators and this is precisely the step
where we use a duality argument.

Lemma 3.22 For every i = 1, . . . , n,

E
[
V ar(i) (EiZ)

]
≤ E

[
V ar(i) (Z)

]
.

Proof Applying the duality formula of Proposition 3.21 conditionally on X(i),
we have that for any square-integrable variable T ,

2Cov(i)(Z, T )− V ar(i)(T ) ≤ V ar(i)(Z) . (3.11)

But if we take T to be (X1, . . . , Xi)-measurable, then
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E
[
Cov(i) (Z, T )

]
= E

[
Z
(
T −E(i)T

)]
= E

[
EiZ

(
T −E(i)T

)]

= E
[
Cov(i) (EiZ, T )

]
.

Hence, choosing T = EiZ leads to

E
[
Cov(i) (Z,EiZ)

]
= E

[
V ar(i) (EiZ)

]
,

and therefore, by (3.11),

E
[
V ar(i) (EiZ)

]
≤ E

[
V ar(i) (Z)

]
.

2

Combining Lemma 3.22 with the decomposition (3.10) leads to

V ar (Z) ≤
n∑

i=1

E
[
V ar(i) (Z)

]

which is equivalent to the Efron-Stein inequality.
Note that there is no measure-theoretic trap here since by Fubini’s theorem,

the conditional expectations that we are dealing with can all be defined from
regular versions of conditional probabilities. Hence it is perfectly legal to use the
duality formula for the conditional variance as we did above.

3.9 Bibliographic remarks

The Efron-Stein inequality got its name from the paper of Efron and Stein (1981).
While the original result of Efron and Stein had some extra conditions and
came with a sub-optimal constant, Steele (1986) and Rhee and Talagrand (1986)
obtained improved versions and the form presented in Theorem 3.1. The proof
shown in Section 3.1 appears in Rhee and Talagrand (1986).

In statistics, the jackknife estimate goes back to Quenouille (1949) and Tukey
(1958). For surveys and related methods we refer to Efron and Tibshirani (1994),
Politis, Romano, and Wolf (1999).

The behavior of Z = f(X1, . . . , Xn) in the bin packing problem, whenX1, . . . , Xn

are independent random variables, has been extensively studied, see, for example,
Rhee and Talagrand (1987), Rhee (1993), Talagrand (1995).

The longest common subsequence problem has been studied intensively for
about 30 years now, see Chvátal and Sankoff (1975), Deken (1979), Danč́ık and
Paterson (1994), Steele (1982, 1996). This was one of the first applications of
the Efron-Stein inequality, see Steele (1986), in which the power and simplicity
of the inequality is clearly demonstrated. The Efron-Stein inequality may also
be used in a more general setup when the two independent strings are made of
independent symbols, but not necessarily with balanced Bernoulli distribution.
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Determining the correct order of magnitude of the variance is a challenging prob-
lem but recent progress shows that, in many cases, the variance grows linearly
with n and therefore the Efron-Stein bound is of the correct order of magnitude;
see Houdré, Lember and Matzinger (2006), Lember and Matzinger (2009), and
Amsalu, Houdré and Matzinger (2012).

Configuration functions were defined by Talagrand (1995, Section 7). Our
definition, taken from Boucheron, Lugosi and Massart (2000), is a slight modifi-
cation of Talagrand’s.

The relative stability of the L1 error of the kernel density estimate is due to
Devroye (1988, 1991). For more on the behavior of the L1 error of the kernel
density estimate we refer to Devroye and Györfi (1985), Devroye and Lugosi
(2000).

Concentration properties of self-bounding functions have been studied by
Boucheron, Lugosi, and Massart (2000, 2009), Rio (2001), Bousquet (2002a),
Maurer (2006), and McDiarmid and Reed (2006).

The Vapnik-Chervonenkis dimension and growth function were introduced in
the pioneering work of Vapnik and Chervonenkis (1971, 1974).

The fact that the longest increasing subsequence in a random permutation
of n numbers satisfies EL(X) ∼ 2

√
n is due to Logan and Shepp (1977), see

also Hammersley (1972), Aldous and Diaconis (1995), and Groeneboom (2002).
The celebrated paper of Baik, Deift, and Johansson (2000) establishes the limit
distribution of L(X). This result implies that V ar(L(X)) = O(n1/3). Ledoux
(2005) obtains nonasymptotic exponential tail inequalities which have the best
possible orders of magnitude. For early work on the concentration on L(X) we
refer to Frieze (1991), Bollobás and Brightwell (1992), and Talagrand (1995).

The limit theorem for the longest increasing subsequence in a random string
over a finite alphabet mentioned in Example 3.11 is due to Tracy and Widom
(2001) and Johansson (2001), see also Its, Tracy, and Widom (2001), Houdré
and Litherland (2009).

Ever since the pioneering paper of Vapnik and Chervonenkis (1971), Rademacher
averages have played a central role in the theory of empirical processes and statis-
tical learning theory. For more information on the behavior of Rademacher aver-
ages and on their role in learning theory see, for example, Giné and Zinn (1984),
Devroye, Györfi, and Lugosi (1996), Vapnik (1998), van der Vaart and Well-
ner (1996), Dudley (1999), Bartlett and Mendelson (2002), Koltchinskii (2001,
2006), Boucheron, Bousquet, and Lugosi (2005a). For a modern account on the
behavior of the expectation of Rademacher averages (and more general empirical
processes) we refer to Talagrand (2005).

For the role of conditional Rademacher averages in probability in Banach
spaces, see among others, Ledoux and Talagrand (1991) and Talagrand (1995).
For the role in in statistical learning theory, see, among others, Koltchinskii
(2001), Koltchinskii and Panchenko (2000), Bartlett, Boucheron, and Lugosi
(2002a), Bartlett and Mendelson (2002), Bartlett, Bousquet, and Mendelson
(2002b), Boucheron, Bousquet, and Lugosi (2005a), Massart (2006).
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The problem of first passage percolation was introduced by Hammersley and
Welsh (1965). The fact that the variance of first passage percolation in Zd be-
tween the origin and ne1 (where e1 is the first canonical basis vector in Zd) is
bounded by a linear function of n was first shown by Kesten (1993). Benjamini,
Kalai and Schramm (2003) proved an upper bound of order n/ log n for a certain
distribution of the edge weights, see also Benäım and Rossignol (2006) for more
general results. However, it is conjectured that the correct order for the variance
is O(n2/3), see, for example Bramson and Durrett (1999).

The argument for bounding the variance of the largest eigenvalue of a random
symmetric matrix is based on Alon, Krivelevich, and Vu (2002) who prove an
exponential tail bound which we reproduce later. The phenomenon that the vari-
ance is asymptotically bounded was already discovered by Füredi and Komlós
(1981) who also prove a limit theorem for the largest eigenvalue when the dis-
tributions of the entries are identical and have positive expectation. The case
where the entries are centered has been settled by Soshnikov (1999).

The asymptotic value limm→∞ETm = ζ(3) of the expected weight of the
minimum spanning tree was determined by Frieze (1985). The limit theorem
mentioned in Example 3.15 is due to Janson (1995) and Wästlund (2005).

The randomized solution for the routing problem described in Example 3.16
was proposed by Valiant and Brebner (1981), see also Valiant (1982) for related
results.

Theorem 3.17 was proved independently by Bobkov (1996) and Ledoux (1997).
Lidskii’s inequality, used in Example 3.18, appears in Lidskii (1950).

The first argument of Section 3.6 is based on an idea sketched by Benjamini,
Kalai and Schramm (2003) and elaborated by Devroye and Lugosi (2008). The
moment generating function approach has apparently been developed first by
Aida and Stroock (1994). Our calculations follow those of Bobkov and Ledoux
(1997).

The proof of the Gaussian Poincaré inequality presented here is borrowed
from Ané et al. (2000).

3.10 Exercises

Exercise 3.1 Let Z be a nonnegative random variable such that Z2 has a chi-square
distribution with D degrees of freedom. Prove that

√
D − 1 ≤ EZ ≤

√
D.

Exercise 3.2 Assume that the random variables X1, . . . , Xn are independent and bi-
nary {−1, 1}-valued with P {Xi = 1} = pi and that f : {−1, 1}n → R has the bounded
differences property with constants c1, . . . , cn. Show that if Z = f(X1, . . . , Xn),

V ar(Z) ≤
n∑
i=1

c2i pi(1− pi) .
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Exercise 3.3 (order statistics.) Assume that the random variables X1, . . . , Xn are
independent. Let X(1) ≤ X(2) ≤ . . . ≤ X(n) denote a non-decreasing rearrangement of
X1, . . . , Xn. Prove that, no matter what the distribution of the Xi’s is, V ar(X(n)) ≤
E[(X(n) − X(n−1))

2] . Compute the left-hand side and the right-hand side when the
Xi’s are exponentially distributed with parameter 1 or when the Xi’s are uniformly
distributed on [0, 1]. (Use the fact that if the Xi’s are exponentially distributed with
parameter 1, the coordinates of the random vector (X(1), X(2)−X(1), . . . , X(n)−X(n−1))
are independent and exponentially distributed with parameters 1/n, 1/(n− 1), . . . , 1).

Exercise 3.4 (jackknife estimate of the bias.) Consider a sequence of estimates
Z = fn(X1, . . . , Xn) of a parameter θ and assume that its bias satisfies EZ − θ =
c/n+O(n−2) for some constant c. By using the jackknife estimate of the bias defined
by

B =
n− 1

n

n∑
i=1

Zi − Z

where Zi = fn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn), one may define the bias-corrected esti-

mate Z̃ = Z − B. Show that the bias of Z̃ satisfies EZ̃ − θ = O(n−2). (Quenouille,
1949).

Exercise 3.5 (among lipschitz functions the sum has the largest variance.)
Consider the class F of functions f : Rn → R that are Lipschitz with respect to
the `1 distance, that is, if x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then
|f(x) − f(y)| ≤

∑n
i=1 |xi − yi|. Let X = (X1, . . . .Xn) be a vector of independent

random variables with finite variance. Use the Efron-Stein inequality to show that the
maximal value of V ar(f(X)) over f ∈ F is attained by the function f(x) =

∑n
i=1 xi.

(Bobkov and Houdré, 1996).

Exercise 3.6 (jackknife estimate of the variance of the median.) Assume that
the random variables X1, . . . , Xn are independent and uniformly distributed on [0, 1].
Let X(1) ≤ X(2) ≤ . . . ≤ X(n) denote a non-decreasing rearrangement of X1, . . . , Xn.
Assume n is even. Check that

V ar
(
X(n/2)

)
≤ n

2
E
[(
X(n/2) −X(n/2−1)

)2]
.

Compute the right-hand side and the left-hand side, as well as their limiting value when
n→∞. Is the jackknife estimate of the variance of the median consistent? What is its
limiting distribution?

Exercise 3.7 Complete the proof of the fact that the conditional Rademacher average
has the self-bounding property.

Exercise 3.8 Consider the example of the number of distinct values in a discrete
sample described in the text. Show that EZ/n → 0 as n → ∞. Calculate explicitely
V ar(Z) and compare it with the upper bound obtained by the Efron-Stein inequality.

Exercise 3.9 Let Z be the number of triangles in a random graph G(n, p). Calculate
the variance of Z and compare it with what you get by using the Efron-Stein inequality
to estimate it. (In the G(n, p) model for random graphs, the random graph G = (V,E)
with vertex set V (|V | = n) and edge set E is generated by starting from the com-
plete graph with n vertices and deleting each edge independently from the others with
probability 1− p. A triangle is a complete three-vertex subgraph.)
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Exercise 3.10 Consider the problem of first passage percolation on the d-dimensional
integer lattice Zd between the origin and a vertex v ∈ Zd. Show that if the distribution
of the weights of the edges is such that Xi takes its values in the interval [a, b] for some
0 < a < b <∞ then the number of edges on the minimum weight path is bounded by
(b/a)‖v‖1.

Exercise 3.11 Consider the adjacency matrix A = (Xi,j)n×n of a random graph
G(n, p). (That is, Xi,j = 1 if vertex i is connected to vertex j and Xi,j = 0 other-
wise.) Show that the expected value of the largest eigenvalue of A is at least (n− 1)p.
(This simple lower bound is apparently asymptotically correct, see Füredi and Komlós
(1981).)

Exercise 3.12 Consider a random graph G(n, p) with p = c logn/n, where c > 1. Show

that the probability that the random graph is not connected is at most 2
(
em

(1−c)/2

− 1
)

+

2m+1m−(c−1)m/4 (Erdős and Rényi, 1960), (Palmer, 1985).

Exercise 3.13 (the assignment problem.) In the assignment problem, given an
m × m array {Xi,j}m×m of independent random variables distributed uniformly on
[0, 1], one considers the random quantity

Zm = min
π

m∑
i=1

Xi,π(i)

where the minimum is taken over all permutations π of {1, . . . ,m}. Mimic the argument
given for the minimum weight spanning tree to show that V ar(Zm) = O(log2 m/m).
(A few samples from the vast literature on the assignment problem include Aldous
(2001), Linusson and Wästlund (2004), Nair, Prabhakar and Sharma (2005), Talagrand
(1995).)

Exercise 3.14 Show that if one employs the shortest-path routing strategy described
in Example 3.16 then there exists a permutation σ such that the maximal congestion
over any edge is at least 2N/2/N . In fact, much more is true: Valiant (1982) showed
that no oblivious deterministic routing algorithm can have maximal congestion less
than Ω

(
2N/2/N

)
where a deterministic routing algorithm is said to be oblivious if the

path from u to σ(u) only depends on the value of σ(u) and not on any other aspect of
the permutation σ. Even if a routing algorithm chooses a shortest path between u and
σ(u) at random, it is bound to suffer a maximal congestion of order Ω

(
2αN

)
for some

α > 0.

Exercise 3.15 Prove that in the randomized routing scheme defined in Example 3.16
the expected value of the maximal congestion, over any edge, is O(N) (Valiant and
Brebner, 1981).

Exercise 3.16 (lidskii’s inequality.) Let A = (ai,j)
n
i,j=1 and B = (bi,j)

n
i,j=1 be two

symmetric matrices. Let (λi(A))i=1,...,n and (λi(B))i=1,...,n denote the non-increasing
rearrangements of their eigenvalues. Recall that

√
tr(AAT ) is the Hilbert-Schmidt (or

Frobenius) norm of A. Prove the following version of Lidskii’s inequality:

n∑
i=1

(λi(A)− λi(B))2 ≤ ‖A−B‖2hs =

n∑
i,j=1

(ai,j − bi,j)2 .
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Hint: Prove that there exists an orthogonal matrix Q = (qi,j)
n
i,j=1 such that

n∑
i,j=1

(ai,j − bi,j)2 = ‖diag(λi(A))Q−Qdiag(λi(B))‖2hs

=

n∑
i,j=1

q2
i,j(λi(A)− λj(B))2 .

where diag(λi(A)) and diag(λi(B)) are two diagonal matrices with diagonal entries
matching the eigenvalues of A and B. Let P = (pi,j)

n
i,j=1 be a doubly stochastic matrix,

prove that
∑n
i,j=1 p

2
i,j(λi(A)−λj(B))2 is minimized if P is the identity matrix. You may

proceed by repeated exchanges. Assume that for some k < `, pk,` 6= 0, check that there
exists another doubly stochastic matrix P ′ = (p′i,j)

n
i,j=1 with

∑
i6=j P

′2
i,j <

∑
i 6=j P

2
i,j

and
∑n
i,j=1 p

′2
i,j(λi(A)− λj(B))2 <

∑n
i,j=1 p

2
i,j(λi(A)− λj(B))2. This elementary proof

is due to Wilkinson, see Marshall and Olkin (1979), Horn and Johnson (1990), Bha-
tia (1997), Garling (2007) for more and related inequalities. This inequality is some-
times referred to as the Hoffman-Wielandt inequality. See also Terence Tao’s blog
http://terrytao.wordpress.com, course 254a.

Exercise 3.17 Modify the argument of Section 3.6 to show that if f is such that there
exists a constant v such that

∑n
i=1(Z − Z′i)2

− ≤ v and B = supx,x′i
|f(x)− f(x′i)| then

for all 0 < δ < γ ≤ 1/2 such that Q1−γ ≥MZ +B,

Q1−δ −Q1−γ ≤ B +

√
8vγ

δ
.

Exercise 3.18 Mimic the argument of Section 3.6 to show that if f is a self-bounding
function then

√
ak+1 −

√
ak ≤ ck for a universal constant c which implies P {Z >

MZ + t} ≤ Ce−
√
t/C for another constant C. This tail bound will also be sharpened

considerably in Chapter 6.

Exercise 3.19 (variance of the square root.) Let X be a non-negative random
variable such that for some a > 0, V ar(X) ≤ aEX. Prove that

V ar
(√

X
)
≤ a .

Hint: The method of Exercise 5.8 may be useful.

Exercise 3.20 Assume that f is a non-negative valued function defined on Xn. Let
X1, . . . , Xn be independent random variables taking values in X and let Z = f(X1, . . . , Xn).
Let Zi = infxi∈X f(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn) and let V =

∑n
i=1(Z − Zi)2. As-

sume that there exists a random variable W such that

V ≤WZ .

Prove that
V ar

(√
Z
)
≤ EW .

Exercise 3.21 (a poisson poincaré inequality.) Let f be a real-valued function
defined on the set of non-negative integers and denote its “discrete derivative” by
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Df(x) = f(x+1)−f(x). Let X be a Poisson random variable with parameter EX = µ.
Prove that

V ar (f(X)) ≤ µE
[
(Df(X))2]

Hint: use the Efron-Stein inequality and the infinite divisibility of the Poisson distribu-
tion. (See Klaassen (1985) and Kontoyiannis, Harremoës and Johnson (2005) for more
on this topic.)

Exercise 3.22 (a poincaré inequality for the exponential distribution.) Let
X be a real-valued random variable with symmetric exponential distribution, that is
with density (1/2)e−|x| for x ∈ R. Prove that for any differentiable function f for which
V ar(f(X)) <∞,

V ar (f(X)) ≤ 4E
[
(f ′(X))2] .

Hint: Use the fact that

E[f(X)] = f(0) + E
[
sgn(X)f ′(X)

]
.

See Ledoux (1999).

Exercise 3.23 (variance of the square-root of a poisson random variable.)
Prove that if X is a Poisson random variable, then

V ar
(√

X
)
≤ (EX)E

[
1

4X + 1

]
.

Hint: use the Poisson Poincaré inequality of Exercise 3.21. See van der Vaart (1998)
for statistical applications of this inequality in the so-called method of “variance sta-
bilization”. For bounds on E[1/(X + 1)], see Arlot (2007).

Exercise 3.24 (variance of suprema of gaussian processes.) Let T be a finite
index set and let (Xt)t∈T be a centered Gaussian vector. Let Z = maxt∈T Xt. Show
that V ar(Z) ≤ maxt∈T V ar(Xt).
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BASIC INFORMATION INEQUALITIES

This chapter introduces a series of inequalities which have their origin in different
fields, such as geometry, combinatorics, and information theory. These elemen-
tary results, which, for historical reasons, we call information inequalities, will
be the basis of exponential concentration inequalities for functions of various
independent random variables.

In the first seven sections we concentrate on discrete random variables. This
simplified setting allows us to present the main ideas in an elementary and trans-
parent way. First we introduce the concepts of Shannon entropy and relative
entropy. After summarizing their most basic properties, we prove a simple ele-
mentary entropy inequality, called Han’s inequality, which has surprisingly far-
reaching consequences. In Section 4.4 we show how some basic isoperimetric
inequalities on the binary hypercube follow as simple applications of Han’s in-
equality. In Section 4.5, as another combinatorial application of Han’s inequality,
we see that combinatorial entropies satisfy the self-bounding property, leading
to interesting concentration properties of such functions.

For the purposes of this book, the perhaps most important application of
Han’s inequality is the sub-additivity of entropy proved in Section 4.7. This
inequality is at the core of the so-called “entropy method” for proving concen-
tration inequalities, see Chapters 5, 6 and 12.

In Section 4.8 we abandon the restricted world of discrete random variables
and introduce the notion of relative entropy in a general, measure-theoretic
framework. The key tool is a duality formula for entropy, shown in Section 4.9,
which allows us to derive a simple ‘‘transportation cost” lemma (see Section
4.10). We also describe a fundamental result known as Pinsker’s inequality which
is at the basis of a successful method for proving concentration inequalities called
the “transportation method,” see Chapter 8. The duality formula for relative en-
tropy may also be used to establish a variety of properties of relative entropy
(see the exercises) and to investigate the maximum error probability in multiple
hypothesis testing, see Section 4.12. We also present a proof of the sub-additivity
of entropy for general random variables.

The chapter is concluded by the Brunn-Minkowski inequality, a fundamental
result that lies at the intersection of analysis, convex geometry, and information
theory.

4.1 Shannon entropy and relative entropy

LetX be a random variable taking values in the countable set X with distribution
defined by
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P {X = x} = p(x) for all x ∈ X .

The Shannon entropy (or simply entropy) of X is defined by

H(X) = E[− log p(X)] = −
∑

x∈X
p(x) log p(x)

(where log denotes natural logarithm and we agree on the convention 0 log 0 = 0).
Here we use the traditional notation H(X) for the entropy of a random

variable X. This notation may be somewhat misleading since H(X) is not a
function of the random variable X but rather a functional of the distribution of
X.

The entropy is obviously nonnegative. A direct consequence of the fact that
x 7→ −x log x is a concave function on [0,∞) is that the entropy is a concave
functional in the sense that if the distribution of X is a mixture of two probability
distributions, then the entropy of X is at least as large as the corresponding
convex combination of the entropies of the two distributions.

A closely related important concept is that of relative entropy. Let P and Q
be two probability distributions over a countable set X with probability mass
functions p and q. Then the Kullback-Leibler divergence or relative entropy of P
and Q is

D(P‖Q) =
∑

x∈X
p(x) log

p(x)

q(x)

if P is absolutely continuous with respect to Q and infinite otherwise.
A basic property is that the relative entropy between P and Q is nonnegative,

and equals zero if and only if P = Q. This follows simply by observing that if P
is absolutely continuous with respect to Q, since log x ≤ x− 1 for all x > 0,

D(P‖Q) = −
∑

x∈X :p(x)>0

p(x) log
q(x)

p(x)
≥ −

∑

x∈X :p(x)>0

p(x)

(
q(x)

p(x)
− 1

)
≥ 0 .

This observation has some interesting consequences. The simplest follows by
taking Q to be the uniform distribution over a finite set X . If X is a random
variable with distribution P , then

D(P‖Q) = log |X | −H(X) .

The nonnegativity of the relative entropy implies that

H (X) ≤ log |X |

and equality holds if and only if X is uniformly distributed over X .
The entropy has a key role in information theory. Exercises 4.1 and 4.2 sketch

some of the basic ideas.
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4.2 Entropy on product spaces and the chain rule

As our primary interest is in functions of several independent random variables,
we pay special attention to the Shannon entropy of distributions on product
spaces. If (X,Y ) is a pair of discrete random variables taking values in X × Y
then the joint entropy H(X,Y ) of X and Y is defined as the entropy of the pair
(X,Y ).

Let the probability mass function of the joint distribution P of (X,Y ) be
defined by (p(x, y))x,y∈X×Y . The probability mass functions of the marginal dis-
tributions of X and Y are denoted by pX and pY . Then

H(X) +H(Y )−H(X,Y ) =
∑

x,y

p(x, y) log
p(x, y)

pX(x)pY (y)
.

The latter expression is the relative entropy between the joint distribution P and
the product of marginal distributions PX ⊗ PY and therefore it is nonnegative
and equals to zero if and only if X and Y are independent. This implies the
sub-additivity of the Shannon entropy:

H(X,Y ) ≤ H(X) +H(Y )

and equality holds if and only if X and Y are independent.

Remark 4.1 The quantity H(X)+H(Y )−H(X,Y ) is usually called the mutual
information between X and Y . The Shannon entropy of a random variable may
be defined as the mutual information between a random variable and itself.

The conditional entropy H(X|Y ) is defined as

H(X|Y ) = H(X,Y )−H(Y ) .

Observe that if we write the joint probability mass function p(x, y) = P {X =
x, Y = y} and the conditional probability mass function p(x|y) = P {X = x|Y =
y}, then

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y)

=
∑

y∈Y
pY (y)

(
−
∑

x∈X
p(x|y) log p(x|y)

)

= E [− log p (X|Y )] .

As the conditional entropy is the expected value of the Shannon entropy of
conditional distributions, we see that H(X|Y ) ≥ 0.

Consider a pair of random variables X,Y with joint distribution PX,Y and
marginal distributions PX and PY . Noting that

D(PX,Y ‖PX ⊗ PY ) = H(X)−H(X|Y ) ,

the nonnegativity of the relative entropy implies that H(X) ≥ H(X|Y ), or in
other words, conditioning decreases entropy.
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It is similarly easy to see that this fact remains true for conditional entropies
as well, that is,

H(X|Y ) ≥ H(X|Y, Z) .

It is also easy to see that the defining identity of the conditional entropy
remains true conditionally, that is, for any three (discrete) random variables
X,Y, Z,

H(X,Y |Z) = H(Y |Z) +H(X|Y, Z) .

Just add H(Z) to both sides and use the definition of the conditional entropy.
A repeated application of this yields the chain rule for entropy: for arbitrary
discrete random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2)

+ · · ·+H(Xn|X1, . . . , Xn−1) .

An analogous chain rule for relative entropies is given in Exercise 4.4.

4.3 Han’s inequality

Here we use the basic information-theoretic inequalities described in the previous
sections to derive some simple and general inequalities for the joint entropy of
several variables. Interestingly, these results have some immediate but nontrivial
implications concerning the combinatorics of product spaces. We start with the
simplest version:

Theorem 4.1 (han’s inequality.) Let X1, . . . , Xn be discrete random vari-
ables. Then

H(X1, . . . , Xn) ≤ 1

n− 1

n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

Proof For any i = 1, . . . , n, by the definition of the conditional entropy and
the fact that conditioning reduces entropy,

H(X1, . . . , Xn)

= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)

≤ H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1) .

Summing these n inequalities and using the chain rule for entropy, we get

nH(X1, . . . , Xn) ≤
n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(X1, . . . , Xn)

which is what we wanted to prove. 2
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4.4 Edge isoperimetric inequality on the binary hypercube

In order to demonstrate the usefulness of Han’s inequality, we show how it can
be used to derive isoperimetric properties of the n-dimensional binary hyper-
cube. It will be a recurring theme of this book that isoperimetric inequalities
are intimately related to concentration of measure. This is the first and simplest
illustration of this phenomenon.

Consider the binary hypercube {−1, 1}n and for any x, x′ ∈ {−1, 1}n, define
the Hamming distance

dH(x, x′) =

n∑

i=1

1{xi 6=x′i} .

The elements x of the binary n-cube may be considered as vertices of a graph
in which two elements x and x′ of {−1, 1}n are adjacent if and only if their
Hamming distance is 1. The graph structure has N = 2n vertices and n2n−1

undirected edges. Its density (the ratio between the number of edges and the
number of vertices) is thus n/2 = (log2N)/2.

A remarkable property of the binary n-cube is that for any subset A ⊆
{−1, 1}n, the density of the subgraph induced by A is at most (log2 |A|)/2. This
is the message of the next statement which may be considered as an isoperimetric
theorem for the binary hypercube. Note that equality is achieved if the graph
induced by A is a lower-dimensional hypercube, since if A is a hypercube of
dimension d ≤ n, then the subgraph induced by A has 2d vertices and E(A) =
d2d−1 edges.

Theorem 4.2 Let A be a subset of {−1, 1}n. Let E(A) denote the set of edges
of the subgraph induced by A, that is, the collection of (unordered) pairs (x, x′)
with x, x′ ∈ A such that dH(x, x′) = 1. Then

|E(A)| ≤ |A|
2
× log2 |A| .

Proof Define the random vector X = (X1, . . . , Xn) taking values in {−1, 1}n
such that X has the uniform distribution over A. Denote by p the probability
mass function of X. The Shannon entropy of X is clearly log |A|. Writing X(i) =
(X1, . . . , Xi−1, Xi+1, . . . , Xn), and using the definition of conditional entropy, we
have

H(X)−H(X(i)) = H(Xi|X(i)) = −
∑

x∈A
p(x) log p(xi|x(i)) .

By definition, p(x) = 1/|A| for all x ∈ A. On the other hand, for x ∈ A,

p(xi|x(i)) =

{
1/2 if x(i) ∈ A
1 otherwise

where x(i) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) is obtained by flipping the i-th bit
of x. Thus,
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H(X)−H(X(i)) =
log 2

|A|
∑

x∈A
1{x,x(i)∈A}

and therefore
n∑

i=1

(
H(X)−H(X(i))

)
=

log 2

|A|
∑

x∈A

n∑

i=1

1{x,x(i)∈A} =
|E(A)|
|A| 2 log 2 .

Thus, Han’s inequality implies

|E(A)|
|A| 2 log 2 =

n∑

i=1

(
H(X)−H(X(i))

)
≤ H(X) = log |A| .

This is precisely what we wanted to prove. 2

Next we show how Theorem 4.2 can be turned into an inequality for the edge-
perimeter of A, or equivalently for the total influence of the n variables. Let the
binary random vector X = (X1, . . . , Xn) be uniformly distributed over {−1, 1}n
and denote by X

(i)
= (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) the vector obtained by

flipping the i-th bit of X. For any A ⊂ {−1, 1}n, the influence of the i-th variable
is defined by

Ii(A) = P
{
1{X∈A} 6= 1{X(i)∈A}

}
.

If 1{X∈A} 6= 1{X(i)∈A}, then the i-th variable is said to be pivotal for A. Thus,

the influence Ii(A) is just the probability that the i-th variable is pivotal for A.
The total influence is defined by the sum of individual influences

I(A) =

n∑

i=1

Ii(A) .

Clearly, I(A) = 2|∂E(A)|/2n where ∂E(A) is the edge boundary of A defined by

∂E(A) = {(x, x′) : x ∈ A, x′ ∈ Ac, dH(x, x′) = 1} .
The following bound for the total influence is a simple corollary of Theorem 4.2:

Theorem 4.3 For any A ⊂ {−1, 1}n, let P (A) denote P {X ∈ A} = |A|/2n.
Then

I(A) ≥ 2P (A) log2

1

P (A)
.

Proof Since A is a subset of the n-cube, every point in A belongs to exactly n
edges, so

n|A| = 2|E(A)|+ |∂E(A)|
(since every edge with bot endpoints in A is counted twice), and by Theorem
4.2,

|∂E(A)| ≥ (n− log2 |A|)× |A| = log2

2n

|A| × |A|

which is equivalent to the statement of the theorem. 2
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Remark 4.2 The random variable Z = 1{X∈A} may be considered as a function
of the n independent random variables X1, . . . , Xn. Then V ar(Z) = P (A)(1 −
P (A)) and the Efron-Stein inequality immediately implies

P (A)(1− P (A)) ≤ I(A)

4
.

When P (A) is small, Theorem 4.3 gives a much better bound.

Influences of subsets of the binary hypercube are basic in the study of thresh-
old phenomena, percolation, game theory, complexity theory and many other
areas. In Chapters 9 and 10 we devote some more effort to the understanding of
this fundamental quantity.

4.5 Combinatorial entropies

In Section 3.3 we considered functions satisfying a special property—the so-
called self-bounding property—that have interesting concentration properties.
In particular, Corollary 3.7 shows that if f is self-bounding and X1, . . . , Xn are
independent random variables, then Z = f(X1, . . . , Xn) satisfies V ar(Z) ≤ EZ.

In Section 3.3 several examples of such functions are discussed. The purpose
of this section is to show a whole new class of self-bounding functions that we call
combinatorial entropies. The self bounding property of these functions may be
seen as an easy consequence of Han’s inequality. The basic idea is quite similar
to that of the proof of Theorem 4.2. We start by describing a simple example.
The general case, shown below, mimics the same argument.

Example 4.4 (vc entropy.) In this first example we consider the so-called
Vapnik-Chervonenkis (or vc) entropy, a quantity closely related to the vc di-
mension discussed in Section 3.3. Let A be an arbitrary collection of subsets of
X , and let x = (x1, . . . , xn) be a vector of n points of X . Recall that the shatter
coefficient is defined as the size of the trace of A on x, that is,

T (x) = |tr(x)| = |{A ∩ {x1, . . . , xn} : A ∈ A}| .

The vc entropy is defined as the logarithm of the shatter coefficient, that is,

h(x) = log2 T (x) .

Lemma 4.5 The vc entropy has the self-bounding property.

Proof We need to show that there exists a function h′ of n− 1 variables such
that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn), 0 ≤ h(x) −
h′(x(i)) ≤ 1 and

n∑

i=1

(
h(x)− h′(x(i))

)
≤ h(x).

We define h′ in the natural way, that is, as the vc entropy based on the n − 1
points in its arguments. Then, for any i, h′(x(i)) ≤ h(x), and the difference
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cannot be more than one. The nontrivial part of the proof is to show the second
property. We do this using Han’s inequality (Theorem 4.1).

Consider the uniform distribution over the set tr(x). This defines a random
binary vector Y = (Y1, . . . , Yn) ∈ {0, 1}n. Then

h(x) = log2 |tr(x)| = 1

log 2
H(Y1, . . . , Yn) ,

where H(Y1, . . . , Yn) is the (joint) Shannon entropy of Y1, . . . , Yn. Since the uni-
form distribution maximizes the Shannon entropy, we also have, for all i ≤ n,
that

h′(x(i)) ≥ 1

log 2
H(Y1, . . . , Yi−1, Yi+1, . . . , Yn) .

Since by Han’s inequality

H(Y1, . . . , Yn) ≤ 1

n− 1

n∑

i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn) ,

we have
n∑

i=1

(
h(x)− h′(x(i))

)
≤ h(x)

as desired. 2

The above lemma, together with Corollary 3.7 immediately implies the fol-
lowing:

Corollary 4.6 Let X1, . . . , Xn be independent random variables taking their
values in some set X and let A be an arbitrary collection of subsets of X . If
Z = h(X) denotes the random vc entropy, then V ar(Z) ≤ EZ.

In Chapter 6 we extend this result to exponential inequalities.
The proof of concentration of the vc entropy may be generalized, in a straight-

forward way, to a class of functions we call combinatorial entropies defined as
follows.

Let x = (x1, . . . , xn) be an n-vector of elements with xi ∈ Xi to which we
associate a set tr(x) ⊂ Yn of n-vectors whose components are elements of a
possibly different set Y. We assume that for each x ∈ Xn and i ≤ n, the set
tr(x(i)) = tr(x1, . . . , xi−1, xi+1, . . . , xn) is the projection of tr(x) along the ith

coordinate, that is,

tr(x(i)) =
{
y(i) = (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Yn−1 :

∃yi ∈ Y such that (y1, . . . , yn) ∈ tr(x)
}
.

The associated combinatorial entropy is h(x) = logb |tr(x)| where b is an arbitrary
positive number.
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Just like in the case of vc entropy, combinatorial entropies may be shown to
have the self-bounding property. (The details are left as an exercise.) Then we
immediately obtain the following generalization:

Theorem 4.7 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such
that for all x ∈ Xn and i ≤ n,

h(x)− h(x(i)) ≤ 1 .

If X = (X1, . . . , Xn) is a vector of n independent random variables taking values
in X , then the random combinatorial entropy Z = h(X) satisfies V ar(Z) ≤ EZ.

Example 4.8 (increasing subsequences.) Recall the setup of the example
of increasing subsequences of Section 3.3, and let N(x) denote the number of
different increasing subsequences of x. Observe that log2N(x) is a combinatorial
entropy. This is easy to see by considering Y = {0, 1}, and by assigning, to
each increasing subsequence i1 < i2 < · · · < im of x, a binary n-vector yn1 =
(y1, . . . , yn) such that yj = 1 if and only if j = ik for some k = 1, . . . ,m (i.e.,
the indices appearing in the increasing sequence are marked by 1). Now the
conditions of Theorem 4.7 are obviously met, and therefore Z = log2N(X)
satisfies V ar(Z) ≤ EZ.

4.6 Han’s inequality for relative entropies

In this section we derive an inequality which may be regarded as a version of
Han’s inequality for relative entropies. This inequality is fundamental in deriving
a “sub-additivity” inequality (see Section 4.7) which, in turn, is at the basis of
many exponential concentration inequalities.

Let X be a countable set, and let P and Q be probability distributions on
Xn such that P = P1 ⊗ · · · ⊗ Pn is a product measure. We denote the elements
of Xn by x = (x1, . . . , xn) and write x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) for the
(n− 1)-vector obtained by leaving out the i-th component of x. Denote by Q(i)

and P (i) the marginal distributions of Q and P . Let p(i) and q(i) denote the
corresponding probability mass function, that is,

q(i)(x(i)) =
∑

y∈X
q(x1, . . . , xi−1, y, xi+1, . . . , xn)

and

p(i)(x(i)) =
∑

y∈X
p(x1, . . . , xi−1, y, xi+1, . . . , xn)

= p1(x1) · · · pi−1(xi−1)pi+1(xi+1) · · · pn(xn) .

Then we have the following.
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Theorem 4.9 (han’s inequality for relative entropies.)

D(Q‖P ) ≥ 1

n− 1

n∑

i=1

D(Q(i)‖P (i))

or equivalently,

D(Q‖P ) ≤
n∑

i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
.

Proof The statement is a straightforward consequence of Han’s inequality. In-
deed, Han’s inequality states that

∑

x∈Xn
q(x) log q(x) ≥ 1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

q(i)(x(i)) log q(i)(x(i)) .

Since
D(Q‖P ) =

∑

x∈Xn
q(x) log q(x)−

∑

x∈Xn
q(x) log p(x)

and

D(Q(i)‖P (i)) =
∑

x(i)∈Xn−1

(
q(i)(x(i)) log q(i)(x(i))− q(i)(x(i)) log p(i)(x(i))

)
,

it suffices to show that

∑

x∈Xn
q(x) log p(x) =

1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

q(i)(x(i)) log p(i)(x(i)) .

This may be seen easily by noting that by the product property of P , we have
p(x) = p(i)(x(i))pi(xi) for all i, and also p(x) =

∏n
i=1 pi(xi), and therefore

∑

x∈Xn
q(x) log p(x) =

1

n

n∑

i=1

∑

x∈Xn
q(x)

(
log p(i)(x(i)) + log pi(xi)

)

=
1

n

n∑

i=1

∑

x∈Xn
q(x) log p(i)(x(i)) +

1

n

∑

x∈Xn
q(x) log p(x) .

Rearranging, we obtain

∑

x∈Xn
q(x) log p(x) =

1

n− 1

n∑

i=1

∑

x∈Xn
q(x) log p(i)(x(i))

=
1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

q(i)(x(i)) log p(i)(x(i))

where we used the defining property of q(i). 2
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4.7 Sub-additivity of the entropy

We are now prepared to prove an inequality which will serve as the basis of the
so-called “entropy method” for proving concentration inequalities. In Chapter 14
we give a much more general version with further important consequences. The
reason we give this simple version here is that it is an easy corollary of Han’s
inequality for relative entropies and it is sufficiently powerful to derive many
interesting exponential concentration inequalities.

Just as in Section 3.1, we let X1, . . . , Xn be independent random variables,
and investigate concentration properties of Z = f(X1, . . . , Xn). The basis of the
entropy method is a powerful extension of the Efron-Stein inequality. Recall that
the Efron-Stein inequality states that

V ar(Z) ≤
n∑

i=1

E
[
E(i)[Z2]− (E(i)Z)2

]
,

where E(i) denotes expectation with respect to the variable Xi only, that is,
conditional expectation conditioned on X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn), or,
putting Φ(x) = x2,

EΦ(Z)− Φ(EZ) ≤
n∑

i=1

E
[
E(i)Φ(Z)− Φ(E(i)Z)

]
.

As it turns out, this inequality remains true for a large class of convex functions
Φ (see Chapter 14).

The case of interest in this section is when Φ(x) = x log x. For a nonnegative
random variable Z, the quantity EΦ(Z)− Φ(EZ) is often called the entropy of
Z, denoted by Ent(Z). This notion of entropy is not to be confused with the
Shannon entropy introduced earlier in this chapter. Nevertheless, there is a close
relationship between the two notions of entropy. As seen in the proof below,
Ent(Z) may be written as the relative entropy between the distribution induced
by Z on Xn and the distribution of X = (X1, . . . , Xn).

Theorem 4.10 (sub-additivity of the entropy.) Let Φ(x) = x log x for
x > 0 and Φ(0) = 0. Let X1 . . . , Xn be independent random variables taking
values in a countable set X and let f : Xn → [0,∞). Letting Z = f(X1, . . . , Xn),
we have

EΦ(Z)− Φ(EZ) ≤
n∑

i=1

E
[
E(i)Φ(Z)− Φ(E(i)Z)

]
.

Introducing the notation Ent(i)(Z) = E(i)Φ(Z) − Φ(E(i)Z), this can be re-
written as

Ent(Z) ≤ E

[
n∑

i=1

Ent(i)(Z)

]
.

Here we only state the result for discrete random variables X1 . . . , Xn. However,
the result may be extended to the general case as it is shown below in Section
4.8 (see also the more general Theorem 14.1 in Chapter 14).
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Proof The theorem is a direct consequence of Han’s inequality for relative
entropies. First note that if the inequality is true for a random variable Z then
it is also true for cZ where c is a positive constant. Hence we may assume that
EZ = 1. Now define the probability measure Q on Xn by its probability mass
function q given by

q(x) = f(x)p(x) for all x ∈ Xn

where p denotes the probability mass function of X = (X1, . . . , Xn) and P the
corresponding distribution. Then,

EΦ(Z)− Φ(EZ) = E[Z logZ] = D(Q‖P )

which, by Theorem 4.9, does not exceed
∑n
i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
. How-

ever, straightforward calculation shows that

n∑

i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
=

n∑

i=1

E
[
E(i)Φ(Z)− Φ(E(i)Z)

]

and the statement follows. 2

As a first application of the sub-additivity of the entropy, we derive a gener-
alization of the edge isoperimetric inequality Theorem 4.3 when the distribution
of the random vector X = (X1, . . . , Xn) is such that X1, . . . , Xn are indepen-
dent binary random variables with P {Xi = 1} = 1 − P {Xi = −1} = p where
p ∈ (0, 1).

For an index i ≤ n, introduce the notation

X+
i = (X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) and X−i = (X1, . . . , Xi−1,−1, Xi+1, . . . , Xn) .

Let A ⊂ {−1, 1}n be an arbitrary set. The positive and negative influences of the
i-th variable are defined as

I+
i (A) = P

{
X+
i ∈ A and X−i /∈ A

}

and
I−i (A) = P

{
X−i ∈ A and X+

i /∈ A
}
.

The influence Ii(A) = P
{
1{X∈A} 6= 1{X(i)∈A}

}
is just the sum I+

i (A) + I−i (A)

of positive and negative influences. The total positive and negative influences are
defined as I+(A) =

∑n
i=1 I

+
i (A) and I−(A) =

∑n
i=1 I

−
i (A), respectively.

Theorem 4.11 Let A ∈ {−1, 1}n be any set and let the random vector be dis-
tributed as described above. Then

P (A) log
1

P (A)
≤ I+(A)p log

1

p
+ I−(A)(1− p) log

1

1− p .

where P (A) = P {X ∈ A}.
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Proof The proof is a simple application of Theorem 4.10 for the random vari-
able Z = 1{X∈A}. Since Φ(1) = Φ(0) = 0, we always have Φ(Z) = 0, and the
left-hand side of the sub-additivity inequality is simply P (A) log(1/P (A)). On
the other hand, for each i,

Φ(E(i)Z) =




p log p if X+

i ∈ A and X−i /∈ A
(1− p) log(1− p) if X−i ∈ A and X+

i /∈ A
0 if the i-th variable is not pivotal.

Therefore, the right-hand side of the sub-additivity inequality becomes

I+(A)p log
1

p
+ I−(A)(1− p) log

1

1− p ,

proving the statement. 2

Note that in the symmetric case, that is, when p = 1/2, the statement reduces
to Theorem 4.3. Another important special case is when the set A is a monotone
subset of {−1, 1, }n. A set A ⊂ {−1, 1}n is said to be monotone if 1{x∈A} ≥
1{y∈A} for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in {−1, 1}n such that xi ≥ yi
for all i. If A is monotone, the negative influence I−(A) equals zero, implying
I(A) = I+(A), and we immediately obtain the following:

Corollary 4.12 If A is a monotone subset of {−1, 1}n, then the total influence
is bounded as

I(A) ≥
P (A) log 1

P (A)

p log 1
p

.

4.8 Entropy of general random variables

Up to this point we have only considered the entropy of discrete random variables.
This is convenient as the main ideas can be explained in a more transparent
way in this simple setting. However, in order to establish general concentration
inequalities, we need to handle entropy of all kinds of random variables, not only
those of a discrete distribution. In this section we introduce a general notion of
entropy and the rest of the chapter is dedicated to describing some properties of
this notion. In particular, in Section 4.9 we present a duality formula for entropy
which allows us to derive a simple ‘‘transportation cost” lemma (see Section
4.10). In Chapter 8 we explore how this transportation lemma and its variants
can be used to establish concentration inequalities. Finally, in Section 4.13 we
prove, in its full generality, the sub-additivity entropy that we already proved
for discrete random variables in Theorem 4.10.

Luckily, the general framework does not require sophisticated measure the-
oretic arguments at all. We begin with a formal definition of relative entropy
within a general framework and elementary properties of entropy. These prop-
erties are essentially the same as in the discrete case but their proofs are a little
bit different.
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As in Section 4.7, Φ denotes the function Φ(x) = x log x, defined on [0,∞)
(where 0 log 0 is defined as 0). Let (Ω,A,P ) be a probability space and let Y be
a nonnegative random variable defined on it such that Y is integrable, that is,
EY =

∫
Ω
Y (ω)dP (ω) <∞. Just like earlier, we define the entropy of Y by

Ent(Y ) = EΦ(Y )− Φ(EY ) .

Note that since Φ is bounded from below by −e−1, the expression EΦ(Y ) is
meaningful even if Φ(Y ) is not integrable. Hence Ent(Y ) is well-defined for all
nonnegative random variables. Since Φ is a convex function, by Jensen’s inequal-
ity, Ent(Y ) is a nonnegative (possibly infinite) quantity. Moreover Ent(Y ) <∞
if and only if Φ(Y ) is integrable.

We may use this definition of entropy to introduce a general notion of the
Kullback-Leibler divergence as follows. If Y is a nonnegative random variable
with EY = 1, we may define another probability measure Q on (Ω,A) by
Q(A) =

∫
A
Y (ω)dP (ω) = E[Y 1{A}] for all A ∈ A. We write Q = Y P for such a

probability measure. The Kullback-Leibler divergence (or relative entropy) of Q
with respect to P , is defined by

D (Q‖P ) = Ent(Y ) .

To see that this definition is a generalization of the one introduced in Section 4.1
for discrete probability distributions, observe that when Ω is at most countable
and Q is absolutely continuous with respect to P , then we may write Q = Y P
where the random variable Y is defined by

Y (ω) =

{
q(ω)/p(ω) if p(ω) > 0
0 otherwise

and therefore

D(Q‖P ) =
∑

ω∈Ω,p(ω)>0

q(ω) log
q(ω)

p(ω)
.

More generally, if Q � P , that is, if Q is absolutely continuous with respect
to P , one may always write Q = Y P with Y defined by the expression above
where p(x) = dP /dλ and q(x) = dQ/dλ denote the densities of P and Q with
respect to a common dominating measure λ.

4.9 Duality and variational formulas

The next result gives an alternative characterization of the relative entropy, close
in spirit to the duality formula for the variance given in Proposition 3.21.

Theorem 4.13 (duality formula of entropy.) Let Y be a nonnegative
random variable defined on a probability space (Ω,A,P ) such that EΦ(Y ) <∞.
Then we have the duality formula

Ent(Y ) = sup
U∈U

E [UY ]
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where the supremum is taken over the set U of all random variables U : Ω→ R
with EeU = 1.

Moreover, if U is such that E [UY ] ≤ Ent(Y ) for all nonnegative random
variables Y such that Φ(Y ) is integrable and EY = 1, then EeU ≤ 1.

Remark 4.3 By elementary calculations one sees that for all u ∈ R,

sup
x>0

(xu− Φ(x)) = eu−1 ,

so if Φ(Y ) is integrable and EeU = 1, we have

UY ≤ Φ(Y ) +
1

e
eU .

Therefore U+Y is integrable and one can always define E [UY ] as E [U+Y ] −
E [U−Y ] (where U+ and U− denote the positive and negative parts of U). Thus,
the right-hand side of the duality formula of Theorem 4.13 is always well-defined.

Remark 4.4 (alternative formulation of the duality formula.) One
may re-write the duality formula of Theorem 4.13 as

Ent(Y ) = sup
T

E [Y (log T − log(ET ))]

where the supremum is taken over all nonnegative and integrable random vari-
ables.

Proof To prove the duality formula simply observe that, for any random vari-
able U with EeU = 1, we have

Ent(Y )−E [UY ] = EnteUP

[
Y e−U

]

where EnteUP is defined as Ent with the only difference that expectations are
taken with respect to the probability measure eUP (instead of P ). This shows
that Ent(Y )−E [UY ] ≥ 0 with equality whenever eU = Y/EY . This proves the
duality formula.

Let U be such that E [UY ] ≤ Ent(Y ) for all nonnegative random variables Y
such that Φ(Y ) is integrable. If EeU = 0, then there is nothing to prove. Other-
wise given a positive integer n, large enough to ensure that xn = Eemin(U,n) > 0,
one may define Yn = emin(U,n)/xn, which leads to

E [UYn] ≤ Ent(Yn) ,

and therefore

1

xn
E
[
Uemin(U,n)

]
≤ 1

xn

[
E
[
(min(U, n)) emin(U,n)

]
− log xn

]
.

Hence
log xn ≤ 0

and taking the limit when n→∞, we get by monotone convergence that EeU ≤
1, which finishes the proof of the theorem. 2
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The previous theorem makes it possible to establish a duality between entropy
and moment generating functions.

Corollary 4.14 Let Z be a real-valued integrable random variable. Then for
every λ ∈ R,

logEeλ(Z−EZ) = sup
Q�P

[λ (EQZ −EZ)−D(Q‖P )]

where the supremum is taken over all probability measures Q absolutely contin-
uous with respect to P and EQ denotes integration with respect to the measure
Q (recall that E is integration with respect to P ).

As in Chapter 2, the logarithmic moment generating function of a real-valued
random variable Z is denoted by ψZ(λ) = logEeλZ for λ ∈ R.

Proof Let Q be a probability measure absolutely continuous with respect to
P . Taking Y = dQ/dP and choosing U = λ(Z − EZ) − ψZ−EZ(λ), it follows
from the duality formula of Theorem 4.13 that

D(Q‖P ) = Ent(Y ) ≥ E[UY ] = λ(EQZ −EZ)− ψZ−EZ(λ) ,

or equivalently that

ψZ−EZ(λ) ≥ λ (EQZ −EZ)−D(Q‖P ) ,

and therefore

logEeλ(Z−EZ) ≥ sup
Q′�P

[
λ (EQ′Z −EZ)−D(Q′‖P )

]
.

Conversely, setting

U = λ(Z −EZ)− sup
Q′�P

[
λ (EQ′Z −EZ)−D(Q′‖P )

]
,

for every nonnegative random variable Y such that EY = 1,

E [UY ] ≤ Ent(Y ) .

Hence, by Theorem 4.13, EeU ≤ 1 which means that

logEeλ(Z−EZ) ≤ sup
Q′�P

[
λ (EQ′Z −EZ)−D(Q′‖P )

]
.

2

The duality formula implies the following property of the Kullback-Leibler
divergence.

Corollary 4.15 Let P and Q be two probability distributions on the same space.
Then

D(Q‖P ) = sup
Z

[
EQZ − logEeZ

]

where the supremum is taken over all random variables such that EeZ <∞.
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This corollary asserts that if P remains fixed, D(Q‖P ) is the convex dual of the
functional Z → logEeZ .

Proof If Q� P , D(Q‖P ) = Ent (dQ/dP ) and the corollary follows from the
alternative formulation of the duality formula. If Q 6� P , there exists an event
A such that Q(A) > 0 = P (A), D(Q‖P ) = ∞ and choosing Zn = n1{A}, and
letting n tend to infinity, we observe that the supremum on the right-hand side
is infinite. 2

The duality formula for entropy and its corollaries have many useful conse-
quences, see Exercises 4.10, 4.11, 4.13.

The last results in this section will be useful when developing the entropy
method in Chapters 5 and 6. It is well known that the expected value minimizes
the average squared Euclidean distance to a random point. This is an instance
of a more general statement.

Theorem 4.16 (the expected value minimizes expected bregman di-
vergence.) Let I ⊆ R be an open interval and let f : I → R be convex and
differentiable. For any x, y ∈ I, the Bregman divergence of f from x to y is
f(y)− f(x)− f ′(x)(y − x). Let X be an I-valued random variable. Then

E [f(X)− f(EX)] = inf
a∈I

E [f(X)− f(a)− f ′(a)(X − a)] .

Taking f(x) = x log x, we obtain the following variational formula for entropy.

Corollary 4.17 Let Y be a nonnegative random variable such that EΦ(Y ) <∞.
Then

Ent(Y ) = inf
u>0

E [Y (log Y − log u)− (Y − u)] .

Proof Let a ∈ I. The difference between the expected Bregman divergence
from a and the expected Bregman divergence from EX

E [f(X)− f(EX)− f ′(EX)(X −EX)] = E [f(X)− f(EX)]

satisfies

E [f(X)− f(a)− f ′(a)(X − a)]−E [f(X)− f(EX)]

= E [−f(a)− f ′(a)(X − a) + f(EX)]

= f(EX)− f(a)− f ′(a)(EX − a) .

The last expression is the Bregman divergence of f from a to EX. As f is convex,
it is nonnegative. 2

Theorem 4.13 and Corollary 4.17 relate to the convexity of two different func-
tions: Theorem 4.13 is about the convexity of the entropy functional while Corol-
lary 4.17 is about the convexity of Φ(x) = x log x.
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4.10 A transportation lemma

The duality formula of Corollary 4.14 allows one to relate the concentration prop-
erty of a random variable Z around its expectation to the so-called transportation
cost, that is, the “price” one has to pay when one computes the expectation of
Z under Q rather than under the original probability measure P .

To make this simple but subtle connection more explicit, the following trans-
portation lemma may be illuminating.

Lemma 4.18 Let Z be a real-valued integrable random variable. Let φ be a con-
vex and continuously differentiable function on a (possibly unbounded) interval
[0, b) and assume that φ(0) = φ′(0) = 0. Define, for every x ≥ 0, φ∗(x) =
supλ∈(0,b) (λx− φ(λ)), and let, for every t ≥ 0, φ∗−1(t) = inf {x ≥ 0 : φ∗(x) > t}.
Then the following two statements are equivalent:
(i) for every λ ∈ (0, b),

logEeλ(Z−EZ) ≤ φ(λ)

(ii) for any probability measure Q absolutely continuous with respect to P such
that D(Q‖P ) <∞,

EQZ −EZ ≤ φ∗−1 [D(Q‖P )] .

In particular, given v > 0,

logEeλ(Z−EZ) ≤ vλ2

2

for every λ > 0 if and only if for any probability measure Q absolutely continuous
with respect to P and such that D(Q‖P ) <∞,

EQZ −EZ ≤
√

2vD(Q‖P ) .

Proof As a direct consequence of Corollary 4.14 we see that (i) holds if and
only if for every distribution Q which is absolutely continuous with respect to
P ,

EQZ −EZ ≤ inf
λ∈(0,b)

(
φ(λ) +D(Q‖P )

λ

)
.

But it follows from Lemma 2.4 that

φ∗−1 (D(Q‖P )) = inf
λ∈(0,b)

(
φ(λ) +D(Q‖P )

λ

)

which shows that (i) is equivalent to (ii). Applying the previous result with
φ(λ) = λ2v/2 for every λ > 0 leads to the stated special case of equivalence since
then φ∗−1(t) =

√
2vt. 2

The last inequality of Lemma 4.18 is related to what is usually called a
quadratic transportation cost inequality. If Ω is a metric space, the probability
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measure P is said to satisfy a quadratic transportation cost inequality if the last
inequality of Lemma 4.18 holds for every Z which is Lipschitz on Ω with Lipschitz
norm at most 1. The link between quadratic transportation cost inequalities and
sub-Gaussian concentration inequalities is studied in greater detail in Chapter
8, devoted to transportation inequalities.

4.11 Pinsker’s inequality

Pinsker’s inequality relates the relative entropy of two probability distributions
to their variational distance. Let P and Q be two probability measures on a
measurable space (Ω,A). The total variation or variational distance between P
and Q is defined by

V (P ,Q) = sup
A∈A
|P (A)−Q(A)| .

It is a well-known and simple fact that the total variation is half of the L1-
distance, that is, if λ is a common dominating measure of P and Q and p(x) =
dP /dλ and q(x) = dQ/dλ denote their respective densities, then

V (P ,Q) = P (A∗)−Q(A∗) =
1

2

∫
|p(x)− q(x)|dλ(x) ,

where A∗ = {x : p(x) ≥ q(x)}. We note that another important interpretation
of the variational distance is related to the best coupling of the two measures:

V (P ,Q) = minP {X 6= Y } ,

where the minimum is taken over all pairs of joint distributions for the random
variables (X,Y ) whose marginal distributions are X ∼ P and Y ∼ Q. (The
proof of these well-known facts is left as Exercise 4.5.)

The importance of Pinsker’s inequality in statistics stems from the fact that
it provides a lower bound for the error of certain hypothesis testing problems.
We use Pinsker’s inequality for a completely different purpose, namely for estab-
lishing a transportation cost inequality that may be used to prove concentration
inequalities. The proof of Pinsker’s inequality derives easily from Hoeffding’s
inequality via the transportation cost bound of Lemma 4.18.

Theorem 4.19 (pinsker’s inequality.) Let P and Q be probability distribu-
tions on (Ω,A) such that Q� P . Then

V (P ,Q)2 ≤ 1

2
D(Q‖P ) .

Proof Define the random variable Y such that Q = Y P and let A∗ = {Y ≥ 1}
be the set achieving the maximum in the definition of the total variation between
P and Q. Then, setting Z = 1{A∗},

V (P ,Q) = Q{A∗} − P {A∗} = EQZ −EZ .
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It follows from Hoeffding’s lemma (Lemma 2.2) that for any λ > 0,

ψZ−EZ(λ) ≤ λ2

8

which, by Lemma 4.18, leads to

EQZ −EZ ≤
√

1

2
D(Q‖P ) ,

concluding the proof. 2

4.12 Birgé’s inequality

Next we show how the ideas already used in the proof of Pinsker’s inequality
may be used to prove a sharper version. Then we use this inequality for deriving
a lower bound for the probability of error in multiple testing problems. Let
h(q, p) = q log(q/p) + (1− q) log((1− q)/(1− p)) be the relative entropy between
two Bernoulli distributions, with parameters q and p. Then we have the following
strengthened version of Theorem 4.19:

Theorem 4.20 Let P and Q be probability distributions on (Ω,A) such that
Q� P . Then

sup
A∈A

h(Q{A},P {A}) ≤ D(Q‖P ) .

Proof For any p ∈ [0, 1], let

φp(λ) = log
(
p
(
eλ − 1

)
+ 1
)

denote the logarithm of the moment generating function of the Bernoulli(p)
distribution where λ ∈ R. By Corollary 4.15, for any A ∈ A, and λ ≥ 0,

D(Q‖P ) ≥ EQ[λ1{A}]− logEP e
λ1{A} ,

and therefore
D(Q‖P ) ≥ sup

λ≥0

(
λQ{A} − φP {A}(λ)

)
.

The theorem follows by noting that for any a ∈ [0, 1],

sup
λ>0

(λa− φp(λ)) = h(p, a) .

2

Since h(Q{A},P {A}) ≥ 2(Q{A}−P {A})2, Theorem 4.20 implies Pinsker’s
inequality. Note also that Theorem 4.20 can be derived as a simple consequence
of the so-called data processing lemma, see Exercise 4.10.

The variational representation of relative entropy (Corollary 4.15) may be
used to establish lower bounds for the probability of error in multiple testing
problems. The next result is a sharper version of Fano’s inequality, a classical
tool from information theory.
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Theorem 4.21 (birgé’s inequality.) Let P 0,P 1, . . . ,PN be probability dis-
tributions over (Ω,A) and let A0, A1, . . . , An ∈ A be pairwise disjoint events. If
a = mini=0,...,N P i(Ai) ≥ 1/(N + 1),

a ≤ h
(
a,

1− a
N

)
≤ 1

N

N∑

i=1

D(P i‖P 0) .

Proof By the variational representation of relative entropy (Corollary 4.15),
for any i = 1, . . . , N ,

sup
λ>0

EP i

[
λ1{Ai}

]
− logEP 0

eλ1{Ai} ≤ D(P i‖P 0) .

Observe that
∑N
i=1 P 0(Ai) ≤ 1− P 0(A0) ≤ 1− a. For any fixed λ ≥ 0

1

N

N∑

i=1

D(P i‖P 0) ≥ 1

N

N∑

i=1

(
λP i(Ai)− log

[
P 0(Ai)(e

λ − 1) + 1
])

≥ λa− log

(
1− P 0(A0)

N
(eλ − 1) + 1

)

≥ λa− log

(
1− a
N

(eλ − 1) + 1

)
,

where the second inequality follows from the concavity of the logarithm and
Jensen’s inequality. We may choose λ such that it satisfies h(a, (1 − a)/N) =
λa− log

(
1−a
N (eλ − 1) + 1

)
. 2

4.13 Sub-additivity of entropy: the general case

We now turn to the sub-additivity of entropy in a general measure theoretic
framework. We proved this inequality in Section 4.7 in the restricted setting of
discrete random variables, as an easy consequence of Han’s inequality. In the
general case our proof relies on the duality formula of Theorem 4.13.

In Chapter 14 we present an even more general version of the sub-additivity
of entropy. As we will see there, it is deeply connected to the convexity of the
entropy functional. In the proof below we start from a decomposition that we
already used to prove the Efron-Stein inequality and then use the duality formula
of Theorem 4.13.

Theorem 4.22 (sub-additivity of entropy.) Let X1, . . . , Xn be indepen-
dent random variables and let Y = f(X1, . . . , Xn) be a nonnegative measurable
function of these variables such that Φ(Y ) = Y log Y is integrable. For every

1 ≤ i ≤ n, denote by E(i) the expectation operator conditioned on X(i) =
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(X1, . . . , Xi−1, Xi+1, . . . , Xn). Denote by Ent(i)(Y ) the conditional entropy of
Y , given X(i), defined by

Ent(i)(Y ) = E(i)Φ(Y )− Φ
(
E(i)Y

)
.

Then

Ent(Y ) ≤ E

n∑

i=1

Ent(i)(Y ) .

Proof Introduce the conditional expectation operator Ei [·] = E [·|X1, . . . , Xi]
for i = 1, . . . , n and the convention E0 = E. Noting that the operator En is just
the identity when restricted to the set of (X1, . . . , Xn)-measurable and integrable
random variables, we have the decomposition

Y (log Y − log (EY )) =

n∑

i=1

Y (log (EiY )− log (Ei−1Y )) .

Now the duality formula given in Remark 4.4 yields

E(i)
[
Y
(

log (EiY )− log
(
E(i) [EiY ]

))]
≤ Ent(i)(Y ) .

Since X1, . . . , Xn are independent, we have E(i) [EiY ] = Ei−1Y and therefore
taking expectations on both sides of the decomposition above yields

E [Y (log Y − log (EY ))] =

n∑

i=1

E
[
E(i)

[
Y
(

log (EiY )− log
(
E(i) [EiY ]

))]]

≤
n∑

i=1

E
[
Ent(i)(Y )

]

and Theorem 4.22 follows. 2

Recall that in Section 4.7 the sub-additivity of entropy for discrete probability
distributions is derived from Han’s inequality (Theorem 4.1). The alternative
proof given here has the advantage that it works in a more general measure-
theoretic framework. It is interesting to notice that Han’s inequality itself can be
derived from the sub-additivity of entropy. In other words, for discrete probability
distributions, the sub-additivity of entropy and Han’s inequality are equivalent.
Indeed, let X be a finite set of cardinality k and consider a random variable
X with values in Xn. Setting X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn) for every
i = 1, . . . , n, recall that Han’s inequality tells us that

H(X) ≤ 1

n− 1

n∑

i=1

H(X(i)) .
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Define Q as the distribution of X and let P be the uniform distribution on
Xn. Denote by q the probability mass function of Q, that is, for every x ∈ Xn,
q(x) = P {X = x}. Setting Y = dQ/dP , we have Y (x) = q(x)kn and

Ent(Y ) = D(Q‖P ) = −H(X) + n log k .

The inequality of Theorem 4.22 can be written in this case as

Ent(Y ) ≤ E

n∑

i=1

Ent(i)(Y ) .

Now

E
[
Ent(1)(Y )

]
= Ent(Y )−

∑

x∈Xn−1

(∑

t∈X
q(t, x)

)
log

(
kn−1

∑

t∈X
q(t, x)

)

= Ent(Y ) +H(X(1))− (n− 1) log k

and similarly, for all i,

E
[
Ent(i)(Y )

]
= Ent(Y )− (n− 1) log k +H(X(i)) .

Putting the pieces together, Han’s inequality follows.

4.14 The Brunn-Minkowski inequality

Next we present a classical result of convex geometry that is of fundamental
importance in a wide variety of areas, including analysis and information theory.
We include it here because it provides a short proof of the classical isoperimetric
inequality, see Chapter 7. To describe the basic inequality, consider sets A,B ⊂
Rn and define the Minkowski sum of A and B as the set of all vectors in Rn
formed by sums of elements of A and B:

A+B = {x+ y : x ∈ A, y ∈ B}

Similarly, for c ∈ R, let c · A = {cx : x ∈ A}. Denote by Vol(A) the Lebesgue
measure of a (measurable) set A ⊂ Rn.

Theorem 4.23 (brunn-minkowski inequality.) Let A,B ⊂ Rn be non-
empty compact sets. Then for all λ ∈ [0, 1],

Vol((1− λ)A+ λB)1/n ≥ (1− λ)Vol(A)1/n + λVol(B)1/n .

Note that it is not necessary to assume compactness of A and B. We do it to
avoid having to worry about measurability of the Minkowski sum set (see Exer-
cise 4.9). Many different proofs of the Brunn-Minkowski inequality are known.
Here we present the possibly simplest one, based on a powerful functional general-
ization, known as the Prékopa-Leindler inequality. Before stating this, let us con-
sider the special one-dimensional case of Theorem 4.23. To see why the theorem
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is true in this case, notice first that if A ⊂ R and c ≥ 0, then Vol(cA) = cVol(A)
and therefore it suffices to prove that for any compact sets A,B ⊂ R,

Vol(A+B) ≥ Vol(A) + Vol(B) .

To see this, observe that none of the three volumes involved changes if the sets A
and B are translated arbitrarily. Now we may translate A to A′ = {a}+A and B
to B′ = {b}+B such that A′ ⊂ (−∞, 0], B′ ⊂ [0,∞), and A′∩B′ = {0} (simply
pick a = − supA and b = − inf B). But then A′ ∪ B′ ⊂ A′ + B′ and therefore
Vol(A′ + B′) ≥ Vol(A′ ∪ B′) = Vol(A′) + Vol(B′), proving the one-dimensional
Brunn-Minkowski inequality.

The next inequality may be regarded as a functional generalization of the
Brunn-Minkowski inequality.

Theorem 4.24 (prékopa-leindler inequality.) Let λ ∈ (0, 1), and let f, g, h :
Rn → [0,∞) be nonnegative measurable functions such that for all x, y ∈ Rn,

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ .

Then
∫

Rn
h(x)dx ≥

(∫

Rn
f(x)dx

)1−λ(∫

Rn
g(x)dx

)λ
.

Proof The proof goes by induction with respect to the dimension n. To prove
the one-dimensional case, consider now measurable nonnegative functions f, g, h
satisfying the condition of the theorem. By the monotone convergence theorem,
it suffices to prove the statement for bounded functions f and g. Now observe that
we may assume, without loss of generality, that supx∈Rn f(x) = supx∈Rn g(x) =
1. But then,

∫

R
f(x)dx =

∫ 1

0

Vol({x : f(x) ≥ t})dt

and
∫

R
g(x)dx =

∫ 1

0

Vol({x : g(x) ≥ t})dt .

For any fixed t ∈ [0, 1], if f(x) ≥ t and g(y) ≥ t, then by the hypothesis of the
theorem, h((1− λ)x+ λy) ≥ t. This implication may be re-written as

(1− λ){x : f(x) ≥ t}+ λ{x : g(x) ≥ t} ⊆ {x : h(x) ≥ t} .

Thus,
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∫

R
h(x)dx =

∫ ∞

0

Vol({x : h(x) ≥ t})dt

≥
∫ 1

0

Vol({x : h(x) ≥ t})dt

≥
∫ 1

0

Vol ((1− λ){x : f(x) ≥ t}+ λ{x : g(x) ≥ t}) dt

(by the inclusion above)

≥ (1− λ)

∫ 1

0

Vol({x : f(x) ≥ t})dt+ λ

∫ 1

0

Vol({x : g(x) ≥ t})dt

(by the one-dimensional Brunn-Minkowski inequality)

= (1− λ)

∫

R
f(x)dx+ λ

∫

R
g(x)dx

≥
(∫

R
f(x)dx

)1−λ(∫

R
g(x)dx

)λ

(by the arithmetic-geometric mean inequality)

and this proves the one-dimensional case.
For the induction step, assume that the theorem holds for all dimensions

1, . . . , n− 1 and let f, g, h : Rn → [0,∞), λ ∈ (0, 1) be such that they satisfy the
assumption of the theorem. Now let x, y ∈ Rn−1 and a, b ∈ R. Then

h(((1−λ)x+λy, (1−λ)a+λb)) = h((1−λ)(x, a) +λ(y, b)) ≥ f(x, a)1−λg(y, b)λ

so by the inductive hypothesis,
∫

Rn−1

h(x, (1− λ)a+ λb))dx ≥
(∫

Rn−1

f(x, a)dx

)1−λ(∫

Rn−1

g(x, b)dx

)λ
.

In other words, introducing

F (a) =

∫

Rn−1

f(x, a)dx , G(a) =

∫

Rn−1

g(x, a)dx ,

and H(a) =

∫

Rn−1

h(x, a)dx ,

we have
H((1− λ)a+ λb) ≥ F (a)1−λG(b)λ ,

so by Fubini’s theorem and the one-dimensional inequality, we have
∫

Rn
h(x)dx =

∫

R
H(a)da

≥
(∫

R
F (a)da

)1−λ(∫

R
G(a)da

)λ

=

(∫

Rn
f(x)dx

)1−λ(∫

Rn
g(x)dx

)λ
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as desired. 2

Corollary 4.25 (a weaker brunn-minkowski inequality.) Let A,B ⊂ Rn
be compact sets. Then for all λ ∈ [0, 1],

Vol((1− λ)A+ λB) ≥ Vol(A)1−λVol(B)λ .

Proof We apply the Prékopa-Leindler inequality with f(x) = 1{x∈A}, g(x) =
1{x∈B}, and h(x) = 1{x∈(1−λ)A+λB}. To see that these functions satisfy the

hypothesis of Theorem 4.24, observe that f(x)1−λg(y)λ = 1{x∈A,y∈B} ≤ h((1−
λ)x+ λy). 2

Observe that Corollary 4.25 is weaker than Theorem 4.23 because by the
arithmetic-geometric mean inequality

(1− λ)Vol(A)1/n + λVol(B)1/n ≥ Vol(A)(1−λ)/nVol(B)λ/n .

Interestingly, however, one may deduce the Brunn-Minkowski inequality starting
from this weaker form as follows:

Proof of Theorem 4.23. First observe that it suffices to prove that for all
nonempty compact sets A and B,

Vol(A+B)1/n ≥ Vol(A)1/n + Vol(B)1/n

because by replacing A by (1−λ)A andB by λB we obtain the original statement.
Also notice that we may assume that Vol(A),Vol(B) > 0 because otherwise the
inequality holds trivially. Defining A′ = Vol(A)−1/nA and B′ = Vol(B)−1/nB,
we have Vol(A′) = Vol(B′) = 1. Therefore, by Corollary 4.25, for all λ ∈ (0, 1),

Vol((1− λ)A′ + λB′) ≥ 1 .

Finally, we apply this inequality with the choice

λ =
Vol(B)1/n

Vol(A)1/n + Vol(B)1/n
,

obtaining

1 ≤ Vol

(
1

Vol(A)1/n + Vol(B)1/n
A+

1

Vol(A)1/n + Vol(B)1/n
B

)

=
Vol(A+B)(

Vol(A)1/n + Vol(B)1/n
)n ,

proving the Brunn-Minkowski inequality. 2

The Brunn-Minkowski inequality can be used to show that the uniform dis-
tribution over convex bodies exhibits the concentration of measure phenomenon,
see Exercise 4.17.
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4.15 Bibliographical remarks

Information theory was born by Shannon’s celebrated paper (Shannon, 1948)
that introduced a general mathematical theory of communication. It was Shan-
non who defined the basic notions of entropy, relative entropy, and mutual infor-
mation, and proved their significance in data compression and coding problems.
However, very soon it became apparent that the significance of Shannon’s tech-
niques reaches far beyond the engineering problems he had in mind and today
the toolbox of information theory is routinely used in a wide variety of mathe-
matical problems. For some excellent textbooks on the topic we refer to Gallager
(1968), Csiszár and Körner (1981), Cover and Thomas (1991), MacKay (2003),
Richardson and Urbanke (2008).

A geometric version of Han’s inequality appears as early as in 1948 in a paper
by Loomis and Whitney (1949). Han’s inequality, as described in Theorems 4.1
and 4.9, was derived by Han (1978).

Different versions of the discrete isoperimetric inequalities of Theorems 4.2
and 4.3 go back to Harper (1966), Loomis and Whitney (1949), Hart (1976). The
subsets of the n-cube that maximize the edge-perimeter or the sum of average
influences for a given cardinality and achieve equality in Theorem 4.2 have been
described by Harper (see Bollobás (1986)). These combinatorial inequalities have
also been derived without resorting to Han’s inequality (see for example Bollobás
(1986)).

The fact that combinatorial entropies satisfy the self-bounding property was
shown by Boucheron, Lugosi, and Massart (2000).

The sub-additive property of entropy, often called tensorization inequality
for entropy, already appears in Gross (1975), see also Ledoux (1997), Bobkov
and Ledoux (1997). Related inequalities may be found in Beckner (1989), Lata la
and Oleszkiewicz (2000), Chafäı (2002), and Bousquet, Boucheron, Lugosi, and
Massart (2005b). The proof of the general result of Theorem 4.22 is borrowed
from Ané et al. (2000).

The notion of relative entropy also plays an important role in the theory of
large deviations which goes back to Cramér (1938) (see also Varadhan (1984),
Deuschel and Stroock (1989), Dembo and Zeitouni (1998), and Dupuis and Ellis
(1997)). The variational formulation of relative entropy (Theorem 4.13) is also
frequently used in large deviations theory.

The link between quadratic transportation cost inequalities and Gaussian
type concentration is well known, see for example Marton (1996a), Dembo (1997),
Bobkov and Götze (1999). In particular, Lemma 4.18 is inspired by a related
result on quadratic transportation cost inequalities in Bobkov and Götze (1999).

Theorem 4.19 was first proved by Pinsker (1964) with the worse constant
1 while Csiszár (1967) established it with the optimal constant 1/2. For some
sharper versions we refer to Ordentlich and Weinberger (2005).

Theorem 4.21 is due to Birgé (2005). It improves on Fano’s lemma (see, e.g.,
Cover and Thomas 1991) originally proved to estimate the probability of error in
channel coding theory. Beginning with the work of Ibragimov and Khasminskii
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(1981), Fano’s lemma has been proved to be a fundamental tool in deriving
minimax lower bounds in statistics.

For the history of the Brunn-Minkowski inequality, its connection to nu-
merous other inequalities, and various applications, we refer the reader to the
comprehensive text of Schneider (1993) and the survey of Gardner (2002). The
Prékopa-Leindler inequality is due to Prékopa (1971, 1973) and Leindler (1972).
The proof presented here is due to Brascamp and Lieb (1976). For nice surveys
of applications of the Brunn-Minkowski inequalities to concentration and con-
vex geometry, see Ball (1997), Ledoux (2001), Schechtman (2003) and Barthe
(2003). The connection between the Brunn-Minkowski inequality and concentra-
tion of measure was pointed out by Borell (1975). We recommend the survey of
Giannopoulos and Milman (2001).

4.16 Exercises

Exercise 4.1 (kraft-mcmillan inequality.) Let X denote a countable set, P a
probability distribution on X . Let Y denote a finite set called the encoding alphabet.
A uniquely decodable encoding of X using alphabet Y, is a mapping φ from X to
the set Y∗ of sequences of finite length over the encoding alphabet, such that for any
two sequences x1, . . . , xn and x′1, . . . , x

′
p of elements of X , if the concatenations of

φ(x1), . . . , φ(xn) and φ(x′1), . . . , φ′(x′n) are equal, then n = p, and xi = x′i for i ≤ n.
If x ∈ X , φ(x) is the codeword associated with x and |φ(x)| denotes the length of
the codeword. The Kraft-McMillan inequality asserts that for any uniquely-decodable
coding φ of X on alphabet Y ∑

x∈X

|Y|−|φ(x)| ≤ 1.

Prove the Kraft-McMillan inequality. Use the Kraft-MacMillan inequality to prove that
the Shannon entropy with base |Y| is a lower bound on the average codeword length
under P :

H(X)

log |Y| = E
[
− log|Y| p(X)

]
≤ E |φ(X)| .

Exercise 4.2 (converse of the kraft-mcmillan inequality.) Let ` : X → {1, 2, . . .}
be such that ∑

x∈X

|Y|−`(x) ≤ 1.

Prove the converse of the Kraft-McMillan inequality: there exists a uniquely decodable
encoding φ such that for all x ∈ X , |φ(x)| = `(x). Use the converse of the Kraft-
McMillan inequality to prove that there exists a uniquely decodable encoding φ such
that

E |φ(X)| ≤ E
[
− log|Y| p(X)

]
+ 1 =

H(X)

log |Y| + 1 .

Exercise 4.3 (log-sum inequality). Let a1, . . . , an and b1, . . . , bn denote two se-
quences of positive integers. Prove that

∑
i

ai log
ai
bi
≥

(∑
i

ai

)
log

∑
i ai∑
i bi

.
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Exercise 4.4 (chain rule for the relative entropy.) Let P and Q denote two
joint distributions for X1, . . . , Xn, let P1:i and Q1:i denote the marginal distributions
of X1, . . . , Xi under P and Q, respectively. Let PXi|1...i−1 and QXi|1...i−1 denote the
conditional distribution of Xi with respect to X1, . . . , Xi−1 under P and under Q. Show
that

D (P‖Q) =

n∑
i=1

EP1:i−1

[
D
(
PXi|1...i−1‖QXi|1...i−1

)]
.

Exercise 4.5 (properties of the variational distance.) Let P and Q be two
probability distributions on the same discrete set X . Prove that the total variation
distance V (P,Q) satisfies

V (P,Q) = P (A∗)−Q(A∗) =
1

2

∑
x∈X

|P (x)−Q(x)| ,

where A∗ = {x : P (x) ≥ Q(x)}. (This identity is sometimes referred to as Scheffé’s
theorem (Scheffé, 1947).) Show that

V (P,Q) = minP {X 6= Y } ,

where the minimum is taken over all pairs of random variables (X,Y ) whose marginal
distributions are X ∼ P and Y ∼ Q.

Exercise 4.6 (discrete loomis-whitney inequality). This exercise and the next
illustrate the fact that Han’s inequality has something simple to say about the com-
binatorics of product spaces. Let A denote a finite subset of Zd and let Ai denote the
projection of A along the i-th coordinate. Show that

|A|d−1 ≤
d∏
i=1

|Ai|

(see Loomis and Whitney (1949)).

Exercise 4.7 (discrete isoperimetric inequality in Zd). Let A denote a finite
subset of Zd. Let B denote the canonical basis of Zd. Prove that the set ∂A defined by

∂A = {(x, y, s) : x ∈ A, y ∈ B, s ∈ {−1, 1}, x+ sy /∈ A}

has cardinality bounded as

|∂A| ≥ 2d|A|
d−1
d .

Exercise 4.8 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such that for
all x ∈ Xn and i ≤ n,

h(x)− h(x(i)) ≤ 1

Show that h has the self-bounding property.

Exercise 4.9 Prove that the Minkowski sum of two compact sets is compact.

Exercise 4.10 (kullback-leibler divergence and sub-σ-algebras, data pro-
cessing lemma.) If G is a σ-algebra of subsets of X , A ∈ G is said to be an atom in G
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if B ⊂ A and B ∈ G \ {∅} then B = A. Let atom(G) denote the set of atoms of G. If P
and Q are probability measures over X , and G has countably many atoms, let

D(P ‖Q|G) =
∑

A∈atom(G)

P (A) log
P (A)

Q(A)
.

Show that if H ⊂ G where H is a σ-algebra, then D(P ‖Q|H) ≤ D(P ‖Q|G). Show that

D(P ‖Q) = sup {D(P ‖Q|G) : G has finitely many atoms.} .

Use this statement to prove Theorem 4.10 from Theorem 4.9 (that is, by checking that
Theorem 4.9 still holds when X is not countable). Hint: The first part follows easily
from the duality formula.

Exercise 4.11 (convexity of kullback-leibler divergence.) Prove that for any
fixed probability measure P on X , the function Q→ D(Q‖P ) is convex on the set of
probability distributions over X . Hint: use the duality representation.

Exercise 4.12 (kullback-leibler divergence with respect to a product dis-
tribution.) Let P denote a probability distribution over X × Y . Let PX and P Y

denote its two marginal distributions and let QX and QY denote two probability dis-
tributions over X and Y. Prove that

D(P ‖QX ⊗QY ) = D(P ‖PX ⊗ P Y ) +D(PX‖QX) +D(P Y ‖QY ) .

Exercise 4.13 (kullback-leibler divergence and legendre transform of log-
arithmic moment generating function.) Let Z be real-valued random variable.
Recall that ψZ(λ) = logEeλZ for λ ∈ R. Let ψ∗(t) = supλ∈R[λt − ψZ−EZ(λ)]. Prove
that for all t > 0,

ψ∗(t) = inf {D(Q‖P ) : EQZ −EZ ≥ t} .

Exercise 4.14 (law of rare events.) Let P be the probability distribution of a sum
of n independent Bernoulli random variables X1, . . . , Xn with parameters p1, . . . , pn.
Let Po(µ) be the Poisson distribution with expectation µ =

∑n
i=1 pi. Prove that

V (P ,Po(µ)) ≤
∑n
i=1 p

2
i . Interpret this inequality by considering the Poisson approxi-

mation of the binomial distribution with parameters n and µ/n. Hint: use the infinite
divisibility of the Poisson distribution and a coupling argument, see Exercise 4.5. (See
Barbour, Holst and Janson (1992) for a thorough treatment of this topic.)

Exercise 4.15 (law of rare events and kullback-leibler divergence.) Let
X1, . . . , Xn be (not necessarily independent) Bernoulli random variables, with EXi =
pi for i ≤ n. Let Sn =

∑n
i=1 Xi, and µ = ESn. Let P denote the probability distribution

of Sn and let Po(µ) be the Poisson distribution with expectation µ. Prove that

D(P ‖Po(µ)) ≤
n∑
i=1

p2
i +

n∑
i=1

H(Xi)−H(X1, . . . , Xn) .

Hint: use the infinite divisibility of the Poisson distribution, the data processing lemma
(Exercise 4.10), and the previous exercise. (Note that this result can be combined
with Pinsker’s inequality in order to derive a sub-optimal upper bound on the total
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variation distance between a binomial distribution and a Poisson distribution with the
same expectation.)

Exercise 4.16 (prekopa-leindler inequality on R.) Let λ ∈ (0, 1), and let f, g, h :
R→ [0,∞) be nonnegative measurable functions such that for all x, y ∈ R,

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ .

Prove that ∫
R
h(x)dx ≥

(∫
R
f(x)dx

)1−λ(∫
R
g(x)dx

)λ
without resorting to the Brunn-Minkowski inequality on R. Hint: Prove that is possible
to define two functions x and y by∫ x(t)

−∞
f(u)du = t

∫ ∞
−∞

f(u)du and

∫ y(t)

−∞
f(u)du = t

∫ ∞
−∞

g(u)du

and let z(t) = (1− λ)x(t) + λy(t). Verify that all three functions are differentiable and
that z′(t) ≥ (x′(t))1−λ (y′(t))λ. Use change of variables to finish the proof. See Barthe
(2003).

Exercise 4.17 (borell’s lemma) Let C be a convex body (a compact convex set
with non-empty interior) in Rn and let P be the uniform probability distribution over
C. Prove Borell’s lemma that states the following: if A is a symmetric convex subset
of C with P {A} > 1/2, then for any t > 1,

P {(tA)c} ≤ P {A}
(

1− P {A}
P {A}

)(t+1)/2

.

Hint: Prove first that for t > 1,

2

t+ 1
(tA)c +

t− 1

t+ 1
A ⊆ Ac ,

where Ac is the complement of A with respect to C. Then, use the Brunn-Minkowski
inequality. Does the statement remain true if the convexity and symmetry assumptions
on A are relaxed? Borrell’s lemma provides an example of the concentration of measure
phenomenon. It asserts that, regardless of the dimension of the ambient space n and
the convex body C, if A is a symmetric convex subset of C with P {A} > 1/2, then
P {(tA)c} decreases exponentially fast as t increases. See Giannopoulos and Milman
(2001).

Exercise 4.18 (a consequence of borell’s lemma) Let C be a convex body in Rn
and let P be the uniform probability distribution over C. Assume X = (X1, . . . , Xn) be
distributed according to P . Assume that EX = 0. Prove that there exists a universal
constant κ such that for p ≥ 2 and for all y ∈ Rn,

E

[∣∣∣∣∣
n∑
i=1

yiXi

∣∣∣∣∣
p]1/p

< κpE

[∣∣∣∣∣
n∑
i=1

yiXi

∣∣∣∣∣
2]1/2

.
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Is it possible to tighten this inequality for some special convex bodies? Hint: use Borell’s
lemma, see Exercise 4.17. It is enough to check that P {

∣∣∑n
i=1 yiXi

∣∣ > t} decays expo-
nentially fast with t.

Exercise 4.19 (an elementary version of the brunn-minkowski inequality.)
Assume that A and B are axis-parallel hyper-rectangles in Rn. Use the arithmetic-
geometric mean inequality to verify that

Vol(A+B)1/n ≥ Vol(A)1/n + Vol(B)1/n .

This statement is the first step of some proofs of the Brunn-Minkowski inequality,
see Stein and Shakarchi (2005).



5

LOGARITHMIC SOBOLEV INEQUALITIES

In this chapter we prove a few inequalities known as logarithmic Sobolev inequal-
ities. The simplest such result, stated and proved in Section 5.1 below, may be
regarded as an extension of the edge isoperimetric inequality on the binary hy-
percube shown in the previous chapter (Theorem 4.2). This inequality turns out
to be surprisingly powerful. The application that is most interesting to us in this
chapter shows how this simple result can be used to prove a general exponential
concentration inequality for functions defined on the binary hypercube. The pas-
sage between the logarithmic Sobolev inequality and the concentration bound is
done by a clever trick, the so-called Herbst argument (see Section 5.2). This is
the first instance of a general methodology that we explore in this book in detail.
The proof technique, called the entropy method, is based on various modifications
of the logarithmic Sobolev inequality and the Herbst argument. In Chapters 6
and 12 we explore this technique in detail, and derive concentration inequalities
for general functions of independent random variables, not only those defined
over the binary hypercube.

In Sections 5.3 and 5.4 we extend the arguments from Bernoulli to Gaus-
sian random variables, obtaining a remarkably useful Gaussian concentration
inequality whose use is illustrated in Section 5.5 in proving a concentration in-
equality for the supremum of a Gaussian process. We will return to Gaussian
concentration in Chapter 10 where a sharp form is presented. The Gaussian log-
arithmic Sobolev inequality shown here has applications in a variety of areas of
mathematics.

As an application of the Gaussian logarithmic Sobolev inequality, in Section
5.6 we derive a more general version of the Johnson-Lindenstrauss theorem of
Section 2.9.

In Section 5.7, we describe some statistical applications: a bound for the
performance of lasso, an `1-penalized least squares estimator. Gaussian con-
centration proves to be a convenient tool for such model selection problems in
quite general Gaussian models.

In Sections 5.8 and 5.9, we establish a collection of closely related results,
starting from the so-called Bonami-Beckner inequality. This, so-called hyper-
contractive, inequality has its origins in harmonic analysis and has countless
applications in a variety of areas.

In Section 5.10, we close this chapter by invoking Gaussian hypercontractive
inequalities to prove a challenging tail bound for the largest eigenvalue of random
matrices from the Gaussian unitary ensemble.
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5.1 Symmetric Bernoulli distributions

The purpose of this section is to prove the simplest of a large family of in-
equalities, generally referred to as logarithmic Sobolev inequalities. For this sim-
plest instance we consider real-valued functions defined on the binary hyper-
cube f : {−1, 1}n → R. Consider a uniformly distributed binary vector X =
(X1, . . . , Xn) on the hypercube {−1, 1}n. In other words, the components of
X are independent, identically distributed random sign (Rademacher) variables
with P {Xi = −1} = P {Xi = 1} = 1/2. Consider the induced real-valued
random variable Z = f(X). The logarithmic Sobolev inequality presented here
relates two functionals of f that already appeared in Chapters 3 and 4. One of
them is the entropy

Ent(f) = E [f(X) log(f(X))]−Ef(X) logEf(X) ,

defined for nonnegative functions f ≥ 0. We interchangeably use either Ent(f)
or Ent(Z) to denote the entropy of Z = f(X). The other functional is a quantity
familiar from the Efron-Stein inequality,

E(f) =
1

2
E

[
n∑

i=1

(
f(X)− f(X̃(i))

)2
]

where X̃(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) is obtained by replacing the i-th

component of X by an independent copy X ′i. Recall that by the Efron-Stein
inequality, V ar(f(X)) ≤ E(f). Since X is uniformly distributed, E(f) may be
written in a slightly more convenient form

E(f) =
1

4
E

[
n∑

i=1

(
f(X)− f(X

(i)
)
)2
]

=
1

2
E

[
n∑

i=1

(
f(X)− f(X

(i)
)
)2

+

]

where the random binary vector X
(i)

= (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) is
obtained by flipping the i-th component of X while leaving the others intact.
One may think about ∇if(x) =

(
f(x)− f

(
x(i)
))
/2 as the i-th component of

the discrete gradient vector ∇f(x) = (∇1f(x), . . . ,∇nf(x)). With this notation,
the Efron-Stein estimate of the variance is just the expected squared norm of
the discrete gradient: E(f) = E‖∇f(X)‖2.

Theorem 5.1 (logarithmic sobolev inequality for the symmetric ber-
noulli distribution.) Let f : {−1, 1}n → R be an arbitrary real-valued func-
tion defined on the n-dimensional binary hypercube and assume that X is uni-
formly distributed over {−1, 1}n. Then

Ent
(
f2
)
≤ 2E(f) .

Before proving the inequality, we point out that Theorem 5.1 is a common
generalization of the edge isoperimetric inequality of Theorem 4.2 and of the
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Efron-Stein inequality for the binary hypercube. Indeed, let A ⊂ {−1, 1}n be
any subset of the binary hypercube. Defining f(x) = 1{x∈A}, we have, writing
P (A) = P {X ∈ A}, that Ent(f2) = −P (A) logP (A) and 4E(f) = I(A) is
just the total influence of A. In Chapter 9 we point out other deep connections
between influences and logarithmic Sobolev inequalities.

On the other hand, note that if f is nonnegative, V ar(f(X)) ≤ Ent(f2) (see
Exercise 5.1). One can also show (see Exercise 5.2) that for any function f :
{−1, 1}n → R (not necessarily nonnegative), Theorem 5.1 implies V ar(f(X)) ≤
E(f) and therefore it is stronger than the Efron-Stein inequality (for the binary
hypercube).

Proof The key to the proof is the sub-additivity property of entropy derived
in Theorem 4.10. This property implies that, writing Z = f(X),

Ent(Z2) ≤ E

[
n∑

i=1

Ent(i)(Z2)

]

where Ent(i)(Z2) = E(i)[Z2 log(Z2)] − E(i)[Z2] log(E(i)[Z2]). (Recall that E(i)

denotes conditional expectation conditioned onX(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).)
Therefore, it suffices to show that for all i = 1, . . . , n,

Ent(i)(Z2) ≤ 1

2
E(i)

[(
f(X)− f(X

(i)
)
)2
]
. (5.1)

Given any fixed realization of X(i), Z can take two different values with equal
probability. Call these values a and b. Then the desired inequality (5.1) takes the
form

a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2
≤ 1

2
(a− b)2 .

Thus, it remains to prove that this elementary inequality holds for any a, b ∈ R.
As (|a| − |b|)2 ≤ (a − b)2, we may assume, without loss of generality, that both
a and b are nonnegative. By symmetry, we may also assume that a ≥ b. For any
fixed value of b ≥ 0, define the function

h(a) =
a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2
− 1

2
(a− b)2

for a ∈ [b,∞). Since h(b) = 0, it suffices to check that h′(b) = 0 and that h is
concave on [b,∞). But elementary calculus shows that

h′(a) = a log
2a2

a2 + b2
− (a− b)

from which h′(b) = 0 is clear, while, using log x− x ≤ −1,

h′′(a) = 1 + log
2a2

a2 + b2
− 2a2

a2 + b2
≤ 0 .

2
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Theorem 5.1 is possibly the simplest in the family of logarithmic Sobolev
inequalities. It is outside of the scope of this book to offer a general account of
these inequalities and we even avoid the general definition of what a logarithmic
Sobolev inequality is. We merely mention a few of them that are important for
our purposes. The obvious next step after having Theorem 5.1 is to ask what
happens if the distribution of X is not uniform but rather a product of i.i.d.
Bernoulli distributions with parameter different from 1/2. This is the setup we
consider in the remaining part of this section. More precisely, we still consider
functions f : {−1, 1}n → R defined on the binary hypercube, but we now assume
that the components of the random vector X = (X1, . . . , Xn) ∈ {−1, 1}n are
independent, identically distributed random bits with distribution P {Xi = 1} =
1−P {Xi = −1} = p where p ∈ [0, 1]. With the same notation as before, we now
have

E(f) =
1

2
E

[
n∑

i=1

(
f(X)− f(X̃(i))

)2
]

= p(1− p)E
[

n∑

i=1

(
f(X)− f(X

(i)
)
)2
]
.

Then Theorem 5.1 may be generalized as follows, to include the case of asym-
metric Bernoulli distributions.

Theorem 5.2 For any function f : {−1, 1}n → R,

Ent(f2) ≤ c(p)E(f)

where

c(p) =
1

1− 2p
log

1− p
p

.

It is easy to see that limp→1/2 c(p) = 2, thus recovering the case of the symmetric
distribution. In Chapter 9 we will see several interesting applications of this
inequality.

Theorem 5.2 is a special case of a more general result we prove in Section
14.3 but the reader may attempt a direct proof, see Exercise 5.4.

5.2 Herbst’s argument: concentration on the hypercube

Simple as it is, the logarithmic Sobolev inequality of Theorem 5.1 has many
interesting consequences. The most important from the point of view of this book
is an exponential concentration inequality for functions defined on the binary
hypercube. This is the first and simplest of a series of exponential inequalities
we expose. Many of them are based on generalizations and modifications of the
argument presented here.

We consider an arbitrary function f : {−1, 1}n → R defined on the binary
hypercube. Let X = (X1, . . . , Xn) be a uniformly distributed random vector
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Fig. 5.1. The constant c(p) in the logarithmic Sobolev inequality of Theo-
rem 5.2 for asymmetric Bernoulli distributions.

in {−1, 1}n. We are interested in the concentration properties of the random
variable Z = f(X).

The following argument, attributed to Herbst, provides an exponential con-
centration inequality for Z. The main trick is to use the logarithmic Sobolev
inequality for the nonnegative function g(x) = eλf(x)/2 where λ ∈ R is a param-
eter whose value we optimize later. Then the entropy of g2 becomes

Ent(g2) = Ent
(
eλf
)

= λE
[
ZeλZ

]
−EeλZ logEeλZ .

The key observation is that if we introduce F (λ) = EeλZ for the moment gen-
erating function of Z, its derivative is F ′(λ) = E

[
ZeλZ

]
, and therefore the

expression above may be written as

Ent(g2) = λF ′(λ)− F (λ) logF (λ) .

The idea of Herbst’s argument is that by bounding Ent(g2) using the logarithmic
Sobolev inequality of Theorem 5.1, one ends up with a differential inequality for
F (λ). By solving the differential inequality we obtain an upper bound for the
moment generating function which, in turn, may be converted into an exponential
tail inequality by Cramér-Chernoff bounding (see Section 2.2).
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By Theorem 5.1, we have

Ent(g2) ≤ 1

2

n∑

i=1

E

[(
eλf(X)/2 − eλf(X

(i)
)/2
)2
]

=

n∑

i=1

E

[(
eλf(X)/2 − eλf(X

(i)
)/2
)2

+

]

where we used the fact that X and X
(i)

have the same distribution.
By convexity of the exponential function, for any real numbers z > y, ez/2 −

ey/2 ≤ (z − y)ez/2/2, so we have

Ent(g2) ≤ λ2

4

n∑

i=1

E

[(
f(X)− f(X

(i)
)
)2

+
eλf(X)

]

=
λ2

4
E

[
eλf(X)

n∑

i=1

(
f(X)− f(X

(i)
)
)2

+

]

Recalling that for any x = (x1, . . . , xn) ∈ {−1, 1}n we denote by x(i) the vector
(x1, . . . , xi−1,−xi, xi+1, . . . , xn), and introducing the quantity

v = max
x∈{−1,1}n

n∑

i=1

(
f(x)− f(x(i))

)2

+
,

we obtain

Ent(eλf ) ≤ vλ2

4
Eeλf(X) .

Expressing the obtained inequality in terms of the moment generating function
F , we have

λF ′(λ)− F (λ) logF (λ) ≤ vλ2

4
F (λ) .

This is the promised differential inequality. To solve it, divide both sides by the
positive number λ2F (λ). Defining G(λ) = logF (λ), we observe that the left-hand
side is just the derivative of G(λ)/λ. Thus, we obtain the inequality

(
G(λ)

λ

)′
≤ v

4
.

By l’Hospital’s rule we note that limλ→0G(λ)/λ = F ′(0)/F (0) = EZ. If λ > 0,
by integrating the inequality between 0 and λ, we get G(λ)/λ ≤ EZ + λv/4, or
in other words,

F (λ) ≤ eλEZ+λ2v/4 .

Finally, by Markov’s inequality,
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P {Z > EZ + t} ≤ inf
λ>0

F (λ)e−λEZ−λt ≤ inf
λ>0

eλ
2v/4−λt = e−t

2/v

where λ = 2t/v minimizes the obtained upper bound. Similarly, if λ < 0, we
may integrate the obtained upper bound for the derivative of G(λ)/λ between
−λ and 0 to obtain

F (λ) ≤ eλEZ+λ2v/4

which implies the left-tail inequality

P {Z < EZ − t} ≤ inf
λ<0

F (λ)e−λEZ+λt ≤ inf
λ<0

eλ
2v/4+λt = e−t

2/v .

The following theorem summarizes what we have just proved.

Theorem 5.3 Let f : {−1, 1}n → R and assume that X is uniformly distributed
on {−1, 1}n. Let v > 0 be such that

n∑

i=1

(
f(x)− f(x(i))

)2

+
≤ v

for all x ∈ {−1, 1}n. Then the random variable Z = f(X) satisfies, for all t > 0,

P {Z > EZ + t} ≤ e−t2/v and P {Z < EZ − t} ≤ e−t2/v .

Recall that by the Efron-Stein inequality, V ar(Z) ≤ v/2. The theorem states
much more: tail probabilities decrease similarly to the tail probabilities of a Gaus-
sian random variable with variance v/2. The price we pay for such an improved

inequality is that a point-wise control of
∑n
i=1

(
f(x)− f(x(i))

)2
+

is required while
to bound the variance it suffices to keep its expected value under control. Recall
that in Section 3.6, using the Efron-Stein estimate, we could derive the weaker
exponential bound P {Z > EZ + t} ≤ 2e−t/

√
v. In Exercise 5.5 we describe a

variant of Theorem 5.3 that allows one to recover Hoeffding’s inequality (with
the right constant) in the special case of symmetric binomial distributions.

As we already mentioned, this is the first in a series of exponential inequal-
ities we prove in this book. It will be generalized and strengthened in several
ways. For example, in Section 6 we show that this inequality holds for all func-
tions of independent random variables, not only for those defined on the binary
hypercube. However, the skeleton of several proofs to come is similar to the one
of Theorem 5.3: a logarithmic Sobolev inequality (or one of its modifications) is
used for the random variable eλZ which leads to a differential inequality involv-
ing the moment generating function. Once the differential inequality is solved,
the Cramér-Chernoff bound yields a concentration inequality. (See Exercise 5.6
for some simple extensions.)
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5.3 A Gaussian logarithmic Sobolev inequality

In this section we use the logarithmic Sobolev inequality for the balanced Bernoulli
distribution (Theorem 5.1) to derive an analog result under the canonical Gaus-
sian distribution in Rn. Even though the logarithmic Sobolev inequalities for the
binary hypercube are interesting on their own right, at the inception of the the-
ory, they were merely considered as intermediate results on the way to proving
the Gaussian logarithmic Sobolev inequality and a series of related results.

Theorem 5.4 (gaussian logarithmic sobolev inequality.) Let X = (X1, . . . , Xn)
be a vector of n independent standard normal random variables and let f : Rn →
R be a continuously differentiable function. Then

Ent
(
f2
)
≤ 2E

[
‖∇f(X)‖2

]
.

Note that the Gaussian logarithmic Sobolev inequality is an improvement
of the Gaussian Poincaré inequality, see Exercise 5.2. The proof is based on
Theorem 5.1 and follows the same pattern as the proof of the Gaussian Poincaré
inequality in Section 3.7.

Proof We first prove the theorem for n = 1, that is, when f : R → R is a
continuously differentiable function on the real line and X is a standard nor-
mal random variable. If E

[
f ′(X)2

]
= ∞, there is nothing to prove, so assume

E
[
f ′(X)2

]
<∞. By a standard density argument, it suffices to prove the theo-

rem for twice differentiable functions with bounded support (Exercise 5.12).
Let ε1, ε2, . . . be independent Rademacher random variables. Recall from the

proof of the Gaussian Poincaré inequality (Theorem 3.20) that

lim
n→∞

E




n∑

j=1

∣∣∣∣∣f
(

1√
n

n∑

i=1

εi

)
− f

(
1√
n

n∑

i=1

εi −
2εj√
n

)∣∣∣∣∣

2

 = 4E

[
f ′(X)2

]
.

On the other hand, for any continuous uniformly bounded function f , by the
central limit theorem, we have

lim
n→∞

Ent

[
f2

(
1√
n

n∑

i=1

εi

)]
= Ent

[
f(X)2

]
.

The proof is then completed by invoking the logarithmic Sobolev inequality
for balanced Bernoulli random variables (Theorem 5.1) which asserts that, for
each n,

Ent

[
f2

(
1√
n

n∑

i=1

εi

)]

≤ 1

2
E




n∑

j=1

∣∣∣∣∣f
(

1√
n

n∑

i=1

εi

)
− f

(
1√
n

n∑

i=1

εi −
2εj√
n

)∣∣∣∣∣

2

 .
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The extension of the result to dimension n ≥ 1 follows easily from the sub-
additivity of entropy seen in Theorem 4.22 which states that

Ent
(
f2
)
≤

n∑

i=1

E
[
E(i)

[
f(X)2 log f(X)2

]
−E(i)

[
f(X)2

]
logE(i)

[
f(X)2

]]

where E(i) denotes integration with respect to the i-th variable Xi only. The
result for n = 1 proved above implies that

E(i)
[
f(X)2 log f(X)2

]
−E(i)

[
f(X)2

]
logE(i)

[
f(X)2

]
≤ 2E(i)

[
(∂if(X))2

]
.

Since ‖∇f(X)‖2 =
∑n
i=1(∂if(X))2, the proof is complete. 2

5.4 Gaussian concentration: the Tsirelson-Ibragimov-Sudakov
inequality

The same way as Theorem 5.1 led to exponential concentration inequalities for
functions on the binary hypercube via Herbst’s argument, if we start from the
Gaussian logarithmic Sobolev inequality, the same proof leads to exponential
tail inequalities for smooth functions of independent Gaussian random variables.
The result is the following classical Gaussian concentration inequality:

Theorem 5.5 Let X = (X1, . . . , Xn) be a vector of n independent standard
normal random variables. Let f : Rn → R denote an L-Lipschitz function, that
is, there exists a constant L > 0 such that for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖ .
Then, for all λ ∈ R,

logEeλ(f(X)−Ef(X)) ≤ λ2

2
L2.

Proof By a standard density argument we may assume that f is differentiable
with gradient uniformly bounded by L. We may also assume, without loss of
generality, that Ef(X) = 0. The argument is the same as the one given in
Section 5.2, except that Theorem 5.4 is used instead of Theorem 5.1. Using the
Gaussian logarithmic Sobolev inequality for the function eλf/2, we obtain

Ent
(
eλf
)
≤ 2E

∥∥∥∇eλf(X)/2
∥∥∥

2

=
λ2

2
E
[
eλf(X)‖∇f(X)‖2

]

≤ λ2L2

2
Eeλf(X) .

Writing F (λ) = Eeλf(X), we obtain the differential inequality

λF ′(λ)− F (λ) logF (λ) ≤ λ2L2

2
F (λ)

which can be solved exactly as in Section 5.2 to obtain logF (λ) ≤ λ2L2/2, as
desired. 2
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The sub-Gaussian bound obtained for the moment generating function of
course implies an exponential tail inequality in the standard way, by Markov’s
inequality. More precisely, we have derived the following:

Theorem 5.6 (gaussian concentration inequality.) Let X = (X1, . . . , Xn)
be a vector of n independent standard normal random variables. Let f : Rn → R
denote an L-Lipschitz function. Then, for all t > 0,

P {f(X)−Ef(X) ≥ t} ≤ e−t2/(2L2) .

An important feature of the theorem is that the right-hand side does not
depend on the dimension n. This inequality has served as a benchmark for the
development of concentration inequalities during the last three decades. An im-
portant and prototypical application is described in the following example:

Example 5.7 (norm of a gaussian vector.) Let X = (X1, . . . , Xn) be a
jointly Gaussian vector with zero expectation and covariance matrix Γ. Let p ≥ 1
and consider the real-valued random variable defined by the p-norm of X, that
is,

Z = ‖X‖p =

(
n∑

i=1

|Xi|p
)1/p

.

Since Γ is positive semidefinite, there exists an n×n matrix A satisfying ATA =
Γ. Then the Gaussian vector X is distributed as AY where Y = (Y1, . . . , Yn)
is distributed according to the canonical Gaussian distribution, that is, the
components of Y are independent standard normal random variables. Then
f(y) = ‖Ay‖p is a Lipschitz function from Rn to R with Lipschitz constant
L equal to the operator norm of A mapping `2 to `p, that is,

L = ‖A‖`2→`p
def
= sup

y∈Rn:‖y‖2=1

‖Ay‖p .

Then by Theorems 3.20 and 5.6, V ar(Z) ≤ L2 and for all t > 0, P {|Z −EZ| ≥
t} ≤ 2e−t

2/(2L2).

5.5 A concentration inequality for suprema of Gaussian processes

We illustrate the Gaussian concentration inequality of Theorem 5.6 by showing
how it implies, in a simple way, a concentration inequality for the supremum of a
Gaussian process. A key feature of the Gaussian concentration inequality is that
the upper bound does not depend on the dimension n. This allows us to extend
it easily to an infinite-dimensional setting described next.

Let T be a metric space and let (Xt)t∈T be a Gaussian process indexed by
T . (This means simply that a random variable Xt is assigned to every t ∈ T and
for any finite collection {t1, . . . , tN} ⊂ T , the vector (Xt1 , . . . , Xtn) has a jointly
Gaussian distribution with mean zero.) In addition, we only assume that T is
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totally bounded (i.e., for every t > 0, it can be covered by finitely many balls
of radius t) and that the Gaussian process is almost surely continuous, that is,
with probability 1, Xt is a continuous function of t.

Theorem 5.8 Let (Xt)t∈T be an almost surely continuous centered Gaussian
process indexed by a totally bounded set T . If

σ2 = sup
t∈T

E
[
X2
t

]
,

then Z = supt∈T Xt satisfies V ar(Z) ≤ σ2, and for all u > 0,

P {Z −EZ ≥ u} ≤ e−u2/(2σ2)

and

P {EZ − Z ≥ u} ≤ e−u2/(2σ2) .

Proof We assume that T is a finite set. The extension to arbitrary totally
bounded T is based on a separability argument and monotone convergence,
whose details are left to the reader, see Exercise 5.14. We may assume, for
simplicity, that T = {1, ..., n}. Let Γ be the covariance matrix of the centered
Gaussian vector X = (X1, . . . , Xn). Denote by A the square root of the positive
semidefinite matrix Γ. If Y = (Y1, . . . , Yn) is a vector of independent standard
normal random variables, then

f(Y ) = max
i=1,...,n

(AY )i

has the same distribution as maxi=1,...,nXi. Hence we can apply the Gaussian
concentration inequality by bounding the Lipschitz constant of f . By the Cauchy-
Schwarz inequality, for all u, v ∈ Rn and i = 1, . . . , n,

|(Au)i − (Av)i| =

∣∣∣∣∣∣
∑

j

Ai,j (uj − vj)

∣∣∣∣∣∣
≤


∑

j

A2
i,j




1/2

‖u− v‖ .

Since
∑
j A

2
i,j = V ar (Xi), we get

|f (u)− f (v)| ≤ max
i=1,...,n

|(Au)i − (Av)i| ≤ σ ‖u− v‖ .

Therefore, f is Lipschitz with constant σ and the tail bounds follow from the
Gaussian concentration inequality. The variance bound follows from the Gaussian
Poincaré inequality. 2

Exercise 5.37 describes an example when Theorem 5.8 is not tight.
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5.6 Gaussian random projections

In this section we return to the Johnson-Lindenstrauss problem studied in Sec-
tion 2.9. Recall that we showed that if A is a finite subset of RD with cardinal-
ity n and we define the random projection W : RD → Rd by assigning, to each
α = (α1, . . . , αD) ∈ RD, the vector

W (α) =

(
1√
d
Wi(α)

)d

i=1

with

Wi(α) =

D∑

j=1

αjXi,j

where the Xi,j are sub-Gaussian random variables with zero mean and unit
variance, then, with high probability, W is an ε-isometry on A provided that
d ≥ κε−2 log n for an absolute constant κ.

The purpose of this section is to generalize this result to the case when A
is not necessarily a finite set. We concentrate on the case when the Xi,j are
i.i.d. standard normal random variables. This allows us to use the Gaussian
logarithmic Sobolev inequality which, together with a modification of Herbst’s
argument (see Section 5.2), serves as our main tool to improve on the crude
bounds established in Section 2.9.

Our goal is to introduce a sharper measure for the complexity of the set A
than its cardinality. This is interesting even if A is a finite set and allows us to
extend the Johnson-Lindenstrauss lemma to possibly infinite sets A. Just like
in Section 2.9, the results may be generalized, in a straightforward way, to the
case when A is a subset of a general Hilbert space but to avoid technicalities, we
assume A ⊂ RD for some finite D. As in Section 2.9, we set

T =

{
a− a′
‖a− a′‖ , (a, a

′) ∈ A×A with a 6= a′
}
.

Recall that since W is linear, for every α ∈ T , E‖W (α)‖2 = 1 and W is an
ε-isometry on A if and only if

sup
α∈T

∣∣∣‖W (α)‖2 − 1
∣∣∣ ≤ ε .

A way to guarantee that this happens with large probability is to show that the

expected value of the random variable supα∈T

∣∣∣‖W (α)‖2 − 1
∣∣∣ is significantly less

than ε and that this random variable is highly concentrated around its mean. In
this section we address the issue of concentration. In Section 13.6 we return to
this problem and show techniques to bound the expected value of the supremum
above in terms of the “size” of the set T , measured by the so-called metric
entropy.
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When one considers a supremum of possibly uncountably many random vari-
ables, some care should be taken to ensure that the supremum is measurable.
Luckily, measurability is guaranteed here since W is continuous on the totally
bounded set T . Hence, there exists an at most countable subset T ′ ⊂ T such

that supα∈T

∣∣∣‖W (α)‖2 − 1
∣∣∣ = supα∈T ′

∣∣∣‖W (α)‖2 − 1
∣∣∣ which is measurable. The

following concentration inequality is the key to the main result of this section.

Theorem 5.9 Define Z by either

Z = d sup
α∈T
‖W (α)‖2 or Z = d inf

α∈T
‖W (α)‖2 .

Then, for all t > 0,

P
{
Z −EZ ≥ 2

√
2tEZ + 2t

}
≤ e−t

and for all t > 1/2,

P
{
Z −EZ ≤ −2

√
2tEZ

}
≤ e−t .

Proof First observe that it suffices to prove the statement when T is a finite
set. This is because, as observed above, without loss of generality, we may assume
that T is a countable set. But then the supremum may be written as the limit
of a sequence of suprema taken over finite subsets. Once the inequalities stated
in the theorem are proved for finite sets T , the monotone convergence theorem
implies that they also hold for countable sets T . So assume that T is a finite set.

The proof is based on the Gaussian concentration inequality (Theorem 5.6).
In order to apply it, we write Z as a function of the vector of d×D independent
standard normal random variables X = (Xi,j)i=1,...,d,j=1,...,D. To this end, write
x = (xi,j)i=1,...,d,j=1,...,D ∈ RdD and define the function f : RdD → R either by

f(x) = sup
α∈T

d∑

i=1




D∑

j=1

αjxi,j




2

or by

f(x) = inf
α∈T

d∑

i=1




D∑

j=1

αjxi,j




2

.

Thus, Z = f(X). The crucial property is that
√
f is 1-Lipschitz. Hence, by the

Gaussian concentration inequality,

P
{
Z ≥ EZ + 2

√
2tEZ + 2t

}
≤ P

{
Z ≥

(
E
√
Z
)2

+ 2
√

2tE
√
Z + 2t

}

≤ P
{√

Z ≥ E
√
Z +
√

2t
}

≤ e−t .
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Meanwhile, by the Gaussian Poincaré inequality, we have

V ar
(√

Z
)

= EZ −
(
E
√
Z
)2

≤ 1 ,

and thus, invoking again the Gaussian concentration inequality, for t > 1/2,

P
{
Z −EZ ≤ −2

√
2tEZ

}
≤ P

{
Z ≤ EZ − 1− 2

√
2tEZ + 2t

}

≤ P

{
Z ≤

(
E
√
Z
)2

− 2
√

2tE
√
Z + 2t

}

≤ P
{√

Z ≤ E
√
Z −
√

2t
}

≤ e−t .

2

Now we are ready to use Theorem 5.9 to derive a generalized version of the
Johnson-Lindenstrauss lemma. Introducing the random variables

Z = d sup
α∈T
‖W (α)‖2 and Z ′ = d inf

α∈T
‖W (α)‖2 ,

we have

V
def
= sup

α∈T

(
‖W (α)‖2 − 1

)
=
Z

d
− 1

and

V ′
def
= sup

α∈T

(
−‖W (α)‖2 + 1

)
= −Z

′

d
+ 1 .

Now, for any t > 1/2, with a double application of Theorem 5.9, we obtain that,
with probability at least 1− 2e−t,

sup
α∈T

∣∣∣‖W (α)‖2 − 1
∣∣∣ = max(V, V ′) ≤ max(EV,EV ′) + 2

√
2(1 + EV )t

d
+

2t

d
.

The quantity ∆ = dmax (EV,EV ′)2
may be regarded as a measure of “complex-

ity” of the set T (or of the set A). Using this notation, the previous inequality
implies

sup
α∈T

∣∣∣‖W (α)‖2 − 1
∣∣∣ ≤ 2

√
∆

d
+ 2

√
2t

d
+

4t

d

which holds with probability at least 1 − 2e−t. As a consequence of this and
some straightforward computation we get the following structural result which
provides a fairly general answer to the Johnson-Lindenstrauss problem in the
Gaussian case.
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Theorem 5.10 Consider the random projection W : RD → Rd based on i.i.d.
standard normal variables Xi,j, i = 1, . . . , d, j = 1, . . . , D and let A ⊂ Rd. If

T =

{
a− a′
‖a− a′‖ , (a, a

′) ∈ A×A with a 6= a′
}

and

∆ = dmax

(
E sup
α∈T

(
‖W (α)‖2 − 1

)
,E sup

α∈T

(
−‖W (α)‖2 + 1

))2

then there exists an absolute constant κ (κ = 20 works) such that, for every ε, δ ∈
(0, 1), if d ≥ κ (∆ + log (2/δ)) ε−2, W is an ε-isometry on A, with probability
larger than 1− δ.

The main message of the theorem is that as long as d is larger than 20(∆ +
1)/ε2, with positive probability, W is an ε-isometry on A and therefore there
exists a linear embedding of A in Rd that is an ε-isometry. The key quantity here
is ∆ which, in a sense, measures the richness of the set A. One may bound ∆ in
terms of metric entropies of the set T . We return to this problem in Section 13.6.
Here we merely point out that if A is a finite set, one may recover Theorem 2.13.
Indeed, since each variable d supα∈T ‖W (α)‖2 follows a chi-square distribution
with d degrees of freedom, the inequality obtained in Example 2.7 in Chapter 2
implies that

∆ ≤ 4 logN

(
1 +

√
logN

d

)2

,

where N ≤
(
n
2

)
is the cardinality of the set T . We may assume that κ ≥ 20

(otherwise we change κ to max(κ, 20) and Theorem 5.10 still holds). Assuming
that d ≥ 10κε−2 log(n/

√
δ) ≥ 100 logN , we derive that ∆ ≤ 4(1.1)2 logN ≤

10 log n− 4 log 2 and therefore the condition d ≥ κ(D+ log(2/δ))ε−2 is satisfied
whenever d ≥ 10κε−2 log

(
n/
√
δ
)
. This means that the conclusion of Theorem

5.10 holds provided that d ≥ 10κε−2 log
(
n/
√
δ
)
. In other words, we recover

Theorem 2.13 up to the absolute constant involved in the constraint on the
dimension d.

5.7 A performance bound for the Lasso

Concentration inequalities have found numerous applications in mathematical
statistics and statistical learning theory. In this section we describe an application
of the Gaussian concentration inequality to a general model selection problem
and show how it can be used in the analysis of one of the popular methods of
regression function estimation, the so-called lasso.

First we describe the generalized linear Gaussian model we work with. To this
end, we need the notion of an isonormal Gaussian process. Let H be a separable
Hilbert space and let (W (t))t∈H be a centered Gaussian process on H. The process
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is called isonormal if its covariance is given by E [W (t)W (u)] = 〈t, u〉 for all
t, u ∈ H where 〈t, u〉 denotes the inner product of t and u. In our generalized
linear Gaussian model, one observes, for all t ∈ H,

Y (t) = 〈s, t〉+ εW (t) , (5.2)

where ε > 0 is a fixed parameter and W is an isonormal process.
The statistical problem we consider in this section is the following: upon

observing the process Y (t), t ∈ H, find, or at least approximate, the element
s ∈ H generating Y (t) according to (5.2).

This framework is convenient to cover both finite-dimensional linear models
and the infinite-dimensional white noise model as described in the following
examples.

Example 5.11 (classical linear gaussian regression model.) In the
classical Gaussian linear regression model, one observes a random vector Y =
(Y1, . . . , Yn) given by

Yj = sj + σXj

X = (X, . . . ,Xn) is a vector of independent standard normal random variables,
σ > 0, and s = (s1, . . . , sn) ∈ Rd is a fixed unknown vector. Setting

W (t) =
√
n 〈X, t〉

with the scalar product 〈u, v〉 = (1/n)
∑n
j=1 ujvj , we see that W is an isonormal

process on Rn and that Y (t) = 〈Y, t〉 satisfies (5.2) with ε = σ/
√
n.

Example 5.12 (white noise model.) In this case one observes a realization
of the stochastic process ζ(x) for x ∈ [0, 1] given by the stochastic differential
equation

dζ(x) = s(x)dx+ εdB(x) with ζ (0) = 0

where B is a standard Brownian motion, s is a square-integrable function, and

ε > 0. If we define W (t) =
∫ 1

0
t(x)dB(x) for every square-integrable function t ∈

L2 ([0, 1]), then W is indeed an isonormal process on H = L2 ([0, 1]) and Y (t) =∫ 1

0
t(x)dζ(x) satisfies the definition (5.2), provided that H is equipped with its

usual scalar product 〈s, t〉 =
∫ 1

0
s(x)t(x)dx. Typically, s is a signal and dζ(x)

represents the noisy signal received at time x. This framework easily extends
to a d-dimensional setting if one considers a multivariate Brownian sheet B on
[0, 1]

d
and takes H = L2

(
[0, 1]

d )
.

Example 5.13 (fixed design gaussian regression.) The model of fixed-
design Gaussian regression is a special case of the classical Gaussian linear model
for which sj = s(j/n), j = 1, ..., n, where s : [0, 1] → R is a fixed unknown
function. The observed values Yj represent the “noisy” version of the “signal”
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s observed at “time” j/n. It may be considered as a discretized version of the
white noise model. Indeed, if one observes ζ(x), x ∈ [0, 1] such that

dζ(x) = s(x)dx+ εdB(x)

only at the points j/n for j = 1 . . . , n, then with σ = ε
√
n and

Xj =
√
n (B (j/n)−B ((j − 1) /n)) for all j ∈ [1, n] ,

the noisy signal at time j/n is

Yj = n (ζ (j/n)− ζ ((j − 1)/n)) = n

∫ j/n

(j−1)/n

s(x)dx+ σXj .

Since X1, . . . , Xn are independent standard normal, we indeed obtain the fixed

design Gaussian regression model with sj = s(n)(j/n) where s(n)(x) = n
∫ j/n

(j−1)/n
s (y) dy

whenever x ∈ [(j − 1) /n, j/n). s(n) is a piecewise constant approximation of s.

Next we describe a general way of addressing the statistical problem.
A model is a closed and convex set S ⊂ H. If one wants to approximate s ∈ H

by an element of the model S, it makes sense to choose the best approximating
point of s in S by minimizing ‖t− s‖2 or, equivalently, −2 〈s, t〉+‖t‖2 over t ∈ S.
However, s is unknown, so one may resort to choosing its “noisy” analogue,
the least squares estimator defined as a minimizer of the least squares criterion
γ(t) = −2Y (t) + ‖t‖2 with respect to t ∈ S.

Such a minimizer may not exist and in general one may have to resort to
approximate minimization (as done in Theorem 5.14 below). For now assume,
for simplicity, that a least squares estimator exists and denote it by ŝ. The
quality of the estimate ŝ (and the model S) is measured by the quadratic risk

E
[
‖ŝ− s‖2

]
.

The problem of model selection is to select a model from a collection such that
the least squares estimator has a quadratic risk as small as possible. To describe
the problem in mathematical terms, consider a finite or countable family of
models {Sm : m ∈ M} where each Sm is a closed and convex subset of H. For
each m ∈ M, we denote by ŝm ∈ Sm the least squares estimator corresponding
to model Sm. A model selection procedure uses the data to select a value m̂ ∈M
and chooses ŝm̂ as the final estimator. Ideally, the risk of the resulting estimator

E
[
‖ŝm̂ − s‖2

]
is as close as possible to the minimal risk infm∈ME

[
‖ŝm − s‖2

]
.

A widely used principle for model selection is penalized risk minimization.
In the context of this section, it may be defined as follows. Suppose that a
nonnegative number pen(m) is assigned to each model m ∈ M, these are the
so-called penalties. Then one selects m̂ ∈M minimizing

γ(ŝm) + pen(m)

over m ∈M.
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It is outside of the scope of this book to discuss how such a penalty function
should be chosen. We merely present the following general bound which suggests
some guidelines.

Theorem 5.14 Let {Sm}m∈M be a countable collection of convex and compact
subsets of H. Assume the existence of an almost surely continuous version of W
on each set Sm. Define, for any m ∈M,

∆m = E sup
t∈Sm

W (t)

and consider weights xm > 0, m ∈M such that

∑

m∈M
e−xm

def
= Σ <∞ .

Let K > 1 and assume that for any m ∈M,

pen(m) ≥ 2Kε
(

∆m + εxm +
√

∆mεxm

)
.

Given nonnegative numbers ρm, m ∈ M, define a penalized approximate least
squares estimator as any s̃ ∈ ∪m∈MSm such that

γ (s̃) + pen (m̂) ≤ inf
m∈M

(
inf
t∈Sm

γ(t) + pen(m) + ρm

)

where m̂ = arg minm∈M:s̃∈Sm pen(m). Then there is a constant C = C(K) such
that for all s ∈ H,

E
[
‖s̃− s‖2

]
≤ C

[
inf
m∈M

(
inf
t∈Sm

‖s− t‖2 + pen(m) + ρm

)
+ ε2 (Σ + 1)

]
.

Proof For each m ∈ M, let sm be the projection of s onto Sm, that is, the
unique element of Sm such that ‖s− sm‖ = inft∈Sm ‖s− t‖. Then, by the defi-
nition of s̃, for all m ∈M,

γ (s̃) + pen (m̂) ≤ γ (sm) + pen(m) + ρm .

Since ‖s‖2 + γ(t) = ‖t− s‖2 − 2εW (t), this implies that

‖s̃− s‖2 ≤ ‖s− sm‖2 + 2ε [W (s̃)−W (sm)]− pen (m̂) + pen(m) + ρm .

For all m′ ∈M, let ym′ be a positive number whose value will be specified below
and define, for every t ∈ Sm′ ,

2wm′(t) = [‖s− sm‖+ ‖s− t‖]2 + y2
m′ .

Finally, define the supremum of the weighted empirical process
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Vm′ = sup
t∈Sm′

[
W (t)−W (sm)

wm′(t)

]
.

Taking these definitions into account, the previous inequality implies

‖s̃− s‖2 ≤ ‖s− sm‖2 + 2εwm̂ (s̃)Vm̂ − pen (m̂) + pen (m) + ρm . (5.3)

The proof mostly consists of controlling the fluctuations of the random variables
Vm′ . To this end, we may use the concentration inequality for suprema of Gaus-
sian processes (Theorem 5.8) which ensures that, given z > 0, for all m′ ∈M,

P
{
Vm′ ≥ EVm′ +

√
2vm′ (xm′ + z)

}
≤ e−xm′ e−z (5.4)

where

vm′ = sup
t∈Sm′

V ar

(
W (t)−W (sm)

wm′(t)

)
= sup
t∈Sm′

‖t− sm‖2
w2
m′(t)

.

Since wm′(t) ≥ (‖s− sm‖+ ‖s− t‖) ym′ ≥ ‖t− sm‖ ym′ , we have vm′ ≤ y−2
m′ .

Therefore, summing the inequalities (5.4) over m′ ∈ M, we get that for every
z > 0, there is an event Ωz with P {Ωz} > 1 − Σe−z, such that on Ωz, for all
m′ ∈M,

Vm′ ≤ EVm′ + y−1
m′

√
2 (xm′ + z) . (5.5)

Next we bound EVm′ . We may write

EVm′ ≤ E

[
supt∈Sm′ (W (t)−W (sm′))

inft∈Sm′ wm′(t)

]
+ E

[
(W (sm′)−W (sm))+

inft∈Sm′ wm′(t)

]
. (5.6)

Since 2wm′(t) ≥ (‖sm′ − s‖+ ‖sm − s‖)2
+ y2

m′ ≥ ‖sm′ − sm‖
2

+ y2
m′ for all

t ∈ Sm′ , we have 2 inft∈Sm′ [wm′(t)] ≥
(
y2
m′ ∨ 2ym′ ‖sm′ − sm‖

)
. Hence, on the

one hand, by the definition of ∆m,

E

[
supt∈Sm′ (W (t)−W (sm′))

inft∈Sm′ wm′(t)

]
≤ 2y−2

m′E

[
sup
t∈Sm′

(W (t)−W (sm′))

]
= 2∆m′y

−2
m′ ,

and on the other hand,

E

[
(W (sm′)−W (sm))+

inft∈Sm′ wm′(t)

]
≤ y−1

m′E

[
(W (sm′)−W (sm))+

‖sm − sm′‖

]
.

Now since [W (sm′)−W (sm)] / ‖sm − sm′‖ is a standard Gaussian random vari-
able,

E

[
(W (sm′)−W (sm))+

inft∈Sm′ wm′(t)

]
≤ y−1

m′ (2π)
−1/2

and collecting these inequalities, we get from (5.6), for all m′ ∈M,
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EVm′ ≤ 2∆m′y
−2
m′ + (2π)

−1/2
y−1
m′ .

Hence, setting δ =
(

(4π)
−1/2

+
√
z
)2

, (5.5) implies that on the event Ωz, for all

m′ ∈M,

Vm′ ≤ y−1
m′

[
2∆m′y

−1
m′ +

√
2xm′ + (2π)

−1/2
+
√

2z
]

or equivalently, for all m′ ∈M,

Vm′ ≤ y−1
m′

[
2∆m′y

−1
m′ +

√
2xm′ +

√
2δ
]
.

Defining

y2
m′ = 2Kε2

[(√
xm′ +

√
δ
)2

+ ε−1K−1/2∆m′ +
√
δε−1K−1/2∆m′

]
,

the previous bound implies that on the event Ωz, εVm′ ≤ K−1/2 for all m′ ∈M,
which, in particular, implies that εVm̂ ≤ K−1/2 and therefore, by (5.3),

‖s̃− s‖2 ≤ ‖s− sm‖2 + 2K−1/2wm̂ (s̃)− pen (m̂) + pen(m) + ρm ,

or equivalently,

‖s̃− s‖2 ≤ ‖s− sm‖2 +K−1/2
[
[‖s− sm‖+ ‖s− s̃‖]2 + y2

m̂

]

− pen (m̂) + pen (m) + ρm .

Using repeatedly the elementary inequality

2ab ≤ θa2 + θ−1b2

for various values of θ > 0, we derive that on the one hand,

K−1/2y2
m̂ ≤ 2Kε2

[
ε−1∆m̂ + xm̂ +

√
ε−1∆m̂xm̂ +

2√
K − 1

(
1

2π
+ 2z

)]
,

and on the other hand,

[‖s− sm‖+ ‖s− s̃‖]2 ≤ K1/4

(
‖s− s̃‖2 +

‖s− sm‖2
K1/4 − 1

)
.

Hence, setting A′ =
(

1 +K−1/4
(
K1/4 − 1

)−1
)

, on the event Ωz,

‖s̃− s‖2 ≤ A′ ‖s− sm‖2 +K−1/4 ‖s− s̃‖2

+ 2Kε
[
∆m̂ + εxm̂ +

√
ε∆m̂xm̂

]
− pen (m̂)

+ pen(m) + ρm +
4Kε2

√
K − 1

(
1

2π
+ 2z

)
.
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This, by condition on the penalty function, implies

(
K1/4 − 1

K1/4

)
‖s̃− s‖2 ≤ A′ ‖s− sm‖2 + pen(m) + ρm

+
2Kε2

√
K − 1

(
1

2π
+ 2z

)
.

Integrating this inequality with respect to z leads to the announced risk bound.
2

In the rest of the section we apply the model selection theorem to the analysis
of lasso, a popular algorithm for regression function estimation.

Let Λ = {ϕ1, . . . , ϕN} ⊂ H be a finite set of (not necessarily linearly inde-
pendent) vectors in H. We seek estimates of s in the form of a linear combination
of the vectors in Λ, often called the dictionary.

We may assume, without loss of generality, that ‖ϕi‖ = 1, for every i =
1, . . . , N (otherwise one may simply replace ϕi by ϕi/ ‖ϕi‖). Denote by L1 (Λ)
the linear span of Λ equipped with the `1 norm

‖t‖1 = inf

{
N∑

i=1

|βi| : β ∈ RN such that

N∑

i=1

βiϕi = t

}
.

Given a parameter r > 0 (called the regularization parameter), the lasso esti-
mator s̃ of s is defined as a minimizer of

γ(t) + r ‖t‖1

over all t ∈ L1 (Λ). Thus, the lasso estimator is an `1-penalized least squares
estimator. Here we prove the following performance bound.

Theorem 5.15 Consider the isonormal model introduced in (5.2). Let s̃ be a
minimizer of γ(t) + r ‖t‖1 over t ∈ L1 (Λ). Assume that r ≥ 4ε

(
1 +
√

logN
)
.

Then there exists an absolute constant C ≥ 1 such that.

E
[
‖s̃− s‖2

]
≤ C

[
inf

t∈L1(Λ)

(
‖s− t‖2 + r‖t‖1

)
+ rε

]
.

The theorem states that, up to a constant factor, the ”noisy” lasso behaves
as well as the deterministic lasso. The discussion of the approximation-theoretic
implications of this result goes beyond the scope of this book. The interested
reader may find pointers in the section on bibliographic remarks below.

The proof is based on an application of Theorem 5.14. The basic idea is that
lasso can be considered as a penalized approximate least squares estimator over
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a properly defined sequence of models. The key observation that allows one to
make this connection is the simple fact that the lasso estimator s̃ satisfies

γ (s̃) + r ‖s̃‖1 = inf
R≥0

inf
‖t‖1≤R

(γ(t) + rR) .

To obtain a countable collection of models, we “discretize” the family of `1 balls
by defining, for all m = 1, 2, . . . , Sm = {t ∈ L1(Λ), ‖t‖1 ≤ mε}. We may define
m̂ as the smallest integer such that s̃ ∈ Sm̂ and notice that

γ (s̃) + rm̂ε ≤ inf
m≥1

inf
t∈Sm

(γ(t) + rmε) + rε .

This means that s̃ is equivalent to an approximate penalized least squares estima-
tor over the sequence of models given by the collection of `1 balls {Sm,m ≥ 1}.

Deriving Theorem 5.15 from Theorem 5.14 is now an exercise.

Proof of Theorem 5.15 Consider the `1 balls Sm = {t ∈ L1 (Λ) : ‖t‖1 ≤ mε}
for m = 1, 2, . . . , and choose the weights of the form xm = θm, where θ > 0 is a
numerical constant specified later. Then

∑
m≥1 e

−xm = Σθ = eθ/
(
eθ − 1

)
and

sup
t∈Sm

W (t) ≤ mε max
i=1,...,N

|W (ϕi)| .

Since the variablesW (ϕi), i = 1, . . . , N are standard normal, E supi=1,...,N |W (ϕi)| ≤√
2 log (2N) and therefore

∆m = E sup
t∈Sm

W (t) ≤ mε
√

2 log (2N) ≤ mε
(√

2 logN +
√

2 log 2
)
.

We may apply now Theorem 5.14 with K = 4
√

2/5 > 1, ρm = rε, and pen(m) =
rmε. Defining θ =

(
1−√log 2

)
/K, since

2Kε
(

∆m + εxm +
√

∆mεxm

)
≤ Kε

(
5

2
∆m + 4xmε

)

≤ mε2
(

4
√

logN + 4
√

log 2 + 4Kθ
)

= 4mε2
(√

logN + 1
)
,

the constraint r ≥ 4ε
(
1 +
√

logN
)

implies that the condition of Theorem 5.14
on the penalty function is satisfied. The risk bound of Theorem 5.14 becomes

E
[
‖s̃− s‖2

]
≤ C (K)

[
inf
m≥1

(
inf

‖t‖1≤mε
‖s− t‖2 + rmε+ rε

)
+ (1 + Σθ) ε

2

]

≤ C (K)

[
inf

t∈L1(Λ)

(
‖s− t‖2 + r‖t‖1

)
+ 2rε+ (1 + Σθ) ε

2

]
,

hence the result. 2
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5.8 Hypercontractivity: the Bonami-Beckner inequality

In this section we present a powerful concentration inequality for functions
defined on the binary hypercube. This, so-called hypercontractive, inequality
bounds higher-order moments of Boolean polynomials in terms of lower-order
moments. The result, also known as the Bonami-Beckner inequality, has its ori-
gins in harmonic analysis and has countless applications and generalizations.
The Bonami-Beckner inequality is closely related to the logarithmic Sobolev in-
equality presented in Section 5.1. In fact, the proof presented here is based on
Theorem 5.1.

In this section we consider real-valued functions f : {−1, 1}n → R. Every
such function can be expressed, in a unique way, as

f(x) =
∑

S⊂{1,...,n}
αSuS(x)

where the sum is over all 2n subsets S ⊂ {1, . . . , n}, and to each set S we assign
the function

uS(x) =
∏

i∈S
xi .

(If S = ∅, we define uS ≡ 1.) The αS are real-valued coefficients. To see why
such a representation is unique, observe that if we define, for real-valued functions
f, g : {−1, 1}n → R, the inner product

〈f, g〉 = 2−n
∑

x∈{−1,1}n
f(x)g(x) ,

then it is immediate to see that for any S, S′ ⊂ {1, . . . , n},

〈uS , uS′〉 =

{
0 if S 6= S′

1 if S = S′

and therefore the uS form an orthonormal basis of the vector space of all functions
f : {−1, 1}n. This means that for all S ⊂ {1, . . . , n}, αS = 〈f, uS〉. The formula
f =

∑
S αSuS is often called the Fourier-Walsh expansion of f and the αS are

the Fourier coefficients of f .

For any q ≥ 1, we define the norm ‖f‖q =
(

2−n
∑
x∈{−1,1}n |f(x)|q

)1/q

.

The main result of this section, the Bonami-Beckner inequality, can be stated
in various forms. Before stating the theorem in its full generality, we describe two
of its corollaries as these are relatively simple to formulate and are the versions
that we use in this book.

Corollary 5.16 Let k be a positive integer and assume that f : {−1, 1}n → R
has the form f =

∑
S:|S|=k αSuS. Then for all 1 < p < q <∞,

‖f‖q ≤
(
q − 1

p− 1

)k/2
‖f‖p .
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A function of the form f =
∑
S:|S|=k αSuS is sometimes referred to as a

homogeneous Rademacher chaos of order k. If X = (X1, . . . , Xn) is a vector of
i.i.d. Rademacher random variables and we define the random variable

Z = f(X) =
∑

S:|S|=k
αSuS(X)

then Corollary 5.16 states that

(E|Z|q)1/q ≤
(
q − 1

p− 1

)k/2
(E|Z|p)1/p

.

Thus, higher-order moments of Z can be bounded by a constant multiple of lower-
order moments. This is an important generalization of the so-called Kahane-
Khinchine inequalities that deal with the special case when k = 1.

To state another useful formulation of the Bonami-Beckner inequality, we
introduce, for any positive number γ, an operator Tγ that maps an arbitrary
function f =

∑
S⊂{1,...,n} αSuS to another function

Tγf =
∑

S⊂{1,...,n}
γ|S|αSuS .

For γ = 1 this is just the identity operator. For γ < 1, the Fourier coefficients
corresponding to a set S are shrunk by a factor that is exponential in the size of
the set. For γ > 1, the Fourier coefficients are blown up similarly.

Corollary 5.17 For any f : {−1, 1}n → R and γ ≤ 1,

‖Tγf‖2 ≤ ‖f‖1+γ2 .

The corollary above asserts that, considered as an operator from L1+γ2 to L2,

Tγ has an operator norm ‖Tγ‖op def
= supf :{−1,1}n→R ‖Tγf‖2/‖f‖1+γ2 bounded by

1. (In fact, it equals 1, just consider the function f ≡ 1.) As the inequality
involves different norms, the property is often called hypercontractivity. Next we
formulate the general statement.

Theorem 5.18 (bonami-beckner inequality). Let 1 < p < q < ∞ and let
β > 0. Define γ =

√
β/(q − 1) and δ =

√
β/(p− 1). Then for any function

f : {−1, 1}n → R,

‖Tγf‖q ≤ ‖Tδf‖p .

Observe that Corollary 5.16 follows simply by taking β = 1 while Corollary
5.17 is recovered by setting q = 2 and β = p− 1.
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Proof The first key idea of the proof is to define the function q(t) = βe2t + 1
for t ≥ 0. Then the statement of the theorem becomes

‖Te−tf‖q(t) ≤ ‖Te−sf‖q(s)

where t = log
√

(q − 1)/β and s = log
√

(p− 1)/β (i.e., s < t). IfX = (X1, . . . , Xn)
is a uniformly distributed random vector on {−1, 1}n, then defining the random
variable Zt =

∑
S⊂{1,...,n} e

−t|S|αSuS(X), we may write

‖Te−tf‖q(t) =
(
E
[
|Zt|q(t)

])1/q(t)

and therefore we need to prove that for all 0 ≤ s < t,

1

q(t)
logE

[
|Zt|q(t)

]
≤ 1

q(s)
logE

[
|Zs|q(s)

]
,

that is, that (1/q(t)) logE
[
|Zt|q(t)

]
is a non-increasing function of t ≥ 0. We do

this by induction on n. The following lemma establishes the result for the case
of n = 1 variable.

Lemma 5.19 Let X be a Rademacher random variable, let α0, α1 ∈ R be real
coefficients and let

Zt = α0 + e−t α1X

Then (1/q(t)) logE
[
|Zt|q(t)

]
is a non-increasing function of t ≥ 0 where q(t) =

βe2t + 1 with β > 0.

Proof Note first that for s, t ≥ 0, Zt = e−(t−s)Zs + (1 − e−(t−s))EZs. Now
define, for all t ≥ 0, Yt = e−(t−s)|Zs| + (1 − e−(t−s))E|Zs|. Then, for all t ≥ s,
Ys = |Zs| and |Zt| ≤ Yt and thus,

1

q(t)
logE

[
Y
q(t)
t

]
≤ 1

q(s)
logE

[
Y q(s)s

]

=⇒ 1

q(t)
logE

[
|Zt|q(t)

]
≤ 1

q(s)
logE

[
|Zs|q(s)

]
.

In order to prove the lemma, it suffices to establish that (1/q(t)) logE[Y
q(t)
t ] is

a non-increasing function of t ≥ s. But

Yt = e−(t−s)|α0 + e−sα1X|+ (1− e−(t−s))
|α0 + e−sα1|+ |α0 − e−sα1|

2
.

If we exchange the roles of α0 and e−sα1, the distribution of Yt does not change.
Thus, without loss of generality, we may assume that α0 ≥ e−s|α1|. But this
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means that Zt ≥ 0 for t ≥ s. Summarizing, we have shown that in order to prove
the lemma, it suffices to show that for t ≥ s, if Zt ≥ 0 then

d

dt

(
1

q(t)
logE

[
Z
q(t)
t

])
≤ 0 .

The derivative, by straightforward differentiation, may be written as

d

dt

(
1

q(t)
logE

[
Z
q(t)
t

])

=
q′(t)
q2(t)

1

E
[
Z
q(t)
t

]
(
−E

[
Z
q(t)
t

]
logE

[
Z
q(t)
t

]
+ E

[
Z
q(t)
t logZ

q(t)
t

]

+
q2(t)

q′(t)
E

[
Z
q(t)−1
t

dZt
dt

])
.

On the right-hand side we recognize the entropy Ent(Z
q(t)
t ). Also, by using the

simple fact that dZt/dt = EZt − Zt, we have

d

dt

(
1

q(t)
logE

[
Z
q(t)
t

])

=
q′(t)
q2(t)

1

E
[
Z
q(t)
t

]
(

Ent(Z
q(t)
t ) +

q2(t)

q′(t)
E
[
Z
q(t)−1
t (EZt − Zt)

])
.

Since q′(t) > 0, it suffices to show that the expression in parenthesis is non-
positive. To this end, we invoke the logarithmic Sobolev inequality of Theo-
rem 5.1. We get

Ent(Z
q(t)
t ) ≤ E

[(
Z
q(t)/2
t − Z ′t

q(t)/2
)2

+

]

with Z ′t = α0+e−tα1X
′ where X ′ is a Rademacher random variable, independent

ofX. In order to further bound the right-hand side, we observe that for 0 ≤ a < b,

(
bq/2 − aq/2
b− a

)2

=

(
q

2(b− a)

∫ b

a

u
q
2−1du

)2

≤ q2

4(b− a)

∫ b

a

uq−2du (by Cauchy-Schwarz)

=
q2

4(q − 1)

bq−1 − aq−1

b− a .

Using this inequality and the identical distribution of Zt and Z ′t, we obtain
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Ent(Z
q(t)
t ) ≤ E

[(
Z
q(t)/2
t − Z ′t

q(t)/2
)2

+

]

≤ q2(t)

4(q(t)− 1)
E
[(
Z
q(t)−1
t − Z ′t

q(t)−1
)

(Zt − Z ′t)
]

=
q2(t)

2(q(t)− 1)
E
[
Z
q(t)−1
t (Zt − Z ′t)

]

=
q2(t)

2(q(t)− 1)
E
[
Z
q(t)−1
t (Zt −EZt)

]
.

Using this bound, we finally have

Ent(Z
q(t)
t ) +

q2(t)

q′(t)
E
[
Z
q(t)−1
t (EZt − Zt)

]

≤
( −q2(t)

2(q(t)− 1)
+
q2(t)

q′(t)

)
E
[
Z
q(t)−1
t (EZt − Zt)

]

= 0

because the expression in parentheses involving q(t) equals zero. 2

With the proof of the case n = 1 completed, we proceed with the induction
step to finish the proof of Theorem 5.18. Assume that the statement of the
theorem holds for n − 1 variables. The argument is based on the general form
of Minkowski’s inequality (Theorem 2.16). Recall that X = (X1, . . . , Xn) is a
uniformly distributed vector on {−1, 1}n and Zt =

∑
S⊂{1,...,n} e

−t|S|αSuS(X).
Introduce the random variables

Vt =
∑

S⊂{1,...,n},n/∈S
e−t|S|αSuS(X)

and

Wt =
∑

S⊂{1,...,n},n∈S
e−t(|S|−1)αSuS\{n}(X)

so that Zt = Vt+e
−tXnWt. Write En−1 for the conditional expectation operator

conditioned on Xn (i.e., integration with respect to X1, . . . , Xn−1) and E(n) for
expectation taken with respect to Xn only (i.e., conditional on X1, . . . , Xn−1).
Then
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(
E‖Zt‖q(t)

)1/q(t)

=
(
En−1

[
E(n)

[
‖Vt + e−tXnWt‖q(t)

]])1/q(t)

≤
(
En−1

[(
E(n)

[
‖Vt + e−sXnWt‖q(s)

])q(t)/q(s)])1/q(t)

(by Lemma 5.19)

≤
(
E(n)

[(
En−1

[
‖Vt +XnWt‖q(t)

])q(s)/q(t)])1/q(s)

(by Minkowski’s inequality; Theorem 2.16)

≤
(
E(n)

[
En−1

[
‖Vs +XnWs‖q(s)

]])1/q(s)

(by the induction hypothesis)

=
(
E
[
‖Zs‖q(s)

])1/q(s)

,

where the last inequality is a consequence of the induction hypothesis. This
completes the proof of Theorem 5.18. 2

The Bonami-Beckner inequality may be extended to the case of vector-valued
functions. For example, an extended version of Corollary 5.16 states that if X =
(X1, . . . , Xn) is a vector of i.i.d. Rademacher random variables and for each
S ⊂ {1, . . . , n}, αS is an element of a normed vector space, then the random
vector defined by

Z =
∑

S:|S|=k
αSuS(X)

satisfies

(E‖Z‖q)1/q ≤
(
q − 1

p− 1

)k/2
(E‖Z‖p)1/p

.

where 1 < p < q and k ≤ n is a positive integer. The proof goes similarly to
the case of real-valued coefficients, only the proof of Lemma 5.19 needs to be
adjusted. We leave the details as an exercise (see Exercise 5.7).

The special case when k = 1 is a classical and thoroughly studied problem. In
this case f(x) =

∑n
i=1 bixi and the inequality above is a version of the classical

Kahane-Khinchine inequality. An especially interesting and important case is
when q = 2 and p = 1. Unfortunately, in this case the Bonami-Beckner inequality
is vacuous. Still, the Bonami-Beckner inequality may be used to control the L2-
norm of Z by a constant multiple of the L1 norm. To this end, just observe that
by the Cauchy-Schwarz inequality,

E‖Z‖3/2 ≤
√
E‖Z‖

√
E‖Z‖2

and therefore (
E‖Z‖2

)1/2

E‖Z‖ ≤
( (

E‖Z‖2
)1/2

(
E‖Z‖3/2

)2/3

)3

.
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Thus, the Bonami-Beckner inequality implies

(
E‖Z‖2

)1/2 ≤ 23k/2E‖Z‖ .

However, the constant 23k/2 is not optimal. For k = 1, an ancient and elementary
argument shows that 23/2 may be replaced by 31/2 (see Exercise 5.8), moreover
the optimal constant is not difficult to determine. We close this section by a
short and elegant proof of the Kahane-Khinchine inequality for q = 2 and p = 1
with the best possible constant. We prove the result for general, vector-valued,
coefficients as it does not require any additional effort.

Theorem 5.20 (szarek’s inequality.) Let b1, . . . , bn be elements of a normed
vector space and let X1, . . . , Xn be independent Rademacher random variables.
If Z = ‖∑n

i=1 biXi‖, then

√
E [Z2] ≤

√
2EZ .

Proof Let f(x) = ‖∑n
i=1 biXi‖ for x = (x1, . . . , xn) ∈ {−1, 1}n and de-

note its Fourier coefficients by αS = 〈f, uS〉, S ⊂ {1, . . . , n}. Recalling x(i) =
(x1, . . . , xi−1,−xi, xi+1, . . . , xn), define f(x) =

∑n
i=1 f(x(i)). Since

uS(x(i)) =

{
uS(x) if i /∈ S
−uS(x) if i ∈ S,

the Fourier coefficient of f corresponding to S ⊂ {1, . . . , n} equals αS(n− 2|S|).
This means that

〈f, f〉 =

〈 ∑

S⊂{1,...,n}
αSuS ,

∑

S⊂{1,...,n}
αS(n− 2|S|)uS

〉

=
∑

S⊂{1,...,n}
α2
S(n− 2|S|) .

A key property of f is that if |S| is odd then αS = 0. This simply follows because if
|S| is odd, uS(−x) = −uS(x) and f(−x) = f(x), so αS =

∑
x∈{−1,1}n f(x)uS(x) =

0. Using this fact implies

〈f, f〉 =
∑

S⊂{1,...,n}
α2
S(n− 2|S|)

≤ nα2
∅ + (n− 4)

∑

S 6=∅
α2
S

= 4α2
∅ + (n− 4)

∑

S⊂{1,...,n}
α2
S

= 4‖f‖21 + (n− 4)‖f‖22 ,
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where we used the simple facts that α∅ = ‖f‖1 and that
∑
S⊂{1,...,n} α

2
S = ‖f‖22,

known as Parseval’s identity. We compare the upper bound obtained for 〈f, f〉
by a simple lower bound derived as follows. Note that, for every x ∈ {−1, 1}n,

f(x) =

n∑

i=1

∥∥∥∥∥∥

n∑

j=1

bjx
(i)
j

∥∥∥∥∥∥
≥

∥∥∥∥∥∥

n∑

i=1

n∑

j=1

bjx
(i)
j

∥∥∥∥∥∥
= (n− 2)f(x) .

Thus, since f is nonnegative, 〈f, f〉 ≥ (n − 2)‖f‖22. Comparing the upper and
lower bounds obtained for 〈f, f〉, we get ‖f‖22 ≤ 2‖f‖21 which is precisely what
we wanted to show. 2

To see that the constant
√

2 is the best possible, just consider the case Z =
X1 +X2.

5.9 Gaussian hypercontractivity

The hypercontractivity property of the symmetric Bernoulli distribution given
by the Bonami-Beckner inequality also has its Gaussian analog, called Nelson’s
theorem which we do not detail here (see, however, Exercises 5.18, 5.19 and 5.20).
However, we point out a simple consequence of the Bonami-Beckner inequality
for moments of polynomials of a Gaussian variable:

Corollary 5.21 Let f(x) =
∑k
i=0 aix

i be a polynomial of degree k of a real
variable and let X be a standard normal random variable. Then for any q > 2,

(E [|f(X)|q])1/q ≤ (q − 1)k/2
(
E
[
|f(X)|2

])1/2
.

Proof Let ε = (ε1, . . . , εn) be a vector of n i.i.d. Rademacher random variables.
By the central limit theorem, it suffices to prove that for all n,

(
E

[∣∣∣∣∣f
(

1√
n

n∑

i=1

εi

)∣∣∣∣∣

q])1/q

≤ (q − 1)k/2


E



∣∣∣∣∣f
(

1√
n

n∑

i=1

εi

)∣∣∣∣∣

2





1/2

.

Introducing g(ε1, . . . , εn) = f
(

1√
n

∑n
i=1 εi

)
, we observe that g is a (non-homogeneous)

Rademacher chaos of order d, that is, g : {−1, 1}n → R may be expressed as

g(ε) =
∑

S⊂{1,...,n}:|S|≤k
αSuS(ε) .

But then we may apply the Bonami-Beckner inequality (Theorem 5.18) with
β = q − 1 and p = 2 to get, with δ =

√
q − 1 > 1,

‖g‖2q ≤ ‖Tδg‖22 =
∑

S⊂{1,...,n}:|S|≤k
α2
Sδ

2|S| ≤ δ2k
∑

S⊂{1,...,n}:|S|≤k
α2
S = δ2k‖g‖22

which is exactly what we wanted to prove. 2
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5.10 The largest eigenvalue of random matrices

In this section we investigate concentration properties of the largest eigenvalue of
random Hermitian matrices with Gaussian entries. This is just one example from
the vast literature on tail bounds for eigenvalues of random matrices. We present
it to illustrate how the Gaussian hypercontractive inequality (Corollary 5.21)
may be used to obtain powerful results in a non-trivial example.

Recall that in Example 3.14 (see also Example 6.8) we already studied the
random fluctuations of the largest eigenvalue of random symmetric matrices
with independent bounded entries. However, the Gaussian assumption used here
allows us to obtain significantly sharper results.

A complex n × n matrix H is called Hermitian if H = H∗ where H∗ is
the transposed conjugate of H (i.e., H∗i,j = Hj,i for all 1 ≤ i, j ≤ n). The set
of n × n Hermitian matrices is denoted by Hn while the set of n × n unitary
matrices is denoted by Un. The spectral decomposition theorem for Hermitian
matrices asserts that any Hermitian matrix H can be written as H = UDU∗

where U ∈ Un and D is a diagonal matrix with real entries. The entries of D are
the eigenvalues of H, denoted by λ1 ≥ λ2 ≥ . . . ≥ λn.

In this section we consider a special random matrix model, called the Gaus-
sian unitary ensemble (gue). A random matrix H is said to belong to the gue
if H is a Hermitian matrix whose diagonal entries (Hi,i)i≤n are independent
real Gaussian variables with variance σ2 = 1/(4n) and whose off-diagonal en-
tries (Hi,j)1≤i<j≤n are independent complex Gaussian random variables with
independent real and imaginary parts, both with variances σ2/2 = 1/(8n).

One may describe the distribution of a random n × n matrix from the
gue by its density with respect to the Lebesgue measure over Rn2

(using the
straightforward one-to-one mapping between the set of n × n Hermitian ma-
trices and Rn2

). This density is proportional to exp
(
−‖H‖2hs/(2σ

2)
)
. Recall

that the Hilbert-Schmidt norm of a complex n × n matrix A is defined by
‖A‖2hs =

∑
1≤i,j≤n |Ai,j |2.

Here we study the largest eigenvalue λ1(H) of a random matrix H from the
gue. One may use Lidskii’s inequality (see Exercise 3.16) to show that λ1(H)
is a Lipschitz function of n2 independent standard Gaussian random variables
with Lipschitz constant n−1/2. The Gaussian concentration inequality (Theorem
5.6) implies that the fluctuations of λ1(H) around its expectation are of order at
most n−1/2, with high probabiliy. The main result of this section is the following
theorem. It shows that the upper tail is significantly lighter than what is implied
by the Gaussian concentration inequality, as typical deviations are of the order
of n−2/3.

Theorem 5.22 Let Z = λ1(H) be the largest eigenvalue of a random n × n
matrix H, distributed according to the gue. Then for all 0 ≤ t ≤ 1,

P {Z ≥ 1 + t} ≤ 1

2t1/2
e−nt

3/2

.
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By a more involved analysis, one may show that the factor 1/(2t1/2) can be
replaced by a universal constant.

Note that EZ 6= 1, so Theorem 5.22 is not about deviations from the
mean. Nevertheless, it follows from Wigner’s theorem (Theorem 5.23 below)
that lim infn→∞EZ ≥ 1. This, combined with Theorem 5.22, implies that, in
fact, limn→∞EZ = 1. One may also show that there exists a universal constant
κ > 0 such that for all n, |EZ − 1| ≤ κn−2/3.

Wigner’s celebrated semi-circular law determines the asymptotic distribution
of the eigenvalues of random matrices from the gue. In order to state Wigner’s
theorem, we define the spectral measure Ln of an n× n Hermitian matrix H as
the discrete probability measure on the real line that assigns weight 1/n to each
eigenvalue of H. In other words, for any function f defined over R, we let

Lnf =
1

n

n∑

i=1

f(λi) .

The semi-circular density is defined, for x ∈ R, by φ(x) = (2/π)
√

1− x21{x∈[−1,1]}.

Theorem 5.23 (wigner’s theorem.) Let Ln denote the spectral measure of
a random n × n matrix from the gue. Then the sequence Ln converges weakly
in probability, to the semi-circular distribution. This means that for all ε > 0,

lim
n→∞

P

{
sup
f∈B
|Lnf −

∫
f(x)φ(x)dx| > ε

}
= 0 ,

where B denotes the set of 1-Lipschitz functions f : R→ [−1, 1].

Wigner’s theorem may be proved by solving Exercises 5.32–5.35.
In preparation to the proof of Theorem 5.22, we need to introduce the so-

called Hermite polynomials: For every k = 1, 2, . . . , the normalized Hermite
polynomial of degree k is defined by

hk(x) =
1√
k!

dkeλx−λ
2/2

dλk

∣∣∣∣∣
λ=0

.

An important property of Hermite polynomials is that they form an orthonor-
mal family in the space of square-integrable functions under the standard Gaus-
sian distribution. That is, if X is a standard Gaussian random variable, then
Ehi(X) = 0 for all i > 1, and

E [hi(X)hj(X)] =

{
1 if i = j

0 otherwise.

A proof of this well-known fact and some other useful properties of Hermite
polynomials are suggested in Exercise 5.22.
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The proof of Theorem 5.22 starts from the determinantal description of the
joint distribution of the eigenvalues as shown in the next lemma. Deriving this
lemma requires a substantial amount of work (see Exercises 5.24–5.30). Observe
that with probability 1, a random matrix from the gue has pairwise distinct
eigenvalues.

Henceforth, let ∆(x1, . . . , xn) be the Vandermonde determinant defined by
x1, . . . , xn:

∆(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj) = det




1 x1 x
2
1 · · · xn−1

1

1 x2 x
2
2 · · · xn−1

2
...

...
...

...
1 xn x

2
n · · · xn−1

n


 .

Lemma 5.24 The joint density of the eigenvalues of an n × n random matrix
from the gue at λ1 > λ2 > . . . > λn equals

∏n−1
j=0 1/j!

(2π)n/2σn
∆

(
λ1

σ
, . . . ,

λn
σ

)2

exp

(
−
∑n
i=1 λ

2
i

2σ2

)
,

where σ = 1/
√

4n.

The density of the unordered sequence (λ1, . . . , λn) ∈ Rn of eigenvalues of a
random n × n matrix from the gue is obtained by dividing the formula above
by n!.

Starting from Lemma 5.24, the proof of Theorem 5.22 has two main steps.
The first one relates expectations under the mean spectral measure with sums
of Gaussian integrals. This lemma is also used to establish Theorem 5.23.

Lemma 5.25 Let H be an n×n random matrix from the gue and let Ln denote
the (random) spectral measure of H. For any f : R→ R,

ELnf =
1

n

n−1∑

i=0

E
[
f(σX)hi(X)2

]
,

where X is a standard Gaussian random variable and σ = 1/
√

4n.

Proof of Lemma 5.25 As hk is of degree k and as the leading coefficient
of
√
k!hk is 1, the Vandermonde determinant may be rewritten in terms of the

Hermite polynomials as

∆ (λ1, . . . , λn) =
( n−1∏

j=0

√
j!
)

det
(
hj (λi)

)
1≤i≤n
0≤j<n

.

The determinant may also be written by summing, over the set Sn of all permu-
tations of {1, . . . , n}, the signed product of diagonal elements:
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∆ (λ1, . . . , λn) =

n−1∏

j=0

√
j!
∑

τ∈Sn
sgn(τ)

n∏

i=1

hτ(i)−1 (λi)

where sgn(τ) = 1 (resp. −1) if τ is the product of an even (resp. odd) number
of transpositions. In the sequel, τ ◦ τ ′ is the composition of permutations τ and
τ ′, that is, τ ◦ τ ′(x) = τ(τ ′(x)) and sgn(τ ◦ τ ′) = sgn(τ)sgn(τ ′).

For each i ∈ {1, . . . , n} and for any measurable function f ,

Ef(λi(H))

=
1

n!

∑

τ,τ ′∈Sn
sgn(τ ◦ τ ′)

∫

Rn
f(λi)

n∏

j=1

hτ(j)−1

(
λj
σ

)
hτ ′(j)−1

(
λj
σ

) e−
∑n
k=1 λ

2
k/(2σ

2)

(2πσ2)n/2
dλ1 · · · dλn

=
1

n!

∑

τ,τ ′∈Sn
sgn(τ ◦ τ ′)

∫

Rn
f(σλi)

n∏

j=1

hτ(j)−1 (λj)hτ ′(j)−1 (λj)
e−
∑n
k=1 λ

2
k/2

(2π)n/2
dλ1 · · · dλn .

For all τ, τ ′ ∈ Sn, by Fubini’s theorem,

∫

Rn
f(σλi)

n∏

j=1

hτ(j)−1(λj)hτ ′(j)−1(λj)e
−∑n

k=1 λ
2
k/2dλ1 · · · dλn

=

(∫

R
f(σλi)hτ(i)−1(λi)hτ ′(i)−1(λi)e

−λ2
i /2dλi

)

×
∏

j 6=i

(∫

R
hτ(j)−1(λj)hτ ′(j)−1(λj)e

−λ2
j/2dλj

)
.

By the orthogonality property of the Hermite polynomials, the last factor on the
right-hand side vanishes unless τ(j) = τ ′(j) for all j 6= i, that is unless τ = τ ′.
Hence,

Ef(λi(H)) =
1

n!

∑

τ∈Sn

∫

R
f(σλi)hτ(i)−1(λi)

2 e
−λ2

i /2

√
2π

dλi

=
1

n

∫

R
f(σλi)

(
n−1∑

k=0

hk(λi)
2

)
e−λ

2
i /2

√
2π

dλi .

The lemma follows by simplifying the expansion of ELn. 2



148 Logarithmic Sobolev inequalities

Proof of Theorem 5.22 We may combine Lemma 5.25 and the simple bound

1{maxi=1,...,n λi≥1+t} ≤
n∑

i=1

1{λi≥1+t} ,

that is, we choose f(λ) = 1{λ≥1+t} to obtain

P {Z ≥ 1 + t} ≤ nE

[
1

n

n∑

i=1

1{λi(H)≥1+t}

]

≤
n−1∑

i=0

E
[
1{X≥2

√
n(1+t)}hi(X)2

]
.

By Hölder’s inequality, for any r > 1, letting r∗ = r/(r − 1),

E
[
1{X≥2

√
n(1+t)}hi(X)2

]
≤
(
P
{
X ≥ 2

√
n(1 + t)

})1/r∗ (
E
[
hi(X)2r

])1/r

≤ e−2n(1+t)2/r∗ ‖hi‖22r
≤ e−2n(1+t)2/r∗(2r − 1)i ‖hi‖22
= e−2n(1+t)2/r∗(2r − 1)i ,

where the last inequality follows from Corollary 5.21. Summing the n upper
bounds,

P {Z ≥ 1 + t} ≤ e−2n(1+t)2/r∗
n−1∑

i=0

(2r − 1)i

= e−2n(1+t)2/r∗ (2r − 1)n

2r − 2
.

The theorem now follows by choosing r = 1 +
√
t. 2

5.11 Bibliographic remarks

It is outside of the scope of this book to offer an exhaustive account of logarithmic
Sobolev inequalities. Instead, we refer the interested reader to the excellent book
of Ané et al. (2000) for an extensive survey, with connections to other functional
inequalities, Markov chains, information theory, etc. The investigation of log-
arithmic Sobolev inequalities, Poincaré inequalities and hypercontractivity was
initially motivated by the analysis of the mixing properties of Markov processes
and Markov chains. We refer the reader to the survey of Diaconis and Saloff-
Coste(1998), the lecture notes by Saloff-Coste (1997), and Martinelli (1997) for
a presentation of the role of functional inequalities in that field.

The logarithmic Sobolev inequalities for the balanced Bernoulli and Gaussian
distributions were first derived by Gross (1975). It was Gross who determined the
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optimal constant in the logarithmic Sobolev inequality for the balanced Bernoulli
distribution. The case of general Bernoulli distributions (Theorem 5.2) was clar-
ified twenty years later by Higuchi and Yoshida in (1995) and independently
by Diaconis and Saloff-Coste (1996). The proof of Theorem 5.2 suggested in
Exercise 5.4 is due to Bobkov, as it is presented in the lecture notes by Saloff-
Coste (1997) and in Ané et al. (2000, Chapter 1). The logarithmic Sobolev con-
stants for Bernoulli distributions can also be recovered from a more general result
due to Lata la and Oleszkiewicz (2000).

The argument, attributed to Herbst, to derive concentration inequalities
based on logarithmic Sobolev inequalities appears first in Davies and Simon
(1984), see also Aida, Masuda, and Shigekawa (1994). The method was greatly
generalized and popularized by Ledoux (1997, 1996, 1999, 2001), see Chapters 6
and 12.

The story of the Kahane-Khinchine inequalities goes back to Khinchine (1923),
Littlewood (1930), and Paley and Zygmund (1930), who proved it in the case of
one-dimensional coefficients with different constants. It was extended to vector-
valued coefficients by Kahane (1964). (For Littlewood’s argument see Exercise
5.8). The optimal constant

√
2 for real Rademacher sums in Theorem 5.20 is due

to Szarek (1976). It has been further generalized by Haagerup (1981) for com-
paring any q-th moment of a real Rademacher sum to the second moment. The
optimal comparison between the first and second moments for norms of vector
valued Rademacher sums is due to Lata la and Oleszkiewicz (1994). The proof of
Theorem 5.20 given here is inspired by the proof of de la Penã and Giné (1999)
who attribute it to Kwapień, Lata la, and Oleszkiewicz (1996). We refer to de la
Penã and Giné (1999) for many related results.

Theorem 5.6 is originally proved by Tsirelson, Ibragimov, and Sudakov (1976)
using arguments different from the ones given here, based on stochastic calculus.
A sharper form of this inequality is given in Section 10.4. For a thorough account
on Gaussian concentration inequalities, see Ledoux (1996).

The generalized Johnson-Lindenstrauss problem studied in Section 5.6 was
investigated by Klartag and Mendelson (2005) whose results essentially contain
Theorem 5.10 and also the bounds on ∆ derived in Section 13.6.

The generalized linear Gaussian model treated in Section 5.7 was introduced
in Birgé and Massart (2001). For a detailed account on Gaussian model selec-
tion and related problems we refer the reader to Massart (2006). The lasso
estimator was introduced by Tibshirani (1996) and has become an important
tool for high-dimensional regression problems. We refer the interested reader to
Barron, Cohen, Dahmen and DeVore (2008), Bickel, Ritov and Tsybakov (2009),
Bunea, Tsybakov and Wegkamp (2007), Candès and Tao (2005, 2007), Donoho
(2006b, 2006c), Huang, Cheang and Barron (2010), Koltchinskii (2009a, 2009b),
and van de Geer (2008) for a variety of theoretical results. Theorem 5.15 and
the argument presented here are borrowed from Massart and Meynet (2010).
Related results were obtained by Bartlett, Mendelson and Neeman (2012).

The Bonami-Beckner inequality (Theorem 5.18) is due to Bonami (1970)
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and Beckner (1975). The Gaussian analogue of Theorem 5.16 described in Exer-
cises 5.18 and 5.19 is due to Nelson (1973). Gross (1975) established the equiva-
lence between hypercontractivity and logarithmic Sobolev inequalities in a gen-
eral framework that we do not discuss here. Our proof of the Bonami-Beckner
inequality is based on some of these ideas, see again Ané et al. (2000). See also
Exercise 5.18 for another aspect of this connection. Starting with an important
paper by Kahn, Kalai, and Linial (1988), the Bonami-Beckner inequality has
found many interesting applications in the geometry of the binary hypercube
and in the study of threshold phenomena. Several of these applications are de-
scribed in Chapter 9 (though we prove most of these results using logarithmic
Sobolev inequalities).

Wishart (1928) initiated the analysis of random matrices, namely the analy-
sis of empirical covariance matrices of multivariate Gaussian samples. A survey
of recent developments in the non-asymptotic analysis of random covariance ma-
trices can be found in Rudelson and Vershynin (2010), see also Section 13.4.

Nowadays, eigenvalues and singular values of random matrices are a major
topic of study in mathematical physics, multivariate statistics, combinatorics,
and information theory, just to name a few areas. The interested reader is referred
to Mehta (2004) or Anderson, Guionnet and Zeitouni (2010) for a thorough
presentation, see also Tao (2012). Theorem 5.23 is due to Wigner (1955) who
actually proved the weak convergence of the mean spectral measure to the semi-
circular distribution. The convergence of the empirical spectral measure to the
semi-circular distribution has been established for many other matrix ensembles
using a variety of proof techniques, see Anderson, Guionnet and Zeitouni (2010).
It holds for random real symmetric Hermitian matrices with independent entries
under some mild tail assumptions on the distribution of the entries. Götze and
Tikhomirov (2003, 2005) provide upper bounds on the rate of convergence of the
spectral measure to the semi-circular distribution. See also Meckes and Meckes
(2012) and references therein for recent progress on the rate of convergence for
spectral measures of a variety of matrix ensembles.

The asymptotic distribution of the largest eigenvalue of random matrices from
the Gaussian unitary ensemble was characterized by Tracy and Widom (1994).
The Tracy-Widom asymptotics for the largest eigenvalue has been extended to
other ensembles of random matrices, including some non-Gaussian ensembles,
see Soshnikov (1999). Erdős and Yau (2012) survey universality issues raised
by spectra of random matrices. In particular, the Tracy-Widom asymptotics
holds for ensembles of random symmetric matrices with Rademacher entries,
suggesting that there is room for improvement in the variance bound described
in Example 3.14.

The largest eigenvalue of a random matrix from the gue has interesting
connections outside of random matrix theory. For example, for large n, once
properly centered and standardized, the length of the longest increasing sequence
in a random permutation over {1, . . . , n} behaves like the largest eigenvalue of a
random matrix distributed as the gue, see Baik, Deift and Johansson (1999).
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The proof of Theorem 5.22 is taken from Ledoux (2003). See also Aubrun
(2005) for an alternative approach. Using more involved arguments, Ledoux
(2003) proves that the polynomial factor in the tail bound is not necessary.
The survey by Ledoux (2007) provides an accessible account of a wide range of
non-asymptotic as well as asymptotic results on eigenvalues of random matrices.

5.12 Exercises

Exercise 5.1 Show that for any nonnegative random variable Z, V ar(Z) ≤ Ent(Z2).
(Lata la and Oleszkiewicz (2000).) Show by example that the inequality is not nec-
essarily true if Z is not required to be nonnegative. Hint: Introduce, for p ∈ [1, 2),

the functional Ψp(Z) = E[Z2] − (E [Zp])2/p. Show that limp↑2 Ψ(Z) = Ent(Z2)/2.
Moreover, show that Ψp(Z)/((1/p)− (1/2)) is non-decreasing in p.

Exercise 5.2 Show that Theorem 5.1 implies that for any function f : {−1, 1}n →
R, V ar(f(X)) ≤ E(f). Prove also similarly that the Gaussian logarithmic Sobolev
inequality (Theorem 5.4) implies the Gaussian Poincaré inequality (Theorem 3.20).
Hint: Let ε > 0 be small and use the logarithmic Sobolev inequality for 1 + εf . Show
that Ent((1 + εf)2) = 2ε2 V ar(f(X)) +O(ε3).

Exercise 5.3 (optimality of the constant in the logarithmic sobolev in-
equality.) Prove that Theorem 5.1 does not hold if the constant 2 is replaced by any
smaller constant.

Exercise 5.4 Prove Theorem 5.2. Prove also that c(p) is the best possible constant.
Hint: By sub-additivity of the entropy it suffices to prove the theorem for n = 1. Start
with the duality formula of the entropy (Theorem 4.13). Show first that it suffices to
prove the statement for strictly positive functions f .

Exercise 5.5 Prove the following variant of Theorem 5.3. Let f : {−1, 1}n → R and
let X be uniformly distributed on {−1, 1}n. Let v > 0 be such that

n∑
i=1

(
f(x)− f(x(i))

)2

≤ v

for all x ∈ {−1, 1}n. (Note that, as opposed to the statement of Theorem 5.3, the
positive part is omitted in the definition of v.) Prove that, for all t > 0, Z = f(X)
satisfies

P {Z > EZ + t} ≤ e−2t2/v .

Hint: Proceed as in the proof of the theorem, but instead of using the simple convexity
argument, establish first that for real numbers z ≥ y,

(
ez/2 − ey/2

)2

≤ (z − y)2

8
(ez + ey) .

Use this to show that

Ent
(
eλf(X)

)
≤ 1

2

n∑
i=1

E

[(
eλf(X)/2 − eλf(X

(i)
)/2
)2
]
≤ E

[
λ2v

8
eλf(X)

]
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Exercise 5.6 Prove the following version of Theorem 5.3 for asymmetric Bernoulli
distributions. Let f : {−1, 1}n → R and assume that X = (X1, . . . , Xn) has i.i.d.
components with distribution P {Xi = 1} = 1 − P {Xi = −1} = p. Let v > 0 be such
that

n∑
i=1

(
f(x)− f(x(i))

)2

+
≤ v

for all x ∈ {−1, 1}n. Show that if f is non-decreasing in all of its components then for
all t > 0,

P {f(X) > Ef(X) + t} ≤ exp

(
−t2

(1− p)c(p)v

)
.

If f is non-increasing then

P {f(X) > Ef(X) + t} ≤ exp

(
−t2

pc(p)v

)
.

Hint: Use Theorem 5.2 together with Herbst’s argument.

Exercise 5.7 (extension of bonami-beckner to vector-valued functions.) This
exercise extends Lemma 5.19 to vector-valued functions. Let X be a Rademacher ran-
dom variable and let Z = α0 +α1X where α0, α1 belong to a normed vector space. For
t ≥ 0, let q(t) = βe2t + 1 and define Zt = α0 + e−tα1X. Show that for all 0 ≤ s < t,(

E
[
‖Zt‖q(t)

])1/q(t)

≤
(
E
[
‖Zs‖q(s)

])1/q(s)

.

Hint: If v = α0+α1 and w = α0−α1, notice that α0+e−tα1 = v(1+et)/2+w(1−e−t)/2
and α0 − e−tα1 = v(1− et)/2 + w(1 + e−t)/2. By the convexity of the norm,(

E
[
|Zt|q(t)

])1/q(t)

≤


(

1+et

2
|v|+ 1−e−t

2
|w|
)q(t)

+
(

1−et
2
|v|+ 1+e−t

2
|w|
)q(t)

2


1/q(t)

.

Write β0 = (|v|+ |w|) /2, β1 = (|v|−|w|) , and use Lemma 5.19.

Exercise 5.8 (littlewood’s inequality for real rademacher sums.) Let Z =∣∣∑n
i=1 biXi

∣∣ be a real-valued Rademacher sum where b1, . . . , bn ∈ R are fixed coef-
ficients and X1, . . . , Xn are i.i.d. Rademacher random variables. Show first by ele-
mentary arguments that E[Z4] ≤ 3(E[Z2])2. Next use Hölder’s inequality to derive
E[Z2] ≤ (EZ)2/3(E[Z4])1/3. Conclude that E[Z2] ≤ 3(EZ)2. This is a slightly weaker
version of Theorem 5.20. Is the comparison between the fourth and the second moments
improvable?

Exercise 5.9 (marcinkiewicz’s inequalities.) Let Y1, . . . , Yn be independent ran-
dom variables with finite variance and let X1, . . . , Xn be independent Rademacher
variables. Prove that

E

( n∑
i=1

Y 2
i

)1/2
 ≤ √2E

[∣∣∣ n∑
i=1

Xi Yi

∣∣∣] ≤ 2
√

2E

[∣∣∣ n∑
i=1

Yi

∣∣∣] .
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Hint: use Theorem 5.20 and symmetrization.

Exercise 5.10 (khinchine’s inequality.) Let ε1, . . . , εn, be a sequence of indepen-
dent Rademacher random variables. Let α1, . . . , αn be n fixed real numbers. Prove that
for p = 1, 2, . . .,

E

[∣∣∣∣∣
n∑
i=1

εiαi

∣∣∣∣∣
2p]
≤ (2p)!

2pp!

(
n∑
i=1

α2
i

)p
.

Using the central limit theorem and the known values for the moments of the stan-
dard Gaussian distribution, check that the dimension-free coefficients (2p)!

2pp!
cannot be

improved. Hint: if we are ready to replace the constants (2p)!/(2pp!) by (2p− 1)p, the
above inequalities follow from the Bonami-Beckner inequalities. Another version can
be derived from Hoeffding’s inequality.

Exercise 5.11 Show that the constant 2 on the right-hand side of the Gaussian loga-
rithmic Sobolev inequality (Theorem 5.4) is the best possible. Hint: The bound for the
moment generating function in the Gaussian concentration inequality is an equality if
f is linear.

Exercise 5.12 (theorem 5.4.) Work out the details of the density argument used in
the proof of Theorem 5.4.

Exercise 5.13 (poincaré and logarithmic sobolev inequalities for general
gaussian distributions.)

Assume that the random vector X ∈ Rn has centered Gaussian distribution with
covariance matrix Γ. Show that for any continuously differentiable function f : Rn → R,

V ar(f(X)) ≤ E [〈Γ∇f(X),∇f(X)〉]

and

Ent
(
f2) ≤ 2E [〈Γ∇f(X),∇f(X)〉] .

Exercise 5.14 Detail the first step of the proof of Theorem 5.8. Hint: by total bound-
edness and sample path continuity, Z = supt∈DXt where D is a dense countable subset
of T . Use the Gaussian Poincaré inequality for finite subsets and monotone convergence
to show that Z has an expected value (by relating it to the median of Z). Then again,
use monotone convergence and the theorem for finite sets to conclude.

Exercise 5.15 (non-centered chi-squared random variables.) If X1, . . . , XD
are independent standard normal random variables, then Z2 = (X1 + δ)2 +

∑D
i=2 X

2
i

has chi-square distribution with D degrees of freedom and non-centrality parameter
δ2. Compute the expected value and the variance of Z2. Show that Z2 is sub-gamma
with variance factor v = 2EZ2 + 2δ2 and scale factor 2. Use the Gaussian Poincaré
inequality and the Gaussian concentration inequality to show that the variance of Z is
less than 1, and that Z is sub-Gaussian with variance factor 1. Show how this implies
that Z2 is sub-gamma with variance factor 4EZ2 and scale factor 2.

Exercise 5.16 (adapting herbst’s argument.) Let X1, . . . , Xn be independent
standard Gaussian random variables. Let f denote a differentiable function on Rn
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such that E
[
exp(λ‖∇f(X1, . . . , Xn)‖2)

]
< ∞ for λ < λ0 where λ0 may be ∞. Let

Z = f(X1, . . . , Xn). Prove that for λ, θ satisfying λ/θ < λ0 and λθ < 2,

logE [exp (λ(Z −EZ))] ≤ λθ

2(1− λθ/2)
logE

[
exp

(
λ‖∇F‖2/θ

)]
.

Hint: Starting from Gaussian logarithmic Sobolev inequality, use Corollary 4.15 to
upper bound E

[
‖∇f‖2 exp(λZ)

]
. Apply this result when f is the squared norm of the

orthogonal projection of X on some linear subspace of Rn.

Exercise 5.17 (szarek’s inequality for gaussian sums.) Let b1, . . . , bn be ele-
ments of a normed vector space and let X1, . . . , Xn be independent standard Gaussian
random variables. Let Z = ‖

∑n
i=1 biXi‖. Prove that√

E [Z2] ≤
√

2EZ .

Hint: start from Theorem 5.20 and use the central limit theorem as in the proof of the
Gaussian Poincaré inequality or as in the proof of the Gaussian logarithmic Sobolev
inequality. The factor

√
2 is not optimal and can be improved to

√
π/2. The best

constants in comparison of moments of Gaussian vectors can be found in Lata la and
Oleszkiewicz (1999).

Exercise 5.18 (nelson’s theorem.) Let X be a standard Gaussian random variable.
For any 0 < γ ≤ 1, let the operator Tγ map any function f with E[f(X)2] < ∞ to
another function Tγf defined by

Tγf(y) = E
[
f
(
γy +

√
1− γ2X

)]
.

Check first that for all γ ≤ 1, Tγ is a contraction, that is, E
[
(Tγf(X))2

]
≤ E[f(X)2].

Let t ≥ 0, 1 < p < ∞, q(t) = 1 + e2t(p − 1), and let the function f be such that
E[|f(X)|p] <∞. Prove that(

E
[
|Te−tf(X)|q(t)

])1/q(t)

≤ (E [|f(X)|p])1/p .

Check that is enough to establish the property for nonnegative twice differentiable
functions. Define the differential operator L by Lf(x) = f ′′(x) − xf ′(x). Check first
that for any nonnegative twice differentiable function g, dTe−tg/dt = LTe−tg and that,
for any r > 1,

Ent (g(X)r) ≤ − r2

2(r − 1)
E
[
g(X)r−1Lg(X)

]
.

Hint: This follows from the Gaussian logarithmic Sobolev inequality by rewriting E
[
h(X)2

]
using integration by parts, where h(x) = ∂xg

r/2(x). Prove that (1/q(t)) logE
[
|Te−tf(X)|q(t)

]
is a non-increasing function of t. The argument parallels the proof of Lemma 5.19. The
collection of operators (Te−t)t≥0 is known as the Ornstein-Uhlenbeck semigroup. The
hypercontractivity of the Ornstein-Uhlenbeck semigroup was first proved by Nelson
(1973).

Exercise 5.19 (gaussian hypercontractivity in several dimensions.) Suppose
X1, . . . , Xn are independent standard Gaussian random variables. For any 0 < γ ≤ 1,
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let the operator Tγ map any function f : Rn → R such that E[f(X1, . . . , Xn)2] <∞ to
another function

Tγf(y1, . . . , yn) = E
[
f
(
γy1 +

√
1− γ2X1, . . . , γyn +

√
1− γ2Xn

)]
.

Let t ≥ 0, 1 < p < ∞, q(t) = 1 + e2t(p − 1), and let the function f be such that
E[|f(X1, . . . , Xn)|p] <∞. Prove that(

E
[
|Te−tf(X1, . . . , Xn)|q(t)

])1/q(t)

≤ (E [|f(X1, . . . , Xn)|p])1/p .

Hint: Use the results of Exercise 5.18 and imitate the last part of the proof of Theo-
rem 5.16.

Exercise 5.20 (gaussian hypercontractivity and hermite polynomials.) Re-
call the definition of Hermite polynomials hn from Section 5.9. Let the operator Tγ
with 0 < γ ≤ 1 be defined as in Exercise 5.18. Prove that the Hermite polynomials are
eigenfunctions of Tγ , for all n = 1, 2, . . . , that is,

Tγhn = γnhn .

Hint: recall the definition of the differential operator Lf(x) = f ′′(x) − xf ′(x) from
Exercise 5.18. Use the relation dTe−tg/dt = LTe−tg established in Exercise 5.18, the
fact that L ◦ Te−t = Te−t ◦ L, and the fact that Hermite polynomials satisfy nhn =
−Lhn. For a vector k = (k1, . . . , kn) of nonnegative integers, let |k| =

∑n
i=1 ki. Define

f(x1, . . . , xn) =
∑
k∈Nn αk

∏n
i=1 hki(xi), where

∑
k∈Nn α

2
k
<∞. Show that

Tγf =
∑
k

γkαk

n∏
i=1

hki .

This is the exact Gaussian analogue of Theorem 5.16. The Hermite polynomials form
an orthonormal basis of the Hilbert space of square integrable functions of a vector of
independent standard Gaussian random variables, and they are the eigenfunctions of
the hypercontractive operator Tγ .

Exercise 5.21 (tightness of hypercontractive bounds.) For λ ≥ 0, define fλ(x) =
exp(λx−λ2/2). Let the operator Tγ (for γ ∈ [0, 1) be defined as in Exercise 5.18. Com-
pute Tγfλ and E[|fλ(X)|p], where X is a standard Gaussian random variable and p > 1.
Check that if q > 1 + e2t,

sup
f :E[|f(X)|2]<∞

E[|Te−tf(X)|q]1/q

E[|f(X)|2]1/2
=∞ .

This proves that the hypercontractive bounds of Exercises 5.18 and 5.19 are tight.

Exercise 5.22 (hermite polynomials.) Recall the definition of the Hermite polyno-
mials from Section 5.9. Prove that for λ, x ∈ R,

eλx−λ
2/2 =

∞∑
k=0

λk√
k!
hk(x) .
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Prove that if (X1, X2) is a Gaussian vector where X1 and X2 are standard Gaussian
random variables, then

E

[
exp

(
λX1 −

λ2

2

)
exp

(
µX2 −

µ2

2

)]
= exp (λµE[X1X2]) .

Combine the two statements in order to establish that the Hermite polynomials form
an orthonormal family, that is,

E [hi(X)hj(X)] =

{
1 if i = j

0 otherwise,

where X is standard Gaussian. Prove the following three-term recurrences for normal-
ized Hermite polynomials:

xhn(x) =
√
n+ 1hn+1(x) + h′n(x)

xhn(x) =
√
n+ 1hn+1(x) +

√
nhn−1(x)

for all n = 0, 1, 2, . . . and x ∈ R. Note that the three-term recurrences entail h′n(x) =√
nhn−1(x). From the recurrences, deduce the Christoffel-Darboux formula: for x 6= y,

for n = 1, 2, . . .,

n−1∑
i=0

hi(x)hi(y) =
√
n
hn(x)hn−1(y)− hn−1(x)hn(y)

(x− y)
.

The Hermite polynomials form an orthonormal basis of the space L2(γ) of square-
integrable functions under the standard Gaussian distribution γ. This can be checked
by invoking the density of bounded continuous functions in L2(γ) and the density of
polynomials in the set of continuous functions with respect to the supremum norm over
compact sets.

Exercise 5.23 (invariance of gue.) Prove that the gue is invariant under unitary
transformations: if W ∈ Un, and the random matrix H is distributed according to the
gue, then so is WH.

Exercise 5.24 (zeros of multivariate polynomial.) Prove that if p is a non-zero
n-variate polynomial, then {x ∈ Rn : p(x) = 1} has Lebesgue measure 0 over Rn. Hint:
use induction over n and the Tonelli-Fubini theorem.

Exercise 5.25 (multiple roots and discriminant.) Let P (x) =
∑m
i=0 aix

i and
Q(x) =

∑n
j=0 bjx

j . The Sylvester matrix SP,Q is the (n+m)× (n+m) matrix defined
by stacking n− 1 circular shifts of

(am, am−1, . . . , a0, 0, . . . , 0︸ ︷︷ ︸
n−1 times

)

and m− 1 circular shifts of

(bn, bn−1, . . . , b0, 0, . . . , 0︸ ︷︷ ︸
m−1 times

) :
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SP,Q =



am am−1 . . . a0 0 . . . . . . 0
0 am am−1 . . . . . . a0 0 . . . 0
0 0 am am−1 . . . . . . a0 0 . . . 0
0 0 . . . . . . . . . . . . . . . . . . . . . 0
0 0 0 . . . . . . am am−1 . . . . . . a0

bn bn−1 . . . . . . . . . b0 0 . . . 0
0 bn bn−1 . . . . . . . . . b0 0 . . . 0
. . . 0 bn bn−1 . . . . . . . . . b0 . . . 0

0 . . . . . . . . . . . . . . .
. . . . . . b0 0

0 0 . . . 0 bn bn−1 . . . . . . . . . b0


.

The determinant of SP,Q is called the discriminant of P and Q and it is denoted by
D(P,Q). Prove that if P and Q have a common root, then D(P,Q) = 0. Prove that if P
has multiple roots, then D(P, P ′) = 0. Prove that there exists an n2-variate polynomial
P such that if an n× n matrix A has eigenvalues with multiplicity larger than 1, then
P vanishes on the vector defined by the coefficients of A. See Lang (1965) for details
about discriminants.

In Exercises 5.26-5.35, we denote byHdn the subset of n×n Hermitian matrices
with pairwise distinct eigenvalues. Let Ddn denote the subset of n×n real diagonal
matrices with decreasing diagonal entries. Let Ugn denote the subset of n × n
unitary matrices with real positive diagonal entries. If A is an n×n matrix, then
the i, j minor of A, A(i,j) is obtained by deleting the ith row and the jth column
of A. We denote A(k) = A(k,k). A matrix from Ugn belongs to Uvgn if all its minors
are invertible. Let the set of “good” Hermitian matrices Hd,gn be the subset of
n × n Hermitian matrices that admit a decomposition UDU∗ where U ∈ Uvgn
and D ∈ Ddn.

Exercise 5.26 Prove that, almost surely, a random matrix from the gue has pairwise
distinct eigenvalues, that is, Hn \Hdn has Lebesgue measure 0. Hint: The coefficients of
the characteristic polynomial of a matrix are polynomials of the entries of the matrix.
Use Exercises 5.24 and 5.25.

Exercise 5.27 Prove that if H ∈ Hdn and for all 1 ≤ k ≤ n, H and H(k) do not have
common eigenvalues then if H = UDU∗ with U ∈ Un and D ∈ Dn, U has non-zero
entries. Prove that Hn \ Hd,gn has Lebesgue measure 0. Hint: The adjugate Adj(H) of
H is defined by Adj(H)i,j = (−1)i+jdet(H(j,i)). Recall that HAdj(H) = Adj(H)H =
det(H)In (see, e.g., Apostol (1969, Theorem 3.12)). Let λ be an eigenvalue of H ∈ Hdn.
Let A = H − λIdn. Use the assumption H ∈ Hdn to check that the columns of Adj(A)
are scalar multiples of a column of U . Finally, use the assumption that H and H(k) do
not have common eigenvalues to verify that Adj(A) has non-zero entries. To prove the
last statement, use results from Exercises 5.24 and 5.25. (See the proof of Lemma 2.5.5
in Anderson, Guionnet and Zeitouni (2010).)

Exercise 5.28 (density of eigenvalues i.) Prove the existence of a diffeomorphism
(i.e., a bijective differentiable map whose inverse is differentiable) between Hd,gn and
Ddn × Rn(n−1) where Ddn is the set of n × n real diagonal matrices with decreasing
diagonal coefficients. Hint: Let T be the operator that maps U ∈ Uvgn to the vector
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T (U) =

(
U1,2

U1,1
,
U1,3

U1,1
, . . . ,

U1,n

U1,1
,
U2,3

U2,2
, . . . ,

U2,n

U2,2
, . . . ,

Un−1,n

Un−1,n−1

)
.

Each Ui,j/Ui,i (1 ≤ i < j ≤ n) should be considered as a pair of real numbers cor-
responding to the real and imaginary part. Check that T is one-to-one on Uvgn and
that T (Uvgn ) is open in Rn(n−1). (See Anderson, Guionnet and Zeitouni (2010, Lemma
2.5.5).)

Exercise 5.29 (density of eigenvalues ii.) Let T be defined as in Exercise 5.28.
Let J : Ddn × T (Ugn)→ Hd,gn be the inverse of the mapping defined by

Hd,gn → Ddn × T (Ugn)

H = Udiag(λ1, . . . , λn)U∗ 7→ (diag(λ1, . . . , λn), T (U)) .

Let p = (p1, . . . , pn(n−1)) ∈ T (Ugn). Define a one-to-one mapping r : {(i, j) : 1 ≤ i < j ≤
n} → {1, n(n−1)/2} by r(i, j) =

∑i−1
k=1(n−k)+ j− i+1 (this is the rank of (i, j) when

traversing the upper-triangle in a row-wise fashion). The purpose of this exercise is to
outline a collection of equations satisfied by the n2×n2 matrix of partial derivatives of J
(the Jacobian matrix of J). Exercise 5.30 takes advantage of these equations to establish
the fact that the determinant of the Jacobian matrix (the Jacobian determinant) is the
product of the square of the Vandermonde determinant defined by (λ1, . . . , λn) (that
is
∏

1≤i<j≤n(λi−λj)) and of a function of (p1, . . . , pn(n−1)) ∈ T (Ugn). This observation
is an essential part of the proof of Lemma 5.24. For each 1 ≤ ` ≤ n(n− 1), let ∂U/∂p`
be the n× n complex matrix of partial derivatives of U with respect to p`. Verify that
the complex matrix S` = U∗ ∂U

∂p`
is skew Hermitian, that is,

S∗` =
∂U∗

∂p`
U = −S` .

Now letting B` = U∗∂H/∂p`U for each 1 ≤ ` ≤ n(n− 1), verify that

U∗
∂H

∂p`
U = S` × diag(λ1, . . . , λn)− diag(λ1, . . . , λn)× S` ,

or equivalently that
B`[i, j] = S`[i, j](λj − λi) , (5.7)

for i, j ≤ n. Verify that for each 1 ≤ i ≤ n, ∂H/∂λi is the matrix of the orthogonal
projection on the line generated by the ith column of U . Verify that for each 1 ≤ i ≤ n,

U∗
∂H

∂λi
U = diag

(
0, . . . 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

)
,

which implies(
U∗

∂H

∂λi
U

)
[j, k] =

n∑
j′=1

n∑
k′=1

∂H

∂λi
[j′, k′]U [j′, j]U [k′, k] = 1{i=j=k} , (5.8)

for 1 ≤ j, k ≤ n.
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Exercise 5.30 (density of eigenvalues iii.) The Jacobian matrix of the mapping
J defined in Exercise 5.29 is an n2 × n2 real matrix Jac(J) which may be described in
partitioned form by

Jac(J) =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷



∂Hj,j
∂λi

Re∂Hj,k
∂λi

Im∂Hj,k
∂λi

1 ≤ i ≤ n

∂Hj,j
∂p`

Re∂Hj,k
∂p`

Im∂Hj,k
∂p`

1 ≤ ` ≤ n(n− 1) .

The key step in the proof of Lemma 5.24 consist of showing that det (Jac(J)) is the
product of the square of a Vandermonde determinant and of an expression that only
depends on U . Define the matrix M in partitioned form as

M =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷



U [i, j]U [i, j] ReU [i, j]U [i, k] ImU [i, j]U [i, k] 1 ≤ i ≤ n

ReU [j′, j]U [k′, j] 2ReU [j′, j]U [k′, k] 2ImU [j′, j]U [k′, k] 1 ≤ j′ < k′ ≤ n

−ImU [j′, j]U [k′, j] −2ImU [j′, j]U [k′, k] 2ReU [j′, j]U [k′, k] 1 ≤ j′ < k′ ≤ n .

Write C = Jac(J)×M in partitioned form as

C =

(
C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

)
The exercise mostly consists of checking that



160 Logarithmic Sobolev inequalities

C =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷



Idn 0 0 1 ≤ i ≤ n

? ReB`[j, k] ImB`[j, k] 1 ≤ ` ≤ n(n− 1)

where B` is defined as in Exercise 5.29.

1. Check that C1,1 = Idn while C1,2 = C1,3 = 0. Hint: verify that C1,1[i, j] = U∗ ∂H
∂λi

U [j, j],

while for 1 ≤ j < k ≤ n, m = r(j, k), C1,2[i,m] (resp. C1,3[i,m]) is the real (resp. imag-
inary) part of the U∗ ∂H

∂λi
U [j, k]. Use (5.8) from Exercise 5.29.

2. Check that for ` ∈ {1, . . . , n(n − 1)} and m ∈ {1, . . . , n(n − 1)/2}, C2,2[`,m] =
ReB`[i, j] = ReS`[i, j](λi − λj) and C2,3[`,m] = ImB`[i, j] = ImS`[i, j](λi − λj) where
1 ≤ i < j ≤ n, m = r(i, j). Hint: use (5.7) from Exercise 5.29.

3. Check that the determinant of the n(n − 1) by n(n − 1) real matrix (C2,2 C2,3 )
is the product of ∆(λ1, . . . , λn)2 and of a quantity that only depends on U , where
∆(λ1, . . . , λn) is the Vandermonde determinant

∏
1≤i<j≤n(λi − λj). Deduce from this

that the Jacobian determinant det(Jac(J)) can be written as the product of ∆(λ1, . . . , λn)2

and of a quantity that only depends on the coefficients of U .

4. Conclude the proof of Lemma 5.24 by combining the results of Exercises 5.24–5.29 and
the change-of-variables formula in multiple integrals.

(This argument is from Mehta (2004, Chapter 3) and Anderson, Guionnet and Zeitouni
(2010, Chapter 2), see also Tao (2012). It can be tailored to other ensembles of Gaussian
random matrices.)

Exercise 5.31 Using the notation of Theorem 5.23, prove that

∫
Rn

∆(x1, . . . , xn)2 e
−
∑n
i=1

x2
i
2

√
2π

n =

n−1∏
j=0

j! .

Hint: use the pattern of proof of Lemma 5.24.

Exercise 5.32 (moments of the semi-circular distribution.) The semi-circular
distribution has density 2/π

√
1− x21{|x|≤1}. Let m2k denote its 2kth moment for k =

1, 2, . . .. Prove that

m2k =
Ck
22k

where Ck =
(

2k
k

)
/(k+1) is the kth Catalan number. Hint: Prove that m2k = 2/(π(2k+

1))
∫ π/2
−π/2 sin(θ)2k+2dθ and also that m2k = 2/(π(2k + 2))

∫ π/2
−π/2 sin(θ)2kdθ.
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Exercise 5.33 (concentration of the spectral measure.) Let H be a random
n × n matrix from the gue with eigenvalues λ1 ≥ . . . ≥ λn and spectral measure Ln.
Let B denote the set of functions f on R with supx∈R |f(x)| ≤ 1 and Lipschitz constant
not larger than 1. Prove that for t ≥ 0

sup
f∈B

P {|Ln(f)−E[Ln(f)]| ≥ t} ≤ 2e−
n2t2

2 .

Hint: use Lidskii’s inequality (see Exercise 3.16) and Theorem 5.6. (See Anderson,
Guionnet and Zeitouni (2010, Theorem 2.3.5).)

Exercise 5.34 (concentration of the spectral measure of matrices from
the gue, continued.) Let H be a random n × n random matrix from the gue with
eigenvalues λ1 ≥ . . . ≥ λn and spectral measure Ln. Let B denote the set of functions
f on R with supx∈R |f(x)| ≤ 1 and Lipschitz constant not larger than 1. Let Z =
supf∈B |Ln(f)−E[Ln(f)]| be the bounded Lipschitz distance between the empirical
spectral measure and the average spectral measure. Prove that for t ≥ 0,

P {Z ≥ EZ + t} ≤ 2e−
n2t2

2 .

Prove that there exists a universal constant κ such that

EZ ≤ κ√
n
.

Hint: use again Theorem 5.6 as in Exercise 5.33 to establish the tail bound. (See Ander-
son, Guionnet and Zeitouni (2010, Theorem 2.3.5).) A proof of the upper bound for EZ
can be derived from Götze and Tikhomirov (2003) and Götze and Tikhomirov (2005)
which state similar bounds for the uniform distance between the empirical spectral
distribution function and the semi-circular distribution function and the uniform dis-
tance between the average empirical spectral distribution function and the semi-circular
distribution function. By standard results (see Dudley 2002), the bounded-Lipschitz
distance to the semi-circular distribution is within a constant factor of the uniform dis-
tance to the semi-circular distribution. Note that this upper bound holds under rather
general moment conditions on the entries of the random Hermitian matrices.

Exercise 5.35 (moment generating function of the spectral measure of
random matrices from the gue.) Let H be an n × n random matrix from the
gue. The aim of this exercise is to compute the expected moment generating function
of the spectral measure Ln of H, that is,

Fn(s) = E

[
n∑
i=1

1

n
esλi

]
for s ∈ R ,

and then to check the pointwise convergence of Fn to the moment generating function
of the semi-circular distribution, that is,

lim
n→∞

Fn(s) =
∑
k∈N

m2ks
2k

(2k)!
for all s ∈ R .
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The even moments (m2k)k∈N of the semi-circular distribution are determined in Exer-
cise 5.32. As in Exercises (5.20–5.22), hi denotes the ith normalized Hermite polynomial.
Use the Christoffel-Darboux’s identity (see Exercise 5.22) to establish that for all x ∈ R
and n = 1, 2, . . ., 1

n

∑n−1
i=0 hi(x)2 = 1√

n
(h′n(x)hn−1(x)− hn(x)h′n−1(x)). To lighten no-

tation, denote Kn(x, x) = e−x
2/2

√
2πn

(h′n(x)hn−1(x)− hn(x)h′n−1(x)) . Use Lemma 5.25 to
prove that for any bounded continuous function f ,

ELnf =

∫
R
f(x/

√
4n)Kn(x, x)dx .

Hint: prove and use the fact that

d

dx
Kn(x, x) = −e−x

2/2hn(x)hn−1(x) = −e−x
2/2 hn(x)h′n(x)√

n
.

(See Anderson, Guionnet and Zeitouni (2010, page 102).)

Exercise 5.36 (gaussian orthogonal ensemble.) A random real symmetric n×n
matrixA belongs to the Gaussian Orthogonal Ensemble (goe) if the entries (Ai,j)1≤i≤j≤n
are independent centered Gaussian random variables with variance 1/n. Following the
approach described in Exercises 5.24–5.30, prove the determinantal formula for the
goe: the joint density of the eigenvalues of a n × n random matrix from the goe at
λ1 > λ2 > . . . > λn is

Dn
σ2n

∆ (λ1, . . . , λn) exp

(
−
∑n
i=1 λ

2
i

2σ2

)
where Dn is a normalizing constant and σ = 1/

√
4n.

Exercise 5.37 (tail inequality for maxima of gaussian random vectors.) Let
Z be the maximum of the absolute value of n independent standard Gaussian random
variables, and for t ≥ 1, let U(t) = inf{x : Φ(x) ≥ 1− 1/t}. Prove that for t > 0,

P {Z −EZ ≥ t+ δn} ≤ exp

(
− t2U(2n)2

2(2 + tU(2n)/3)

)
,

where δn > 0 and limn(2 log(2n))3/2δn = π2/12 . Hint: represent Z as U(2 exp(Y ))
where Y is the maximum of n independent exponential random variables with expected
value 1 and use the fact that U(ex) is concave in x. The second part of the statement
may be checked using standard results from extreme value theory de Haan and Ferreira
(2006).
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THE ENTROPY METHOD

In Chapter 3 we saw that the Efron-Stein inequality served as a powerful tool for
bounding the variance of functions of several independent random variables. In
many cases, however, it is reasonable to expect that, just like in the case of sums
of bounded random variables, the tail probabilities decrease at an exponential
speed, a phenomenon the Efron-Stein inequality fails to capture. In Chapter 5
we have seen that logarithmic Sobolev inequalities, together with Herbst’s ar-
gument, may be used to derive exponential concentration inequalities. However,
the logarithmic Sobolev inequalities presented there are only valid for functions
of either Bernoulli or Gaussian random variables and therefore the scope of the
obtained concentration inequalities is significantly more limited than that of the
Efron-Stein inequality.

The purpose of this chapter is to present an attempt to generalize the method-
ology based on logarithmic Sobolev inequalities that allows one to prove expo-
nential concentration bounds that hold for functions of arbitrary independent
random variables. A way to achieve this is by trying to mimic the procedure
that worked for functions of Bernoulli and Gaussian random variables, that is,
to start with a logarithmic Sobolev inequality and then, according to Herbst’s
trick, apply it to exponential functions of the random variable of interest. Since
exact analogs of the Bernoulli and Gaussian logarithmic Sobolev inequalities do
not always exist, we need to resort to appropriate modifications. Luckily, the
sub-additivity of entropy (see Theorems 4.10 and 4.22) holds in a great general-
ity and indeed, this inequality serves as our starting point. Then, by bounding
the right-hand side of the inequality of Theorem 4.10, we obtain an appropriate
modified logarithmic Sobolev inequality which, in turn, can be used via Herbst’s
argument to derive exponential concentration inequalities.

We call the proof method described above the entropy method and the pur-
pose of this chapter is to lay down its basics and to show some of the simplest
powerful concentration bounds one can get by this method. In Chapters 11, 12,
14, and 15 we elaborate more on the entropy method and show various exten-
sions.

Just as in Chapter 3, we investigate the concentration behavior of a real-
valued random variable Z = f(X1, . . . , Xn) where X1, . . . , Xn are independent
random variables taking values in a measurable space X and f : Xn → R is a
function.

The main idea of the entropy method for proving concentration inequalities is
to apply the sub-additivity of entropy (Theorems 4.10 and 4.22) for the positive
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random variable Y = eλZ where λ is a real number. Recall that by the sub-
additivity of entropy,

Ent(Y ) ≤ E

n∑

i=1

Ent(i)(Y )

or, equivalently,

E[Y log Y ]− (EY ) log(EY )

≤
n∑

i=1

E
[
E(i)[Y log Y ]− (E(i)Y ) log(E(i)Y )

]
(6.1)

where E(i) denotes integration with respect to the distribution of Xi only. Then,
normalizing by EeλZ and denoting the logarithmic moment generating function
of Z−EZ by ψ(λ) = logEeλ(Z−EZ), the left-hand side of this inequality becomes

Ent
(
eλZ

)

EeλZ
= λψ′(λ)− ψ(λ) . (6.2)

Our strategy is based on using the sub-additivity of entropy and then univari-
ate calculus to derive upper bounds for the derivative of ψ(λ). By solving the
obtained differential inequality, we obtain tail bounds via Chernoff’s bounding.

To do this in a convenient way, we need some further bounds for the right-
hand side of the inequality above. This is the purpose of Section 6.3 in which,
relying on the sub-additivity of entropy, we prove some basic results which will
serve as our starting point. These results are reminiscent of the classical loga-
rithmic Sobolev inequalities discussed in Chapter 5 where it is shown that con-
centration inequalities follow from logarithmic Sobolev inequalities by Herbst’s
argument. Here we formalize this argument:

Proposition 6.1 (herbst’s argument.) Let Z be an integrable random vari-
able such that for some v > 0, we have, for every λ > 0,

Ent
(
eλZ

)

EeλZ
≤ λ2v

2
.

Then, for every λ > 0,

logEeλ(Z−EZ) ≤ λ2v

2
.

Proof The condition of the proposition means, via (6.2), that

λψ′(λ)− ψ(λ) ≤ λ2v

2
,

or equivalently,
1

λ
ψ′(λ)− 1

λ2
ψ(λ) ≤ v

2
.

Setting G(λ) = λ−1ψ(λ), we see that the differential inequality becomes G′(λ) ≤
v/2. Since G(λ)→ 0 as λ→ 0, this implies G(λ) ≤ λv/2, and the result follows.

2
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First, we present in Section 6.1 two simple direct methods to bound the right-
hand side of the inequality of the sub-additivity of entropy and use Herbst’s
argument to conclude. This permits us to derive the celebrated bounded dif-
ferences inequality, a simple prototypical exponential concentration inequality
for functions of bounded differences that has found countless applications. We
also present a sharper version in which the bounded differences assumption is
significantly relaxed.

In Section 6.4 we present the first and simplest application of these modified
logarithmic Sobolev inequalities. This first example turns out to be surprisingly
powerful as it may be used to prove exponential concentration in many interest-
ing cases. We describe some applications. The obtained inequalities reach further
than the bounded differences inequality as they are able to handle much more
general functions than just those having the bounded-differences property. A sim-
ple but useful application for convex Lipschitz functions of independent random
variables is presented in Section 6.6.

In Section 6.7 we return to the class of self-bounding functions introduced in
Section 3.3 and prove an exponential concentration inequality, thus providing a
significant sharpening of Corollary 3.7. The notion of self-bounding function is
generalized and further investigated in Section 6.11.

In Sections 6.8, 6.9, and 6.13 we use the entropy method to prove inequalities
that may be considered as exponential versions of the Efron-Stein inequality.
Various concentration results are shown here under different conditions with the
purpose of demonstrating the flexibility of the entropy method.

We close the chapter by proving Janson’s celebrated inequality for the lower
tail probabilities of random Boolean polynomials. Even though Janson’s inequal-
ity is not based on the entropy method, its proof shows some similarities with
the techniques we use throughout the chapter.

6.1 The bounded differences inequality

As a first illustration of the entropy method, we derive an exponential concen-
tration inequality for functions of bounded differences. Unlike the Bernoulli and
Gaussian concentration inequalities of Chapter 5, this inequality is distribution
free: apart from independence, nothing else is required from the random variables
X1, . . . , Xn.

Recall that a function f : Xn → R has the bounded differences property if
for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,
x′i∈X

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

In Chapter 3, as a corollary of the Efron-Stein inequality, we saw that if f has
the bounded differences property, then Z = f(X1, . . . , Xn) satisfies V ar(Z) ≤
(1/4)

∑n
i=1 c

2
i (see Corollary 3.2). The bounded differences inequality shows that

such functions satisfy a sub-Gaussian tail inequality in which the role of the
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variance factor is played by the Efron-Stein upper bound of the variance v =
(1/4)

∑n
i=1 c

2
i .

Theorem 6.2 (bounded differences inequality.) Assume that the func-
tion f satisfies the bounded differences assumption with constants c1, . . . , cn and
denote

v =
1

4

n∑

i=1

c2i .

Let Z = f(X1, . . . , Xn) where the Xi are independent. Then

P {Z −EZ > t} ≤ e−t2/(2v) ,

Note that since the bounded differences assumption is symmetric, Z also
satisfies the lower-tail inequality

P {Z −EZ < −t} ≤ e−t2/(2v) .

The proof combines sub-additivity of entropy, Hoeffding’s lemma (Lemma 2.2)
and Herbst’s argument. The following way of looking at Hoeffding’s lemma may
illuminate the use of the sub-additivity of entropy: if Y is a random variable
taking its values in [a, b], then we know from Lemma 2.2 that ψ”(λ) ≤ (b−a)2/4
for every λ ∈ R, where ψ(λ) = logEeλ(Y−EY ). Hence,

λψ′(λ)− ψ(λ) =

∫ λ

0

θψ”(θ)dθ ≤ (b− a)2λ2

8
,

which means that
Ent(eλY )

EeλY
≤ (b− a)2λ2

8
. (6.3)

By Proposition 6.1, this inequality implies Hoeffding’s inequality, that is, ψ(λ) ≤
(b− a)2λ2/8 for all λ. Thus, (6.3) is a way of rephrasing Hoeffding’s inequality,
which is stronger than the usual one.

Proof Recall that by the sub-additivity of entropy (6.1),

Ent(eλZ) ≤ E

n∑

i=1

Ent(i)(eλZ)

where Ent(i) denotes conditional entropy, givenX(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
By the bounded differences assumption, given X(i), Z is a random variable whose
range is in an interval of length at most ci, so by (6.3),

Ent(i)(eλZ)

E(i)eλZ
≤ c2iλ

2

8
.

Hence, by the sub-additivity of entropy,
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Ent(eλZ) ≤ E

[
n∑

i=1

(
c2iλ

2

8

)
E(i)eλZ

]
=

n∑

i=1

c2iλ
2

8
EeλZ ,

or equivalently,
Ent

(
eλZ

)

EeλZ
≤ λ2v

2
.

Proposition 6.1 allows us to conclude that

ψ(λ) = logEeλ(Z−EZ) ≤ λ2v

2
.

Finally by Markov’s inequality,

P {Z > EZ + t} ≤ eψ(λ)−λt ≤ eλ2v/2−λt .

Choosing λ = t/v, the upper bound becomes e−t
2/(2v). 2

This extends Corollary 3.2 to an exponential concentration inequality. Thus,
the applications of Corollary 3.2 in all examples of functions with bounded dif-
ferences shown in Section 3.2 (such as bin packing, the length of the longest
common subsequence, the L1 error of the kernel density estimate, etc.) are now
improved in an essential way without further work.

Next we describe another application which is the simplest example of a
concentration inequality for sums of independent vector-valued random variables.

Example 6.3 (a hoeffding-type inequality in hilbert space.) As an il-
lustration of the power of the bounded differences inequality, we derive a Hoeffding-
type inequality for sums of random variables taking values in a Hilbert space.
In particular, let X1, . . . , Xn be independent zero-mean random variables taking
values in a separable Hilbert space such that ‖Xi‖ ≤ ci/2 with probability one
and denote v = (1/4)

∑n
i=1 c

2
i . Then, for all t ≥ √v,

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ e−(t−√v)2/(2v) .

This follows simply by observing that, by the triangle inequality, Z = ‖∑n
i=1Xi‖

satisfies the bounded differences property with constants ci, and therefore

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥−E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t−E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥

}

≤ exp

(
− (t−E ‖∑n

i=1Xi‖)2

2v

)
.

The proof is completed by observing that, by independence,

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤

√√√√E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥

2

=

√√√√
n∑

i=1

E ‖Xi‖2 ≤
√
v .
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The next example illustrates a surprising application in which the bounded
differences inequality is applied in a quite unexpected context.

Example 6.4 (spectral measure of random hermitian matrices.) Let
H = (Hi,j) be an n×n random Hermitian matrix such that the vectors (Hi)1≤i≤n
are independent, where Hi = (Hi,j)1≤j≤i. Let LH denote the empirical spectral
measure of H (i.e., the probability measure that gives mass r/n to an eigenvalue
of H with multiplicity r). Given a bounded function g : R → R that has total
variation ‖g‖TV ≤ 1, we are interested in the concentration of the random vari-
able Z =

∫
gdLH . Recall that the total variation of a function g : R → R is

defined by

‖g‖TV = sup
n=1,2,...

sup
x1<···<xn

n−1∑

i=1

|f(xi+1)− f(xi)| .

Remarkably, a lot can be said about Z without imposing any moment assumption
of the entries of the matrix. The argument is surprisingly simple. Indeed for every
x = (x1, . . . , xn) such that xi ∈ Ci−1×R for all i, denote by H(x) the Hermitian
matrix given by (H(x))i,j = xi,j for 1 ≤ j ≤ i ≤ n and define the function f by

f(x) =

∫
gdLH(x) .

The random variable of interest Z is just f(H1, . . . ,Hn) and it remains to es-
tablish the bounded differences property for f to get a concentration inequality
of Z around its mean. To this end, we apply the following deterministic rank
inequality for spectral measures (which relies on the Cauchy interlacing theo-
rem, see Exercises 6.2 and 6.3 below). Let A and B denote Hermitian matrices.
If one denotes by FA and FB the distribution functions related to the spectral
measures LA and LB , then

‖FA − FB‖∞ ≤
rank (A−B)

n
.

Integrating by parts (noting that FA − FB tends to 0 at −∞ and +∞), one has

∣∣∣∣
∫
gdLA −

∫
gdLB

∣∣∣∣ =

∣∣∣∣
∫

(FA − FB) dg

∣∣∣∣ ≤ ‖FA − FB‖∞ ,

where the last inequality comes from the fact that the absolute total mass of the
Stieljes measure dg equals ‖g‖TV ≤ 1. Combining the two inequalities above, we
obtain that for every x and x′,

|f(x)− f(x′)| ≤ rank(H(x)−H(x′))
n

.

Now if x′ differs from x only in the i-th coordinate, the matrix H(x) − H(x′)
has all zero entries except maybe for one row and one column which proves that
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rank (H(x)−H(x′)) ≤ 2. This shows that f satisfies the bounded differences
condition with ci = 2/n for all i and therefore the bounded differences inequality
tells us that Z is a sub-Gaussian random variable with variance factor 1/n.

Consequently P {|Z −EZ| ≥ t} ≤ 2e−nt
2/2 for all t > 0.

6.2 More on bounded differences

Next we show a more flexible variant of the bounded differences inequality of
Theorem 6.2. It relaxes the bounded differences condition in that differences need
not be bounded by “hard” constants ci but rather by quantities that are allowed
to depend on x, as long as the sum of their squares are bounded. More precisely,
we say that a function f : Xn → R has the x-dependent bounded differences
property if there exists a constant v > 0 such that for all x = (x1, . . . , xn) ∈ Xn
there exist n functions of n − 1 variables c1, . . . , cn : Xn−1 → [0,∞), such that
for 1 ≤ i ≤ n,

sup
x′i∈X
x′′i ∈X

|f(x1, . . . , xi−1, x
′′
i , xi+1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)|

≤ ci(x(i)) ,

and (1/4)
∑n
i=1 c

2
i (x

(i)) ≤ v for all x ∈ Xn. Here x(i) = (x1, . . . , xi−1, xi+1, . . . , xn)
stands for the (n− 1)-vector obtained by dropping the i-th component of x.

Clearly, the Efron-Stein inequality still implies that if f has the x-dependent
bounded differences property, then Z = f(X1, . . . , Xn) satisfies V ar(Z) ≤ v.
The next sub-Gaussian tail inequality extends Theorem 6.2 to such functions.

Theorem 6.5 Assume that the function f satisfies the x-dependent bounded
differences property with constant v. Let Z = f(X1, . . . , Xn) where the Xi are
independent. Then for all t > 0,

P {Z −EZ ≥ t} ≤ e−t2/(2v) .

Proof Since the proof is a simple extension of that of the bounded differences
inequality, we only sketch it. By the x-dependent bounded differences assump-
tion, for fixed X(i), conditionally, Z is a random variable whose range is in an
interval of length at most ci

(
X(i)

)
so by (6.3),

Ent(i)(eλZ)

E(i)eλZ
≤ c2i

(
X(i)

)
λ2

8

and by (6.1),

Ent(eλZ) ≤
n∑

i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
E(i)eλZ

]
=

n∑

i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
eλZ

]
.
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Since (1/4)
∑n
i=1 c

2
i (x

(i)) ≤ v, this inequality implies that

Ent(eλZ)

EeλZ
≤ λ2v

2

and the announced inequality follows by using Herbst’s argument as we did at
the end of the proof of Theorem 6.2. 2

6.3 Modified logarithmic Sobolev inequalities

In this section we present a simple inequality with the purpose of bringing sub-
additivity of entropy into a more manageable form, providing a versatile tool
for deriving exponential concentration inequalities. This tool will help us prove
inequalities under much more flexible conditions than bounded differences. This
is achieved by further developing the right-hand side of (6.1). The obtained
inequalities are closely related to the logarithmic Sobolev inequalities, that we met
in Chapter 5 but there we were restricted to functions of Bernoulli or Gaussian
random variables.

Our first modified logarithmic Sobolev inequality follows from the sub-additivity
and the variational formulation of entropy. As in the entire chapter, we consider
independent random variables X1, . . . , Xn taking values in some space X , a real-
valued function f : Xn → R, and the random variable Z = f(X1, . . . , Xn). As
in Section 3.1, we denote Zi = fi(X

(i)) = fi(X1, . . . , Xi−1, Xi+1, . . . , Xn) where
fi : Xn−1 → R is an arbitrary function.

Theorem 6.6 (a modified logarithmic sobolev inequality.) Let φ(x) =
ex − x− 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZφ (−λ(Z − Zi))

]
.

Proof We bound each term on the right-hand side of the sub-additivity of
entropy (6.1). To do this, recall that by the variational formula of entropy given
in Theorem 4.13, for any nonnegative random variable Y and for any u > 0,

E[Y log Y ]− (EY ) log(EY ) ≤ E[Y log Y − Y log u− (Y − u)] .

We use this bound conditionally. It implies that if Yi is a positive function of the
random variables X1, . . . , Xi−1, Xi+1, . . . , Xn, then

E(i)[Y log Y ]− (E(i)Y ) log(E(i)Y ) ≤ E(i) [Y (log Y − log Yi)− (Y − Yi)] .

Applying the above inequality to the variables Y = eλZ and Yi = eλZi , one
obtains

E(i)[Y log Y ]− (E(i)Y ) log(E(i)Y ) ≤ E(i)
[
eλZφ(−λ(Z − Zi))

]

and the proof is completed by (6.1). 2
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6.4 Beyond bounded differences

Simplicity and generality make the bounded differences inequality attractive and
it has become a universal tool as witnessed by its countless applications. How-
ever, it is possible to improve this simple inequality in various ways, and the
entropy method provides a versatile tool. In this section we give a first simple
example that is quite easy to obtain from the modified logarithmic Sobolev in-
equalities of the previous section, yet it turns out to have numerous interesting
applications. Its proof is essentially identical to that of Theorem 5.3 but thanks
to the generality of Theorem 6.6, we do not need to restrict ourselves to functions
of Bernoulli random variables.

Here we consider a general real-valued function of n independent random
variables Z = f(X1, . . . , Xn) and Zi denotes anX(i)-measurable random variable
defined by Zi = infx′i f(X1, . . . , x

′
i, . . . , Xn).

Theorem 6.7 Assume that Z is such that there exists a constant v > 0 such
that, almost surely,

n∑

i=1

(Z − Zi)2 ≤ v .

Then for all t > 0,

P {Z −EZ > t} ≤ e−t2/(2v) .

Proof The result follows easily from the modified logarithmic Sobolev inequal-
ity proved in the previous section. Observe that for x > 0, φ(−x) ≤ x2/2, and
therefore, for all λ > 0, Theorem 6.6 implies

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ E

[
eλZ

n∑

i=1

λ2

2
(Z − Zi)2

]

≤ λ2v

2
EeλZ ,

where we used the assumption of the theorem. The obtained inequality has the
same form as the one we already faced in the proof of Theorem 6.2 and the proof
may be finished in an identical way. 2

By replacing f by −f in the theorem above, we see that if Z is such that

n∑

i=1

(Z − Zi)2 ≤ v

with Zi = supx′i f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn), then one obtains an analo-

gous bound for the lower tail

P {Z < EZ − t} ≤ e−t2/(2v) .

As a consequence, if the condition
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n∑

i=1

(Z − Zi)2 ≤ v

is satisfied both for Zi = infx′i f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn) and for Zi =

supx′i f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn), one has the two-sided inequality

P {|Z −EZ| > t} ≤ 2e−t
2/(2v) .

To understand why this inequality is a significant step forward in comparison
with Theorem 6.2, simply observe that the conditions of Theorem 6.7 do not
require that f have bounded differences. All require is that

sup
x1,...,xn,
x′1,...,x

′
n∈X

n∑

i=1

(f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn))

2 ≤ v .

The quantity v may be interpreted as an upper bound for the Efron-Stein es-
timate of the variance V ar(Z). Many of the inequalities proved by the entropy
method in this chapter have a similar flavor: a sub-Gaussian (or sometimes sub-
gamma) tail bound where the role of the variance factor is played by a suitable
upper bound based on the Efron-Stein inequality.

Note however, that if f satisfies the bounded differences assumption (or the
x-dependent bounded differences assumption) then Theorems 6.2 and 6.5 provide
better constants in the exponent. To illustrate why Theorem 6.7 is an essential
improvement, recall the example of the largest eigenvalue of a random symmetric
matrix, as described in Example 3.14. For this example Theorem 6.5 fails to
provide a meaningful inequality.

Example 6.8 (the largest eigenvalue of a random symmetric ma-
trix.) As in Example 3.14, we consider a random symmetric real matrix A with
entries Xi,j , 1 ≤ i ≤ j ≤ n where the Xi,j are independent random variables
with absolute value bounded by 1. Let Z = λ1 denote the largest eigenvalue of
A. In Section 3.14 of Chapter 3, we have already seen that, almost surely,

∑

1≤i≤j≤n
(Z − Zi,j)2 ≤ 16 .

We used this estimate and the Efron-Stein inequality to conclude that V ar(Z) ≤
16. Using Theorem 6.7, we get, without further work, the sub-Gaussian tail
estimate

P {Z > EZ + t} ≤ e−t2/32 .

Clearly, the bounded differences inequality is useless here as it is impossible to
handle the individual differences Z − Z ′i,j in a meaningful way, while the sum
of their squares is bounded by 16. In Section 8.2 we return to this example,
re-prove the exponential tail inequality with a different method and derive a
corresponding lower-tail inequality.
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6.5 Inequalities for the lower tail

In the previous section we showed that the condition

n∑

i=1

(
f(X1, . . . , Xn)− inf

x′i

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)

)2

≤ v

guarantees a sub-Gaussian behavior for the upper tail probabilities P {Z > EZ+
t}. To get an analogous bound for the lower tail probabilities P {Z < EZ − t},
however, one needs a condition of the form

n∑

i=1

(
f(X1, . . . , Xn)− sup

x′i

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)

)2

≤ v .

In many interesting cases, only one of the two quantities can be controlled easily,
yet one would like to handle both upper and lower tails. This is always possible
under an additional condition of bounded differences. Here we show a simple
version of such a result. Note that it is not quite a sub-Gaussian but rather a
sub-Poisson bound. As we point it out in subsequent sections, there are some
important applications in which sub-Gaussian lower tail bounds hold. In partic-
ular, in Section 6.11 below we show a general sub-Gaussian lower tail inequality
under some additional conditions (see Corollary 6.24). For more discussion and
related results, we refer to Chapters 7, 9, and 15.

Theorem 6.9 Assume that X1, . . . , Xn are independent and Z = f(X1, . . . , Xn)
is such that there exists a constant v > 0 such that, almost surely,

n∑

i=1

(Zi − Z)2 ≤ v .

where Zi = supx′i f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn). Assume also that Zi−Z ≤ 1

almost surely for all i = 1, . . . , n. Then for all t > 0,

P {Z −EZ > t} ≤ e−vh(t/v) ≤ e−t2/(2(v+t/3))

where h(x) = (1 + x) log(1 + x)− x for x > −1.

Proof Our starting point is, once again, the modified logarithmic Sobolev in-
equality of Theorem 6.6. In order to bound the right-hand side of that inequality,
we need to bound E

[
eλZφ (−λ(Z − Zi))

]
with Zi defined above. The key ob-

servation is that φ(x)/x2 = (ex − x − 1)/x2 is an increasing function of x and
therefore, for any λ > 0,

φ (−λ(Z − Zi))
λ2(Z − Zi)2

≤ φ(λ)

λ2

where we used the fact that Zi − Z ≤ 1. Thus, by Theorem 6.6, for λ > 0, we
have
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d

dλ

(
1

λ
logEeλZ

)
≤ 1

λ2EeλZ

n∑

i=1

E
[
eλZφ (−λ(Z − Zi))

]

≤ φ(λ)

EeλZ
E

[
eλZ

n∑

i=1

(Z − Zi)2

]

≤ vφ(λ)

where we used the hypothesis of the theorem. Now the proof can be finished as
in Theorem 6.7, by integrating the bound above. We obtain

Eeλ(Z−EZ) ≤ eφ(λ)v .

The upper bound is just the moment generating function of a centered Poisson(v)
random variable and the tail bounds follow from the calculations shown in Sec-
tions 2.2 and 2.7. 2

Of course, by replacing f by −f , we get the analog result that if

n∑

i=1

(
f(X1, . . . , Xn)− inf

x′i

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)

)2

≤ v

(i.e., under the same condition as in Theorem 6.7) and also

f(X1, . . . , Xn)− inf
x′i

f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn) ≤ 1 ,

then for all 0 < t,

P {Z < EZ − t} ≤ e−t2/(2(v+t/3)) .

This bound explains the title of the section.

6.6 Concentration of convex Lipschitz functions

In Section 5.4 we proved the fundamental result that any Lipschitz function of
a canonical Gaussian vector has sub-Gaussian tails. The entropy method pre-
sented in the previous sections allows us to extend this to much more general
product distributions, though we need an extra convexity condition on the Lip-
schitz function. This is analogous to the relationship of the “convex” Poincaré
inequality of Section 3.5 to the Gaussian Poincaré inequality presented in Sec-
tion 3.7. We state the result for functions of n independent random variables
taking values in [0, 1]n. However, the same proof extends easily to functions of
n independent vector-valued random variables under appropriate Lipschitz and
convexity assumptions, see Exercise 6.5.

Recall that f : [0, 1]n → R is said to be separately convex if for every i =
1, . . . , n, it is a convex function of i-th variable if the rest of the variables are
fixed.
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Theorem 6.10 Let X1, . . . , Xn be independent random variables taking values
in the interval [0, 1] and let f : [0, 1]n → R be a separately convex function such
that |f(x) − f(y)| ≤ ‖x − y‖ for all x, y ∈ [0, 1]n. Then Z = f(X1, . . . , Xn)
satisfies, for all t > 0,

P {Z > EZ + t} ≤ e−t2/2 .

Proof We may assume without loss of generality that the partial derivatives of
f exist. (Otherwise one may approximate f by a smooth function by a standard
argument.) By Theorem 6.7 it suffices to bound the random variable

∑n
i=1(Z −

Zi)
2 where Zi = infx′i f(X1, . . . , x

′
i, . . . , Xn). But we have already shown in the

proof of Theorem 3.17 that

n∑

i=1

(Z − Zi)2 ≤ ‖∇(f(X))‖2 ≤ 1

where at the last step we used the Lipschitz property of f . Therefore, Theorem
6.7 is applicable with v = 1. 2

Note that a naive bound using the Lipschitz condition would only give the

bound
∑n
i=1

(
f(X)− f(X

(i)
)
)2

≤ 4n. The convexity assumption provides an

immense improvement over this simple bound.

Example 6.11 (the largest singular value of a random matrix.) Con-
sider again Example 3.18, that is, let Z be the largest singular value of an m×n
matrix with independent entries Xi,j (i = 1, . . . ,m, j = 1, . . . , n) taking values
in [0, 1]. As we pointed out, Z is a convex function of the Xi,j , which is also
Lipschitz, so Theorem 6.10 implies

P {Z > EZ + t} ≤ e−t2/2 .

Here we assumed that all entries of the matrix A are independent. This assump-
tion may be weakened at the price of obtaining a weaker sub-Gaussian bound.
The same argument may be used to establish concentration properties of the
largest singular value of a matrix whose columns are independent vectors but
the components of these vectors are not necessarily independent, see Exercise
6.6.

6.7 Exponential inequalities for self-bounding functions

In this section we revisit self-bounding functions introduced in Section 3.3. Recall
that a function f : Xn → R is said to have the self-bounding property if for some
functions fi : Xn−1 → R, for all x = (x1, . . . , xn) ∈ Xn and for all i = 1, . . . , n,

0 ≤ f(x)− fi(x(i)) ≤ 1

and
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n∑

i=1

(
f(x)− fi(x(i))

)
≤ f(x) ,

where, as usual, x(i) = (x1, . . . , xi−1, xi+1, . . . , xn). If X1, . . . , Xn are indepen-
dent random variables taking values in X and Z = f(X1, . . . , Xn) for a self-
bounding function f , then the Efron-Stein inequality implies V ar(Z) ≤ EZ .
We have seen several interesting examples of self-bounding functions, includ-
ing various configuration functions, Rademacher averages (Section 3.3), and the
combinatorial entropies introduced in Section 4.5. Here, building on the modified
logarithmic Sobolev inequality of Theorem 6.6, we obtain exponential concen-
tration bounds for self-bounding functions.

To state the main result of this section, recall the definition of the follow-
ing two functions that we have already seen in Bennett’s inequality and in the
modified logarithmic Sobolev inequalities above:

h(u) = (1 + u) log(1 + u)− u, u ≥ −1

and
φ(v) = sup

u≥−1
(uv − h(u)) = ev − v − 1 .

Theorem 6.12 Assume that Z satisfies the self-bounding property. Then for
every λ ∈ R,

logEeλ(Z−EZ) ≤ φ(λ)EZ .

Moreover, for every t > 0,

P {Z ≥ EZ + t} ≤ exp

(
−h
(

t

EZ

)
EZ

)

and for every 0 < t ≤ EZ,

P {Z ≤ EZ − t} ≤ exp

(
−h
(
− t

EZ

)
EZ

)
.

By recalling that h(u) ≥ u2/(2+2u/3) for u ≥ 0 (we have already used this in
the proof of Bernstein’s inequality, see Exercise 2.8) and observing that h(u) ≥
u2/2 for u ≤ 0, we obtain the following immediate perhaps more transparent
corollaries: for every t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2EZ + 2t/3

)

and for every 0 < t ≤ EZ,

P {Z ≤ EZ − t} ≤ exp

(
− t2

2EZ

)
.

In these sub-gamma tail bounds the variance factor EZ is the Efron-Stein upper
bound of the variance V ar(Z).
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Proof We first invoke the modified logarithmic Sobolev inequality (Theorem
6.6). Since the function φ is convex with φ(0) = 0, for any λ and any u ∈
[0, 1] , φ(−λu) ≤ uφ(−λ). Thus, since Z − Zi ∈ [0, 1], we have, for every λ,
φ(−λ (Z − Zi)) ≤ (Z − Zi)φ(−λ) and therefore, Theorem 6.6 and the condition∑n
i=1(Z − Zi) ≤ Z imply that

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ E

[
φ(−λ)eλZ

n∑

i=1

(Z − Zi)
]

≤ φ(−λ)E
[
ZeλZ

]
.

Define, for λ ∈ R, F (λ) = Eeλ(Z−EZ). Then the inequality above becomes

[λ− φ(−λ)]
F ′(λ)

F (λ)
− logF (λ) ≤ φ(−λ)EZ ,

which, writing G(λ) = logF (λ), implies

(
1− e−λ

)
G′(λ)−G(λ) ≤ φ(−λ)EZ .

For λ > 0 this inequality is equivalent to

(
G(λ)

eλ − 1

)′
≤ EZ ·

( −λ
eλ − 1

)′
.

The last differential inequality is straightforward to solve and we obtain, for
λ > λ0 > 0,

G(λ) ≤
(
eλ − 1

)( G(λ0)

eλ0 − 1
+ EZ

(
λ0

eλ0 − 1
− λ

eλ − 1

))
.

Letting λ0 tend to 0 and observing that limλ0→0 λ0/(e
λ0 − 1) = 1 and that, by

l’Hospital’s rule, limλ0→0G(λ0)/(eλ0 − 1) = E[Z −EZ] = 0, we get

G(λ) ≤ φ(λ)EZ ,

which is the first inequality of the theorem.
On the right-hand side we recognize the moment generating function of a cen-

tered Poisson random variable with parameter EZ. The probability bounds are
the corresponding Poisson tail inequalities are obtained by Chernoff’s bounding,
as calculated in Section 2.2. 2

Theorem 6.12 provides concentration inequalities for any function satisfying
the self-bounding property. In Sections 3.3 and 4.5 several examples of such
functions are discussed. Here we mention one more example.

Example 6.13 (maximal degree in a random graph.) Consider the Erdős-
Rényi G(n, p) model of a random graph. In this model a graph of n vertices is



178 The entropy method

obtained if each one of the m =
(
n
2

)
possible edges is selected, independently,

with probability p. The degree of a vertex is the number of edges adjacent to
that vertex. Note that the degree of any vertex is a binomial (n− 1, p) random
variable. Let D denote the maximal degree of any vertex in the graph. Clearly,
D is a configuration function, so Theorem 6.12 applies. See Exercise 6.14 for
properties of D.

Next we write out explicitly what the theorem implies for combinatorial en-
tropies, defined in Section 4.5.

Theorem 6.14 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such
that for all x ∈ Xn and i ≤ n,

h(x)− h(x(i)) ≤ 1 .

If X = (X1, . . . , Xn) is a vector of n independent random variables taking values
in X , then the random combinatorial entropy Z = h(X) satisfies

P {Z ≥ EZ + t} ≤ exp

(
− t2

2EZ + 2t/3

)
,

and

P {Z ≤ EZ − t} ≤ exp

(
− t2

2EZ

)
.

Moreover,

E logb |tr(X)| ≤ logbE|tr(X)| ≤ b− 1

log b
E logb |tr(X)| .

Note that the left-hand side of the last statement follows from Jensen’s in-
equality, while the right-hand side by taking λ = log b in the first inequality of
Theorem 6.12. One of the examples of combinatorial entropies, defined in Section
4.5, is vc entropy. For the random vc entropy T (X), we obtain

E log2 T (X) ≤ log2 ET (X) ≤ (log2 e)E log2 T (X) .

This last statement shows that the expected vc entropy E log2 T (X) and the
annealed vc entropy log2 ET (X) are tightly connected, regardless of the class of
sets A and the distribution of the Xi’s.

The same inequality holds for the logarithm of the number of increasing
subsequences of a random permutation (see Section 4.5 for the definitions).

6.8 Symmetrized modified logarithmic Sobolev inequalities

One of the most useful forms of the Efron-Stein inequality establishes an upper
bound for the variance of Z = f(X1, . . . , Xn) in terms of the behavior of the ran-
dom variables Z−Z ′i where Z ′i = f(X1, . . . , X

′
i, . . . , Xn) is obtained by replacing
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the variable Xi by an independent copy X ′i (see Theorem 3.1). The purpose of
the next few sections is the search for exponential concentration inequalities in-
volving the differences Z − Z ′i. The following symmetrized modified logarithmic
Sobolev inequality is at the basis of such the exponential tail inequalities.

Theorem 6.15 (symmetrized modified logarithmic sobolev inequali-
ties.) For all λ ∈ R,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZφ (−λ(Z − Z ′i))

]

where φ(x) = ex − x− 1. Moreover, denoting τ(x) = x(ex − 1), for all λ ∈ R,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZτ(−λ(Z − Z ′i)+)

]
,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZτ(λ(Z ′i − Z)+)

]
.

Proof The first inequality is proved exactly as Theorem 6.6, simply by noting
that, just like Zi, Z

′
i is also independent of Xi. To prove the second and third

inequalities, write

eλZφ (−λ(Z − Z ′i)) = eλZφ (−λ(Z − Z ′i)+) + eλZφ (λ(Z ′i − Z)+) .

By symmetry, the conditional expectation of the second term, conditioned on
X1, . . . , Xi−1, Xi+1, . . . , Xn, may be written as

E(i)
[
eλZφ (λ(Z ′i − Z)+)

]
= E(i)

[
eλZ

′
iφ (λ(Z − Z ′i)+)

]

= E(i)
[
eλZe−λ(Z−Z′i)φ (λ(Z − Z ′i)+)

]
.

Summarizing, we have

E(i)
[
eλZφ (−λ(Z − Z ′i))

]

= E(i)
[(
φ (−λ(Z − Z ′i)+) + e−λ(Z−Z′i)φ (λ(Z − Z ′i)+)

)
eλZ

]
.

The second inequality of the theorem follows simply by noting that φ(x) +
exφ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. 2

6.9 Exponential Efron-Stein inequalities

Recall that by the Efron-Stein inequality, if X = (X1, . . . , Xn) is a vector of
independent random variables, then the variance of Z = f(X) is bounded as

V ar(Z) ≤ 1

2

n∑

i=1

E
[
(Z − Z ′i)

2
]
.
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If we denote by E′[·] = E[·|X] expectation with respect to the variablesX ′1, . . . , X
′
n

only, then by introducing the random variables

V + =

n∑

i=1

E′
[
(Z − Z ′i)2

+

]

and

V − =

n∑

i=1

E′
[
(Z − Z ′i)2

−
]
,

the Efron-Stein inequality can be written in either one of the equivalent forms

V ar(Z) ≤ EV + and V ar(Z) ≤ EV − .

The message of the next theorem is that upper bounds for the moment generating
function of the random variables V + and V − may be translated into exponen-
tial concentration inequalities for Z. In a sense, these may be understood as
exponential versions of the Efron-Stein inequality.

Theorem 6.16 Let Z = f(X1, . . . , Xn) be a real-valued function of n indepen-

dent random variables. Let θ, λ > 0 be such that θλ < 1 and EeλV
+/θ < ∞.

Then

logEeλ(Z−EZ) ≤ λθ

1− λθ logEeλV
+/θ .

Next assume that Z is such that Z ′i − Z ≤ 1 for every 1 ≤ i ≤ n. Then for all
λ ∈ (0, 1/2),

logEeλ(Z−EZ) ≤ 2λ

1− 2λ
logEeλV

−
.

Proof The proof of the first statement is based on the second inequality of
Theorem 6.15. To apply this inequality, we need to establish appropriate upper
bounds for the quantity

∑n
i=1 E

[
eλZτ(−λ(Z − Z ′i)+)

]
appearing on the right-

hand side. By noting that τ(−x) ≤ x2 for all x ≥ 0, we see that it suffices to
bound

n∑

i=1

E
[
eλZλ2(Z − Z ′i)2

+

]
= λ2E

[
V +eλZ

]
.

In previous applications of the entropy method, our strategy was to relate E
[
V +eλZ

]

to quantities expressed as a functional of the random variable Z. Here our ap-
proach is different: we bound the right-hand side by something that involves the
moment generating function of Z and a functional of V +. In order to do this, we
“decouple” the random variables eλZ and V +.
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The duality formula of the entropy given in Theorem 4.13 serves as an ideal
tool for this purpose. Recall that the duality formula implies that for any random
variable W such that EeW <∞,

E
[(
W − logEeW

)
eλZ

]
≤ Ent(eλZ) ,

or equivalently,

E
[
WeλZ

]
≤ E

[
eλZ

]
logE

[
eW
]

+ Ent(eλZ) .

A natural choice for W is λV + but it is advantageous to introduce a free param-
eter θ > 0 and apply the “decoupling” inequality above with W = λV +/θ. Now
the symmetrized modified logarithmic Sobolev inequality becomes

Ent(eλZ) ≤ λθ
(
E
[
eλZ

]
logE

[
eλV

+/θ
]

+ Ent(eλZ)
)
.

Rearranging, and writing ρ(λ) = logEeλV
+

for the logarithmic moment gener-
ating function of V +, we have

(1− λθ) Ent(eλZ) ≤ λθρ(λ/θ)EeλZ

which, of course, is only meaningful if λθ < 1. If, as before, we let G(λ) =
logEeλ(Z−EZ), then the previous inequality becomes

λG′(λ)−G(λ) ≤ λθ

1− λθρ(λ/θ) .

This differential inequality is of the form that we have already encountered and
indeed, by Lemma 6.25,

G(λ) ≤ λθ
∫ λ

0

ρ(u/θ)

u(1− uθ)du .

Since ρ(0) = 0, the convexity of ρ implies that ρ(u/θ)/(u(1 − uθ)) is a non-
decreasing function and therefore

G(λ) ≤ θλρ(λ/θ)

1− λθ ,

and the first inequality of the theorem follows.
To prove the second statement of the theorem, we start with the last inequal-

ity of Theorem 6.15 which may be written as

Ent
(
eλZ

)
≤

n∑

i=1

E

[
eλZλ2(Z ′i − Z)2

+

eλ(Z′i−Z)+ − 1

λ(Z ′i − Z)+

]
.

Since (ex−1)/x is an increasing function, the conditions Z ′i−Z ≤ 1 and λ < 1/2
imply that

Ent
(
eλZ

)
≤ λ2

n∑

i=1

E
[
eλZ(Z ′i − Z)2

+2
(
e1/2 − 1

)]
≤ 2λ2E

[
eλZV −

]

The rest of the proof is the same as for the first inequality of the theorem. 2
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6.10 A modified logarithmic Sobolev inequality for the Poisson
distribution

In the previous sections we derived modifications of the Gaussian logarithmic
Sobolev inequality that allowed us to prove concentration inequalities for func-
tions of independent random variables of arbitrary distribution. For certain spe-
cific distributions, apart from the normal distribution, sharper inequalities are
available. Here we show such a “modified logarithmic Sobolev inequality” for
Poisson random variables. Recall that X has a Poisson distribution with param-
eter µ > 0 if X takes nonnegative integer values and for every k = 0, 1, . . . ,
P {X = k} = µke−µ/k!.

If f is a real-valued function defined on the set of nonnegative integers N,
then define the discrete derivative of f at x ∈ N by Df(x) = f(x+ 1)− f(x). If
one wanted to establish a “discrete” analog of the Gaussian logarithmic Sobolev
inequality, perhaps one would hope to prove that all functions f : N → R,
Ent(f2(X)) ≤ κE[|Df(X)|2] for some constant κ. Unfortunately, such a result
is not true if X is Poisson because the supremum of Ent((f(X))2)/E[(Df(X))2]
is infinite.

However, Theorem 6.15 may be used to prove the following modified loga-
rithmic Sobolev inequalities for Poisson distributions, which is a refinement of
the Poisson Poincaré inequality of Exercise 3.21.

Theorem 6.17 (poisson logarithmic sobolev inequality.) Let X be a
Poisson random variable and let f : N→ (0,∞). Then

Ent(f(X)) ≤ (EX)E [Df(X)D log f(X)] ,

and

Ent[f(X)] ≤ (EX)E

[ |Df(X)|2
f(X)

]
.

The theorem may be proved by an argument similar to the way we proved
the Gaussian logarithmic Sobolev inequality: first we establish an inequality for
the Bernoulli distribution (see the lemma below) and then use the convergence
of the binomial distribution to Poisson. We leave the details of the proof to the
reader.

Lemma 6.18 (modified logarithmic sobolev inequalities for bernoulli
distributions) For any function f : {0, 1} → (0,∞), let ∇f(x) = f(1 − x) −
f(x). Let p ∈ (0, 1), and let X be a Bernoulli random variable with parameter p
(i.e., P {X = 1} = 1− P {X = 0} = p). Then

Ent(f(X)) ≤ p(1− p)E [∇f(X)∇ log f(X)]

and

Ent(f(X)) ≤ p(1− p)E
[ |∇f(X)|2

f(X)

]
.
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Proof We only prove the first inequality. The proof of the second one is left as
an exercise. Let X ′ be an independent copy of X. Let q = 1 − p. By the first
inequality of Theorem 6.15, taking λ = 1 and Z = log f(X),

Ent(f(X)) ≤ E [f(X)φ(log(f(X ′)/f(X)))]

= E [f(X ′)− f(X)− f(X)(log(f(X ′))− log(f(X)))]

= pq [−f(1)(log(f(0)− log f(1)))] + pq [−f(0)(log(f(1)− log f(0)))]

= pqE [∇f(X)∇ log f(X)] .

2

It is easy to deduce from Theorem 6.17 that the square root of a Poisson
random variable X satisfies

logEeλ(
√
X−E

√
X) ≤ v(eλ − 1) .

where v = (EX)E[1/(4X + 1)]. This represents an improvement over what can
be obtained from Theorem 6.29 below, see Exercise 6.12.

6.11 Weakly self-bounding functions

Self-bounding functions, discussed in Section 6.7, appear naturally in numer-
ous applications including configuration functions and combinatorial entropies.
Theorem 6.12 is quite satisfactory as it cannot be improved in this generality
and its proof is rather simple. However, often one faces functions that only sat-
isfy slightly weaker conditions. A prime example, presented in Chapter 7, is the
squared “convex distance.” To be able to handle this example, as well as various
other naturally emerging cases, we generalize the definition of self-bounding func-
tions in two different ways. This section is dedicated to inequalities for such gen-
eralized self-bounding functions. The proofs are variants of the entropy method,
all based on the modified logarithmic Sobolev inequality of Theorem 6.6. How-
ever, the resulting differential inequality for the moment generating function is
not always as easy to solve as in Theorems 6.7 and 6.12 and most of our effort
is devoted to the solution of these differential inequalities.

We distinguish two notions of generalized self-bounding functions. In both of
the following definitions, a and b are nonnegative constants.

A nonnegative function f : Xn → [0,∞) is called weakly (a, b)-self-bounding
if there exist functions fi : Xn−1 → [0,∞) such that for all x ∈ Xn,

n∑

i=1

(
f(x)− fi(x(i))

)2

≤ af(x) + b .

On the other hand, we say that a function f : Xn → [0,∞) is strongly (a, b)-self-
bounding if there exist functions fi : Xn−1 → [0,∞) such that for all i = 1, . . . , n
and all x ∈ Xn,

0 ≤ f(x)− fi(x(i)) ≤ 1 ,
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and
n∑

i=1

(
f(x)− fi(x(i))

)
≤ af(x) + b .

Clearly, a self-bounding function is strongly (1, 0)-self-bounding and every strongly
(a, b)-self-bounding function is weakly (a, b)-self-bounding. In both cases, the
Efron-Stein inequality implies V ar(Z) ≤ aEZ+ b. Indeed, this quantity appears
as a variance factor in the exponential bounds established below.

We present three inequalities. The simplest is an inequality for the upper
tails of weakly (a, b)-self-bounding functions.

Theorem 6.19 Let X = (X1, . . . , Xn) be a vector of independent random vari-
ables, each taking values in a measurable set X , let a, b ≥ 0 and let f : Xn →
[0,∞) be a weakly (a, b)-self-bounding function. Let Z = f(X). If, in addition,
fi(x

(i)) ≤ f(x) for all i ≤ n and x ∈ Xn, then for all 0 ≤ λ ≤ 2/a,

logEeλ(Z−EZ) ≤ (aEZ + b)λ2

2(1− aλ/2)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2 (aEZ + b+ at/2)

)
.

Proof Once again, our starting point is the modified logarithmic Sobolev in-
equality. Write Zi = fi(X

(i)). The main observation is that for x ≥ 0, φ(−x) ≤
x2/2. Since Z − Zi ≥ 0, for λ > 0, by further bounding the right-hand side of
the inequality of Theorem 6.6, we obtain

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ λ2

2
E

[
eλZ

n∑

i=1

(Z − Zi)2

]

≤ λ2

2
E
[
(aZ + b)eλZ

]

where we used the assumption that f is weakly (a, b)-self-bounding. Introducing
G(λ) = logEeλ(Z−EZ), the inequality obtained above may be re-arranged to
read (

1

λ
− a

2

)
G′(λ)− G(λ)

λ2
≤ v

2

where we wrote v = aEZ + b.
To finish the proof, simply observe that the left-hand side is just the derivative

of the function (1/λ− a/2)G(λ). Using the fact that G(0) = G′(0) = 0, and that
G′(λ) ≥ 0 for λ > 0, integrating this differential inequality leads to

G(λ) ≤ vλ2

2(1− aλ/2)
for all λ ∈ [0, 2/a) .



Weakly self-bounding functions 185

This shows that Z−EZ is a sub-gamma random variable with variance factor v =
aEZ + b and scale parameter a/2. The tail bound follows from the calculations
shown is Section 2.4. 2

The next theorem provides lower tail inequalities for weakly (a, b)-self-bounding
functions. This result will turn out to be essential in proving the convex distance
inequality in Section 7.4.

Theorem 6.20 Let X = (X1, . . . , Xn) be a vector of independent random vari-
ables, each taking values in a measurable set X , let a, b ≥ 0 and let f : Xn →
[0,∞) be a weakly (a, b)-self-bounding function. Let Z = f(X) and define c =
(3a− 1)/6. If, in addition, f(x)− fi(x(i)) ≤ 1 for each i ≤ n and x ∈ Xn, then
for 0 < t ≤ EZ,

P {Z ≤ EZ − t} ≤ exp

(
− t2

2 (aEZ + b+ c−t)

)
.

Note that if a ≥ 1/3, then the left tail is sub-Gaussian with variance proxy
aEZ + b while for a < 1/3 we only obtain a sub-gamma tail bound.

The proof of this theorem is shown below, together with the proof of the
following upper tail inequality for strongly (a, b)-self-bounding functions.

Theorem 6.21 Let X = (X1, . . . , Xn) be a vector of independent random vari-
ables, each taking values in a measurable set X , let a, b ≥ 0 and let f : Xn →
[0,∞) be a strongly (a, b)-self-bounding function. Let Z = f(X) and define
c = (3a− 1)/6. Then for all λ ≥ 0,

logEeλ(Z−EZ) ≤ (aEZ + b)λ2

2(1− c+λ)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2 (aEZ + b+ c+t)

)
.

In this upper tail bound we observe a similar phenomenon as in Theorem
6.20 but with a different sign. If a ≤ 1/3, then the upper tail of a strongly
(a, b)-self-bounding function is purely sub-Gaussian.

Our starting point is once again the modified logarithmic Sobolev inequality
of Theorem 6.6.

If λ ≥ 0 and f is strongly (a, b)-self-bounding, then, using Z − Zi ≤ 1 and
the fact that for all x ∈ [0, 1], φ(−λx) ≤ xφ(−λ),

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ φ(−λ)E

[
eλZ

n∑

i=1

(Z − Zi)
]

≤ φ(−λ)E
[
(aZ + b) eλZ

]
.
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For any λ ∈ R, define G(λ) = logEe(λZ−EZ). Then the previous inequality may
be written as the differential inequality

[λ− aφ(−λ)]G′(λ)−G(λ) ≤ vφ(−λ) , (6.4)

where v = aEZ + b.
On the other hand, if λ ≤ 0 and f is weakly (a, b)-self-bounding, then since

φ(x)/x2 is non-decreasing over R+, φ(−λ(Z − Zi)) ≤ φ(−λ)(Z − Zi)2 so

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ φ(−λ)E

[
eλZ

n∑

i=1

(Z − Zi)2

]

≤ φ(−λ)E
[
(aZ + b)eλZ

]
.

This again leads to the differential inequality (6.4) but this time for λ ≤ 0.
When a = 1, this differential inequality can be solved exactly as we saw it in

the proof of Theorem 6.12, and one obtains the sub-Poissonian inequality

G(λ) ≤ vφ(λ) .

However, when a 6= 1, it is not obvious what kind of bounds for G should be
expected. If a > 1, then λ − aφ(−λ) becomes negative when λ is large enough.
Since both G′(λ) and G(λ) are nonnegative when λ is nonnegative, (6.4) becomes
trivial for large values of λ. Hence, at least when a > 1, there is no hope to derive
Poissonian bounds from (6.4) for positive values of λ (i.e., for the upper tail).

The following lemma, proved in Section 6.12 below, is the key in the proof of
both Theorems 6.20 and 6.21. It shows that if f satisfies a self-bounding property,
then on the relevant interval, the logarithmic moment generating function of
Z −EZ is upper bounded by v times a function Gγ defined by

Gγ(λ) =
λ2

2(1− γλ)
for every λ such that γλ < 1

where γ ∈ R is a real-valued parameter. In the lemma below we mean c−1
+ =∞

(resp. c−1
− =∞) when c+ = 0 (resp. c− = 0).

Lemma 6.22 Let a, v > 0 and let G be a solution of the differential inequality

[λ− aφ (−λ)]H ′ (λ)−H(λ) ≤ vφ (−λ) .

Define c = (a− 1/3)/2. Then, for every λ ∈
(
0, c−1

+

)

G(λ) ≤ vGc+(λ)

and for every λ ∈ (−θ, 0)
G(λ) ≤ vG−c−(λ)

where θ = c−1
− (1−√1− 6c−) if c− > 0 and θ = a−1 whenever c− = 0.
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The proof is given in the next section. Equipped with this lemma, it is now
easy to get both Theorems 6.20 and 6.21.

Proof of Theorem 6.20 We have to check that the condition λ > −θ is
harmless. Since θ < c−1

− , by continuity, for every t > 0,

sup
u∈(0,θ)

(
tu− u2v

2 (1− c−u)

)
= sup
u∈(0,θ]

(
tu− u2v

2 (1− c−u)

)
.

Note that we are only interested in values of t that are smaller than EZ ≤ v/a.
Now the supremum of

tu− u2v

2 (1− c−u)

as a function of u ∈
(
0, c−1
−
)

is achieved either at ut = t/v (if c− = 0) or at

ut = c−1
−
(

1− (1 + (2tc−/v))
−1/2

)
(if c− > 0).

It is time to take into account the restriction t ≤ v/a. In the first case,
when ut = t/v, this implies that ut ≤ a−1 = θ, while in the second case,

since a = (1− 6c−) /3 it implies that 1 + (2tc−/v) ≤ (1− 6c−)
−1

and therefore
ut ≤ c−1

− (1−√1− 6c−) = θ. In both cases ut ≤ θ which means that for every
t ≤ v/a

sup
u∈(0,θ]

(
tu− u2v

2 (1− c−u)

)
= sup
u∈(0,c−1

− )

(
tu− u2v

2 (1− c−u)

)

and the result follows. 2

Proof of Theorem 6.21 The upper-tail inequality for strongly (a, b)-self-bounding
functions follows from Lemma 6.22 and Markov’s inequality by routine calcula-
tions, exactly as in the proof of Bernstein’s inequality when c+ > 0 and it is
straightforward when c+ = 0. 2

Example 6.23 (the square of a regular function.) To illustrate the
use of the results of this section, consider a function g : Xn → R and assume
that there exists a constant v > 0 and that there are measurable functions
gi : Xn−1 → R such that for all x ∈ Xn, g(x) ≥ gi(x(i)),

n∑

i=1

(
g(x)− g(x(i))

)2

≤ v .

We may call such a function v-regular. If X = (X1, . . . , Xn) ∈ Xn is a vector of
independent X -valued random variables, then by Theorem 6.7, for all t > 0,

P {g(X) ≥ Eg(X) + t} ≤ e−t2/(2v) .

Even though Theorem 6.7 provides an exponential inequality for the lower tail, it
fails to give an analogous sub-Gaussian bound for P {g(X) ≤ Eg(X)− t}. Here



188 The entropy method

we show how Theorem 6.20 may be used to derive lower-tail bounds under an
additional bounded-differences condition for the square of g:

Corollary 6.24 Let g : Xn → R be a v-regular function such that for all x ∈ Xn
and i = 1, . . . , n, g(x)2 − gi(x(i))2 ≤ 1. Then for all t ≥ 0,

P
{
g(X)2 ≤ E

[
g(X)2

]
− t
}
≤ exp

( −t2
8vE [g(X)2] + t(4v − 1/3)−

)
.

In particular, if g is nonnegative and v ≥ 1/12, then for all 0 ≤ t ≤ Eg(X),

P {g(X) ≤ Eg(X)− t} ≤ e−t2/(8v) .

Proof Introduce f(x) = g(x)2 and fi(x
(i)) = gi(x

(i))2. Then

0 ≤ f(x)− fi(x(i)) ≤ 1 .

Moreover,

n∑

i=1

(
f(x)− fi(x(i))

)2

=

n∑

i=1

(
g(x)− gi(x(i))

)2 (
g(x) + gi(x

(i))
)2

= 4g(x)2
n∑

i=1

(
g(x)− gi(x(i))

)2

≤ 4vf(x)

and therefore f is weakly (4v, 0)-self-bounding. This means that Theorem 6.20
is applicable and this is how the first inequality is obtained.

The second inequality follows from the first by noting that,

P {g(X) ≤ Eg(X)− t} ≤ P
{
g(X)

√
E [g(X)2] ≤ E

[
g(X)2

]
− t
√
E [g(X)2]

}

≤ P
{
g(X)2 ≤ E

[
g(X)2

]
− t
√
E [g(X)2]

}

and now the first inequality may be applied. 2

For a more concrete class of applications, consider a nonnegative separately
convex Lipschitz function g defined on [0, 1]n. If X = (X1, . . . , Xn) are indepen-
dent random variables taking values in [0, 1], then by Theorem 6.10,

P {g(X)−Eg(X) > t} ≤ e−t2/2 .

Now we may derive a lower-tail inequality for g, under the additional assumption
that g2 takes its values in an interval of length 1. Indeed, without loss of generality
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we may assume that g is differentiable on [0, 1]n because otherwise one may
approximate g by a smooth function in a standard way. Then, denoting

gi(x
(i)) = inf

x′i∈X
g(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ,

by separate convexity,

g(x)− gi(x(i)) ≤
∣∣∣∣
∂g

∂xi
(x)

∣∣∣∣ .

Thus, for every x ∈ [0, 1]n,

n∑

i=1

(
g(x)− gi(x(i))

)2

≤ 1 .

We return to the this problem in Section 7.5 where we will be able to drop the
extra assumptions on the range of g2.

For a concrete example, consider the `p norm ‖x‖p for some p ≥ 2. Then
g(x) = ‖x‖p is convex and Lipschitz, so we obtain that if X = (X1, . . . , Xn) is a
vector of independent random variables taking values in an interval of length 1,
then for all t > 0,

P
{
‖X‖2p ≤ E‖X‖2p − t

}
≤ e−t2/(8E‖X‖2p)

and
P {‖X‖p ≤ E‖X‖p − t} ≤ e−t

2/8 .

6.12 Proof of Lemma 6.22

The key to the success of the entropy method is that the differential inequalities
for the logarithmic moment generating function of Z can be solved in many
interesting cases. The cases handled so far all turned out to be easily solvable by
lucky coincidences. Here we try to extract the essence of these circumstances and
generalize them so that one can to deal with a large family of solvable differential
inequalities. The next lemma establishes some simple sufficient conditions. Then
Lemma 6.26 will allow us to use this lemma to cope with more difficult cases
and this will lead to the proof of Lemma 6.22.

Lemma 6.25 Let f be a non-decreasing continuously differentiable function on
some interval I containing 0 such that f(0) = 0, f ′(0) > 0 and f(x) 6= 0 for
every x 6= 0. Let g be a continuous function on I and consider an infinitely many
times differentiable function G on I such that G(0) = G′(0) = 0 and for every
λ ∈ I,

f(λ)G′(λ)− f ′(λ)G(λ) ≤ f2(λ)g(λ) .

Then, for every λ ∈ I, G(λ) ≤ f(λ)
∫ λ

0
g(x)dx.
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Note that the special case when f(λ) = λ, and g(λ) = L2/2 is the differential
inequality obtained, for example, in Theorems 5.3 and 6.7 and is used to ob-
tain sub-Gaussian concentration inequalities. If we choose f(λ) = eλ − 1 and
g(λ) = −d(λ/eλ − 1)/dλ, we recover the differential inequality seen in the proof
of Theorem 6.12.

Proof Define ρ(λ) = G(λ)/f(λ), for every λ 6= 0 and ρ(0) = 0. Using the
assumptions on G and f , we see that ρ is continuously differentiable on I with

ρ′(λ) =
f(λ)G′(λ)− f ′(λ)G(λ)

f2(λ)
for λ 6= 0 and ρ′(0) =

G′′(0)

2f ′(0)
.

Hence f (λ)G′ (λ)− f ′ (λ)G (λ) ≤ f2 (λ) g (λ) implies that

ρ′ (λ) ≤ g (λ)

and therefore that the function ∆(λ) =
∫ λ

0
g(x)dx− ρ(λ) is nondecreasing on I.

Since ∆(0) = 0, ∆ and f have the same sign on I, which means that ∆(λ)f(λ) ≥
0 for λ ∈ I and the result follows. 2

Except when a = 1, the differential inequality (6.4) cannot be solved exactly.
A roundabout is provided by the following lemma that compares the solutions of
a possibly difficult differential inequality with solutions of a differential equation.

Lemma 6.26 Let I be an interval containing 0 and let ρ be continuous on I.
Let a ≥ 0 and v > 0. Let H : I → R, be an infinitely many times differentiable
function satisfying

λH ′(λ)−H(λ) ≤ ρ(λ) (aH ′(λ) + v)

with

aH ′(λ) + v > 0 for every λ ∈ I and H ′(0) = H(0) = 0 .

Let ρ0 : I → R be a function. Assume that G0 : I → R is infinitely many times
differentiable such that for every λ ∈ I,

aG′0(λ) + 1 > 0 and G′0(0) = G0(0) = 0 and G′′0(0) = 1 .

Assume also that G0 solves the differential equation

λG′0(λ)−G0(λ) = ρ0(λ) (aG′0(λ) + 1) .

If ρ(λ) ≤ ρ0(λ) for every λ ∈ I, then H ≤ vG0.
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Proof Let I, ρ, a, v,H,G0, ρ0 be defined as in the statement of the lemma.
Combining the assumptions on H, ρ0, ρ and G0,

λH ′(λ)−H(λ) ≤ (λG′0(λ)−G0(λ)) (aH ′(λ) + v)

aG′0(λ) + 1

for every λ ∈ I, or equivalently,

(λ+ aG0(λ))H ′(λ)− (1 + aG′0(λ))H(λ) ≤ v (λG′0(λ)−G0(λ)) .

Setting f(λ) = λ+ aG0(λ) for every λ ∈ I and defining g : I → R by

g(λ) =
v (λG′0(λ)−G0(λ))

(λ+ aG0(λ))
2 if λ 6= 0 and g(0) =

v

2
,

our assumptions on G0 imply that g is continuous on the whole interval I so
that we may apply Lemma 6.25. Hence, for every λ ∈ I

H(λ) ≤ f(λ)

∫ λ

0

g(x)dx = vf(λ)

∫ λ

0

(
G0(x)

f(x)

)′
dx

and the conclusion follows since limx→0G0(x)/f(x) = 0. 2

Observe that the differential inequality in the statement of Lemma 6.22 has
the same form as the inequalities considered in Lemma 6.26 where φ replaces ρ.
Note also that for any γ ≥ 0,

2Gγ(λ) =
λ2

1− γλ
solves the differential inequality

λH ′(λ)−H(λ) = λ2(γH ′(λ) + 1) . (6.5)

So choosing γ = a and recalling that for λ ≥ 0, φ(−λ) ≤ λ2/2, it follows
immediately from Lemma 6.26, that

G(λ) ≤ λ2v

2(1− aλ)
for λ ∈ (0, 1/a) .

Since G is the logarithmic moment generating function of Z −EZ, this can be
used to derive a Bernstein-type inequality for the left tail of Z. However, the
obtained constants are not optimal, so proving Lemma 6.22 requires some more
care.

Proof of Lemma 6.22 The function 2Gγ may be the unique solution of equa-
tion (6.5) but this is not the only equation Gγ is the solution of. Define

ργ(λ) =
λG′γ(λ)−Gγ(λ)

1 + aG′γ(λ)
.

Then, on some interval I, Gγ is the solution of the differential equation

λH ′(λ)−H(λ) = ργ(λ)(1 + aH ′(λ)) ,

provided 1 + aG′γ remains positive on I.
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Thus, we have to look for the smallest γ ≥ 0 such that, on the relevant
interval I (with 0 ∈ I), we have both φ(−λ) ≤ ργ(λ) and 1 + aG′γ(λ) > 0 for
λ ∈ I.

Introduce

Dγ(λ) = (1− γλ)2(1 + aG′γ(λ)) = (1− γλ)2 + aλ

(
1− γλ

2

)

= 1 + 2(a/2− γ)λ− γ(a/2− γ)λ2 .

Observe that ργ(λ) = λ2/(2Dγ(λ)).
For any interval I, 1 + aG′γ(λ) > 0 for λ ∈ I holds if and only if Dγ(λ) > 0

for λ ∈ I. Hence, if Dγ(λ) > 0 and φ(−λ) ≤ ργ(λ), then it follows from Lemma
6.26 that for every λ ∈ I, we have G(λ) ≤ vGγ(λ).

We first deal with intervals of the form I = [0, c−1
+ ) (with c−1

+ = ∞ when
c+ = 0). If a ≤ 1/3, that is, c+ = 0, Dc+(λ) = 1 + aλ > 0 and ρc+(λ) ≥
λ2/(2(1 + λ/3)) ≥ φ(−λ) for λ ∈ I = [0,+∞).

If a > 1/3, then Dc+(λ) = 1+λ/3−c+λ2/6 satisfies 0 < 1+λ/6 ≤ Dc+(λ) ≤
1 + λ/3 on an interval I containing [0, c−1

+ ), and therefore ρc+(λ) ≥ φ(−λ) on I.
Next we deal with intervals of the form I = (−θ, 0] where θ = a−1 if c− = 0,

and θ = c−1
− (1−√1− 6c−) otherwise. Recall that for any λ ∈ (−3, 0], φ(−λ) ≤

λ2/(2(1 + λ/3)).
If a ≥ 1/3, that is, c− = 0, D−c−(λ) = 1 + aλ > 0 for λ ∈ (a−1, 0], while

ρ−c−(λ) =
λ2

2(1 + aλ)
≥ λ2

2(1 + λ/3)
.

For a ∈ (0, 1/3), note first that 0 < c− ≤ 1/6, and that

0 < D−c−(λ) ≤ 1 +
λ

3
+
λ2

36
≤
(

1 +
λ

6

)2

for every λ ∈ (−θ, 0]. This also entails that ρ−c−(λ) ≥ φ(−λ) for λ ∈ (−θ, 0].
2

6.13 Some variations

Next we present a few inequalities that are based on slight variations of the
entropy method. These versions differ in the assumptions on how V + or V − are
controlled by different functions of Z. We show these inequalities to demonstrate
the flexibility of the method but our aim is not to give an exhaustive list of
concentration inequalities that one can obtain this way. The message of this
section is that by simple modifications in the main argument one may exploit
many special properties of the function f .

We start with inequalities that use negative association between increasing
and decreasing functions of Z.
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Theorem 6.27 Assume that for some nondecreasing function g : R→ R,

V − ≤ g(Z) .

Then for all t > 0,

P {Z < EZ − t} ≤ e−t2/(4Eg(Z)) .

Proof In order to prove lower-tail inequalities, it suffices to derive suitable
upper bounds for the moment generating function F (λ) = EeλZ for negative
values of λ. By the third inequality of Theorem 6.15,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]

≤
n∑

i=1

E
[
eλZτ(λ(Z ′i − Z)+)

]

≤
n∑

i=1

E
[
eλZλ2(Z ′i − Z)2

+

]

(using λ < 0 and that τ(−x) ≤ x2 for x > 0)

= λ2E
[
eλZV −

]

≤ λ2E
[
eλZg(Z)

]
.

Since g(Z) is a nondecreasing and eλZ is a decreasing function of Z, Chebyshev’s
association inequality (Theorem 2.14) implies that

E
[
eλZg(Z)

]
≤ E

[
eλZ

]
E[g(Z)] .

The obtained inequality has the same form as the differential inequality we faced
in the proof of Theorem 6.2 (with Eg(Z) in place of v/2) and it can be solved
in an analogous way to obtain the announced lower-tail inequality. 2

Often it is more natural to bound V + by an increasing function of Z than
to bound V −. In such situations one can still say something about lower tail
probabilities of Z but we need the additional guarantee that |Z − Z ′i| remains
bounded and the inequality only applies in a restricted range of the values of t.

Theorem 6.28 Assume that there exists a non-decreasing function g such that
V + ≤ g(Z) and for any value of X = (X1, . . . , Xn) and X ′i, |Z − Z ′i| ≤ 1. Then
for all K > 0, if λ ∈ [0, 1/K), then

logEe−λ(Z−EZ) ≤ λ2 τ(K)

K2
Eg(Z) .

Moreover, for all with 0 < t ≤ (e− 1)Eg(Z), we have

P {Z < EZ − t} ≤ exp

(
− t2

4(e− 1)Eg(Z)

)
.
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Proof The key observation is that the function τ(x)/x2 = (ex−1)/x is increas-
ing if x > 0. Choose K > 0. Thus, for λ ∈ (−1/K, 0), the second inequality of
Theorem 6.15 implies that

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZτ(−λ(Z − Z ′i)+)

]

≤ λ2 τ(K)

K2
E
[
eλZV +

]

≤ λ2 τ(K)

K2
E
[
g(Z)eλZ

]
,

where at the last step we used the assumption of the theorem.
Just like in the proof of Theorem 6.27, we bound E

[
g(Z)eλZ

]
by E[g(Z)]E

[
eλZ

]
.

The rest of the proof is identical to that of Theorem 6.27. Here we took K = 1.
2

Our last general result deals with a situation we have often faced in appli-
cations. In these cases V + may be bounded by the product of Z and another
random variable W with well-behaved moment generating function. The follow-
ing theorem provides a way to deal with such functionals in an efficient and
rather painless way.

Theorem 6.29 Assume that f is nonnegative and that there exists a random
variable W , such that

V + ≤WZ .

Then for all θ > 0 and λ ∈ (0, 1/θ),

logEeλ(
√
Z−E

√
Z) ≤ λθ

1− λθ logEeλW/θ .

Note that this theorem only bounds the moment generating function of
√
Z.

However, one may easily obtain bounds for the upper-tail probability of Z by
observing that, since

√
EZ ≥ E

√
Z, and writing x =

√
EZ + t−

√
EZ, we have,

for λ > 0,

P {Z > EZ + t} ≤ P
{√

Z > E
√
Z + x

}
≤ Eeλ(

√
Z−E

√
Z)e−λx

by Markov’s inequality.

Proof Introduce Y =
√
Z and Y (i) =

√
Z(i). Then
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E′
[

n∑

i=1

(Y − Y (i))2
+

]
= E′

[
n∑

i=1

(√
Z −

√
Z(i)

)2

+

]

≤ E′
[

n∑

i=1

(
(Z − Z(i))+√

Z

)2
]

≤ 1

Z
E′
[

n∑

i=1

(
Z − Z(i)

)2

+

]

≤ W .

Thus, applying Theorem 6.16 for Y proves the statement. 2

Example 6.30 (triangles in a random graph.) Consider the Erdős-Rényi
G(n, p) model of a random graph. Recall that such a graph has n vertices and for
each pair (u, v) of vertices an edge is inserted between u and v with probability
p, independently. We write m =

(
n
2

)
, and denote the indicator variables of the

m edges by X1, . . . , Xm (i.e., Xi = 1 if edge i = (u, v) is present in the random
graph and Xi = 0 otherwise). Three edges form a triangle if there are vertices
u, v, w such that the edges are of the form (u, v), (v, w) and (w, u). Concentration
properties of the number of triangles in a random graph have received a great
deal of attention and sharp bounds have been derived by various sophisticated
methods for different ranges of the parameter p of the random graph (see the
bibliographic remarks at the end of the chapter). Interestingly, the left tail is
quite a bit easier to handle, as Janson’s inequality, presented in the next section,
offers sharp estimates. However, proving sharp inequalities for the upper tail
turned out to be a much more challenging problem. Here we only show some
sub-optimal versions that are easy to get from the general results of this chapter.

Let Z = f(X1, . . . , Xm) denote the number of triangles in a random graph.
Note that

EZ =
n(n− 1)(n− 2)

6
p3 ≈ n3p3

6

and

V ar(Z) =

(
n

3

)
(p3 − p6) +

(
n

4

)(
4

2

)
(p5 − p6) .

To obtain exponential upper-tail inequalities, we estimate the random variable
V + =

∑n
i=1 E

′(Z − Z ′i)2
+.

If v and u denote the extremities of edge i (1 ≤ i ≤ m), then we denote by
Bi the number of vertices w such that both edges (u,w) and (v, w) exist in the
random graph. Then

V + =

m∑

i=1

Xi(1− p)B2
i .

Since
∑m
i=1XiBi = 3Z, we have
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V + ≤ (1− p)
m∑

i=1

Xi

(
max

j=1,...,m
Bj

)
Bi

= (1− p)
(

max
j=1,...,m

Bj

) m∑

i=1

XiBi

= 3(1− p)
(

max
j=1,...,m

Bj

)
Z .

By bounding maxj=1,...,mBj trivially by n, we have V + ≤ 3(1 − p)nZ. Define
fi(X

(i)) as the number of triangles when we force the i-th edge to be absent in
the graph. Then clearly

∑n
i=1(f(X) − fi(X(i)))2 = V +/(1 − p) and therefore,

using the terminology of Section 6.11, f is weakly (3n, 0)-self-bounding. Thus,
by Theorem 6.19,

P {Z ≥ EZ + t} ≤ exp

(
− t2

n4p3 + 3nt

)
.

It is clear that in the argument above one loses a lot by bounding W
def
=

3 maxj=1,...,mBj by n. Indeed, one may get a significant improvement by us-
ing Theorem 6.29. In order to do so, we need to bound the moment generating
function of W . This may be done by another application of Theorem 6.19. Let
W (i) denote the value of W when edge i is deleted from the random graph (if
the graph contained that edge). Then W (i) ≤W and

n∑

i=1

(
W −W (i))

)2

≤ 18W ,

so W is weakly (18, 0)-self-bounding. Hence, by Theorem 6.19,

logEeλ(W−EW ) ≤ 9λ2EW

1− 9λ
.

Denoting Y =
√
Z, Theorem 6.29 leads to

logEeλ(Y−EY ) ≤ λ

1− λ

(
9λ2EW

1− 9λ
+ λEW

)
≤ λ2EW

1− 10λ
.

This is a sub-gamma bound for the moment generating function of Y and the
computations of Sections 2.4 and 2.8 imply

P {Y > EY + t} ≤ exp

(
− t2

4EW + 20t

)
.

Now it remains to bound the expected value of W . Since W/3 is the maximum of
m =

(
n
2

)
binomial random variables with parameters (n, p2). In order to obtain
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a quick upper bound for EW/3, it is convenient to use the technique presented
in Section 2.5 as follows: let Si with i ≤ m denote a sequence of binomially
distributed random variables with parameters n and p2. By Jensen’s inequality,

EW/3 ≤ log

(
E max
i=1,...,m

eSi
)

≤ log
(
E
[
meS1

])

= logm+ log
(
EeS1

)

≤ logm+ (e− 1)np2

≤ 2 log n+ 2np2 .

Arguably, the most interesting values for p are those when p is at most of the
order of n−1/2 and in this case the dominating term in the above expression is
2 log n. Hence, we obtain the following bound for the tail of Y =

√
Z.

P {Y ≥ EY + t} ≤ exp

(
− t2

24(np2 + log n) + 20t

)
.

From this it is now easy to get tail bounds for the number Z of triangles. We
spare the reader from the straightforward details (see the exercises).

6.14 Janson’s inequality

As we saw in the examples of Section 6.13, in many cases the special structure of
the function of independent random variables can be used to deduce concentra-
tion inequalities. In this section we present another general result, a celebrated
exponential lower-tail inequality for Boolean polynomials.

More precisely, consider independent binary random variables X1, . . . , Xn

such that P {Xi = 1} = 1 − P {Xi = 0} = pi for some p1, . . . , pn ∈ [0, 1]. To
simplify notation, we identify every binary vector α ∈ {0, 1}n with the subset
of {1, . . . , n} defined by the non-zero components of α. For example, for i ∈
{1, . . . , n}, we write i ∈ α to denote that the i-th component of α equals 1. Then
for each α ∈ {0, 1}n, we introduce the binary random variable

Yα =
∏

i∈α
Xi .

Given a collection I of subsets of the binary hypercube {0, 1}n, we may define

Z =
∑

α∈I
Yα

which is a polynomial of the binary vector X = (X1, . . . , Xn).
Boolean polynomials of this type are common in many applications of the

probabilistic method in discrete mathematics and also in the theory of random
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graphs, and their concentration properties have been a subject of intensive study.
Note that for any α, β ∈ I with α ∩ β = ∅ (i.e., if αiβi = 0 for all i = 1, . . . , n),
EYαYβ = EYαEYβ and therefore the variance of Z equals

V ar(Z) = EZ2 − (EZ)
2

=
∑

α,β∈I
EYαYβ −

∑

α,β∈I
EYαEYβ

=
∑

α,β∈I:α∩β 6=∅
(EYαYβ −EYαEYβ)

≤
∑

α,β∈I:α∩β 6=∅
EYαYβ

def
= ∆ .

Thus, by Chebyshev’s inequality,

P {|Z −EZ| > t} ≤ ∆

t2
.

The next theorem shows the, perhaps surprising, fact that, at least for the lower
tail, one always has an exponential version of this inequality.

Theorem 6.31 (janson’s inequality.) Let I denote a collection of subsets
of {0, 1}n and define Z and ∆ as above. Then for all λ ≤ 0,

logEeλ(Z−EZ) ≤ φ
(
λ∆

EZ

)
(EZ)2

∆

where φ(x) = ex − x− 1. In particular, for all 0 ≤ t ≤ EZ,

P {Z ≤ EZ − t} ≤ e−t2/(2∆) .

The proof of Janson’s inequality shown here shows certain similarities with
the entropy method. In particular, the proof is based on bounding the derivative
of the logarithmic moment generating function of Z. However, sub-additivity
inequalities can be avoided because of a positive association property that can
be exploited by an appropriate use of Harris’ inequality (Theorem 2.15).

Proof Denote the logarithmic moment generating function of Z − EZ by
G(λ) = logEeλ(Z−EZ). Then the derivative of G equals

G′(λ) =
E[ZeλZ ]

EeλZ
−EZ =

∑

α∈I

E
[
Yαe

λZ
]

EeλZ
−EZ .

In what follows, we derive an upper bound for each term E
[
Yαe

λZ
]

of the sum
on the right-hand side.
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Fix an α ∈ I and introduce Uα =
∑
β:β∩α 6=∅ Yβ and Zα =

∑
β:β∩α=∅ Yβ .

Clearly, regardless of what α is, Z = Uα + Zα. Since

E
[
Yαe

λZ
]

= E
[
eλZ | Yα = 1

]
EYα ,

it suffices to bound the conditional expectation. The key observation is that since
λ ≤ 0, both exp(λUα) and exp(λZα) are decreasing functions of X1, . . . Xn.

E
[
eλZ | Yα = 1

]

= E
[
eλUαeλZα | Yα = 1

]

≥ E
[
eλUα | Yα = 1

]
E
[
eλZα | Yα = 1

]
(by Harris’ inequality)

= E
[
eλUα | Yα = 1

]
EeλZα (since Zα and Yα are independent)

≥ E
[
eλUα | Yα = 1

]
EeλZ (as Zα ≤ Z)

≥ eλE[Uα|Yα=1]EeλZ (by Jensen’s inequality).

Note that we apply Harris’ inequality above conditionally, given Yα = 1. This
condition simply forces Xi = 1 for all i ∈ α, so both Uα and Zα are increasing
functions of the independent random variables Xi, i /∈ α and Harris’ inequality
is used legally. Thus, we obtain

E
[
ZeλZ

]

EZ

≥ EeλZ
∑

α∈I

EYα
EZ

eE[λUα|Yα=1]

≥ EeλZ exp

(∑

α∈I

EYα
EZ

E [λUα | Yα = 1]

)
(by Jensen’s inequality)

= EeλZ exp

(
λ

∆

EZ

)

where we used the fact that

∆ =
∑

α∈I
E [YαUα] .

Summarizing, we have, for all λ ≤ 0,

G′(λ) ≥ EZ
(
eλ∆/EZ − 1

)
.

Thus, integrating this inequality between λ and 0 and using G(0) = 0, we have
that for λ ≤ 0,

G(λ) ≤ −EZ
∫ 0

λ

(
eu

∆
EZ − 1

)
du = φ

(
λ∆

EZ

)
(EZ)2

∆

as desired. The second inequality follows from the simple fact that for x > 0,
φ(−x) ≤ x2/2. 2
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Remark 6.6 (probability of non-existence.) In many applications of Jan-
son’s inequality, one wishes to show that in a random draw of the vector X =
(X1, . . . , Xn), with high probability, there exists at least one element α ∈ I
for which Yα = 1. In other words, the goal is to show that Z > 0 with high
probability. To this end, one may write

P {Z = 0} = P {Z ≤ EZ −EZ} ≤ exp

(
− (EZ)2

2∆

)

which is guaranteed to be exponentially small whenever
√

∆ is small compared
to EZ.

Example 6.32 (triangles in a random graph.) A prototypical application
of Janson’s inequality is the case of the number of triangles in an Erdős-Rényi
random graph G(n, p), discussed in Example 6.30 in the previous section. If Z
denotes the number of triangles in G(n, p), then recall that

EZ =

(
n

3

)
p3 and V ar(Z) =

(
n

3

)
p3(1− p3) + 2

(
n

4

)(
4

2

)
p5(1− p) .

The value of ∆ may also be computed in a straightforward way. One obtains

∆ =

(
n

3

)
p3 + 2

(
n

4

)(
4

2

)
p5

which is only slightly larger than V ar(Z). For the probability that the random
graph does not contain any triangle, we may use Janson’s inequality with t = EZ:

P {Z = 0} ≤ exp

(
−

(
n
3

)2
p6

2
((
n
3

)
p3 + 2

(
n
4

)(
4
2

)
p5
)
)
≤ exp

(
−

(
n
3

)
p2

2 (1 + 2np2)

)
.

6.15 Bibliographic remarks

The key principles of the entropy method rely on the ideas of proving Gaussian
concentration inequalities based on logarithmic Sobolev inequalities. These are
summarized in Chapter 5, where we also give some of the main references. It
was Michel Ledoux (1997) who realized that these ideas may be used to get an
alternative route to some of Talagrand’s exponential concentration inequalities
for empirical processes and Rademacher chaos. Ledoux’s ideas were taken further
by Massart (2000a), Bousquet (2002a), Klein (2002), Rio (2001), Klein and Rio
(2005), while the core of the material of this chapter builds on Boucheron, Lugosi,
and Massart (2000, 2003, 2009).

Different versions of the modified logarithmic Sobolev inequalities used in
this chapter are due to Ledoux (1997, 1999, 2001), Massart (2000a).

The bounded differences inequality is perhaps the simplest and most widely
used exponential concentration inequality. The basic idea of writing a function of



Bibliographic remarks 201

independent random variables as a sum of martingale differences and using expo-
nential inequalities for martingales was first used in various applications includ-
ing Yurinskii (1976), Maurey (1979), Milman and Schechtman (1986), Shamir
and Spencer (1987). The inequality was first laid down explicitly and illustrated
by a wide variety of applications in an excellent survey paper of McDiarmid
(1989), and the result itself has often been referred to as McDiarmid’s inequal-
ity. Martingale methods have served as a flexible and versatile tool for proving
concentration inequalities, see the more recent surveys of McDiarmid (1998),
Chung and Lu (2006b), and Dubhashi and Panconesi (2009).

The exponential tail inequality for sums of independent Hilbert-space valued
random variables derived in Example 6.3 is just a simple example. There is a
vast literature dealing with tails of sums of vector-valued random variables. It is
outside of the scope of this book to derive the sharpest and most general results.
Here we merely try to make the point that general concentration inequalities
prove to be a versatile tool in such applications. In fact, applications of this type
motivated some of the most significant advances in the theory of concentration
inequalities. In Chapters 11, 12, and 13 we discuss many of the principal mod-
ern tools for analyzing the tails of sums of independent vector-valued random
variables and empirical processes. For some of the classical references, the inter-
ested reader is referred to Yurinskii (1976, 1995), Ledoux and Talagrand (1991),
Pinelis (1995).

The inequality described in Exercise 6.4 was proved independently by Gun-
tuboyina and Leeb (2009) and Bordenave, Caputo and Chafäı (2011).

Theorem 6.5 is due to McDiarmid (1998) who proved it using martingale
methods. The proof presented here is due to Andreas Maurer who kindly per-
mitted us to reproduce his elegant proof.

The exponential inequality for the largest eigenvalue of a random symmet-
ric matrix described in Example 6.8 was proved by Alon, Krivelevich, and Vu
(2002) who used Talagrand’s convex distance inequality. Maurer (2006) obtains
a better exponent with a more careful analysis. Alon, Krivelevich, and Vu (2002)
show, with a simple extension of the argument, that for the k-th largest (or k-th

smallest) eigenvalue the upper bounds becomes e−t
2/(16k2), though it is not clear

whether the factor k−2 in the exponent is necessary.
Theorem 6.9 appears in Maurer (2006). Theorem 6.10 was first established by

Talagrand (1996c) who also proves a corresponding lower tail inequality which
is presented in Section 7.5. The proof given here is due to Ledoux (1997).

Self-bounding functions were introduced by Boucheron, Lugosi, and Massart
(2000) who prove Theorem 6.12 building on techniques developed by Massart
(2000a). Various generalizations of the self-bounding property were considered by
Boucheron, Lugosi, Massart (2003, 2009), Boucheron, Bousquet, Lugosi, Massart
(2005b), Devroye (2002), Maurer (2006), and McDiarmid and Reed (2006). In
particular, McDiarmid and Reed (2006) considered what we call strongly (a, b)-
self-bounding functions and proved results that are only slightly weaker than
the ones presented in Section 6.11. The weak self-bounding property was first
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considered by Maurer (2006), Theorem 6.19 is due to him. Theorems 6.21 and
6.20 appear in Boucheron, Lugosi, Massart (2009).

We note here the inequality linking the expected and annealed vc entropies
answers, in a positive way, a question raised by Vapnik (1995, pages 53–54):
the empirical risk minimization procedure is non-trivially consistent and rapidly
convergent if and only if the annealed entropy rate (1/n) log2 ET (X) converges
to zero. For the definitions and discussion we refer to Vapnik (1995).

The material of Sections 6.8, 6.9, and 6.13 is based on Boucheron, Lugosi,
and Massart (2003).

Klaassen (1985) showed that Poisson distributions satisfy the “modified Poincaré”
inequality

V ar(f(Z)) ≤ EZ ×E[|Df(Z)|2] ,

see Exercise 3.21.
The search for modified logarithmic Sobolev inequalities, that is, functional

inequalities that capture the tail behavior of distributions that are less con-
centrated than the Gaussian distribution was initiated by Bobkov and Ledoux
(1997). Their aim was to recover some results of Talagrand concerning concen-
tration properties of the exponential distribution. Bobkov and Ledoux (1997,
1998) pointed out that the Poisson distribution cannot satisfy an analogue of
the Gaussian logarithmic Sobolev inequality. They establish the second inequal-
ity of Theorem 6.17. The first inequality of Theorem 6.17 is due to Wu (2000).
Other modified logarithmic Sobolev inequalities have been investigated by Ané
and Ledoux (2000), Chafäı (2006), Bobkov and Tetali (2006) and others.

Janson’s inequality (Theorem 6.31) was first established by Janson (1990).
This inequality has since become one of the basic standard tools of the probabilis-
tic method of discrete mathematics and random graph theory, and many varia-
tions, refinements, and alternative proofs are now known. We refer the reader to
the monographs of Alon and Spencer (1992) and Janson,  Luczak and Ruciński
(2000) for surveys and further references.

The number of triangles, and more generally, the number of copies of a fixed
subgraph, in a random graph G(n, p) has been a subject of intensive study. For
the lower tail probabilities, Janson’s inequality, shown in Section 6.14 gives an
essentially tight bound. However, obtaining sharp bounds for the upper tail has
been an important non-trivial challenge. For such upper-tail inequalities we refer
the interested reader to the papers Kim and Vu (2000, 2004), Vu (2000, 2001),
Janson and Ruciński (2004, 2002), Janson, Oleszkiewicz, and Ruciński (2004),
Bolthausen, Comets, and Dembo (2009), Döring and Eichelsbacher (2009), Chat-
terjee and Dey (2010), Chatterjee (2010), DeMarco and Kahn (2010), Schudy and
Sviridenko (2012).

The inequalities derived in Example 6.30 are not the best possible.

6.16 Exercises

Exercise 6.1 Relax the condition of Theorem 6.7 in the following way. Show that if
X = (X1, . . . , Xn) and
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E

[
n∑
i=1

(Z − Z′i)2
+

∣∣∣X] ≤ v
then for all t > 0,

P {Z > EZ + t} ≤ e−t
2/(2v)

and if

E

[
n∑
i=1

(Z − Z′i)2
−

∣∣∣X] ≤ v ,
then

P {Z < EZ − t} ≤ e−t
2/(2v) .

Exercise 6.2 (the cauchy interlacing theorem.) Let A be an n × n Hermitian
matrix with eigenvalues α1 ≤ α2 ≤ · · · ≤ αn. Denote by RA the Rayleigh quotient
defined, for every x ∈ Cn \ {0}, by

RA(x) =
x∗Ax

x∗x
.

Prove the min-max formulas

αk = max {min {RA(x) : x ∈ U and x 6= 0} : dim(U) = n− k + 1}

and
αk = min {max {RA(x) : x ∈ U and x 6= 0} : dim(U) = k} .

Let P be an orthogonal projection matrix with rank m and define the Hermitian matrix
B = PAP . Denoting by β1 ≤ β2 ≤ · · · ≤ βm the eigenvalues of B, using the min-max
formulas, show that the eigenvalues of A and B interlace, that is, for all j ≤ m,
αj ≤ βj ≤ αn−m+j . (See Bai and Silverstein (2010).)

Exercise 6.3 (rank inequality for spectral measures.) Let A and B be n × n
Hermitian matrices and denote by FA and FB the distribution functions related to the
spectral measures LA and LB of A and B, respectively. Setting k = rank(A−B), prove
the rank inequality

‖FA − FB‖∞ ≤
k

n
.

Hint. Show that one can always assume that

A =

[
A11 A12

A21 A22

]
and B =

[
B11 A12

A21 A22

]
where the order of A22 is n−k×n−k. Use the Cauchy interlacing theorem (see Exercise
6.2 above) for the pairs of Hermitian matrices A and A22 on the one hand and B and
A22 on the other hand. (See Bai and Silverstein (2010).)

Exercise 6.4 Show that the convexity assumption is essential in Theorem 6.10, by
considering the following example: let n be an even positive integer and define A =
{x ∈ [0, 1]n :

∑n
i=1 xi ≤ n/2}. Let f(x) = infy∈A ‖x − y‖. Then clearly f is Lipschitz

but not convex. Let the components of X = (X1, . . . , Xn) be i.i.d. with P {Xi = 0} =
P {Xi = 1} = 1/2. Show that there exists a constant c > 0 such that P {f(X) >
Mf(X) + cn1/4} ≥ 1/4 for all sufficiently large n. (This example is taken from Ledoux
and Talagrand (1991, p.17).)
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Exercise 6.5 . Prove the following generalization of Theorem 6.10. Let X ⊂ Rd be a
convex compact set with diameter B. Let X1, . . . , Xn be independent random variables
taking values in X and assume that f : Xn → R is separately convex and Lipschitz,
that is, |f(x) − f(y)| ≤ ‖x − y‖ for all x, y ∈ Xn ⊂ Rdn. Then Z = f(X1, . . . , Xn)
satisfies, for all t > 0,

P {Z > EZ + t} ≤ e−t
2/(2B2) .

Exercise 6.6 Let X1, . . . , Xn be independent vector-valued random variables taking
values in a compact convex set X ⊂ Rd with diameter B. Let A denote the d×n matrix
whose columns are X1, . . . , Xn and let Z denote the largest singular value of A. Show
that

P {Z > EZ + t} ≤ e−t
2/(2B2) .

Compare the result with Example 6.11.

Exercise 6.7 Assume that Z = f(X) = f(X1, . . . , Xn) whereX1, . . . , Xn are indepen-
dent real-valued random variables and f is a nondecreasing function of each variable.
Suppose that there exists another nondecreasing function g : Rn → R such that

n∑
i=1

(Z − Z′i)2
− ≤ g(X) .

Show that for all t > 0,

P {Z < EZ − t} ≤ e−t
2/(4Eg(X))

Hint: Use Harris’ inequality (Theorem 2.15).

Exercise 6.8 (almost bounded differences.) Assume that Z = f(X) = f(X1, . . . , Xn)
where X1, . . . , Xn are independent real-valued random variables. Assume there exists
a monotone set A ⊂ Rn and constants v, C > 0 such that for x = (x1, . . . , xn) ∈
A,
∑n
i=1(f(x) − infx′i f(x1, . . . , x

′
i, . . . , xn))2 ≤ v and for all x /∈ A,

∑n
i=1(f(x) −

infx′i f(x1, . . . , x
′
i, . . . , xn))2 ≤ C. (A monotone set is such that if x ∈ A and y ≥ x

(component-wise) then y ∈ A.) Show that for all t > 0,

P {Z > EZ + t} ≤ exp

(
−t2

2(v + CP {X /∈ A})

)
Hint: Use Harris’ inequality (Theorem 2.15).

Exercise 6.9 (rademacher chaos of order two.) Let T be a finite set of n × n
symmetric matrices with zero diagonal entries. Let ε = (ε1, . . . , εn) be a vector of
independent Rademacher variables. Let

Z = max
M∈T

n∑
i=1

n∑
j=1

Mi,jεiεj

and

Y = max
M∈T

(
n∑
i=1

(
n∑
j=1

εjMi,j

)2)1/2

.
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Let B = maxM∈T ‖M‖2 where ‖M‖ denotes the (operator) norm of matrix M . Prove
that

V ar(Z) ≤ 8E
[
Y 2]

V ar(Y 2) ≤ 8BE
[
Y 2]

logEeλ(Y 2−EY 2) ≤ λ2

(1− 8Bλ)
8BE[Y 2]

logEeλ(Z−EZ) ≤ 16λ2

2(1− 64Bλ)
E[Y 2] ,

where λ ≥ 0. Hint: Use Theorem 6.16 twice. Show that 8Y 2 upper bounds an Efron-
Stein estimate of the variance of Z. Then use the fact that Y may be represented as
the supremum of a Rademacher process, and prove that Y 2 is (16B, 0)-weakly self-
bounding. Note that

E[Y 2] = E

[
sup
M∈T

n∑
i,j=1

εiεjM
2
i,j

]
.

See Talagrand (1996b), Ledoux (1997), Boucheron, Lugosi and Massart (2003).

Exercise 6.10 Prove Theorem 6.17. Hint: Use Lemma 6.18 and the so-called ‘‘law of
rare events”, that is, the convergence of the binomial distribution to a Poisson.

Exercise 6.11 (a logarithmic sobolev inequality for the exponential dis-
tribution.) Assume X is exponentially distributed, that is, it has density exp(−x)for
x > 0. Prove that if f : [0,∞)→ R is differentiable, then

Ent
(
(f(X))2) ≤ 4E

[
X(f ′(X))2] .

Hint: use the fact that if X1 and X2 are independent standard Gaussian random vari-
ables, (X2

1 + X2
2 )/2 is exponentially distributed, and use the Gaussian logarithmic

Sobolev inequality.

Exercise 6.12 (square root of a poisson random variable.) Let X be a Poisson
random variable. Prove that for 0 ≤ λ < 1/2,

logEeλ(
√
X−E

√
X) ≤ λ2

1− 2λ
.

Show that

logEeλ(
√
X−E

√
X) ≤ vλ(eλ − 1)

where v = (EX)E[1/(4X + 1)]. Use Markov’s inequality to show that

P
{√

X ≥ E
√
X + t

}
≤ exp

(
− t

2
log

(
1 +

t

2v

))
.

Hint: the first inequality may be derived from Theorem 6.29. The second inequality
may be derived from Theorem 6.17.
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Exercise 6.13 (entropic version of the law of rare events.) Let X be a ran-
dom variable taking nonnegative integer values and define p(k) = P {X = k} for
k = 0, 1, 2, . . . . The scaled Fisher information of X is defined by

K(X) = (EX)E

[(
(X + 1)p(X + 1)

(EX)p(X)
− 1

)2
]

Let µ = EX. Use Theorem 6.17 to prove that the Kullback-Leibler divergence of X
and a Poisson(µ) random variable is at most K(X).

Let S be the sum of the independent integer-valued random variables X1, . . . , Xn
with EXi = pi. Let µ =

∑n
i=1 pi. Prove that

K(S) ≤
n∑
i=1

pi
µ
K(Xi) .

From this sub-additivity property, prove that the Kullback-Leibler divergence of S and
a Poisson(µ) random variable is at most (1/µ)

∑n
i=1 p

3
i /(1 − pi). (See Kontoyiannis,

Harremoës and Johnson (2005).)

Exercise 6.14 Consider the maximal degree D of any vertex in a random G(n, p)
graph defined as in Example 6.13. Show that for any sequence an →∞, with probability
tending to 1 as n→∞,

∣∣∣D − np−√2p(1− p)n logn
∣∣∣ ≤ an

√
p(1− p)n

logn

(see Bollobás (2001, Corollary 3.14)). What do you obtain if you combine Lemma 2.4
with Theorem 6.12?

Exercise 6.15 (lower bound for triangles.) Let Z denote the number of triangles
in a random graph G(n, p) where p ≥ 1/n. Show that for every a > 0 there exists a
constant c = c(a) such that

P
{
Z > EZ + an3p3} ≥ e−cp2n2 log(1/p)

Hint: The lower bound is the probability that a fixed clique of size proportional to np
exists in G(n, p). (Vu (2001).)

Exercise 6.16 Let Z be as in the previous exercise. Use the inequality for
√
Z shown

in the text to prove that for any K > 1, if t ≤ (K2 − 1)EZ, then

P {Z > EZ + t}

≤ exp

− t2

(K + 1)2EZ
(

24np2 + 24 logn+ 20t

(K+1)
√
EZ

)
 .
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CONCENTRATION AND ISOPERIMETRY

The concentration inequalities discussed in this book are intimately related to
isoperimetric problems. In this chapter we discuss some aspects of the rich rela-
tionship between isoperimetric problems and concentration inequalities. In Sec-
tion 7.1 we start by establishing a connection between isoperimetric inequalities
in general metric spaces and concentration of Lipschitz functions. We also give
an equivalent formulation of the bounded differences inequality (Theorem 6.2)
which shows that every not-too-small set in a product probability space has the
property that the probability of those points whose Hamming distance from the
set is much larger than

√
n is exponentially small.

In Section 7.2 we show how the classical isoperimetric theorem follows from
the Brunn-Minkowski theorem and discuss isoperimetric inequalities on the sur-
face of the n-dimensional Euclidean ball and for the standard multivariate Gaus-
sian measure.

In Section 7.3 we discuss the vertex isoperimetric theorem on the binary
hypercube and its relationship to concentration inequalities such as the bounded
differences inequality.

Then, in Section 7.4, we present a powerful concentration inequality, known
as Talagrand’s convex distance inequality as a consequence of the concentration
results for self-bounding functions from Section 6.11. In Sections 7.5 and 7.6
we describe its applications for convex Lipschitz functions and to a bin packing
problem.

7.1 Lévy’s inequalities

The classical isoperimetric theorem (proved in Section 7.2 below) states that
among all subsets of Rn of a given volume, Euclidean balls minimize their surface
area. An equivalent formulation is that, for any t > 0, among all (measurable)
sets A ⊂ Rn of a given volume, the ones for which the volume of the blowup of
A, defined by

At = {x ∈ Rn : d(x,A) < t} ,

have minimal volume are Euclidean balls. Here d(x,A) = infy∈A d(x, y) denotes
the distance of x to the set A. The advantage of this formulation is that it avoids
the notion of surface area and the problem can be generalized to arbitrary metric
spaces. In fact, countless versions of the classical isoperimetric problem have been
studied.
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In particular, given a metric space X with corresponding distance d, consider
the measure space formed by X , the σ-algebra of all Borel sets of X , and a prob-
ability measure P . Let X be a random variable taking values in X , distributed
according to P . The isoperimetric problem in this case is the following: given
p ∈ (0, 1) and t > 0, determine the sets A with P {X ∈ A} ≥ p for which the
measure P {d(X,A) ≥ t} is maximal. Even though the exact solution is only
known in a few special cases, useful bounds for P {d(X,A) ≥ t} can be derived
under remarkably general circumstances. Such bounds are usually referred to as
isoperimetric inequalities.

By introducing the so-called concentration function, defined, for all t > 0, by

α(t) = sup
A⊂X :P {A}≥1/2

P {d(X,A) ≥ t} = sup
A⊂X :P {A}≥1/2

P {Act} ,

we see that isoperimetric inequalities may be formulated in terms of bounds
for α(t). (Note that, generalizing the notion of a blowup of a set, we write
At = {x ∈ X : d(x,A) < t} for any A ⊂ X .) The next two simple theorems show
that α(t) is intimately related to concentration of Lipschitz functions defined
on X . The first result points out that isoperimetric inequalities (more precisely,
upper bounds for the concentration function) imply concentration of Lipschitz
functions. Recall that a function f : X → R is Lipschitz if for all x, y ∈ X,
|f(x)−f(y)| ≤ d(x, y). Recall also that Mf(X) denotes a median of the random
variable f(X), that is any number for which both P {f(X) ≤ Mf(X)} ≥ 1/2
and P {f(X) ≥Mf(X)} ≥ 1/2 hold.

Theorem 7.1 (lévy’s inequalities.) For any Lipschitz function f ,

P {f(X) ≥Mf(X) + t} ≤ α(t) and P {f(X) ≤Mf(X)− t} ≤ α(t) .

Proof Consider the set A = {x : f(x) ≤ Mf(X)}. By the definition of a
median, P {A} ≥ 1/2. On the other hand, by the Lipschitz property of f ,

At = {x : d(x,A) < t} ⊆ {x : f(x) <Mf(X) + t} .
The first inequality now follows from the definition of the concentration function.
The second inequality follows from the first by considering −f . 2

By an obvious modification of the proof one sees that if f is Lipschitz with
constant C (i.e., |f(x)− f(y)| ≤ Cd(x, y) for all x, y ∈ X ), then

P {f(X) ≥Mf(X) + t} ≤ α(t/C) and P {f(X) ≤Mf(X)− t} ≤ α(t/C) .

The next converse shows that concentration of Lipschitz functions implies an
isoperimetric inequality.

Theorem 7.2 (converse.) If β : R+ → [0, 1] is a function such that for every
Lipschitz function f : X → R

P {f(X) ≥Mf(X) + t} ≤ β(t) ,

then β(t) ≥ α(t).
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Proof Simply observe that for any A ⊂ X , the function fA defined by fA(x) =
d(x,A) is Lipschitz. Also, if P {A} ≥ 1/2, then 0 is a median of fA(X) and
therefore

α(t) = sup
A⊂X :P {A}≥1/2

P {fA(X) ≥Mf(X) + t} ≤ β(t) .

2

It is instructive to cast the bounded differences inequality (Theorem 6.2) in
the framework described above.

Example 7.3 (bounded differences inequality revisited.) Consider in-
dependent random variables X1, . . . , Xn taking their values in a (measurable) set
X and denote the vector of these variables by X = (X1, . . . , Xn) taking its value
in Xn. For an arbitrary (measurable) set A ⊂ Xn we write P {A} = P {X ∈ A}.
The Hamming distance dH(x, y) between the vectors x, y ∈ Xn is defined as the
number of coordinates in which x and y differ. With this distance the product
space Xn becomes a metric space and Theorem 6.2 implies that if f : Xn → R
is Lipschitz with respect to the Hamming distance, then

P {f(X) ≥ Ef(X) + t} ≤ e−2t2/n .

The argument of Theorem 7.2 leads to the following:

Corollary 7.4 For any t > 0,

P

{
dH(X,A) ≥ t+

√
n

2
log

1

P {A}

}
≤ e−2t2/n .

Proof Since the function f(x) = dH(x,A) is Lipschitz with respect to the
Hamming distance, by the bounded differences inequality (Theorem 6.2),

P {EdH(X,A)− dH(X,A) ≥ t} ≤ e−2t2/n.

But by taking t = EdH(X,A), the left-hand side becomes P {dH(X,A) ≤ 0} =
P {A}, so the above inequality implies

EdH(X,A) ≤
√
n

2
log

1

P {A} .

Then, by using the bounded differences inequality again, we obtain

P

{
dH(X,A) ≥ t+

√
n

2
log

1

P {A}

}
≤ e−2t2/n

as desired. 2
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To interpret this corollary, observe that on the right-hand side we have the
measure of the complement of the t +

√
(n/2) log(1/P {A})-blowup of the set

A, that is, the measure of the set of points whose Hamming distance from A
is at least t +

√
(n/2) log(1/P {A}). To appreciate the meaning of this fact,

consider a set, say, with P {A} = 1/106. Then the measure of the set of points
whose Hamming distance to A is more than 10

√
n is smaller than e−108. In other

words, product measures are concentrated on extremely small sets—hence the
name “concentration of measure”.

Just as in Theorem 7.1, the bounded differences inequality may also be de-
rived from Corollary 7.4.

7.2 The classical isoperimetric theorem

In this section we show how the classical isoperimetric theorem follows from a
simple application of the Brunn-Minkowski inequality. The same inequality also
yields interesting isoperimetric inequalities for the important case of the uniform
distribution over the surface of the Euclidean unit ball in Rn and the canonical
Gaussian distribution in Rn.

The classical isoperimetric theorem in Rn states that, among all sets with a
given volume, the Euclidean unit ball minimizes the surface area. More precisely,
let A ⊂ Rn be a measurable set and denote by Vol(A) its Lebesgue measure.
The surface area of A is defined by

Vol(∂A) = lim
t→0

Vol(At)−Vol(A)

t
,

provided that the limit exists. Here At denotes the t-blowup of A. Observe that
if B = {x ∈ Rn : ‖x‖ < 1} denotes the unit open ball, then, recalling the notion
of Minkowski sum from Section 4.14,

At = A+ tB .

Theorem 7.5 (isoperimetric theorem.) Let A ⊂ Rn be such that Vol(A) =
Vol(B). Then for any t > 0, Vol(At) ≥ Vol(Bt). Moreover, if Vol(∂A) exists,
then Vol(∂A) ≥ Vol(∂B).

Proof By the Brunn-Minkowski inequality (Theorem 4.23),

Vol(At)
1/n = Vol(A+ tB)1/n

≥ Vol(A)1/n + tVol(B)1/n

= Vol(B)1/n(1 + t) = Vol(Bt)
1/n ,

establishing the first statement. The second follows simply because

Vol(At)−Vol(A) ≥ Vol(B) ((1 + t)n − 1) ≥ ntVol(B)

where we used that, for a, b ≥ 0, (a + b)n ≥ an + nan−1b. Thus, Vol(∂A) ≥
nVol(B). The isoperimetric theorem now follows from the fact (see Exercise 7.7)
that Vol(∂B) = nVol(B). 2
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There are few more examples of metric spaces and corresponding measures for
which the exact solution of the isoperimetric problem is known. Two important,
and closely related, cases are the surface of the unit Euclidean ball in Rn equipped
with the uniform measure and Rn with the canonical Gaussian measure. Both
of these isoperimetric theorems are significantly more intricate than Theorem
7.5 above but approximate isoperimetric inequalities are easy to derive, as it is
pointed out next.

Gaussian isoperimetric inequalities. In the Gaussian isoperimetric problem one
considers the Rn equipped with the Euclidean metric and the canonical Gaussian
measure P defined, for any measurable set A ⊂ Rn, by P (A) =

∫
A
φ(x)dx where

φ(x) = (2π)−n/2e−‖x‖
2/2 .

The Gaussian isoperimetric theorem, proved in Chapter 10, states that among all
measurable sets, half-spaces minimize the Gaussian surface area. More precisely,
for any measurable set A ⊂ Rn, the t-blowup of A satisfies

P (At) ≥ Φ
(
Φ−1(P (A) + t)

)

where Φ denotes the standard Gaussian distribution function

Φ(x) =

∫ x

−∞

e−y
2/2

√
2π

dy .

Equality holds if and only if A is a half-space (see Theorem 10.15). Equivalently,
the concentration function, introduced in Section 7.1, equals

α(t) = 1− Φ(t) .

In other words, for any set A ⊂ Rn with P (A) ≥ 1/2, P (Act) ≤ 1 − Φ(t).
By well-known approximations of the standard Gaussian distribution function,
1−Φ(t) ≈ 1/(t

√
2π)e−t

2/2 (see Exercise 7.8). Observe that the Gaussian concen-
tration inequality (Theorem 5.6) implies an isoperimetric inequality that already
captures the essence of this. Indeed, if X is a standard Gaussian vector then for
any Lipschitz function f : Rn → R and t > 0,

P {f(X) ≥Mf(X) + t} = P {f(X) ≥ Ef(X) + (Mf(X)−Ef(X) + t)}
≤ e−(Mf(X)−Ef(X)+t)2/2

by Theorem 5.6. Now the Gaussian Poincaré inequality (Theorem 3.20) and
Exercise 2.1 imply that

Mf(X)−Ef(X) ≤
√
V ar(f(X)) ≤ 1

and therefore by Theorem 7.2, α(t) ≤ e−(1+t)2/2, which is only slightly weaker
than what follows from the Gaussian isoperimetric theorem.



212 Concentration and isoperimetry

s

t

√
1− s2

s/t =
√

1− s2

Fig. 7.1. The height of the spherical cap defined as the complement of t-blowup
of a hemisphere is 1− s = 1− 1/

√
1 + t−2.

Isoperimetric inequalities on the unit sphere. A problem closely related to the
Gaussian isoperimetric inequalities discussed above is the isoperimetric problem
on the unit sphere. More precisely, let Sn−1 = {x ∈ Rn : ‖x‖ = 1} denote the
surface of the unit ball in Rn. The isoperimetric problem in Sn−1 (equipped with
the Euclidean distance in Rn) is of fundamental importance in many applica-
tions. To understand the relationship with the Gaussian isoperimetric problem,
note that if X is a standard Gaussian vector in Rn, then X/‖X‖ is uniformly
distributed over Sn−1. Moreover, for large n, ‖X‖ is concentrated around its
expected value and therefore the canonical Gaussian measure in Rn resembles
the uniform measure over Sn−1. Indeed, Lévy’s isoperimetric theorem on Sn−1

states that, just as in the case of the Gaussian measure, the extremal sets in the
isoperimetric problem on Sn−1 are half-spaces of Rn as well. The intersection of
a half-space and Sn−1 is called a spherical cap, these are just the balls in the met-
ric space Sn−1. For u ∈ Sn−1 and s ∈ [0, 1], let C(u, s) = {x ∈ Sn−1 : x · u ≥ s}
denote a spherical cap of height 1−s around u. According to Lévy’s isoperimetric
theorem, for any t > 0, for any measurable set A ⊂ Sn−1, if C = C(u, s) is a
spherical cap with µ(A) = µ(C) (where µ denotes the uniform probability mea-
sure over Sn−1), then for any t > 0, µ(At) ≥ µ(Ct) where At and Ct denote the
t-blowups of A and C. Note that Ct is a spherical cap as well. For simplicity of
the discussion, consider the special case when µ(A) = 1/2. In that case we may
take C = C(u, 0) to be any hemisphere for any u ∈ Sn−1 and the complement
of Ct is a spherical cap of height s = 1/

√
1 + t−2 (see Figure 7.1).

By the isoperimetric theorem,

1− µ(At) ≤ µ(C(u, 1/
√

1 + t−2)) .

To better understand the implications of this bound, one may approximate the
area of a spherical cap C(u, s). An easy bound is obtained by observing that if
s ≤ 1/

√
2, the whole spherical cone defined as the convex hull of C(u, s) and the

origin is included in a ball of radius
√

1− s2 (see Figure 7.2) and therefore area
of the cap is at most the proportion of the unit ball {x : ‖x‖ ≤ 1} that falls in
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s

√
1− s2

Fig. 7.2. Bounding the area of a spherical cap.

the spherical cone, which is at most (1− s2)n/2, and therefore, for any set with
µ(A) ≤ 1/2,

1− µ(At) ≤ (1 + t2)−n/2 ≤ e−nt2/2 .
By a more careful bounding of the integral that defines the area of the spherical
cap, sharper bounds can be obtained. For example, for

√
2/n ≤ s ≤ 1, one has

1

6s
√
n

(1− s2)
n−1

2 ≤ µ(C(u, s)) ≤ 1

2s
√
n

(1− s2)
n−1

2

(see Exercise 7.9) which gives slightly better bounds for µ(At).
Just as in the case of the Gaussian measure, it is not necessary to prove the

full isoperimetric theorem to obtain inequalities of the type described above. A
possible way to proceed is to use the fact that if X is a standard Gaussian vector
in Rn, then X/‖X‖ has the uniform distribution over Sn−1 and use the Gaussian
concentration inequality. Here we show how the Brunn-Minkowski inequality may
be used.

To this end, consider an arbitrary subset C ⊂ B = {x ∈ Rn : ‖x‖ ≤ 1} of the
unit ball in Rn. By the parallelogram rule, if x ∈ C and y ∈ Cct ∩B, then

‖x+ y‖2 = 2‖x‖2 + 2‖y2‖ − ‖x− y‖2 ≤ 4− t2

and therefore ‖(x+ y)/2‖ ≤
√

1− t2/4 ≤ 1− t2/8. This implies that

1

2
(C + Cct ) ⊂

(
1− t2

8

)
B

and therefore, by the “weaker form” of the Brunn-Minkowski inequality (Corol-
lary 4.25), we have

Vol(C)Vol(Cct ) ≤ µ
(

1

2
(C + Cct )

)
≤
(

1− t2

8

)2n

Vol(B)2 .
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Now let A ⊂ Sn−1 be a measurable subset of the surface of B and let t > 0.
Defining C = ∪a∈[1/2,1]a · A, we have that ∪a∈[1/2,1]a · Act ⊂ Cct/2. Moreover,

µ(A) ≤ (1/2)Vol(C)/Vol(B) and µ(Act) ≤ Vol(∪a∈[1/2,1]a · Act)/Vol(B), and
therefore

µ(A)µ(Act) ≤ 2

(
1− t2

32

)2n

.

For example, for all sets A ⊂ Sn−1 with µ(A) ≤ 1/2, we obtain

1− µ(At) ≤ 4e−nt
2/16 .

Even though the constants are worse than those obtained directly from the
isoperimetric theorem, the inequality has a qualitatively similar form. Also, the
proof is considerably simpler and can be generalized to other normed spaces (see
Exercise 7.10).

7.3 Vertex isoperimetric inequality in the hypercube

A thoroughly studied special case of isoperimetric problems is when the under-
lying metric space corresponds to the vertex set of a finite graph. Depending on
how the size of the boundary of a subset of vertices is defined, we distinguish
two variants, the vertex isoperimetric problem and the edge isoperimetric prob-
lem. In this section we discuss a basic but important special case of such discrete
isoperimetric problems, when the graph is the binary hypercube.

Consider a graph G and let A be a set of its vertices. The vertex boundary of
A is defined as the set of those vertices, not in A, which are connected to some
vertex in A by an edge. We denote the vertex boundary of A by ∂V (A). The
vertex isoperimetric problem in a graph G is to determine the sets A of a given
cardinality whose vertex boundary contains a minimal number of vertices. In the
edge isoperimetric problem one minimizes the number of edges between A and
its complement.

The most classical and best understood special case is when the graph G is
the binary hypercube {−1, 1}n in which two vertices are connected by an edge if
and only if their Hamming distance equals 1. We have already discussed briefly,
in Chapter 4, the edge isoperimetric problem and we showed that when |A| = 2k

for some integer 0 ≤ k ≤ n, then k-dimensional sub-cubes minimize the size of
the edge-boundary (see Theorem 4.3).

In order to describe the subsets of {−1, 1}n with minimal vertex boundary, we
define the so-called simplicial order of the elements of the binary hypercube. We
say that x = (x1, . . . , xn) ∈ {−1, 1}n precedes y = (y1, . . . , yn) ∈ {−1, 1}n in the
simplicial order if either ‖x‖ < ‖y‖ (where ‖x‖ =

∑n
i=1 1{xi=1}) or ‖x‖ = ‖y‖

and xi = 1 and yi = −1 for the smallest i for which xi 6= yi. For example, if n =
4, (1,−1,−1, 1) precedes (−1, 1, 1, 1) and (1,−1, 1,−1) precedes (1,−1,−1, 1).
Harper’s classical vertex isoperimetric theorem states that initial segments of
the simplicial ordering minimize the vertex boundary. More precisely, for N =
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1, . . . , 2n, let SN denote the set of first N elements of {−1, 1}n in the simplicial
order. Then the following is true.

Theorem 7.6 (harper’s vertex isoperimetric theorem.) For any subset
A ⊂ {−1, 1}n,

∂V (A) ≥ ∂V (S|A|) .

We leave the proof of this theorem to the reader, see Exercises 7.11–7.13 for
detailed guidance.

Observe that if N has the form N =
∑k
i=0

(
n
i

)
for some k = 0, . . . , n then the

initial segment SN contains exactly those vectors x whose Hamming distance to
(−1, . . . ,−1) is at most k. In other words, SN is a Hamming ball centered at the
vector (−1, . . . ,−1). The fact that among all sets with a given volume balls mini-
mize the surface area is in close analogy with the classical isoperimetric theorem.
Observe that if SN is a Hamming ball with radius k (i.e., N =

∑k
i=0

(
n
i

)
) then

SN ∪ ∂V (SN ) is the Hamming ball of radius k + 1. This implies that for any set

A ⊂ {−1, 1}n with |A| ≥∑k
i=0

(
n
i

)
, we have |A∪∂V (A)| ≥∑k+1

i=0

(
n
i

)
. By iterating

this argument, we obtain the following simple consequence of Harper’s theorem.
For any A ⊂ {−1, 1}n and x ∈ {−1, 1}n, let dH(x,A) = miny∈A dH(x, y) be the
Hamming distance of x to the set A. Also, denote by

At = {x ∈ {−1, 1}n : dH(x,A) < t}

the t-blowup of the set A, that is, the set of points whose Hamming distance
from A is at most t.

Corollary 7.7 Let A ⊂ {−1, 1}n such that |A| ≥ ∑k
i=0

(
n
i

)
. Then for any t =

1, 2, . . . , n− k + 1,

|At| ≥
k+t−1∑

i=0

(
n

i

)
.

In particular, if |A|/2n ≥ 1/2 then we may take k = bn/2c in the corollary
above and

|At|
2n
≥ P {B(n, 1/2) < EB(n, 1/2) + t} ≥ 1− e−2t2/n

where B(n, 1/2) is a binomial random variable with parameters n and 1/2. The
last inequality follows from standard tail estimates of a symmetric binomial
distribution, for example, from Hoeffding’s inequality.

This simple fact reveals the concentration-of-measure phenomenon we have
already encountered: consider any set A containing at least half of the points of
{−1, 1}n. According to the corollary above, the fraction of those points which
cannot be obtained by changing at most c

√
n bits of some point in A is at most

e−2c2 . In other words, an immense majority of the points in {−1, 1}n is within
Hamming distance of the order of

√
n of A.
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We may also apply Lévy’s inequality (Theorem 7.1) in this situation and
observe that this simple consequence of Harper’s vertex isoperimetric theorem
implies a version of the bounded differences inequality for functions defined on
{−1, 1}n under the uniform measure. More precisely, let f be a function defined
on {−1, 1}n satisfying the bounded differences property such that

max
x∈{−1,1}n,i

|f(x)− f(x̃(i))| ≤ 1

where x̃(i)) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) is obtained by flipping the i-th
bit of x. If X = (X1, . . . , Xn) is uniformly distributed over {−1, 1}n, we may
consider the random variable Z = f(X). Then f is Lipschitz with respect to the

Hamming distance and Theorem 7.1 implies that P {Z > MZ + t} ≤ e−2t2/n.
This is just like in the bounded differences inequality, except that the expected
value of Z is replaced by its median. However, by Exercise 2.1 and the Efron-Stein
inequality,

Mf(X)−Ef(X) ≤
√
V ar(f(X)) ≤

√
n/4 .

Exact isoperimetric results like Harper’s theorem are extremely valuable as they
allow one to deduce the sharpest possible concentration inequalities for Lipschitz
functions. Unfortunately, there are only special examples of exact isoperimetric
results. Here we mention just one of them, without proof, and refer to the bibli-
ographic remarks for further pointers to the literature.

Consider again the binary hypercube {−1, 1}n but now equipped with the
product measure of n i.i.d. Bernoulli random variables, that is, for any x ∈
{−1, 1}n, P {x} = p‖x‖(1 − p)n−‖x‖ where p ∈ (0, 1) is the parameter of the
Bernoulli distribution. The isoperimetric problem now is to determine the sets
A, with a given probability content, that minimize the probability P {∂V (A)} of
the vertex boundary. This problem can be solved for the special case of mono-
tone sets. Recall that a set A ⊂ {−1, 1}n is monotone if 1{x∈A} ≥ 1{y∈A} for all
x = (x1, . . . , xn) and y = (y1, . . . , yn) in {−1, 1}n such that xi ≥ yi for all i. Sur-
prisingly, Hamming balls are still isoperimetric sets in the sense of the following
theorem whose proof we omit:

Theorem 7.8 Let k ∈ {0, . . . , n} and let S = {x ∈ {−1, 1}n : ‖x‖ ≤ k} be a
Hamming ball of radius k. If A ⊂ {−1, 1}n is a monotone set such that P {A} ≥
P {S} then P {∂V (A)} ≥ P {∂V (S)}.

7.4 Convex distance inequality

In a remarkable series of papers Talagrand developed an induction method to
prove powerful concentration results in many cases when the bounded differ-
ences inequality fails. Perhaps the most widely used of these is the so-called
“convex-distance inequality” which we present here as a consequence of the en-
tropy method, namely Theorems 6.19 and 6.20.
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To understand Talagrand’s inequality, first observe that Corollary 7.4 may
be easily generalized by allowing the distance of the point X from the set A to
be measured by a weighted Hamming distance

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑

i:xi 6=yi
|αi|

where α = (α1, . . . , αn) is a vector of nonnegative numbers. Repeating the argu-
ment of the proof of Corollary 7.4, we obtain, for all α,

P

{
dα(X,A) ≥ t+

√
‖α‖2

2
log

1

P {A}

}
≤ e−2t2/‖α‖2 ,

where P {A} = P {X ∈ A} and ‖α‖ =
√∑n

i=1 α
2
i denotes the euclidean norm of

α. Thus, for example, for all vectors α with unit norm ‖α‖ = 1,

P

{
dα(X,A) ≥ t+

√
1

2
log

1

P {A}

}
≤ e−2t2 .

Thus, denoting u =
√

1
2 log 1

P {A} , for any t ≥ u,

P {dα(X,A) ≥ t} ≤ e−2(t−u)2

.

On the one hand, if t ≤
√
−2 logP {A}, then P {A} ≤ e−t

2/2. On the other

hand, since (t − u)2 ≥ t2/4 for t ≥ 2u, for any t ≥
√

2 log 1
P {A} the inequality

above implies P {dα(X,A) ≥ t} ≤ e−t2/2 . Thus, for all t > 0, we have

sup
α:‖α‖=1

P {A} · P {dα(X,A) ≥ t} ≤ sup
α:‖α‖=1

min (P {A},P {dα(X,A) ≥ t})

≤ e−t
2/2 .

The main message of Talagrand’s inequality is that the above inequality remains
true even if the supremum is taken within the probability. To make this statement
precise, introduce, for any x = (x1, . . . , xn) ∈ Xn, the convex distance of x from
the set A by

dT (x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A) .

Theorem 7.9 (convex distance inequality.) For any subset A ⊆ Xn and
t > 0,

P {A}P {dT (X,A) ≥ t} ≤ e−t2/4 .
The theorem is announced in the form Talagrand proved it but the proof

shown here gives a worse exponent in the upper bound (et
2/10 instead of et

2/4).
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We give a different proof of the form announced here in Section 8.4. The convex
distance inequality is implied by Theorems 6.19 and 6.20 for weakly self-bounding
functions. The key to the proof is establishing the following self-bounding prop-
erty for the square of the convex distance. Recall from Section 6.11 the notion
of weak self-bounding functions.

Lemma 7.10 Let A ∈ Xn be a measurable set and define the function f(x) =
dT (x,A)2. Introduce also

fi(x
(i)) = inf

x′i∈X
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) .

Then for all x ∈ Xn, 0 ≤ f(x) − fi(x(i)) ≤ 1. Moreover, f is weakly (4, 0)-self-
bounding, that is,

n∑

i=1

(
f(x)− fi(x(i))

)2

≤ 4f(x) .

Before proving the lemma, we show how it implies the convex distance in-
equality:

Proof of Theorem 7.9 By the definition of the convex distance, we have
A = {x : dT (x,A) = 0} . Observe now that thanks to Lemma 7.10, we may use
Theorem 6.20 with f(x) = d2

T (x,A) and t = Ed2
T (X,A) to obtain

P {A} = P
{
d2
T (X,A) ≤ Ed2

T (X,A)− t
}
≤ exp

(
−Ed2

T (X,A)

8

)

or, equivalently,

P {A} exp

(
Ed2

T (X,A)

8

)
≤ 1 .

On the other hand, Theorem 6.19 implies that for 0 ≤ λ ≤ 1/2,

logE
[
eλ(d2

T (X,A)−Ed2
T (X,A))

]
≤ 2λ2EZ

1− 2λ
.

Choosing λ = 1/10, we have

E exp

(
d2
T (X,A)

10

)
≤ exp

(
Ed2

T (X,A)

8

)

which gives

P {X ∈ A}Eed2
T (X,A)/10 ≤ 1 .

By Markov’s inequality,

P {dT (X,A) ≥ t} ≤ Eed
2
T (X,A)/10e−t

2/10

which completes the proof. 2
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It remains to prove the self-bounding property of the squared convex distance:

Proof of Lemma 7.10 The proof is based on different formulations of the
convex distance. First we observe that dT (x,A) can be represented as a saddle
point. Let M(A) denote the set of probability measures on A. Then

dT (x,A) = sup
α:‖α‖≤1

inf
ν∈M(A)

∑

j

αjEν1{xj 6=Yj}

(where Y = (Y1, . . . , Yn) is distributed according to ν)

= inf
ν∈M(A)

sup
α:‖α‖≤1

∑

j

αjEν1{xj 6=Yj} (7.1)

where the saddle point is achieved. This follows from Sion’s minmax theorem
(1958) which states that if f(x, y) : X × Y → R is convex and lower-semi-
continuous with respect to x, concave and upper-semi-continuous with respect
to y, where X is convex and compact, then

inf
x

sup
y
f(x, y) = sup

y
inf
x
f(x, y) .

We leave the details of checking the conditions of Sion’s theorem to the reader,
see Exercise 7.14.

By the Cauchy-Schwarz inequality,

dT (x,A)2 = inf
ν∈M(A)

n∑

j=1

(
Eν1{xj 6=Yj}

)2
.

Rather than minimizing in the large spaceM(A), we may as well perform mini-
mization on the convex compact set of probability measures on {0, 1}n by map-
ping y ∈ A on (1{yj 6=Xj})1≤j≤n. Denote this mapping by χ. Note that the map-
ping depends on x but we omit this dependence to lighten notation. The set
M(A)◦χ−1 of probability measures on {0, 1}n coincides withM(χ(A)). It is con-
vex and compact and therefore the infimum in the last display is achieved at some
ν̂. Then dT (X,A) is just the Euclidean norm of the vector

(
Eν̂1{xj 6=Yj}

)
j≤n, and

therefore the supremum in (7.1) is achieved by the vector α̂ of components

α̂i =
Eν̂1{xi 6=Yi}√∑n
j=1

(
Eν̂1{xj 6=Yj}

)2 .

For simplicity, assume that the infimum in the definition of fi(x
(i)) is achieved

(otherwise a standard approximation argument may be used).

Clearly, f(x)− fi(x(i)) ≥ 0 for all i. On the other hand let x
(i)
i and ν̂i denote

the coordinate value and the probability distribution on A that witness the value
of fi(x

(i)), that is,
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fi(x
(i)) =

∑

j 6=i

(
Eν̂i1{xj 6=Yj}

)2
+
(
Eν̂i1{x(i)

i 6=Yi}

)2

.

As f(x) ≤∑j 6=i
(
Eν̂i1{xj 6=Yj}

)2
+
(
Eν̂i1{x(i)

i 6=Yi}

)2

, we have

f(x)− fi(x(i)) ≤
(
Eν̂i1{xi 6=Yi}

)2 −
(
Eν̂i1{x(i)

i 6=Yi}

)2

≤ 1 .

It remains to prove that f is weakly (4, 0)-self-bounding. To this end, we may
use once again Sion’s minmax theorem as in (7.1), to write the convex distance

dT (x,A) = inf
ν∈M(A)

sup
α:‖α‖2≤1

n∑

j=1

αjEν1{xj 6=Yj}

= sup
α:‖α‖2≤1

inf
ν∈M(A)

n∑

j=1

αjEν1{xj 6=Yj} .

Denote the pair (ν, α) at which the saddle point is achieved by (ν̂, α̂). Then

√
fi(x(i)) = inf

ν∈M(A)
sup

α:‖α‖2≤1

n∑

j=1

αjEν1{x(i)
j 6=Yj}

≥ inf
ν∈M(A)

n∑

j=1

α̂jEν1{x(i)
j 6=Yj}

.

Let ν̃ denote the distribution on A that achieves the infimum in the latter ex-
pression. Then we have

√
f(x) = inf

ν

n∑

j=1

α̂jEν1{xj 6=Yj} ≤
n∑

j=1

α̂jEν̃1{xj 6=Yj} .

Hence,

√
f(x)−

√
fi(x(i)) ≤

n∑

j=1

α̂jEν̃ [1{xj 6=Yj} − 1{x(i)
j 6=Yj}

]

= α̂iEν̃

[
1{xi 6=Yi} − 1{x(i)

i 6=Yi}

]
≤ α̂i ,

so (√
f(x)−

√
fi(x(i))

)2

≤ α̂2
i .

Finally, since fi(x
(i) ≤ f(x),

n∑

i=1

(
f(x)− fi(x(i))

)2

=

n∑

i=1

(√
f(x)−

√
fi(x(i))

)2(√
f(x) +

√
fi(x(i))

)2

≤
n∑

i=1

α̂2
i 4f(x)

≤ 4f(x) .

2
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Remark 7.2 Note that it follows from the proof above that

n∑

i=1

(√
f(x)−

√
fi(x(i))

)2

≤ 1

which implies, by the Efron-Stein inequality, that V ar(dT (A,X)) ≤ 1. By The-
orem 6.7, this property also implies that

P {dT (A,X)−EdT (A,X) > t} ≤ e−t2/2 .

This inequality is useful when P {A} ≥ 1/2 because in that case MdT (A,X) = 0
and by the bound for the variance, we have EdT (A,X) ≤

√
V ar(dT (A,X)) ≤ 1.

Thus, for all A ⊂ Xn with P {A} ≥ 1/2,

P {A}P {dT (A,X) > t} ≤ e−(t−1)2/2

which is just like the convex distance inequality. However, by this argument one
cannot handle sets with small probability which is important in many applica-
tions.

7.5 Convex Lipschitz functions revisited

Recall that in Section 6.6 we derived upper tail inequalities for convex Lipschitz
functions (with respect to the Euclidean norm) of independent bounded random
variables. The convex distance inequality may also be used to prove such a result.
Moreover, we also obtain an analogous lower tail inequality.

The key is the following lemma which relates the Euclidean distance of a
point to a convex subset of [0, 1]n and the convex distance dT .

For any A ⊂ [0, 1]n and x ∈ [0, 1]n, define by

D(x,A) = inf
y∈A
‖x− y‖

the Euclidean distance of x and A (where ‖ · ‖ denotes the Euclidean norm).

Lemma 7.11 Let A ⊂ [0, 1]n be a convex set and let x = (x1, . . . , xn) ∈ [0, 1]n.
Then

D(x,A) ≤ dT (x,A) .

Proof The key to the proof is the saddle point representation (7.1) of the
convex distance. Recall that M(A) is the set of all probability measures on
A and Y = (Y1, . . . , Yn) denotes a random vector distributed according to a
ν ∈M(A). Then
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D(x,A) = inf
ν∈M(A)

‖x−EνY ‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√
n∑

j=1

(
Eν1{xj 6=Yj}

)2
(since xj , Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑

j=1

αjEν1{xj 6=Yj} (by Cauchy-Schwarz)

= dT (x,A) .

2

Now the following concentration inequality for convex Lipschitz functions
follows easily. In fact, it suffices to assume that f is quasi-convex, that is, {x :
f(x) ≤ s} is a convex set for all s ∈ R.

Theorem 7.12 Let X = (X1, . . . , Xn) be a vector of independent random vari-
ables taking values in the interval [0, 1] and let f : [0, 1]n → R be a quasi-convex
function such that |f(x) − f(y)| ≤ ‖x − y‖ for all x, y ∈ [0, 1]n. Then f(X)
satisfies, for all t > 0,

P {f(X) >Mf(X) + t} ≤ 2e−t
2/4

and

P {f(X) <Mf(X)− t} ≤ 2e−t
2/4 .

Proof For some s ∈ R, define the set As = {x : f(x) ≤ s} ⊂ [0, 1]n. Because
of quasi-convexity, As is convex. By the Lipschitz property and Lemma 7.11, for
all x ∈ [0, 1]n,

f(x) ≤ s+D(x,As) ≤ s+ dT (x,As) ,

so the convex distance inequality implies

P {f(X) ≥ s+ t}P {f(X) ≤ s} ≤ e−t2/4 .

Take s = Mf(X) to get the upper tail inequality and s = Mf(X) − t to get
the lower tail inequality. 2

7.6 Bin packing

In what follows we describe an application of the convex distance inequality for
the bin packing discussed in Section 3.2.

Let f(x) denote the minimum number of bins of size 1 into which the numbers
x1, . . . , xn ∈ [0, 1] can be packed. We consider the random variable Z = f(X)
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where X1, . . . , Xn are independent, taking values in [0, 1]. The bounded differ-
ences inequality implies that

P {|Z −EZ| ≥ t} ≤ 2e−t
2/n .

However, when the Xi are typically much smaller than one, one expects that
Z behaves similarly to

∑n
i=1Xi. The following result shows that, in fact, the

typical deviations of Z are of much smaller order when E
∑n
i=1X

2
i � n.

Corollary 7.13 Denote Σ =
√

E
∑n
i=1X

2
i . Then for each t > 0,

P {|Z −MZ| ≥ t+ 1} ≤ 8e−t
2/(16(2Σ2+t)) .

Proof First observe (and this is the only specific property of f we use in the
proof) that for any x, y ∈ [0, 1]n,

f(x) ≤ f(y) + 2
∑

i:xi 6=yi
xi + 1 .

To see this it suffices to show that the xi for which xi 6= yi can be packed into at

most
⌊
2
∑
i:xi 6=yi xi

⌋
+ 1 bins. For this it is enough to find a packing such that

at most one bin is less than half full. But such a packing must exist because we
can always pack the contents of two half-empty bins into one.

Denoting by α = α(x) ∈ [0,∞)n the unit vector x/‖x‖, we clearly have

∑

i:xi 6=yi
xi = ‖x‖

∑

i:xi 6=yi
αi = ‖x‖dα(x, y) .

Let a be a positive number and define the set Aa = {y : f(y) ≤ a}. Then, by the
argument above and by the definition of the convex distance, for each x ∈ [0, 1]n

there exists y ∈ Aa such that

f(x) ≤ f(y) + 2
∑

i:xi 6=yi
xi + 1 ≤ a+ 2‖x‖dT (x,Aa) + 1

from which we conclude that for each a > 0, Z ≤ a+ 2‖X‖dT (X,Aa) + 1. Thus,
writing Σ =

√
E
∑n
i=1X

2
i for any t ≥ 0,

P {Z ≥ a+ 1 + t}

≤ P

{
Z ≥ a+ 1 + t

2‖X‖
2
√

2Σ2 + t

}
+ P

{
‖X‖ ≥

√
2Σ2 + t

}

≤ P

{
dT (X,Aa) ≥ t

2
√

2Σ2 + t

}
+ e−(3/8)(Σ2+t)

where the bound on the second term follows by a simple application of Bernstein’s
inequality, see Exercise 7.17.
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To obtain the desired inequality, we use the obtained bound with two different
choices of a. To derive a bound for the upper tail of Z, we take a = MZ. Then
P {Aa} ≥ 1/2 and the convex distance inequality yields

P {Z ≥MZ + 1 + t} ≤ 2
(
e−t

2/(16(2Σ2+t)) + e−(3/8)(Σ2+t)
)
≤ 4e−t

2/(16(2Σ2+t)) .

We obtain a similar inequality in the same way for P {Z ≤ MZ − 1 − t} by
taking a = MZ − t− 1. 2

7.7 Bibliographic remarks

The connection of concentration inequalities and isoperimetric properties goes
back to Lévy (1951) and has been an important research area in functional anal-
ysis and high-dimensional geometry. The importance of measure concentration
in the asymptotic theory of Banach spaces is summarized in the now classical
book of Milman and Schechtman (1986) where many of the early results are
summarized. The more recent book of Ledoux (2001) is an excellent summary
of measure concentration and its connections with isoperimetry and related geo-
metric concepts. We recommend the surveys of Ball (1997), Schechtman (2003),
and Gardner (2002) for the background, history, and many pointers to the related
literature.

The inequalities of Theorem 7.1 were first pointed out by Lévy (1951) who
also proved the isoperimetric theorem on the surface of the Euclidean ball in Rn,
along with Schmidt (1948). For extensions of Lévy’s proof to Riemannian man-
ifolds with positive curvature, see Gromov (1980). The Gaussian isoperimetric
theorem is due to Borell (1975) and Tsirelson and Sudakov (1974).

The vertex isoperimetric theorem for the discrete cube (Theorem 7.6) goes
back to Harper (1966). Several simpler proofs have been published, see Katona
(1975), Kleitman (1979), and Frankl and Füredi (1981). A natural generalization
of the discrete cube includes n-fold products of graphs. Given a graph with
vertex set G and edge set E, the n-fold product of the graph has vertex set
Gn = G× · · · ×G and two vertices g1 = (g1,1, . . . , g1,n) and g2 = (g2,1, . . . , g2,n)
are connected if and only if g1 and g2 agree in all but one component and if
they differ in the i-th component then g1,i and g2,i are connected in the original
graph. If G is K2 (i.e., the complete graph on two vertices) then the product
graph is just the binary hypercube. If G is a chain of length k then the product is
a so-called grid graph. For grid graphs Bollobás and Leader (1991b) established
a vertex isoperimetric theorem, thus generalizing Harper’s theorem. In general,
there are very few examples of product graphs for which exact isoperimetric
theorem have been established.

Bezrukov and Serra (2002) establish a very general result which provides
a powerful tool for finding further examples. On the other hand, isoperimetric
inequalities have been established in great generality. For example, Alon and
Milman (1985) show that if G is connected then powers of G form a Lévy family,
that is, there exist constants C1 and C2 (depending on G) such that for any
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set A ⊂ Gn whose cardinality is at least the half of the cardinality of Gn, the
complement of the t-blowup of A (defined in terms of the graph distance) is at
most C1|Gn|e−C2t. Using martingale techniques, Bollobás and Leader (1991a)

show a bound of the type C1|Gn|e−C2t
2

.
Theorem 7.8 is due to Bollobás and Leader (1991b). For surveys on discrete

isoperimetric inequalities we refer to Leader (1991) and Bezrukov (1994).
The “isoperimetric” approach to concentration inequalities was promoted and

developed, in large part, in a remarkable series of papers of Talagrand (1995,
1996b, 1996c). The convex-distance inequality presented in Section 7.4 is per-
haps the most useful representative of a family of inequalities established by Ta-
lagrand. The original proof (and its variants) is based on an induction argument,
different from the one based of the entropy method presented here. We note that
Talagrand’s original proof gives a better constant in the exponent (e−t

2/4 instead

of e−t
2/10). For several extensions and variations we refer to Talagrand (1995,

1996b, 1996c). Steele (1996), McDiarmid (1998), and Molloy and Reed (2002)
survey a large variety of applications of the convex distance inequality. Pollard
(2007) revisits Talagrand’s original proof in order to make it more transparent.
The proof presented here appears in Boucheron, Lugosi, and Massart (2009).

Theorem 7.12 is due to Talagrand (1996c).
The application of the convex distance inequality for the bin packing problem

appears in Talagrand (1995).

7.8 Exercises

Exercise 7.1 Let X be a metric space, let X be an X -valued random variable dis-
tributed according to the probability measure P , and let α(t) be the corresponding
concentration function. Let ε > 0. Show that if B ⊂ X is such that P {B} ≥ ε and t0
is such that α(t0) < ε, then

α(t) ≥ P {d(X,B) ≥ t0 + t} .

Exercise 7.2 (a variant of theorem 7.2.) Show that if β : R+ → [0, 1] is a function
such that for every Lipschitz function f : X → R with Lipschitz constant 1

P {f(X) ≥ Ef(X) + t} ≤ β(t) ,

then β(t) ≥ α(t/2). (See Ledoux (2001).)

Exercise 7.3 (laplace functional.) Define the Laplace functional by

L(λ) = sup
f

Eeλf(X)

where the supremum is taken over all Lipschitz functions f : X → R with Lipschitz
constant 1 such that Ef(X) = 0. Show that for all t > 0,

α(t) ≤ inf
λ>0

e−λt/2L(λ) .

(See Ledoux (2001).)
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Exercise 7.4 (laplace functional of a bounded metric space.) Denote the di-
ameter of X by D = supx,y∈X d(x, y) and assume D <∞. Show that

L(λ) ≤ eD
2λ2/8 .

(See Ledoux (2001).)

Exercise 7.5 (laplace functional of a product space.) Let (X1, d1), . . . , (Xn, dn)
be metric spaces with corresponding Borel σ-algebras and probability measures P 1, . . . ,P n,
respectively. Let P = ⊗ni=1P i be the product measure on the cartesian product space
X = X1×· · ·×Xn. X is a metric space with distance function d(x, y) =

∑n
i=1 d(xi, yi).

Show that if Li(λ) denotes the Laplace functional of Xi (i = 1, . . . , n) and L(λ) is the
Laplace functional of the product space X , then

L(λ) ≤
n∏
i=1

L(λi) .

(See Ledoux (2001).)

Exercise 7.6 (yet another proof of the bounded differences inequality.)
Combine the previous three exercises to get the following general version of the bounded
differences inequality. Let X1, . . . , Xn be independent random variables taking values
in the metric spaces (X1, d1), . . . , (Xn, dn), respectively. Let f : X → R be such that
for all x = (x1, . . . , xn) ∈ X and y = (y1, . . . , yn) ∈ X ,

|f(x)− f(y)| ≤
n∑
i=1

di(xi, yi) .

Show that if Di denotes the diameter of Xi, then

P {|f(X1, . . . , Xn)−Ef(X1, . . . , Xn)| > t} ≤ 2 exp

(
− t2∑n

i=1 D
2
i

)
.

(See Ledoux (2001).)

Exercise 7.7 Show that it B denotes the Euclidean ball in Rn with radius 1, then
Vol(∂B) = nVol(B).

Exercise 7.8 (gordon’s inequality.) Prove that if Φ(t) = (2π)−1/2
∫ t
−∞ e

−x2/2dx

denotes the standard normal distribution function and φ(t) = (2π)−1/2e−t
2/2 is the

standard normal density, then for all t > 0,

t

t2 + 1
≤ 1− Φ(t)

φ(t)
≤ 1

t
.

(Gordon (1941), see also Birnbaum (1942).)

Exercise 7.9 Show that for
√

2/n ≤ s ≤ 1, the normalized surface area of a spherical
cap of height 1− s in Sn−1 satisfies
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1

6s
√
n

(1− s2)
n−1

2 ≤ µ(C(u, s)) ≤ 1

2s
√
n

(1− s2)
n−1

2 .

(See, e.g., Brieden et al. (2001).)

Exercise 7.10 Extend the argument given in Section 7.2 for the proof of an isoperi-
metric inequality on the surface of the Euclidean ball to more generals norms as follows.
Consider a norm ‖ · ‖ on Rn and define its modulus of convexity by

δ(ε) = inf
x,y∈R:‖x‖≤1,‖y‖≤1,‖x−y‖≥ε

(
1−

∥∥∥x+ y

2

∥∥∥) .

Let S = {x ∈ Rn : ‖x‖ = 1} be the “surface” of the unit ball in this norm and define
the measure µ on S by

µ(A) =
Vol(∪a∈[0,1]a ·A)

Vol({x : ‖x‖ ≤ 1}) , A ⊂ S .

Show that for any measurable set A ⊂ S, the t-blowup At of A satisfies

µ(Act) ≤
2

µ(A)
e−2nδ(t/2)

(see Schechtman (2003) who also gives the history of this result.)

The following few exercises ask the reader to prove Harper’s vertex isoperi-
metric theorem (Theorem 7.6). Each exercise is a main step of the proof given
by Kleitman (1979), see also Leader (1991).

Exercise 7.11 (harper’s theorem: compression.) The proof of Harper’s vertex
isoperimetric theorem sketched here is based on the idea of compression. Let A ⊂
{−1, 1}n and define the i-sections of A by

A(i−) = {x(i,−1) = (x1, . . . , xi−1,−1, xi+1, . . . , xn) : x(i,−1) ∈ A}

and

A(i+) = {x(i,1) = (x1, . . . , xi−1, 1, xi+1, . . . , xn) : x(i,−1) ∈ A} .

Let S
(i,−)
N (and S

(i,+)
N ) denote the set of first N elements in the simplicial ordering of

all vectors whose i-th component is 0 (and 1, respectively). Let Ci(A) be the set whose

i-sections are S
(i,−)

|A(i−)| and S
(i,+)

|A(i+)|. Clearly, |Ci(A)| = |A|. Prove that ∂V (Ci(A)) ≤
∂V (A).

Exercise 7.12 (harper’s theorem: iteration.) Given A ⊂ {−1, 1}n, define a se-
quence of sets recursively as follows: let A0 = A. Having defined A0, A1, . . . , Ak, let
i ∈ {1, . . . , n} be any index such that Ci(Ak) 6= Ak and define Ak+1 = Ci(Ak). If no
such i exists, the process terminates. Show that the process terminates after a finite
number of steps, that is, there exists a k such that Ak = Ci(Ak) for every i = 1, . . . , n.
Note that if B denotes the set obtained at the end of the process, then by the previous
exercise, |B| = |A| and ∂V (B) ≤ ∂V (A).
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Exercise 7.13 (harper’s theorem: conclusion.) Let B be a set such that Ci(B) =
B for every i = 1, . . . , n. Show that either B = S|B| or, if n is even,

B =
{
x ∈ {−1, 1}n : ‖x‖ < n

2

}
∪
{
x ∈ {−1, 1}n : ‖x‖ =

n

2
, x1 = 1

}
− {y} ∪ {z}

where y = (y1, . . . , yn) is such that yi = 1 if and only if i ∈ {1, (n/2)+2, (n/2)+3, . . . , n}
and z = (z1, . . . , zn) is such that zi = 1 if and only if i ∈ {2, 3, . . . , (n/2) + 1} or, if n
is odd,

B =
{
x ∈ {−1, 1}n : ‖x‖ < n

2

}
− {y} ∪ {z}

where y = (y1, . . . , yn) is such that yi = 1 if and only if i ∈ {(n+3)/2, (n+5)/2, . . . , n}
and z = (z1, . . . , zn) is such that zi = 1 if and only if i ∈ {1, 2, . . . , (n+1)/2}. Complete
the proof of Harper’s vertex isoperimetric theorem by noting that the two exceptional
sets defined above have a larger boundary than the corresponding set S|B|.

Exercise 7.14 Check the conditions of Sion’s minmax theorem are satisfied in the
representation of the convex distance as a saddle point in the proof of Lemma 7.10 (see
Boucheron, Lugosi and Massart (2003)).

Exercise 7.15 (convex distance and configuration functions.) Recall the defi-
nition of a configuation function from Chapter 3. Assume f : Xn → N is a configuration
function. Let Aa = {x : x ∈ Xn, f(x) ≤ a} . Check that for all x ∈ Xn,

f(x) ≤ a+
√
f(x)dT (x,Aa) .

Let P denote a product probability distribution over Xn. Let MZ denote a median of
Z = f(X) under P . Using Talagrand’s convex distance inequality, show that

P {Z ≥MZ + t} ≤ 2e
− t2

4(MZ+t) ,

and

P {Z ≤MZ − t} ≤ 2e−
t2

4MZ ,

Hint: the function t 7→ (t− a)/
√
t is increasing for t ≥ a (see Talagrand (1995)).

Exercise 7.16 Prove the following extension of Theorem 7.12. Let X = (X1, . . . , Xn)
be a vector of independent random variables taking values in the interval [0, 1] and
let f : [0, 1]n → R be a quasi-convex function. Suppose that there exists a convex set
S ⊂ [0, 1]n such that |f(x)− f(y)| ≤ ‖x− y‖ for all x, y ∈ S where P {X /∈ S} < 1/2.
Then f(X) satisfies, for all t > 0,

P {f(X) >Mf(X) + t} ≤ P {X /∈ S}+
1

1/2− P {X /∈ S}e
−t2/4

and

P {f(X) <Mf(X)− t} ≤ 2P {X /∈ S}+ 2e−t
2/4

(Talagrand (1996c)).
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Exercise 7.17 Let X1, . . . , Xn be independent random variables taking values is [0, 1].
Show that

P


√√√√ n∑

i=1

X2
i ≥

√√√√2E

n∑
i=1

X2
i + t

 ≤ e−(3/8)(E
∑n
i=1 X

2
i +t) .



8

THE TRANSPORTATION METHOD

In this chapter we present the main ideas behind a different way of proving
concentration inequalities that we call the transportation method. It is based
on a beautiful idea of coupling and provides a simple and elegant approach that
leads to concentration inequalities, some of which are difficult to prove with other
general methods such as the ones described in Chapter 6. One of the strengths of
the transportation method is that it is possible to extend it to weakly dependent
random variables. However, we do not pursue this direction here.

The method is best described in the same basic framework studied in the
previous chapters, that is, we let X1, . . . , Xn be independent random variables
taking values in a (measurable) set X and consider a measurable function f :
Xn → R of n variables. As before, we define the real random variable Z =
f(X1, . . . , Xn). Once again, we need some general assumptions of regularity that
we may formalize as follows. Let d : X × X → [0,∞) be a nonnegative function
(typically a pseudo-metric) and let c1, . . . , cn ≥ 0 be constants. We assume that
f satisfies the Lipschitz-type property

f(y)− f(x) ≤
n∑

i=1

cid (xi, yi) (8.1)

for all x, y ∈ Xn.
For the basic idea of how transportation and concentration inequalities are

connected, we recall the transportation lemma (Lemma 4.18) whose most basic
special case states the following. Let Z be a real-valued random variable defined
on a probability space (Ω,A, P ). The logarithm of the moment generating func-
tion ψZ−EPZ(λ) = logEP exp(λ(Z −EPZ)) of the real-valued random variable
satisfies

ψZ−EPZ(λ) ≤ vλ2

2

for every λ > 0 for some v > 0 if and only if for any probability measure Q
absolutely continuous with respect to P and such that D(Q‖P ) <∞,

EQf −EP f ≤
√

2vD(Q‖P ) .

(Recall that EP denotes integration with respect to the probability measure P .)
The lemma above suggests that one may prove sub-Gaussian concentration

inequalities for Z = f(X1, . . . , Xn) by proving a “transportation” inequality as
above. The key tool to achieve this relies on coupling.
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For i = 1, . . . , n, denote by Pi the distribution of Xi, and let P = P1 ⊗
· · · ⊗ Pn be the joint (product) distribution of X1, . . . , Xn on Xn. Consider a
probability measure Q on Xn, absolutely continuous with respect to P and let
Y be a random variable (defined on the same probability space as X) such that
Y has distribution Q. We say that the joint distribution P of the pair (X,Y )
is a ‘‘coupling” of P and Q and we write P(P,Q) for the collection of all such
probability distributions. Then, using the Lipschitz condition and the Cauchy-
Schwarz inequality,

EQf −EP f = EP [f(Y )− f(X)]

≤
n∑

i=1

ciEP d(Xi, Yi)

≤
(

n∑

i=1

c2i

)1/2( n∑

i=1

(EP d(Xi, Yi))
2

)1/2

.

Thus, it suffices to upper bound

n∑

i=1

(EP d(Xi, Yi))
2

by a constant multiple of D(Q‖P ). In particular, if one is able to prove that for
some positive constant C

min
P∈P(P,Q)

n∑

i=1

(EP d(Xi, Yi))
2 ≤ 2CD (Q‖P ) , (8.2)

then it follows from the argument described above that ψZ−EPZ(λ) ≤ vλ2/2
where v = C

∑n
i=1 c

2
i . This, of course, implies the sub-Gaussian concentration

inequalities

P {Z ≥ EZ + t} ≤ e−t2/(2v) and P {Z ≤ EZ − t} ≤ e−t2/(2v) .

The bulk of the work therefore lies in proving the coupling inequality (8.2). By
a general induction principle given in Lemma 8.13 at the end of this chapter, it
suffices to prove the inequality for n = 1. Thus, the quantity of interest is

min
P∈P(P,Q)

EP d(X,Y ) ,

which quantifies the “effort” required to transport a mass distributed according
to P into a mass distributed according to Q measured by the cost function d. This
quantity is usually called the transportation cost from Q to P relatively to d. The
transportation problem asks for constructing an optimal coupling P ∈ P(P,Q)
that is, a minimizer of the transportation cost EP d(X,Y ). This explains the
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name transportation method for the technique of proving concentration inequal-
ities we discuss in this chapter.

The rest of this chapter is organized as follows. We first consider the case
d(x, y) = 1{x 6=y}. With this cost function, the Lipschitz condition (8.1) becomes
just the bounded differences condition and, in fact, we recover an alternative
proof of the bounded differences inequality (Theorem 6.2). Still dealing with
the case d(x, y) = 1{x 6=y}, in Section 8.2 we generalize the bounded differences
condition by allowing the coefficients ci in (8.1) to depend on the vector x. The
resulting concentration inequalities do not have a proof based on the entropy
method (especially the lower-tail bounds). In Section 8.5 we present a refinement
of the these ideas and use it to re-derive the Gaussian concentration inequality.
The basic observation is that one may weaken condition (8.1) and assume instead
only that

f(y)− f(x) ≤ L
(

n∑

i=1

d2(xi, yi)

)1/2

if one is able to prove the stronger transportation inequality

min
P∈P(P,Q)

n∑

i=1

EP d
2(Xi, Yi) ≤ CD(Q‖P ) .

Indeed, in this case the Cauchy-Schwarz inequality implies that for every coupling
of P and Q, one has

EQf −EP f ≤ L
(

n∑

i=1

EP d
2(Xi, Yi)

)1/2

,

and therefore ψZ−EPZ(λ) ≤ vλ2/2 with v = CL. We show that the strengthened
transportation inequality holds with C = 1 for the quadratic cost d2(x, y) =
(x − y)2 in the case when P is the standard Gaussian distribution on Rn. This
provides an alternative proof of the Gaussian concentration inequality.

8.1 The bounded differences inequality revisited

Perhaps the simplest way to illustrate how the transportation method works is
by re-proving the bounded differences inequality of Theorem 6.2. Recall that f
satisfies the bounded differences condition if

|f (x1, . . . , xi, . . . , xn)− f (x1, . . . , yi, . . . , xn)| ≤ ci

for all x, y ∈ Xn, and i = 1, . . . , n. This implies that for all x, y ∈ Xn,

|f (x)− f (y)| ≤
n∑

i=1

ci1{xi 6=yi} ,
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and therefore f satisfies condition (8.1) for the cost function d(t, t′) = 1{t6=t′}.
According to the argument described in the introduction of this chapter, we need
to solve the transportation problem for this cost function. Clearly,

min
P∈P(P,Q)

EP d(X,Y ) = min
P∈P(P,Q)

P {X 6= Y } .

The solution is given by the next lemma.

Lemma 8.1 If P and Q are probability distributions on the same space (Ω,A),
then

min
P∈P(P,Q)

P {X 6= Y } = V (P,Q)

where V (P,Q) denotes the total variation distance

V (P,Q) = sup
A∈A
|P (A)−Q(A)| .

Proof Note that if P ∈ P(P,Q), then

|P (A)−Q(A)| =
∣∣EP

[
1{X∈A} − 1{Y ∈A}

]∣∣
≤ EP

[∣∣1{X∈A} − 1{Y ∈A}
∣∣1{X 6=Y }

]
≤ P {X 6= Y }

which means that V (P,Q) ≤ infP∈P(P,Q) P {X 6= Y }. Conversely, consider a
probability measure µ which dominates P and Q and denote by p and q the
corresponding densities of P and Q with respect to µ. Then

a
def
= V (P,Q) =

∫

Ω

(p− q)+dµ =

∫

Ω

(q − p)+dµ = 1−
∫

Ω

min(p, q)dµ

and since we can assume that a > 0 (otherwise the result is trivial), we define
the probability measure P as a mixture P = aP 1 + (1 − a)P 2 where P 1 and
P 2 are such that, for any measurable and bounded function Ψ,

a2

∫

Ω×Ω

Ψ(x, y)dP 1(x, y) =

∫

Ω×Ω

(p(x)− q(x))+ (q(y)− p(y))+ Ψ(x, y)dµ(x)dµ(y)

and

(1− a)

∫

Ω×Ω

Ψ(x, y)dP 2(x, y) =

∫

Ω

min(p(x), q(x))Ψ(x, x)dµ(x) .

It is easy to check that P ∈ P (P,Q) . Moreover, since P 2 is concentrated on the
“diagonal” {(x, y) : x = y}, we have P {X 6= Y } = aP 1{X 6= Y } ≤ a. 2

It remains to prove a transportation inequality of the form (8.2). Given the
interpretation of the variation distance as a transportation cost given by the
previous lemma, now it is natural to use Pinsker’s inequality (recall Theorem
4.19). This immediately gives us (8.2) for n = 1.
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Theorem 8.2 (marton’s transportation inequality.) Let P = P1⊗· · ·⊗
Pn be a product probability measure on Xn and let Q be a probability measure
absolutely continuous with respect to P . Then

min
P∈P(P,Q)

n∑

i=1

P 2 {Xi 6= Yi} ≤
1

2
D(Q‖P ) ,

where (X,Y ) = (Xi, Yi)i=1,...,n has distribution P .

Proof We simply apply the general induction principle given in Lemma 8.13 at
the end of this chapter, noticing that the basic induction assumption is satisfied
by combining Pinsker’s inequality (Theorem 4.19) and Lemma 8.1. 2

Putting everything together, we see that (8.2) is satisfied with C = 1/4
which implies that if f : Xn → R satisfies the bounded differences condition
and X1, . . . , Xn are independent, then Z = f(X1, . . . , Xn) is sub-Gaussian with
variance factor

∑n
i=1 c

2
i /4 which implies the bounded differences inequality of

Theorem 6.2.

8.2 Bounded differences in quadratic mean

Next we take a step further and relax the bounded differences condition. We
assume that f : Xn → R satisfies

f(y)− f(x) ≤
n∑

i=1

ci(x)1{xi 6=yi}

for some functions ci : Xn → [0,∞), i = 1, . . . , n. Instead of forcing the ci to
be bounded we only assume that they are bounded in “quadratic mean” in the
sense that

v
def
= E

n∑

i=1

c2i (X)

is finite. Under this assumption, the transportation method may be used as
follows. Let Q be a probability distribution, absolutely continuous with respect
to P , the distribution of X. Let P be a coupling of P and Q. Then

EQf −EP f ≤
n∑

i=1

EP [ci(X)P {Xi 6= Yi | X}]

which implies, by applying the Cauchy-Schwarz inequality twice,

EQf −EP f ≤
n∑

i=1

(
EP c

2
i (X)

)1/2 (
EP

[
P 2 {Xi 6= Yi | X}

])1/2

≤
(

n∑

i=1

EP c
2
i (X)

)1/2( n∑

i=1

EP

[
P 2 {Xi 6= Yi | X}

]
)1/2

.
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Using our assumption on f , this implies

EQf −EP f ≤
√
v

(
inf

P∈P(P,Q)

n∑

i=1

EP

[
P 2 {Xi 6= Yi | X}

]
)1/2

.

Thus, by the road map laid down in the introduction of this chapter, if we can
prove the inequality

inf
P∈P(P,Q)

n∑

i=1

EP

[
P 2 {Xi 6= Yi | X}

]
≤ 2D (Q‖P ) ,

then Lemma 4.18 implies ψZ−EZ(λ) ≤ vλ2/2 and the resulting sub-Gaussian
tail inequality with variance factor v. Since Lemma 8.13 is applicable, it suffices
to prove the transportation inequality above for n = 1. To this end, we first solve
the corresponding transportation cost problem.

A conditional transportation cost problem. First we need to introduce the ana-
logue of the total variation distance for our “conditional” transportation cost
problem. Let P and Q be probability distributions and let µ be a measure dom-
inating P and Q simultaneously. For concreteness, we may take µ = (P +Q)/2.
Then we may consider q = dP/dµ and q = dQ/dµ and define

d2
2(Q,P ) =

∫
(p− q)2

+

p
dµ .

Observe that this definition does not depend on the dominating measure. Indeed,
if ν is another measure dominating P and Q simultaneously, then µ is absolutely
continuous with respect to ν and setting g = dµ/dν and we may write

∫
(dP/dν − dQ/dν)

2
+

dP/dν
dν =

∫
(gp− gq)2

+

gp
dν =

∫
(p− q)2

+

p
gdν = d2

2(Q,P ) .

We are now ready to prove an analog of Lemma 8.1.

Lemma 8.3 Let P and Q be probability distributions on a common measurable
space (Ω,A). Then

min
P∈P(P,Q)

(
EP

[
P 2 {X 6= Y | X}

]
+ EP

[
P 2 {X 6= Y | Y }

])

= d2
2(Q,P ) + d2

2(P,Q) .

Proof Let µ = (P + Q)/2 and denote by p and q the densities of P and Q
with respect to µ. Introducing p̃(x) = p(x)1{p(x)>0} + 1{p(x)=0}, notice that
p̃(X) = p(X) with probability one. Moreover, if P ∈ P(P,Q), then

P {X = Y | X} ≤ min

(
1,
q(X)

p̃(X)

)
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with probability one. To see this, observe that for any nonnegative measurable
function h,

EP [h(X)P {X = Y | X}] = EP

[
h(X)1{X=Y }

]

≤ EP

[
h(Y )1{p(Y )>0}

]

= EP

[
h(X)

q(X)

p̃(X)

]
,

and therefore,

EP

[
h(X)

(
q(X)

p̃(x)
− P {X = Y | X}

)]
≥ 0

from which the claim follows. This implies that

EP

[
P 2 {X 6= Y | X}

]
≥ EP

[(
1− q(X)

p̃(X)

)2

+

]
= d2

2(Q,P ) ,

and therefore

d2
2(Q,P ) ≤ inf

P∈P(P,Q)
EP

[
P 2 {X 6= Y | X}

]
.

Of course, symmetrically,

d2
2(P,Q) ≤ inf

P∈P(P,Q)
EP

[
P 2 {X 6= Y | Y }

]

which implies that

d2
2(Q,P ) + d2

2(P,Q)

≤ inf
P∈P(P,Q)

{
EP

[
P 2 {X 6= Y | X}

]
+ EP

[
P 2 {X 6= Y | Y }

]}
.

Conversely, if a = V (P,Q) = 0, there is nothing to prove. Otherwise we consider
the same coupling P ∈ P(P,Q) as in the proof of Lemma 8.1, that is, P is
defined as a mixture P = aP 1 + (1− a)P 2 where P 1 and P 2 are such that, for
any measurable and bounded function Ψ,

a2

∫

Ω×Ω

Ψ(x, y)dP 1(x, y) =

∫

Ω×Ω

(p(x)−q(x))+(q(y)−p(y))+Ψ(x, y)dµ(x)dµ(y)

and

(1− a)

∫

Ω×Ω

Ψ(x, y)dP 2(x, y) =

∫

Ω

min(p(x), q(x))Ψ (x, x) dµ(x) .

By construction of this coupling, we have, with probability one,
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P {X 6= Y | X} =

(∫
Ω

(q(Y )− p(Y ))+dµ(y)

a

)(
(p(X)− q(X))+

p(X)

)

=
(p(X)− q(X))+

p(X)
,

and therefore

EP

[
P 2 {X 6= Y | X}

]
=

∫

Ω

(p(x)− q(x))2
+

p2(x)
p(x)dµ(x) = d2

2(Q,P ) .

We have similarly

EP

[
P 2 {X 6= Y | Y }

]
= d2

2(P,Q) ,

concluding the proof of Lemma 8.3. 2

The next step is an analog of Pinsker’s inequality in which d2 plays the role
of the total variation distance:

Lemma 8.4 Let P and Q be probability distributions on a common measurable
space (Ω,A). If Q is absolutely continuous with respect to P , then

d2
2(Q,P ) + d2

2(P,Q) ≤ 2D(Q‖P ) .

Proof Since Q� P , setting q = dQ/dP we may write

d2
2(Q,P ) + d2

2(P,Q) = EP

[
(1− q(X))2

+

]
+ EP

[
(q(X)− 1)2

+

q(X)

]
.

Moreover, defining h(t) = (1 − t) log(1 − t) + t for t < 1 and h(1) = 1, we may
write

D(Q‖P ) = EP [h(1− q(X))] = EP [h ((1− q(X))+)] + EP [h (−(q(X)− 1)+)]

and the result follows by the inequalities

h(t) ≥ t2

2
for t ∈ [0, 1] and h(−t) ≥ t2

2(1 + t)
for t ≥ 0

(recall Exercise 2.8). 2

We are now ready to prove the main result of this section.

Theorem 8.5 (marton’s conditional transportation inequality.) Let
P = P1 ⊗ · · · ⊗ Pn be a product probability measure on Xn and let Q be a
probability measure absolutely continuous with respect to P . Then

min
P∈P(P,Q)

EP

n∑

i=1

(
P 2 {Xi 6= Yi | Xi}+ P 2 {Xi 6= Yi | Yi}

)
≤ 2D(Q‖P ) ,

where (X,Y ) = (Xi, Yi)i=1,...,n has distribution P .
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Proof By Lemmas 8.4 and 8.3, for all i = 1, . . . , n and for every distribution ν
which is absolutely continuous with respect to Pi,

min
P∈P(Pi,ν)

EP

[
P 2 {Xi 6= Yi | Xi}+ P 2 {Xi 6= Yi | Yi}

]
≤ 2D (ν‖Pi) .

The result follows by applying Lemma 8.13 with φ(x) = x2/2 and w(x, y) =
1{x 6=y}. 2

Marton’s conditional transportation inequality implies the following powerful
concentration inequality. It is, in spirit, similar to some of the results of Chapter
6 but does not follow from any of them.

Theorem 8.6 Let f : Xn → R be a measurable function and let X1, . . . , Xn be
independent random variables taking their values in X . Define Z = f(X1, . . . , Xn).
Assume that there exist measurable functions ci : Xn → [0,∞) such that for all
x, y ∈ Xn,

f(y)− f(x) ≤
n∑

i=1

ci(x)1{xi 6=yi} .

Setting

v = E

n∑

i=1

c2i (X) and v∞ = sup
x∈Xn

n∑

i=1

c2i (x) ,

for all λ > 0, we have

ψZ−EZ(λ) ≤ λ2v

2
and ψ−Z+EZ(λ) ≤ λ2v∞

2
.

In particular, for all t > 0,

P {Z ≥ EZ + t} ≤ e−t2/(2v) and P {Z ≤ EZ − t} ≤ e−t2/(2v∞) .

Proof Let P = P1 ⊗ · · · ⊗ Pn denote the distribution of the vector X =
(X1, . . . , Xn) and let Q be a probability distribution on Xn which is absolutely
continuous with respect to P . If P is a coupling of P and Q, then, as we have
seen at the beginning of this section,

EQf −EP f ≤
√
v

(
n∑

i=1

EP

[
P 2 {Xi 6= Yi | X}

]
)1/2

,

and therefore

EQf −EP f ≤
√
v

(
inf

P∈P(P,Q)

n∑

i=1

EP

[
P 2 {Xi 6= Yi | X}

]
)1/2

.

By Jensen’s inequality, this implies
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EQf −EP f ≤
√
v

(
inf

P∈P(P,Q)

n∑

i=1

EP

[
P 2 {Xi 6= Yi | Xi}

]
)1/2

,

so by Theorem 8.5

EQf −EP f ≤
√

2vD(Q‖P ) .

Since this inequality holds for all Q� P , by Lemma 4.18, we have ψZ−EZ(λ) ≤
λ2v/2, proving the bound for the upper tail of Z.

To prove the inequalities for the lower tail of Z, introduce g(x) = −f(x).
Then the condition on f implies that for all x, y ∈ Xn,

g(y)− g(x) ≤
n∑

i=1

ci(y)1{xi 6=yi} .

Then, by repeating the argument at the beginning of the section, we get

EQg −EP g ≤
√
vQ

(
inf

P∈P(P,Q)

n∑

i=1

EP

[
P 2 {Xi 6= Yi | Y }

]
)1/2

.

where vQ =
∑n
i=1 Ec

2
i (Y ). Unfortunately, vQ depends on Q and therefore it is

not a useful quantity. However, by bounding vQ ≤ v∞ and using Theorem 8.5,
we get that, for all Q� P ,

EQg −EP g ≤
√

2v∞D(Q‖P )

and again we may conclude using Lemma 4.18. 2

8.3 Applications of Marton’s conditional transportation inequality

Next we illustrate the use of Theorem 8.6 by revisiting some examples from earlier
chapters such as the largest eigenvalue of a symmetric matrix with independent
entries, configuration functions, and the bin packing problem.

Example 8.7 (the largest eigenvalue of a random symmetric ma-
trix.) Consider again the example already investigated in Examples 3.14 and
6.8. Let A be a random symmetric real matrix with entries Xi,j , 1 ≤ i ≤ j ≤ n
where X the Xi,j are independent random variables with |Xi,j | ≤ 1. Let Z = λ1

denote the largest eigenvalue of A. We already proved that V ar(Z) ≤ 16 and
that for all t > 0,

P {Z > EZ + t} ≤ e−t2/32 .

Here we show how Theorem 8.6 implies the same exponential bound and a similar
lower tail inequality. If x ∈ [−1, 1]n(n+1)/2 is a vector with components xi,j ,
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1 ≤ i ≤ j ≤ n, let A(x) = ((A(x))i,j)n×n denote the corresponding symmetric

matrix and λ1(x) its largest eigenvalue. Then for all x, y ∈ [−1, 1]n(n+1)/2,

λ1(x)− λ1(y) = sup
u∈Rn:‖u‖=1

uTA(x)u− sup
u∈Rn:‖u‖=1

uTA(y)u

≤ vT (A(x)−A(y))v

(where v = (v1, . . . , vn) is a unit vector maximizing uTA(x)u)

=

n∑

i=1

n∑

j=1

vivj (A(x)i,j −A(y)i,j)

≤ 4
∑

1≤i≤j≤n
1{xi,j 6=yi,j}|vivj | .

Since v only depends on x, the function f(x) = −λ1(x) satisfies the condition
of Theorem 8.6 with ci,j(x) = 4|vivj |. But

∑
1≤i≤j≤n ci,j(x)2 ≤ 16 for all x and

therefore Theorem 8.6 implies the bounds

P {Z > EZ + t} ≤ e−t2/32 and P {Z < EZ − t} ≤ e−t2/32

for all t > 0.

Example 8.8 (configuration functions.) Recall from Section 3.3 the def-
inition of a configuration function f : Xn → {1, 2, . . . , n}: A property Π is
a sequence of sets Π1 ⊂ X ,Π2 ⊂ X 2, . . . ,Πn ⊂ Xn. For m ≤ n, a vector
(x1, . . . xm) ∈ Xm satisfies the property Π if (x1, . . . xm) ∈ Πm. Assume that
Π is hereditary so that if (x1, . . . xm) satisfies Π then so does any subsequence
(xi1 , . . . xik) of (x1, . . . xm). The function f that maps any vector x = (x1, . . . xn)
to the size of a largest subsequence satisfying Π is the configuration function
associated with property Π.

If f is a configuration function and X1, . . . , Xn are independent random vari-
ables taking values in X , then define Z = f(X1, . . . , Xn). Since configuration
functions are self-bounding, Z satisfies the exponential inequalities of Theorem
6.12.

Let f be such a configuration function. For any x ∈ Xn, fix a maximal
subsequence (xi1 , . . . , xim) satisfying property Π (so that f(x) = m). Let ci(x)
denote the indicator that xi belongs to the subsequence (xi1 , . . . , xim). Thus,∑n
i=1 ci(x)2 =

∑n
i=1 ci(x) = f(x). It follows from the definition of a configuration

function that for all x, y ∈ Xn,

f(y) ≥ f(x)−
n∑

i=1

1{xi 6=yi}ci(x) .

This means that the function g = −f satisfies the condition of Theorem 8.6 with
v = EZ. Thus, the first inequality of Theorem 8.6 implies that

P {Z ≤ EZ − t} ≤ e−t2/(2EZ) .
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Of course, we already proved the same inequality as a consequence of Theorem
6.12.

To derive an exponential inequality for the upper tail of Z, we need to modify
the proof of Theorem 8.6. Since for all x, y ∈ Xn

f(y)− f(x) ≤
n∑

i=1

ci(y)1{xi 6=yi} ,

it follows from Theorem 8.5 that for all Q� P ,

EQf −EP f ≤
√

2D(Q‖P )EQf ,

where P denotes the distribution of the vector X = (X1, . . . , Xn). But then

EQf −EP f ≤
√

2D(Q‖P )EP f + 2D(Q‖P )

(see Exercise 8.3). By Lemma 4.18 this implies

P {Z ≥ EZ + t} ≤ exp

(
−EZh1

(
2t

EZ

))

where h1(u) = 1 + u−
√

1 + 2u, or, equivalently,

P
{
Z −EZ ≥

√
2tEZ + 2t

}
≤ e−t

(recall the calculations of Section 2.4). This inequality is similar, though not
quite as sharp as the one that follows from Theorem 6.12.

Example 8.9 (bin packing.) Consider once again the random bin packing
problem described in Example 3.3 and Section 7.6. Recall that f(x) denotes
the minimum number of bins of size 1 so that the numbers x1, . . . , xn ∈ [0, 1]
fit in f(x) bins. We write Z = f(X) when X1, . . . , Xn are independent, taking
values in [0, 1]. In Section 7.6 we used the convex distance inequality to derive
exponential tail inequalities for Z. The key property we used was that for all
x, y ∈ [0, 1]n,

f(x) ≤ f(y) + 2

n∑

i=1

1{xi 6=yi}xi + 1 ,

so introducing g(x) = −f(x), we have

g(y) ≤ g(x) + 2

n∑

i=1

1{xi 6=yi}xi + 1 .

This looks very much like the condition of Theorem 8.6 except for the additional
“+1” on the right-hand side. Thus, Theorem 8.6 is not directly applicable but
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Theorem 8.5 is still useful with a slight modification of the proof of Theorem
8.6. Indeed, it follows by Marton’s conditional transportation inequality that, if
P denotes the distribution of X = (X1, . . . , Xn) and Q is absolutely continuous
with respect to P , then

EQg −EP g ≤
√

2vD(Q‖P ) + 1

where v = 4
∑n
i=1 EX

2
i . Then, by an easy application of Lemma 4.18, we have,

for all t > 0,

P {Z < EZ − t} ≤ exp

( −(t− 1)2

8
∑n
i=1 EX

2
i

)
.

We leave the details to the reader as an easy exercise. This bound for the lower
tail of Z is slightly better than what we obtained from the convex distance
inequality. However, by a direct application pf Theorem 8.6 we do not get an
interesting bound for the upper tail because v∞ = supx 4

∑n
i=1 x

2
i = 4n leads

to a bound that we could prove in a simpler way by the bounded differences
inequality.

8.4 The convex distance inequality revisited

The power of Theorem 8.6 is best demonstrated by showing how easily it implies
Talagrand’s convex distance inequality that we proved by the entropy method
(and with a suboptimal constant) in Section 7.4.

Recall that if A ⊂ Xn is a measurable set, then the convex distance of x ∈ Xn
and the set A is defined as

dT (x,A) = sup
α∈[0,∞)n:‖α‖≤1

inf
y∈A

n∑

i=1

αi1{xi 6=yi} .

Denote by c(x) = (c1(x), . . . , cn(x)) the vector of nonnegative components in the
unit ball for which the supremum is achieved. Then

dT (x,A)− dT (y,A) ≤ inf
x′∈A

n∑

i=1

ci(x)1{xi 6=x′i} − inf
y′∈A

n∑

i=1

ci(x)1{yi 6=y′i}

≤
n∑

i=1

ci(x)1{xi 6=yi} .

This shows that f(x) = −dT (x,A) satisfies the condition of Theorem 8.6. Since∑n
i=1 ci(x)2 ≤ 1 for all x, Theorem 8.6 ensures that if X is a vector of inde-

pendent random variables, then dT (X,A) is sub-Gaussian with variance factor
1. This property implies the convex distance inequality as follows. Let Z =
dT (X,A). By Theorem 8.6, for all t > 0,

P {Z −EZ ≥ t} ≤ e−t2/2 .
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Since t2 ≥ −EZ2 + (t+ EZ)
2
/2, this upper tail inequality implies

P {Z −EZ ≥ t} ≤ eEZ2/2e−(t+EZ)2/4 .

Replacing t by t−EZ, this inequality also implies that for t > 0,

P {Z ≥ t} ≤ eEZ2/2e−t
2/4

(note that this bound is trivial whenever t ≤ EZ and therefore we may always
assume that t > EZ). On the other hand, using the left-tail bound

P {EZ − Z ≥ t} ≤ e−t2/2

with t = EZ, we get

P {X ∈ A} = P {Z = 0} ≤ e−EZ2/2 .

Combining these bounds leads to

P {X ∈ A}P {Z ≥ t} ≤ e−t2/4 ,
which is the convex distance inequality of Theorem 7.9.

8.5 Talagrand’s Gaussian transportation inequality

The purpose of this section is to prove the following transportation inequality
for the standard Gaussian measure:

Theorem 8.10 Let P be the standard Gaussian probability measure on Rn and
let Q be any probability measure which is absolutely continuous with respect to
P . Then

min
P∈P(P,Q)

n∑

i=1

EP (Xi − Yi)2 ≤ 2D(Q‖P ) .

Before proving the theorem, we show how it implies the Tsirelson-Ibragimov-
Sudakov inequality (Theorem 5.6) that we proved based on the Gaussian loga-
rithmic Sobolev inequality and Herbst’s argument.

Assume that f : Rn → R is a Lipschitz function, that is, for all x, y ∈ Rn,

f(y)− f(x) ≤ L
(

n∑

i=1

(xi − yi)2

)1/2

.

Then, by Jensen’s inequality, for every coupling P of P and Q� P , on has

EQf −EP f = EP [f(Y )− f(X)] ≤ L
(

n∑

i=1

EP (Xi − Yi)2

)1/2

.

Hence, Theorem 8.10 implies that

EQf −EP f ≤
√

2L2D(Q‖P ) ,

and it follows from Lemma 4.18 that ψZ−EZ(λ) ≤ L2λ2/2 for all λ > 0 where
Z = f(X). This implies the Gaussian concentration inequality.
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Turning to the proof of Theorem 8.10, first note that the induction argument
of Lemma 8.13 applies and therefore out main task is to deal with the one-
dimensional case. Before proving the result, we describe a classical result which
shows that the solution of the transportation cost problem for the quadratic
loss is given by the so-called quantile transform, sometimes also called monotone
rearrangement.

Lemma 8.11 Let F and G be distribution functions on the real line. If X and
Y are real-valued random variables with distribution functions F and G, re-
spectively, E[(X − Y )2] is minimal when X and Y are defined by the quantile
transform of the same uniform random variable, that is, when X = F−1(U) and
Y = G−1(U) where U is uniformly distributed on [0, 1]. The minimal value of
E[(X − Y )2] is therefore

∫ 1

0

(
F−1(t)−G−1(t)

)2
dt .

Proof Since the marginal distributions of X and Y are given, minimizing
E[(X − Y )2] is equivalent to maximizing E[XY ]. We begin with the case when
X and Y are nonnegative. Then, by Fubini’s theorem,

E[XY ] = E

∫ ∞

0

∫ ∞

0

1{x<X}1{y<Y }dxdy

=

∫ ∞

0

∫ ∞

0

P {X > x, Y > y} dxdy .

Applying this formula to the variables F−1(U) and G−1(U) yields

E
[
F−1(U)G−1(U)

]
=

∫ ∞

0

∫ ∞

0

P
{
F−1(U) > x,G−1(U) > y

}
dxdy

=

∫ ∞

0

∫ ∞

0

P {U > max(F (x), G(y))} dxdy ,

and therefore,

E
[
F−1(U)G−1(U)

]
=

∫ ∞

0

∫ ∞

0

min ((1− F (x)), (1−G(y))) dxdy

=

∫ ∞

0

∫ ∞

0

min (P {X > x} ,P {Y > y}) dxdy .

Since P {X > x, Y > y} ≤ min (P {X > x} ,P {Y > y}), we have shown that

E[XY ] ≤ E
[
F−1(U)G−1(U)

]
.

Dealing with the general case is a bit more complicated but relies basically on the
same arguments. Decomposing X and Y as X = X+ −X− and Y = Y + − Y −,
we write E[XY ] as the sum of four terms:
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E[XY ] = E[X+Y +] + E[X−Y −]−E[X−Y +]−E[X+Y −] . (8.3)

It turns out that we can optimize each of these four terms individually. More
precisely, the maximum of each of these four terms is achieved whenever X =
F−1(U) and Y = G−1(U) which, of course, implies the desired result. For the
first two terms, this is clear since the arguments above imply

E[X+Y +] ≤ E
[(
F−1(U)

)+ (
G−1(U)

)+]
,

and similarly,

E[X−Y −] ≤ E
[(
F−1(U)

)− (
G−1(U)

)−]
.

Next we study the third term. Using Fubini’s theorem once more, we may write

E[X−Y +] =

∫ ∞

0

∫ ∞

0

P {X ≤ −x, Y > y} dxdy .

Note that

P {X ≤ −x, Y > y} ≥ P {X ≤ −x} − P {Y ≤ y} ,
which means that

P {X ≤ −x, Y > y} ≥ (F (−x)−G(y))
+
.

But the right-hand side of this inequality may be interpreted as

(F (−x)−G(y))
+

= P {G(y) < U ≤ F (−x)}
= P

{
F−1(U) ≤ −x,G−1(U) > y

}
,

and therefore,

P {X ≤ −x, Y > y} ≥ P
{
F−1(U) ≤ −x,G−1(U) > y

}
.

It remains to integrate this inequality on [0,∞)
2

to conclude that

E[X−Y +] ≥ E
[(
F−1(U)

)− (
G−1(U)

)+]
.

Exchanging the roles of X and Y yields the same result for the fourth term in
(8.3), which finally leads to

E[XY ] ≤ E
[
F−1(U)G−1(U)

]
.

To finish the proof, it remains to compute the minimal value of E[(X − Y )2]
under the marginal constraints X ∼ F and Y ∼ G. But we already know that
the minimum is achieved whenever X = F−1(U) and Y = G−1(U) and in this
case,

E[(X − Y )2] = E
(
F−1(U)−G−1(U)

)2
=

∫ 1

0

(
F−1(t)−G−1(t)

)2
dt .

2
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Although it helps in understanding the transportation approach to Gaussian
concentration, we do not use Lemma 8.11 in the proof of Theorem 8.10 but
rather prove directly the following inequality for the quantile transform.

Lemma 8.12 Let γ be the standard normal distribution on the real line and ν
be some probability distribution which is absolutely continuous with respect to γ.
Denote by Φ and G the distribution functions of γ and ν and define the quantile
transform

T = G−1 ◦ Φ .

If X is a standard normal variable, then Y = T (X) has distribution ν and

E[(X − Y )2] ≤ 2D(ν‖γ) .

Proof Denote by g the density of ν with respect to γ. Assume first that g is
bounded by a constant θ. We claim that this assumption implies that

|T (x)| ≤ 2|x| when |x| is large enough. (8.4)

Indeed, g ≤ θ implies that for all x, G(2x) ≤ θΦ(2x). Moreover, by Gordon’s
inequality for the tail behavior of Φ (see Exercise 7.8),

− log Φ(x) ∼ x2

2
as x→ −∞,

and, in particular,

lim
x→∞

Φ(2x)

Φ(x)
= 0 .

Hence there exists x0 < 0, such that G(2x) ≤ Φ(x) or, equivalently, 2x ≤ T (x)
for all x ≤ x0. Arguing in the same way for the right tail leads to (8.4).

The key observation in order to prove the lemma is that

T ′(x) =
φ(x)

g(Y )φ(Y )
,

where φ(t) = (2π)−1/2e−t
2/2 denotes the standard normal density. But then we

may write

D(ν‖γ) = E log g(Y )

= E

[
log

φ(X)

φ(Y )
− log T ′(X)

]

= E

[
−X

2

2
+
Y 2

2
− log T ′(X)

]

≥ E

[
−X

2

2
+
Y 2

2
+ 1− T ′(X)

]
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where we used − log u ≥ 1 − u for u ≥ 0. From (8.4) we know, on the one
hand, that Y has a finite second order moment and, on the other hand, that
lim|x|→∞ T (x)φ(x) = 0. Hence, integrating by parts leads to

−ET ′(X) = −
∫ +∞

−∞
T ′(x)φ(x)dx =

∫ +∞

−∞
T (x)φ′(x)dx

= −
∫ +∞

−∞
xT (x)φ(x)dx = −E[XY ] .

Then the inequality above becomes

D(ν‖γ) ≥ E

[
−X

2

2
+
Y 2

2

]
+ 1−E[XY ] =

E[(X − Y )2]

2

where we used EX2 = 1. This proves the lemma for the case when g is bounded.
Dealing with the general case requires a truncation argument. We may assume

D(ν‖γ) <∞ because otherwise there is nothing to prove. For any positive integer
k, introduce the (bounded) density

gk(x) =
min(g(x), k)

ck
,

where ck =
∫

min(g(x), k)φ(x)dx. By monotone convergence, the distribution
function Gk of νk = gkφ, converges pointwise to G, so Tk = G−1

k ◦ Φ converges
pointwise to T . By Fatou’s lemma and using the fact that the statement is true
in the bounded case, we have

E
[
(X − T (X))2

]
≤ lim inf

k→∞
E
[
(X − Tk(X))

2
]
≤ 2 lim inf

k→∞
D (νk‖γ) .

To complete the argument, it remains to prove that lim infk→∞D(νk‖γ) =
D(ν‖γ). Setting,

H(u) = u log u ,

we may write

D(νk‖γ) =
1

ck

∫
H (min(g(x), k))φ(x)dx− log ck .

By monotone convergence, limk→∞ ck = 1. Moreover, since H increases on
[1,+∞), the sequence of functions H (min(g(x), k)) increases to H(g(x)) as
k →∞. Furthermore, H is bounded from below by −e−1 and Lebesgue’s domi-
nated convergence theorem allows us to conclude that

lim
k→∞

∫
H (min(g(x), k))φ(x)dx =

∫
H (g(x))φ(x)dx ,

and therefore limk→∞D(νk‖γ) = D(ν‖γ), completing the proof of Lemma 8.12.
2
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Now that the one-dimensional transportation cost inequality is available, it is
very easy to derive Talagrand’s transportation cost inequality for the Gaussian
measure via Lemma 8.13:

Proof of Theorem 8.10 Starting from Lemma 8.12 we may apply Lemma
8.13 with φ(x) = x/2 and w(x, y) = (x− y)

2
to derive the theorem. 2

8.6 Appendix: a general induction lemma

We close this chapter by a general induction principle that is an important part
of the proofs of Theorems 8.2, 8.5, and 8.10. It allows one to extend the one-
dimensional transportation inequalities to the multi-dimensional case.

Lemma 8.13 Let P =
⊗n

i=1 Pi be a product probability measure on a product
measurable space Xn and let Q be a probability measure absolutely continuous
with respect to P . Let w : X × X → [0,∞) be a measurable function and let
φ : [0,∞)→ [0,∞) be a convex function. Suppose that for every i = 1, . . . , n and
for every probability measure ν which is absolutely continuous with respect to Pi,

min
P∈P(Pi,ν)

φ (EPw(Xi, Yi)) ≤ D(ν‖Pi) . (8.5)

Then

min
P∈P(P,Q)

n∑

i=1

φ (EPw(Xi, Yi)) ≤ D(Q‖P ) .

Similarly, if for every i = 1, . . . , n and for every probability measure ν � Pi

min
P∈P(Pi,ν)

EP [φ (EP [w (Xi, Yi) | Xi]) + φ (EP [w(Xi, Yi) | Yi])] ≤ D(ν‖Pi) ,
(8.6)

then

min
P∈P(P,Q)

n∑

i=1

EP [φ (EP [w(Xi, Yi) | Xi]) + φ (EP [w(Xi, Yi) | Yi])] ≤ D(Q‖P )

and, a fortiori,

min
P∈P(P,Q)

n∑

i=1

EP [φ (EP [w(Xi, Yi) | X]) + φ (EP [w(Xi, Yi) | Y ])] ≤ D(Q‖P ) .

Proof We start with the case when assumption (8.5) holds. We prove, by
induction on k ≤ n, that for every Q absolutely continuous with respect to
P k = ⊗ki=1Pi,

min
P∈P(Pk,Q)

k∑

i=1

φ (EPw(Xi, Yi)) ≤ D
(
Q‖P k

)
.
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For k = 1, this is just assumption (8.5). Assume now that for any distribution
Q′, absolutely continuous with respect to P k−1, the coupling inequality

min
P∈P(Pk−1,Q′)

k−1∑

i=1

φ (EPw(Xi, Yi)) ≤ D
(
Q′‖P k−1

)
. (8.7)

holds. Now let g = dQ/dP k denote the density of Q with respect to P k. Then,
using the notation H(u) = u log u,

D
(
Q‖P k

)
=

∫

X

[∫

Xk−1

H (g(x, t)) dP k−1(x)

]
dPk(t) .

Denoting by gk the marginal density gk(t) =
∫
Xk−1 g(x, t)dP k−1(x) and by qk

the corresponding marginal distribution of Q, qk = gkPk, we may write g(x, t) =
g(x|t)gk(t) and get, by Fubini’s theorem,

D
(
Q‖P k

)
=

∫

X
gk(t)

[∫

Xk−1

H (g(x|t)) dP k−1(x)

]
dPk(t)+

∫

X
H (gk(t)) dPk(t) .

Introducing for any t ∈ X , the conditional distribution

dQ(x|t) = g(x|t)dP k−1(x) ,

the previous identity can be written as

D
(
Q‖P k

)
=

∫

X
D
(
Q (·|t) ‖P k−1

)
dqk(t) +D (qk‖Pk) ,

which is known as the chain rule for relative entropy. Now (8.7) ensures that, for
any t ∈ X , there exists a probability distribution P t on X k−1×X k−1 belonging
to P

(
P k−1, Q (·|t)

)
such that

k−1∑

i=1

φ (EP t
w(Xi, Yi)) ≤ D

(
Q (·|t) ‖P k−1

)
,

while (8.5) ensures that there exists a probability distribution Qk on X × X
belonging to P (Pk, qk) such that

φ (EQkw(Xk, Yk)) ≤ D (ν‖Pk) .

Hence,

D
(
Q‖P k

)
≥
∫

X

k−1∑

i=1

φ (EP t
w(Xi, Yi)) dqk(t) + φ (EQkw(Xk, Yk)) ,

and by Jensen’s inequality,

D
(
Q‖P k

)
≥
n−1∑

i=1

φ

[∫

X
EP t

w(Xi, Yi)dqk(t)

]
+ φ (EQkw (Xk, Yk)) . (8.8)

Now consider the probability distribution P on X k × X k with marginal distri-
bution Qk on X ×X and such that the distribution of (Xi, Yi) for 1 ≤ i ≤ k− 1,
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conditionally on (Xk, Yk), is equal to P Yk . More precisely, for any measurable
and bounded function Ψ : X k ×X k → R,

∫
Xk×Xk Ψ(x, y)dP (x, y) is defined by

∫

X×X

[∫

Xk−1×Xk−1

Ψ [(x, xk) , (y, yk)] dP yk(x, y)

]
dQk(xk, yk) .

Then, by construction, P ∈ P
(
P k, Q

)
. Moreover,

EPw(Xi, Yi) =

∫

X
EP t

w(Xi, Yi)dqk(t) for all i ≤ k − 1

and
EPw(Xk, Yk) = EQkw(Xk, Yk) ,

therefore we obtain from (8.8) that

D
(
Q‖P k

)
≥
k−1∑

i=1

φ (EPw(Xi, Yi)) + φ (EPw(Xk, Yk)) .

If we consider now assumption (8.6), the proof is very similar. The main difference
is that we have to check carefully that the use of Jensen’s inequality above is still
valid. This is indeed the case since the induction argument this time provides the
existence of a coupling probability distribution P t on X k−1 × X k−1 belonging
to P

(
P k−1, Q (.|t)

)
such that

k−1∑

i=1

∫

X
φ (EP t [w(Xi, Yi)|Xi = xi]) dPi (xi)

+

∫

X
φ (EP t

[w(Xi, Yi)|Yi = yi]) dqi (yi)

≤ D
(
Q (.|t) ‖P k−1

)

and one defines a coupling probability Qk ∈ P (Pk, qk) such that

EQk [φ (EQk [w (Xk, Yk) |Xk]) + φ (EQk [w (Xk, Yk) |Yk])] ≤ D (ν‖Pk) .

We define the coupling probability P exactly the same way as above. Hence, by
Fubini’s and Jensen’s inequalities,

∫

X

k−1∑

i=1

∫

X
φ (EP t [w(Xi, Yi)|Xi = xi]) dPi (xi) dqk (t)

≥
k−1∑

i=1

∫

X
φ

(∫

X
EP t

[w(Xi, Yi)|Xi = xi] dqk(t)

)
dPi (xi) .

By construction of P , we have
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∫

X
EP t

[w(Xi, Yi)|Xi = xi] dqk(t) = EP [w(Xi, Yi)|Xi = xi]

and
EQkφ (EQk [w (Xk, Yk) |Xk]) = EPφ (EP [w (Xk, Yk) |Xk]) .

Hence,

∫

X

k−1∑

i=1

∫

X
φ (EP t

[w(Xi, Yi)|Xi = xi]) dPi (xi) dqk(t)

≥
k−1∑

i=1

EPφ (EP [w(Xi, Yi)|Xi])

and since a similar inequality holds when conditioning by Y instead of X, the
desired inequality follows from the chain rule formula above. Using Jensen’s
inequality again, the last inequality of the theorem is obtained easily. 2

8.7 Bibliographic remarks

The transportation method for proving concentration inequalities has been initi-
ated by Marton (1986), building on early work in information theory by Ahlswede,
Gács and Körner (1976) and Csiszár and Körner (1981). Marton first consid-
ered the case d(x, y) = 1{x 6=y}, leading to the bounded differences inequality.
Lemma 8.1 goes back to Dobrushin (1970). Lemma 8.1 is a special instance of
the transportation cost problem. The interested reader will find much more gen-
eral results in Rachev (1991), including Kantorovich’s theorem which relates the
transportation cost to the bounded Lipschitz distance when the cost function
is a distance and several analogue coupling results for other types of distances
between probability measures like the Prohorov distance (see also Strassen’s the-
orem in Strassen (1965)).

Theorem 8.2 is a slightly stronger form of the original result of Marton (1986).
By the Cauchy-Schwarz inequality, Theorem 8.2 implies that

min
P∈P(P,Q)

n∑

i=1

P {Xi 6= Yi} ≤
√
n

2
D(Q‖P ) ,

which is the original statement in Marton (1986).
The symmetric “Pinsker-type” inequality of Lemma 8.4 is due to Samson

(2000).
The method is robust in the sense that it can be extended to functions of

weakly dependent variables (see Marton (1996b, 2003, 2004), Rio (2000), and
Samson (2000)).

The material of Section 8.2 is based on Marton (1996a) and Samson (2000).
The results of Section 8.5 are due to Talagrand (1996d). Lemma 8.11 goes back
to Fréchet (1957).

For more on the topic we refer to Dembo (1997), Ledoux (2001), and Samson
(2003).
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8.8 Exercises

Exercise 8.1 Use Marton’s transportation inequality (Theorem 8.2) to show that if P
is a product probability measure on Xn then for any pair of measurable sets A,B ⊂ Xn,

dH(A,B) ≤

√
n

2
log

1

P (A)
+

√
n

2
log

1

P (B)

where dH(A,B) = minx∈A,y∈B
∑n
i=1 1{xi 6=yi} is the Hamming distance of A and B.

What do you get if you take B to be the complement of the t-blowup of A?

Exercise 8.2 Complete the details of the proof of the inequality in Example 8.9 for
the left tail of the bin packing problem.

Exercise 8.3 Let a > 0. Show that if x, y > 0 satisfy y − a√y ≤ x, then y ≤ x +
a
√
x+ a2.

Exercise 8.4 Let F and G be distribution functions on the real line. If X and Y are
real-valued random variables with distribution functions F and G, show that E |X − Y |
is minimal when X and Y are defined by the quantile transform of the same uniform
random variable, that is, when X = F−1(U) and Y = G−1(U) where U is uniformly
distributed on [0, 1]. Conclude that the minimal value of E |X − Y | under the marginal
constraints X ∼ F and Y ∼ G is∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt .

(Hint: Use the formula |X − Y | = X+Y −2 max(X,Y ) and begin with the case where
X and Y are nonnegative).

Exercise 8.5 Let F and G be distribution functions on the real line. Prove that∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt =

∫ +∞

−∞
|F (x)−G (x)| dx



9

INFLUENCES AND THRESHOLD PHENOMENA

This chapter is devoted to the study of functions defined on the n-dimensional
binary hypercube {−1, 1}n. The n-cube, with the uniform distribution, is the
simplest product space and the tight connection between isoperimetric proper-
ties and concentration is revealed in the most transparent manner. Logarithmic
Sobolev inequalities and hypercontractive estimates may be interpreted as gen-
eralized isoperimetric inequalities and have interesting consequences for the ge-
ometry of the hypercube. We are mostly interested in binary-valued (or Boolean)
functions (or, equivalently, subsets of {−1, 1}n) though in some cases it is con-
venient to deal with real-valued functions of the n binary variables.

An important notion that plays a crucial role in this chapter is the influence
of a variable, already introduced in Chapter 4. We start with recalling some
simple general isoperimetric inequalities for the hypercube, under the uniform
distribution. In Section 9.2, using a logarithmic Sobolev inequality on the binary
n-cube, we derive an improvement of the Efron-Stein inequality that implies some
fundamental properties for influences of binary-valued functions. This inequality
is used in Section 9.3 to derive “local” exponential concentration inequalities. In
Section 9.4 another inequality for the variance, due to Talagrand, is proved.

Monotone sets play a central role in the study of influences, not only because
their special properties make them an important object to study but also be-
cause one of the most important applications of the theory of influences, namely
threshold phenomena, involves monotone sets. Section 9.5 is devoted to proper-
ties of influences of monotone sets, still under the uniform distribution.

Most results generalize easily to the case when the underlying measure is the
product of n i.i.d. Bernoulli distributions with parameter p ∈ (0, 1). The tools
developed in this chapter allow one to study the evolution of the probability of
monotone subsets of {−1, 1}n as p grows from 0 to 1. In particular, we estab-
lish general conditions under which an abrupt phase transition occurs around a
certain critical value of p, that is, the probability of a monotone set jumps from
values close to 0 to close to 1 in a narrow interval. Such effects are known as
threshold phenomena and will be seen to occur for any monotone set that does
not depend too much on any of the n variables.

9.1 Influences

Consider a subset A of the n-cube {−1, 1}n and let P denote the uniform distri-
bution on {−1, 1}n so that P (A) = 2−n|A| where |A| denotes the cardinality of
the set A. We often find it convenient to work with Rademacher random vari-
ables X1, . . . , Xn (i.e., the Xi are independent symmetric sign variables). Then
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the binary vector X = (X1, . . . , Xn) is uniformly distributed in {−1, 1}n and
P (A) = P {X ∈ A}.

Recall from Chapter 4 the definition of influence of a variable. We denote by

X
(i)

= (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) the vector obtained by flipping the
i-th component of the vector X and leaving the others intact. The influence of
the i-th variable is

Ii(A) = P
{
1{X∈A} 6= 1{X(i)∈A}

}
,

that is, the probability that changing the i-th variable changes the event X ∈ A.
When this happens (i.e., when 1{X∈A} 6= 1{X(i)∈A}), we say that the i-th variable

is pivotal for A.
The total influence is defined by the sum of individual influences

I(A) =

n∑

i=1

Ii(A) .

Instead of subsets of {−1, 1}n, equivalently we may consider binary functions
f : {−1, 1}n → {0, 1}. Such functions are sometimes called Boolean. If f(x) =
1{x∈A} then with some abuse of notation we also write Ii(f) for Ii(A) and I(f)
for I(A).

Example 9.1 (parity function.) Consider the parity function f : {−1, 1}n →
{0, 1} defined by f(x) = 1 if and only if the number of components of x =
(x1, . . . , xn) equal to 1 is even. In this case clearly for every x ∈ {−1, 1}n, every
variable is pivotal and therefore Ii(f) = 1 for all i = 1, . . . , n and I(f) = n.

The parity function clearly maximizes the influence of all variables. The
largest achievable total influence dramatically decreases if one considers mono-
tone functions. Recall that a function f : {−1, 1}n → {0, 1} is monotone if it
is monotone in each of its variables, that is, f(x) = 1 implies f(x+

i ) = 1 where
x+
i = (x1, . . . , xi−1, 1, xi+1, . . . , xn) is obtained by fixing the i-th variable of x

to be 1. If f is monotone, the corresponding set A = {x : f(x) = 1} is called a
monotone set. Monotone functions and sets play a central role in this chapter for
many reasons. One of them is that they minimize total influence (see Theorem
9.10 below). One of the simplest monotone functions is the majority function
that will be seen to maximize total influence among all monotone functions (see
Theorem 9.11).

Example 9.2 (majority function.) Let n be odd and define f(x) = 1 if and
only if

∑n
i=1 xi > 0. f is obviously monotone. Since the function is symmetric, all

influences Ii(f) are equal. The first variable is pivotal if and only if
∑n
i=2 xi = 0.

Thus, I1(A) = P {B = (n − 1)/2} where B is a binomial random variable with
parameters (n− 1, 1/2). Therefore, for every i = 1, . . . , n, by Stirling’s formula,

Ii(f) =

(
n− 1

(n− 1)/2

)
2−(n−1) ∼

√
2

nπ
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and I(f) ∼
√

2n/π.

An interesting question we pursue in this chapter is how small the total
influence of a function can be. A small total influence means that individual
variables have little deciding power over the outcome of the function, a desirable
property, for example, when the components represent votes of members of a
society and the function represents a certain voting scheme.

The Efron-Stein inequality (Theorem 3.1) implies that

P (A)(1− P (A)) = V ar(f(X)) ≤ 1

4

n∑

i=1

Ii(A) =
1

4
I(A) .

In particular, if P (A) = 1/2, the total influence of A is at least 1. This bound
is sharp when the value of the function is determined by only one variable, for
example when f(x) = (xi+1)/2 for some i ∈ {1, . . . , n}. Such a function is often
called a dictatorship. Of course, in such a case, the influence Ii(A) of the i-th
variable equals one and the rest of the variables have zero influence. If a function
f is such that there exists a small number of variables that determine the value
of f then f is called a junta. In this chapter we try to understand the behavior of
functions of many variables, so we think about n as a large number and “small”
in the previous definition means bounded, independently of n. Clearly, if f is
a junta depending on k variables then I(f) ≤ k. A fundamental result proved
below is that any function with a small total influence is almost a junta in the
sense that it can be tightly approximated by a junta. For the rigorous statement
see Theorem 9.7 below.

A natural question is how small can the total influence be if the function f is
symmetric in the sense that I1(f) = · · · = In(f) = I(f)/n. Below we reproduce a
fundamental result of Kahn, Kalai, and Linial, implying that the total influence
of a symmetric function is at least of the order of log n, substantially larger than
that of a dictatorship or a junta.

9.2 Some fundamental inequalities for influences

If P (A) < 1/2, the bound obtained for the total influence from the Efron-Stein
inequality is not sharp anymore. One gets a better bound by using the edge
isoperimetric inequality of Theorem 4.3. Recall that this inequality states that
for any A ⊂ {−1, 1}n,

I(A) ≥ 2P (A) log2

1

P (A)
.

Observe that the latter inequality is a special case of the logarithmic Sobolev in-
equality Theorem 5.1 which states that for any real-valued function f : {−1, 1}n →
R,

Ent(f2) ≤ 2E(f)

where Ent(f2) = E
[
f2 log(f2)

]
− E

[
f2
]

logE
[
f2
]

and
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E(f) =
1

4
E

[
n∑

i=1

(
f(X)− f(X

(i)
)
)2
]

Note that to lighten notation, sometimes we write E[f ] for E[f(X)] for any func-
tion f : {−1, 1}n → R. Observe that the logarithmic Sobolev inequality applied
for f(x) = 1{x∈A} recovers the edge isoperimetric inequality. The logarithmic
Sobolev inequality of the n-cube also implies the following simple bound that we
will find useful:

Lemma 9.3 For any non-negative function f : {−1, 1}n → [0,∞),

E
[
f2
]

log
E
[
f2
]

E [f ]
2 ≤ 2E(f) .

Proof By Theorem 5.1 it suffices to prove that

Ent(f2) = E
[
f2 log(f2)

]
− E

[
f2
]

logE
[
f2
]
≥ E

[
f2
]

log
E
[
f2
]

(E [f ])
2 .

This is trivial if f ≡ 0, otherwise, introducing g(x) = f(x)/
√
E [f2], it may be

re-written as

E
[
g2 log(g2)

]
≥ log

1

(E [g])
2 ,

or, equivalently,

E

[
g2 log

1

gE[g]

]
≤ 0 .

This follows from the fact that log x ≤ x− 1 for x > 0 and that E
[
g2
]

= 1:

E

[
g2 log

1

gE[g]

]
≤ E

[
g2

(
1

gE[g]
− 1

)]
= 0 .

2

Next we prove an improvement of the Efron-Stein inequality that has various
interesting consequences for the total influence of Boolean functions defined on
the n-cube.

Consider a real-valued function f : {−1, 1}n → R. Similarly to Section 3.1,
we express f as a sum of martingale differences for the natural filtration defined
by the coordinate variables. More precisely, introduce

fi(x) = 2i−n
∑

(xi+1,...,xn)∈{−1,1}n−i
f(x1, . . . , xn) ,

as the average of f over all binary vectors whose first i components agree with
x, that is, fi(X) = E[f(X)|X1, . . . , Xi]. Thus, f0(x) = E[f ] and fn(x) = f(x).
Define the martingale differences ∆i : {−1, 1}n → R by
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∆i(x) = fi(x)− fi−1(x) , i = 1, . . . , n .

Recall from Section 3.1 that, V ar(f) =
∑n
i=1E[∆2

i ] where we use the shorthand
notation V ar(f) = V ar(f(X)). We have the following general result:

Theorem 9.4 For any f : {−1, 1}n → R,

V ar(f) log
V ar(f)∑n

j=1 (E|∆j |)2 ≤ 2E(f) .

Recall that the Efron-Stein inequality implies V ar(f) ≤ E(f). The inequality
of Theorem 9.4 presents an important improvement for functions defined on
the binary n-cube whenever

∑n
j=1 (E|∆j |)2 � V ar(f). We will see that this

improvement has far-reaching consequences.

Proof The theorem follows easily from Lemma 9.3 and the decomposition
E(f) =

∑n
i=1 E(∆i). To prove this decomposition, write, for any j = 1, . . . , n,

E(∆j)

=
1

4

n∑

i=1

E

[(
∆j(X)−∆j(X

(i)
)
)2
]

=
1

4

n∑

i=1

E
[(

∆j(X)−∆j(X
(i)

)
)

·
((
fj(X)− fj(X

(i)
)
)
−
(
fj−1(X)− fj−1(X

(i)
)
))]

=
1

4

n∑

i=1

E
[(

∆j(X)−∆j(X
(i)

)
)
·
(
fj(X)− fj(X

(i)
)
)]

=
1

4

n∑

i=1

E
[((

fj(X)− fj(X
(i)

)
)
−
(
fj−1(X)− fj−1(X

(i)
)
))

·
(
fj(X)− fj(X

(i)
)
)]

= E(fj)−
1

4

n∑

i=1

E
[((

fj−1(X)− fj−1(X
(i)

)
))
·
(
fj(X)− fj(X

(i)
)
)]

= E(fj)− E(fj−1)

where in the proof we used twice the fact that

n∑

i=1

E
[(

∆j(X)−∆j(X
(i)

)
)
·
(
fj−1(X)− fj−1(X

(i)
)
)]

= 0 .

Summing the obtained equation we have

n∑

j=1

E(∆j) =

n∑

j=1

(E(fj)− E(fj−1)) = E(f) .
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This follows from fn = f and f0 = E[f ]. The theorem now follows easily by
applying Lemma 9.3 to the absolute value of the martingale differences ∆j :

E(f) =

n∑

j=1

E(∆j)

≥
n∑

j=1

E(|∆j |)

≥ 1

2

n∑

j=1

E
[
∆2
j

]
log

E
[
∆2
j

]

(E|∆j |)2

= −1

2
V ar(f)

n∑

j=1

E
[
∆2
j

]

V ar(f)
log

(E|∆j |)2

E
[
∆2
j

]

≥ −1

2
V ar(f) log

∑n
j=1 (E|∆j |)2

V ar(f)

(by Jensen’s inequality and
∑
j E
[
∆2
j

]
= V ar(f)).

Rearranging, we obtain the stated inequality. 2

To see what Theorem 9.4 has to do with influences, consider a binary-valued
function f : {−1, 1}n → {0, 1} and recall from the proof of Theorem 3.1 that

∆i = Ei

[
f(X)−E(i)f(X)

]

where Ei and E(i) denote conditional expectation, conditioned on X1, . . . , Xi

and X1, . . . , Xi−1, Xi+1, . . . , Xn, respectively. Thus, by Jensen’s inequality,

E|∆i| ≤ E
[∣∣∣f(X)−E(i)f(X)

∣∣∣
]

=
Ii(f)

2
.

Since for binary-valued functions E(f) = I(f)/4, it follows from Theorem 9.4
that

n∑

i=1

Ii(f)2 ≥ 4V ar(f) exp

(
− I(f)

2V ar(f)

)
. (9.1)

Recall from the previous section that the total influence of any function is at
least a constant, namely −2P (A) log2 P (A). This, of course, implies that the
largest influence of any variable is at least of the order of 1/n. (9.1) implies a
fundamental improvement of this: for every binary-valued function there exists
a variable whose influence is at least of the order of (log n)/n. In particular, the
total influence of every symmetric function is at least of the order of log n.
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Theorem 9.5 Let f : {−1, 1}n → {0, 1} be a binary-valued function of n binary
variables. Then

n∑

i=1

Ii(f)2 ≥ V ar(f)2 log2 n

n
.

In particular,

max
i=1,...,n

Ii(f) ≥ V ar(f) log n

n
.

Proof Let ε = (2 log(V ar(f)/4) + 4 log log n)/ log n. We consider two cases. If
I(f) ≥ (2− ε)V ar(f) log n, then by the Cauchy-Schwarz inequality,

n∑

i=1

Ii(f)2 ≥ 1

n

(
n∑

i=1

Ii(f)

)2

=
I(f)2

n
≥ (2− ε)2 V ar(f)2 log2 n

n

and the stated bound holds since ε < 1. On the other hand, if I(f) < (2 −
ε)V ar(f) log n, then by (9.1),

n∑

i=1

Ii(f)2 ≥ 4V ar(f) exp

(
− I(f)

2V ar(f)

)
≥ V ar(f)2 log2 n

n

as desired. 2

Theorem 9.5 implies that if f is a symmetric function of its n variables,
then the total influence is at least V ar(f) log n, which is in sharp contrast with
dictatorships and juntas that have a constant total influence. This is an essential
improvement over the bound 2P (A) log2(1/P (A)) that we derived from the edge
isoperimetric inequality for an arbitrary function. The following example shows
that the obtained bound cannot be improved essentially.

Example 9.6 (tribes.) This example shows that there exist functions of n
binary variables whose largest influence is as small as O(n−1 log n). To construct
such an example, let ` = blog2 n− log2 log2 nc and assume, for simplicity, that n
is an integer multiple of `. Divide the n variables x1, . . . , xn into n/` blocks of
length ` (the so-called “tribes”) and define f(x) = 1 if there exists a block such
that all variables are equal to 1 in that block and let f(x) = 0 otherwise. First
note that

P {f(X) = 1} = 1−
(
1− 2−`

)n/` → 1

e

as n → ∞. The variable x1 is pivotal if and only if x2 = · · · = x` = 1 and no
other block has all variables equal to 1. The probability of this event is

I1(f) = 2−(`−1)
(
1− 2−`

)(n/`)−1

≤ 4 · 2− log2 n+log2 log2 n exp

(
−
(
n

`2`
− 1

2`

))
(using 1− x ≤ e−x)

≤ 4 log2 n

n
e−1/2 .
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Since all variables of f have the same influence, the total influence is at most
I(f) ≤ 4e−1/2 log2 n and

∑n
i=1 Ii(f)2 ≤ (16e log2

2 n)/n, showing the tightness of
Theorem 9.5 up to constant factors.

Interestingly, one may use Theorem 9.4 to derive another fundamental prop-
erty of influences of a binary-valued function, namely that any function with a
small (i.e., constant) total influence must be almost determined by a small num-
ber of variables in the sense that there exists a junta that closely approximates
the function. This is made precise in the next theorem:

Theorem 9.7 Let f : {−1, 1}n → {0, 1} be a binary-valued function with total
influence I(f) and let ε ∈ (0, 1) be arbitrary. Let m = bI(f)/εc. Then there exists
a subset of m variables and a real-valued function g : {−1, 1}n → R depending
on these m variables only such that

E
[
(f − g)2

]
≤ I(f)

max(1, log(2/ε))
.

Note that if I(f) is bounded (i.e., does not grow with n) and ε is a constant,
the function g is clearly a junta as it depends on a bounded number of vari-
ables. The error of approximation may be made arbitrarily small by choosing
ε sufficiently small. The construction of g is simple and intuitive: one identifies
m variables with largest influence (these are the variables g depends on) and
takes averages with respect to all other variables. The key of the proof below is
Theorem 9.4.

Proof Without loss of generality we may assume that the variables are ordered
by decreasing influences, that is, I1(f) ≥ · · · ≥ In(f). Clearly, Ii(f) < ε for all
i > m by the definition of m, and therefore

n∑

i=m+1

Ii(f)2 ≤ I(f) max
i=m+1,...,n

Ii(f) ≤ I(f)ε .

Recall the martingale decomposition f(x) =
∑n
i=1 ∆i(x) =

∑n
i=1(fi(x)−fi−1(x))

introduced earlier in the proof of Theorem 9.4 and define g = fm. Clearly, g de-
pends on m variables only. In the rest of the proof we show that g approximates
f as stated.

Recall from the proof of Theorem 9.4 that E(f) =
∑n
i=1 E(∆i). Applying this

identity to f(x)− g(x) =
∑n
i=m+1 ∆i(x), we have

E(f) =

n∑

i=1

E(∆i) ≥
n∑

i=m+1

E(∆i) ≥ E(f − g) .

Next we apply Theorem 9.4 for f − g to get
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I(f) = 4E(f)

≥ 4E(f − g)

≥ 2V ar(f − g) log
V ar(f − g)∑n
i=m+1 (E|∆i|)2

≥ 2V ar(f − g) log
4V ar(f − g)∑n
i=m+1 Ii(f)2

(since E|∆i| ≤ Ii(f)/2)

≥ 2V ar(f − g) log
4V ar(f − g)

I(f)ε
.

Rearranging, we have

4V ar(f − g)

I(f)ε
log

4V ar(f − g)

I(f)ε
≤ 2

ε
.

To solve this inequality for V ar(f−g), note that x log x ≤ y implies x ≤ 2y/ log y
if y ≥ e and x > 0. Therefore, when 2/ε > e, we have

4V ar(f − g)

I(f)ε
≤ 4/ε

log(2/ε)
, that is, V ar(f − g) ≤ I(f)

log(2/ε)
.

To finish the proof note that E[f − g] = 0 and therefore E
[
(f − g)2

]
= V ar(f −

g). 2

The previous theorem guarantees the existence of a real-valued function g
that closely approximates, in the L2 sense, the binary-valued function f . It is
now easy to construct a binary-valued junta that also approximates tightly f ,
see Exercise 9.1.

9.3 Local concentration

In this section we apply Theorem 9.4 to derive local exponential concentration
inequalities for functions defined on the binary hypercube. We use the argument
already shown in Section 3.6 with the only difference that the Efron-Stein in-
equality is replaced by the improved variance inequality of Theorem 9.4. The
improved bounds imply local sub-Gaussian tail bounds (as opposed to the sub-
exponential estimates obtained in Section 3.6).

Consider a function f : {−1, 1}n → R such that there exists a constant v > 0
such that for all x ∈ {−1, 1}n,

n∑

i=1

(f(x)− f(x(i)))2
+ ≤ v .

Recall that the quantiles of f are defined, for any α ∈ (0, 1), by

Qα = inf{z : P {f(X) ≤ z} ≥ α} .
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Just like in Section 3.6, for any b ≥ a ≥Mf = Q1/2, we introduce the function
ga,b : Xn → R by

ga,b(x) =




b if f(x) ≥ b
f(x) if a < f(x) < b
a if f(x) ≤ a

and observe that

V ar(ga,b) ≥
P {ga,b(X) = b}

4
(b− a)2 =

P {f(X) ≥ b}
4

(b− a)2 .

Now, instead of the Efron-Stein inequality, we use Theorem 9.4 for the variance
of ga,b. Recall that this inequality implies

V ar(ga,b) log
V ar(ga,b)∑n
j=1 (E|∆j |)2 ≤ 2E(ga,b)

where ∆i(x) = gia,b(x)− gi−1
a,b (x) and gia,b(X) = E[ga,b(X)|X1, . . . , Xi]. Since the

function x log x is monotone whenever it is positive, the previous two inequalities
for V ar(ga,b) may be combined to get

P {f(X) ≥ b}
4

(b− a)2 log
P {f(X) ≥ b}(b− a)2

4
∑n
j=1 (E|∆j |)2 ≤ 2E(ga,b) . (9.2)

Next we derive suitable upper bounds for the quantities
∑n
j=1 (E|∆j |)2

and
E(ga,b). First observe that

E(ga,b) =
1

4

n∑

i=1

E

[(
ga,b(X)− ga,b(X

(i)
)
)2
]

=
1

2

n∑

i=1

E

[(
ga,b(X)− ga,b(X

(i)
)
)2

+

]

=
1

2
E

[
1{f(X)>a}

n∑

i=1

(
ga,b(X)− ga,b(X

(i)
)
)2

+

]

≤ vP {f(X) > a}/2 .

On the other hand,
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E|∆j | ≤ E
∣∣∣ga,b(X)− ga,b(X

(i)
)
∣∣∣

= 2E

[(
ga,b(X)− ga,b(X

(i)
)
)

+

]

= 2E

[(
ga,b(X)− ga,b(X

(i)
)
)

+
1{f(X)>a}

]

(by the definition of ga,b)

≤ 2

√
E

[(
ga,b(X)− ga,b(X

(i)
)
)2

+

]√
P {f(X) > a}

(by the Cauchy-Schwarz inequality)

=

√
2E

[(
ga,b(X)− ga,b(X

(i)
)
)2
]√

P {f(X) > a} .

Thus,
n∑

j=1

(E|∆j |)2 ≤ 8P {f(X) > a}E(ga,b) ≤ 4vP {f(X) > a}2 .

Plugging these estimates into (9.2), we obtain

A log
A

2P {f(X) > a} ≤ 1

where we introduced A = P {f(X) ≥ b}(b − a)2/(4vP {f(X) > a}). The mean-
ing of this inequality can be seen in the most transparent manner by taking

a = Q1−2−k
def
= ak and b = Q1−2−(k+1) = ak+1 for some integer k ≥ 1. Then

P {f(X) > a} ≤ 2−k, P {f(X) ≥ b} ≥ 2−(k+1), and the inequality above implies

A log(2k−1A) ≤ 1

or, equivalently, y log y ≤ 2k−1 where y = 2k−1A. It is easy to see that this
implies y ≤ 2k/k, that is, A ≤ 2/k. Since A ≥ (ak+1 − ak)2/(8v), we have
derived the following theorem:

Theorem 9.8 Let f : {−1, 1}n → R satisfy
∑n
i=1(f(x)− f(x(i)))2

+ ≤ v and let
ak = Q1−2−k . Then for all integers k ≥ 1,

ak+1 − ak ≤ 4

√
v

k
.

This is an essential improvement over the bound 4
√
v obtained in Section

3.6 using the Efron-Stein inequality. Note that if f(X) was a normal random
variable with variance v, then one would have ak ∼

√
2vk log 2 and ak+1 −

ak ∼
√
v log 2/k. The bound of the theorem has the same form, apart from a

constant factor. This shows that functions satisfying the conditions of Theorem
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9.8 not only have sub-Gaussian tail probabilities (as implied by Theorem 6.7)
but the differences between quantiles of the distribution of f are dominated
by corresponding differences of a normally distributed random variable. In this
sense, Theorem 9.8 may be considered as a “local” concentration inequality.

Recall from earlier chapters that examples for functions satisfying the con-
ditions of Theorem 9.8 include suprema of Rademacher averages, Talagrand’s
convex distance, the largest eigenvalue of a symmetric random matrix, etc. An
important restriction in Theorem 9.8 is that it only holds for functions defined
on the binary hypercube (as opposed to more general concentration inequalities
as, e.g., Theorem 6.7).

With similar arguments one may also derive local concentration inequalities
for self-bounding functions. We leave the details to the reader (see Exercise 9.5).

9.4 Discrete Fourier analysis and a variance inequality

In the previous sections we saw how Theorem 9.4, an improvement of the Efron-
Stein inequality, implies various interesting results about influences of a binary-
valued function defined on the binary n-cube. In this section we give a closely
related inequality for the variance of a real-valued function defined on the binary
n-cube.

The proof of this inequality is based on Fourier analysis on the hypercube
{−1, 1}n, a technique that has proved powerful in a variety of problems. Discrete
Fourier analysis is an elegant and intuitive tool in the study of functions of several
binary variables. In this context the Bonami-Beckner hypercontractive inequality
(Theorem 5.18) turns out to be a powerful tool.

We start by recalling some basic notions of Fourier analysis on the discrete
n-cube {−1, 1}n, introduced in Section 5.8.

We treat the set F of real-valued functions f : {−1, 1}n → R as a 2n-
dimensional Euclidean space with inner product

〈f, g〉 = E[fg] = E[f(X)g(X)] = 2−n
∑

x∈{−1,1}n
f(x)g(x) , f, g ∈ F

and corresponding norm ‖f‖2 =
√
〈f, f〉. To any of the 2n subsets S ⊂ {1, . . . , n},

we assign the function

uS(x) =
∏

i∈S
xi .

(If S = ∅, we define uS ≡ 1.) It is immediate to see that the uS form an
orthonormal basis of F and therefore every f ∈ F may be expressed, in a unique
way, as the Fourier-Walsh expansion

f(x) =
∑

S⊂{1,...,n}
f̂(S)uS(x)

where, for all S ⊂ {1, . . . , n}, f̂(S) = 〈f, uS〉. The f̂(S) are called the Fourier
coefficients of f . Using these definitions, we obtain Parseval’s identity:
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‖f‖22 =

〈
f,

∑

S⊂{1,...,n}
f̂(S)uS

〉
=

∑

S⊂{1,...,n}
f̂(S) 〈f, uS〉 =

∑

S⊂{1,...,n}
f̂(S)2 .

Since f̂(∅) = E[f ],

V ar(f) = ‖f‖22 − (E[f ])2 =
∑

S 6=∅
f̂(S)2 .

In order to make the connection to influences, introduce the function

gi(x) =
f(x)− f(x(i))

2
, i = 1, . . . , n

and denote the Fourier coefficients of gi by ĝi(S), S ⊂ {1, . . . , n}. The key
observation is that for every i = 1, . . . , n and S ⊂ {1, . . . , n},

ĝi(S) = 〈gi, uS〉 =
1

2
E



(
f(X)− f(X

(i)
)
)∏

j∈S
Xj


 =

{
0 if i /∈ S
f̂(S) if i ∈ S .

(9.3)

If f : {−1, 1}n → {0, 1} is binary-valued, then Ii(f) = E[g2
i ]/4, and we may

apply Parseval’s identity to obtain

Ii(f) = 4‖gi‖22 = 4
∑

S⊂{1,...,n}
ĝi(S)2 = 4

∑

S:i∈S
f̂(S)2

and therefore the total influence may be written as

I(f) = 4
∑

S⊂{1,...,n}
|S|f̂(S)2 .

(9.3) also implies that

V ar(f) =
∑

S 6=∅
f̂(S)2 =

∑

S 6=∅

n∑

i=1

ĝi(S)2

|S| .

Note that the last two identities immediately imply V ar(f) ≤ I(f)/4, a special
case of the Efron-Stein inequality.

The main result of this section is the following inequality for the variance:

Theorem 9.9 Let f : {−1, 1}n → R be a real-valued function. Then

V ar(f) ≤ C
n∑

i=1

E

[(
f(X)− f(X

(i)
)
)2
]

1 + log

√
E

[(
f(X)−f(X

(i)
)
)2
]

E
∣∣∣f(X)−f(X

(i)
)
∣∣∣

where C ≤ 3(6 · e1/3 + 1)(log 2)/8 ≈ 3.297589 is a universal constant.
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The proof of Theorem 9.9 requires one more tool, namely the Bonami-Beckner
inequality (Corollary 5.16) which we now recall. For every f ∈ F and for any
q ≥ 2 and k = 1, . . . , n,

∥∥∥∥∥∥
∑

S:|S|=k
f̂(S)uS

∥∥∥∥∥∥
q

≤ (q − 1)k/2

∥∥∥∥∥∥
∑

S:|S|=k
f̂(S)uS

∥∥∥∥∥∥
2

,

where ‖f‖p is defined as (E[fp])
1/p

for any p > 0.

Proof of Theorem 9.9 Recalling the formula for the variance

V ar(f) =
∑

S 6=∅

n∑

i=1

ĝi(S)2

|S| ,

we see that in order to prove the theorem, it suffices to show that for any f :
{−1, 1}n → R,

∑

S 6=∅

f̂(S)2

|S| ≤ 4C
‖f‖22

1 + log ‖f‖2‖f‖1

which is what we do in the remaining part of the proof. Fix k ≤ n and observe
that

∑

S:|S|=k
f̂(S)2 =

〈 ∑

S:|S|=k
f̂(S)uS , f

〉

≤

∥∥∥∥∥∥
∑

S:|S|=k
f̂(S)uS

∥∥∥∥∥∥
3

· ‖f‖3/2 (by Hölder’s inequality)

≤ 2k/2


 ∑

S:|S|=k
f̂(S)2




1/2

· ‖f‖3/2

(by the Bonami-Beckner inequality, used with q = 3) .

This implies that, for all k = 1, . . . , n,
∑

S:|S|=k
f̂(S)2 ≤ 2k‖f‖23/2

and we have, for all positive integers m,

∑

S:1≤|S|≤m

f̂(S)2

|S| ≤ ‖f‖
2
3/2

m∑

k=1

2k

k
≤ 3

2m

m
‖f‖23/2 .

At the last step we used the fact that for k ≥ 3, 2k+1/(k+ 1) ≥ (3/2)2k/k. Now
we may write
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∑

S 6=∅

f̂(S)2

|S| =
∑

S:1≤|S|≤m

f̂(S)2

|S| +
∑

S:|S|>m

f̂(S)2

|S|

≤ 3
2m

m
‖f‖23/2 +

1

m+ 1

∑

S:|S|>m
f̂(S)2

≤ 1

m+ 1

(
6 · 2m‖f‖23/2 + ‖f‖22

)
.

Now we choose m as the largest integer such that 2m‖f‖23/2 ≤ e2/3‖f‖22 so that

m+ 1 ≥ 2

log 2
log
(
e1/3‖f‖2/‖f‖3/2

)

and

∑

S 6=∅

f̂(S)2

|S| ≤
(6 · e2/3) + 1)

m+ 1
‖f‖22 ≤ 4C · ‖f‖22

log
(
e1/3‖f‖2/‖f‖3/2

) ,

where C = (6 · e2/3) + 1)(log 2)/8. The proof is finished by observing that, by
the Cauchy-Schwarz inequality,

E
[
|f |3/2

]
≤ ‖f‖1/21 · ‖f‖2

and therefore
‖f‖2
‖f‖1

≤
( ‖f‖2
‖f‖3/2

)3

.

2

Remark 9.4 The constant C in Theorem 9.9 is not optimal and can easily be
improved by a more careful analysis. In Exercise 9.3 we sketch a different proof
yielding the improved constant C = 9/10. By considering f(x) =

∑n
i=1 xi, we

see that the best possible value of C is at least 1/4.

9.5 Monotone sets

Monotone subsets of the binary n-cube have a central importance in the study
of influences for various reasons. First, their special form makes them crucial in
understanding influences of general sets. Second, monotone sets appear naturally
in the study of threshold phenomena and social choice theory, some of the most
important applications of the theory of influences, see Section 9.6 below.

Recall that a function f : {−1, 1}n → {0, 1} is called monotone if it is non-
decreasing in all of its components, that is, f(x1, . . . , xi−1,−1, xi+1, . . . , xn) ≤
f(x1, . . . , xi−1, 1, xi+1, . . . , xn) for all x = (x1, . . . , xn) ∈ {−1, 1}n and i ∈
{1, . . . , n}.

To present the ideas in the simplest possible setting, we still assume the
uniform distribution over {−1, 1}n, that is, in this section X = (X1, . . . , Xn) is
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(1, 1, 1)

(1, 1,−1)

(1,−1,−1)(−1,−1,−1)

Fig. 9.1. Shifting the non-monotone set A along the second variable to obtain
A(2). In the next step A(2) is shifted along the first variable to obtain a
monotone set of same size and decreased total influence.

a vector of independent symmetric sign variables. However, most results extend,
in a straightforward way, to the case when the components of X are i.i.d with
P {Xi = 1} = 1 − P {Xi = −1} = p with p possibly different from 1/2, see the
exercises.

We start with proving that monotone functions minimize the total influence.

Theorem 9.10 For any function f : {−1, 1}n → {0, 1} there exists a monotone
function g : {−1, 1}n → {0, 1} such that E[g] = E[f ] and I(g) ≤ I(f).

Proof The proof is based on a simple ‘‘shifting” technique. By a sequence
of transformations we replace A = {x : f(x) = 1} by a monotone set of
the same size as A with total influence not exceeding that of A. If A is not
monotone, then there exists a variable i ∈ {1, . . . , n} such that for some x,
(x1, . . . , xi−1,−1, xi+1, . . . , xn) ∈ A and (x1, . . . , xi−1, 1, xi+1, . . . , xn) /∈ A. Fix
such a variable i and define the set A(i) by switching all such pairs of points (see
Figure 9.1), that is,

x ∈ A(i) if and only if





either x ∈ A and xi = 1

or x ∈ A and x(i) ∈ A
or x /∈ A and x(i) ∈ A and xi = 1 .

Clearly, P (A(i)) = P (A) and it is easy to see that I(A(i)) ≤ I(A). If A(i) is not
monotone, this transformation can be repeated (with a variable different from i).
If, to each set A, we assign the “progress measure” φ(A) =

∑
x∈A ‖x‖ then we see

that at each transformation step, the value of φ strictly increases by at least 1 and
therefore the transformation process terminates after a finite number of steps.
(Recall the notation ‖x‖ =

∑n
i=1 1{xi=1} for all x = (x1, . . . , xn) ∈ {−1, 1}n.)
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The obtained set must be monotone, has the same cardinality as A, and has a
total influence not larger than I(A). 2

The next result shows that among all monotone functions, simple majority
maximizes the total influence. Equivalently, Hamming balls centered at the vec-
tor (1, 1, . . . , 1) have a maximal edge boundary among all monotone sets. This is
interesting in view of Harper’s theorem (Theorem 7.6) which states that Ham-
ming balls minimize the vertex boundary. Recall from Section 4.4 that without
the restriction of monotonicity, the sub-cubes of {−1, 1}n minimize the edge-
boundary (i.e., total influence).

Theorem 9.11 Let B = {x : ‖x‖ > n/2} be the Hamming ball of radius n/2
centered at the all-1 vector. Then for any monotone set A ⊂ {−1, 1}n, I(A) ≤
I(B). If A is a monotone set with cardinality |A| =

∑k
i=0

(
n
i

)
for some k ∈

{0, 1, . . . , n} then I(A) ≤ I(Bk) where Bk = {x : ‖x‖ > n− k − 1}
Proof For binary vectors x, y ∈ {−1, 1}n, we write x ≺ y if xi ≤ yi for all
i = 1, . . . , n and ‖y‖ = ‖x‖+ 1. Using the monotonicity of A, we may write

I(A) = E

n∑

i=1

1{Xi is pivotal}

= 2−n
∑

x∈{−1,1}n

∑

y:x≺y

(
1{y∈A} − 1{x∈A}

)
.

Observe that ∑

x∈{−1,1}n

∑

y:x≺y
1{y∈A} =

∑

y∈A
‖y‖ ,

since every y ∈ A is counted ‖y‖ times in the double sum on the left-hand side.
On the other hand,

∑

y:x≺y
1{x∈A} = (n− ‖x‖)1{x∈A} ,

and therefore
I(A) = 2−n

∑

x∈A
(2‖x‖ − n) .

This expression is clearly maximized if A = {x : ‖x‖ > n/2}. The second
statement follows similarly. 2

Note that if n is even, the “closed” Hamming ball {x : ‖x‖ ≥ n/2} has
the same total influence as B = {x : ‖x‖ > n/2} and therefore both sets have
maximal influence among all monotone sets. For odd n, the set B is the unique
maximizer. Now it follows immediately that for symmetric monotone functions
all individual influences must go to zero at a rate of O(n−1/2). In particular, for
monotone symmetric functions, all individual influences converge to zero. More
precisely, we have the following:
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Corollary 9.12 If A is a monotone set such that all individual influences Ii(A)
are equal then

Ii(A) ≤ Ii(B) =

(
n− 1

b(n− 1)/2c

)
2−(n−1) ∼

√
2

nπ
.

For monotone sets one also has

n∑

i=1

Ii(A)2 ≤ 4P (A)(1− P (A))

To see this, observe that monotonicity of A implies that for f(x) = 1{x∈A}, the
influence of the i-th variable equals twice the Fourier coefficient corresponding
to the singleton {i}, that is, Ii(f) = 2f̂({i}) (see Section 9.4 for the definitions).

Since V ar(f) =
∑
S 6=∅ f̂(S)2, we immediately have

∑n
i=1 Ii(A)2 ≤ 4V ar(f) =

4P (A)(1− P ((A)).
Equality is achieved, for example, if A is a dictatorship of the form A = {x :

xi = 1}. On the other hand, for the simple majority function
∑n
i=1 Ii(A)2 ∼

(2/π)2 is also bounded away from zero.

9.6 Threshold phenomena

One of the most beautiful applications of the theory of influences is in the study
of phase transitions and threshold phenomena. In this section we give a brief
overview of some of the basic results in this fascinating area.

Consider a monotone binary-valued function defined on the binary cube:
f : {−1, 1}n → {0, 1}. In contrast to earlier sections in this chapter, now {−1, 1}n
is equipped with the product of Bernoulli(p) measures. In other words, the dis-
tribution of the random binary vector X = (X1, . . . , Xn) is such that the compo-
nents Xi are independent with distribution P {Xi = 1} = 1− P {Xi = −1} = p
for all i = 1, . . . , n, where p ∈ [0, 1]. We denote the measure induced by X on
{−1, 1}n by Pp so that the notation makes explicit the dependence on the pa-
rameter p. We denote A = {x : f(x) = 1}. Since f is monotone, A is a monotone
set. The main object of our study is the evolution of

Pp(A)
def
= P {X ∈ A} =

∑

x∈A
p‖x‖(1− p)n−‖x‖

as p varies in [0, 1]. (Recall that ‖x‖ =
∑n
i=1 1{xi=1}.) If A 6= ∅ and A 6= {−1, 1}n,

then monotonicity of A implies that P0(A) = 0, P1(A) = 1, and Pp(A) is a strictly
increasing differentiable function of p in [0, 1]. The unique value p1/2 for which
Pp1/2

(A) = 1/2 is called the critical value of the parameter p.
The main message of this section is that if the function f does not depend

too much on any of its variables then there is a sharp transition around p1/2. In
a narrow interval the value of Pp(A) increases from near-zero values to near one.
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ε

1− ε

pε p1−ε

1

p

Pp(A)

0 1

Fig. 9.2. p1−ε−pε is the “threshold width,” the length of the interval in which
the probability of a monotone set A grows from ε to 1− ε.

To fix ideas, let ε ∈ (0, 1) and define pε such that Ppε(A) = ε. If ε < 1/2
is small, the difference p1−ε − pε indicates how quickly the probability of A
grows close to the critical probability. If this difference is small, then a ‘‘phase
transition” occurs around the critical value p1/2, see Figure 9.2.

To gain some insight, consider first the simple examples of a dictatorship and
simple majority.

Example 9.13 (dictatorship.) Suppose that f(x) = (x1 +1)/2 is a monotone
dictatorship function, that is, f is determined by just one of the n variables. Then
clearly Pp(A) = p and p1−ε−pε = 1−2ε. This means that for the transition from
small values of Pp(A) to large ones, one needs to drastically change the value of
p. In other words, no phase transition occurs in this example. We will see soon
that this property is shared by any function with a small total influence.

Example 9.14 (simple majority: condorcet’s jury theorem.) One ob-
serves a qualitatively different behavior by considering the example of a simple
majority function defined by A = {x :

∑n
i=1 xi > 0}. For simplicity, assume that

the number n of variables is odd. Then p1/2 = 1/2. To estimate the length of the
threshold interval (pε, 1− pε), note that by Hoeffding’s inequality, if p < 1/2,

Pp(A) = Pp

(
n∑

i=1

xi > 0

)

= Pp

(
n∑

i=1

xi − (2p− 1)n > (1− 2p)n

)
≤ e−2n(1−2p)2

,
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and therefore Pp(A) ≤ ε whenever p ≤ 1/2 −
√

log(1/ε)/8n. By a symmetric

argument Pp(A) ≥ 1 − ε for all p ≥ 1/2 +
√

log(1/ε)/8n, so the value of Pp(A)

jumps from ε to 1 − ε in an interval of length not more than
√

log(1/ε)/2n. In
other words, if the number of variables is large, one witnesses a sharp thresh-
old around the critical parameter value p = 1/2. What we have just derived
is a quantitative version of a classical result of social choice theory, known as
Condorcet’s jury theorem.

As we show it in the sequel, the threshold phenomenon exhibited by the last
example extends to a wide class of monotone functions. Apart from monotonicity,
the only required property for such phase transitions is that the function should
not depend too much on each variable. In other words, if all individual influences
are small, there is a quick transition from very small to very large probabilities.
The key tool to make the connection to the world of influences is a simple result
known as Russo’s lemma. Russo’s lemma, stated and proved below, asserts that
the derivative of the measure of A, with respect to the parameter p, is just the
total influence. Recall the definition of the influence of the i-th variable:

Ipi (A) = Ipi (f) = Pp

(
{x : f(x) 6= f(x(i))}

)
.

The total influence is just Ip(A) =
∑n
i=1 I

p
i (A). Note that we make the depen-

dence on p explicit in the notation.

Theorem 9.15 (russo’s lemma.) Let A be a monotone subset of {−1, 1}n.
Then for any p ∈ (0, 1),

dPp(A)

dp
= Ip(A) .

Proof Let p = (p1, . . . , pn) be a vector of n components pi ∈ (0, 1) and de-
fine the probability measure Qp on {−1, 1}n as the product of n independent
Bernoulli measures with parameters pi. Thus, Pp = Qp with p = (p, p, . . . , p).
Let U1, . . . , Un be independent uniformly distributed random variables in [0, 1].
If we define Xi = 21{Ui≤p} − 1 for i = 1, . . . , n, then the joint distribution
of X = (X1, . . . , Xn) is just Pp. Let p′ ∈ (0, 1) and for some fixed i, define

X ′i = 1{Ui≤p′}. Let X̂i = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) be obtained by re-

placing the i-th component of X by X ′i and keeping all other variables fixed. If
we denote by p′i = (p, . . . , p, p′, p, . . . , p) the vector whose i-th component equals

p′ while all others are p, then the distribution of X̂i is just Qp′i
.

Assume first that p′ ≥ p. Then by the monotone property of A,

Qp′i
(A)−Qp(A) = P {X̂i ∈ A,X /∈ A}

= P {Ui ∈ (p, p′] and Xi is pivotal for A}
= (p′ − p)P {Xi is pivotal for A}
= (p′ − p)Ipi (A) .
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A similar argument shows that if p′ < p, one also has Qp′i
(A) −Qp(A) = (p′ −

p)Ipi (A). By dividing both sides by p′ − p and letting p′ → p, we get

∂Qp(A)

∂pi
= Ipi (A) .

Russo’s lemma now follows from a simple application of the chain rule:

dPp(A)

dp
=

n∑

i=1

∂Qp(A)

∂pi
= Ip(A) .

2

As an immediate consequence, we obtain the following generalization of The-
orem 9.11.

Corollary 9.16 Let A be a monotone subset of {−1, 1}n. Then

Ip(A) =
1

p(1− p)E
[
(‖X‖ − np)1{X∈A}

]
.

In particular,

Ip(A) ≤
√
nPp(A)

p(1− p) .

Proof By Russo’s lemma,

Ip(A) =
dPp(A)

dp

=
d

dp

∑

x∈{−1,1}n
p‖x‖(1− p)n−‖x‖1{x∈A}

=
∑

x∈{−1,1}n

(‖x‖
p
− n− ‖x‖

1− p

)
p‖x‖(1− p)n−‖x‖1{x∈A}

=
1

p(1− p)
∑

x∈{−1,1}n
(‖x‖ − np)p‖x‖(1− p)n−‖x‖1{x∈A}

=
1

p(1− p)E
[
(‖X‖ − np)1{X∈A}

]
.

The second statement follows from the Cauchy-Schwarz inequality by noting that
the distribution of ‖X‖ is binomial with parameters n and p. 2

Russo’s lemma provides a convenient tool for studying the speed of growth of
Pp(A). It shows that Pp(A) rapidly grows whenever the total influence is large.
Thus, the inequalities for influences established in Section 9.2 carry important
information about the length of the “threshold” interval in which Pp(A) changes
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from, say a small value ε to 1−ε. In order to make these inequalities useful, they
need to be extended to the case when X is distributed according to Pp. However,
this is immediate if one replaces the logarithmic Sobolev inequality used in the
proof of Theorem 9.4 by an appropriate version for the measure Pp. For example,
the generalization of Theorem 9.5 to non-symmetric distributions implies that if
the set A is symmetric in the sense that all individual influences are equal, then
the total influence (and hence the derivative of Pp(A)) is at least of the order of
log n whenever Pp(A) is neither too small nor too large, see Exercise 9.8 for the
details. We also derive this result as a corollary of a more general principle, see
Theorem 9.17 and Corollary 9.18.

On the other hand, Theorem 9.7 may also be easily generalized to the measure
Pp. This theorem implies that if A is such that the total influence is small, then
A is close to being determined by a small number of variables. Translated to the
language of threshold phenomena, this means that if A has a coarse threshold
(i.e., it Pp(A) takes a long time to grow from small values to large), A must be
almost a junta, provided that the critical probability is neither to close to 0 nor
to 1. See Exercise 9.9 for details.

In order to derive the main result of this section, we need to generalize The-
orem 9.4 to the case when X = (X1, . . . , Xn) is distributed according to Pp for
values of p different from 1/2. This is immediate if we apply an appropriate log-
arithmic Sobolev inequality for the measure Pp, generalizing Theorem 5.1. Such
an inequality is, of course, available. Just recall that Theorem 5.2 states that for
any real-valued function f : {−1, 1}n → R,

Ent(f2) ≤ c(p)E(f)

where, denoting by Ep expectation with respect to the measure Pp, Ent(f2) =
Ep
[
f2 log(f2)

]
− Ep

[
f2
]

logEp
[
f2
]
,

E(f) = p(1− p)Ep
[

n∑

i=1

(
f(x)− f(x(i))

)2
]
,

and

c(p) =
1

1− 2p
log

1− p
p

.

With the help of this inequality, the proof of Theorem 9.4 may be repeated to
get that for any f : {−1, 1}n → R,

V ar(f) log
V ar(f)∑n

j=1 (Ep|∆j |)2 ≤ c(p)E(f) .

Specializing to binary-valued functions f : {−1, 1}n → {0, 1}, and using the facts
that E(f) = p(1− p)Ip(f) and

Ep|∆i| ≤ 2p(1− p)Ipi (f) ,
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we obtain

c(p)p(1− p)Ip(f) ≥ V ar(f) log
V ar(f)

(2p(1− p))2
∑n
i=1 (Ipi (f))

2

≥ V ar(f) log
V ar(f)

(2p(1− p))2Ip(f)δp

where δp = maxi=1,...,n I
p
i (f) denotes the maximal influence. Introducing the

notation

A =
V ar(f)

(2p(1− p))2Ip(f)δp
and B =

c(p)

4p(1− p)δp
,

the above inequality may be written asA logA ≤ B, which impliesA ≤ 2B/ logB,
that is,

Ip(f) ≥
V ar(f) log c(p)

4p(1−p)δp
2c(p)/(p(1− p)) .

In combination with Russo’s lemma, we have obtained the following:

Theorem 9.17 For any monotone set A ⊂ {−1, 1}n, we have

dPp(A)

dp
≥ Pp(A)(1− Pp(A))

c(p)/(p(1− p)) log
c(p)

4p(1− p)δp

where δp = maxi=1,...,n I
p
i (A) and c(p) = 1

1−2p log 1−p
p .

The theorem shows that if each variable has a small influence (i.e., if δp is
small) then the derivative of Pp(A) is large whenever Pp(A)(1−Pp(A)) is large,
that is, when Pp(A) is close to 1/2. This means that Pp(A) grows rapidly in the
vicinity of the critical parameter p1/2, resulting in a quick transition from very
small to very large values of the probability Pp(A) of the monotone set A. We

know from Corollary 9.16 that Ip(A) ≤
√

nPp(A)
p(1−p) and therefore if A is symmetric

in the sense that all variables have the same influence, then δp ≤
√

Pp(A)
np(1−p) . We

may use this estimate to derive the following quantitative result bounding the
length of the “threshold” interval in which the Pp(A) grows from ε to 1− ε.
Corollary 9.18 Let A ⊂ {−1, 1}n be a monotone set such that for all p ∈ (0, 1),
all variables have the same influence, that is, Ip1 (A) = · · · = Ipn(A). Then for any
ε ∈ (0, 1/2),

p1−ε − pε ≤
8 log 1

2ε

log n
16

.

The proof below handles some constants in a quite generous way and it is not
difficult to improve the constants in the corollary (see, e.g., Exercise 9.8 where
a direct simple proof of Corollary 9.18 is suggested). The main message of this
result is that regardless of what the monotone set is, if all variables have equal
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influence, then there is a sharp phase transition within an interval of length
O(1/ log n) around the critical value of p. This may be regarded as a powerful
generalization of Condorcet’s jury theorem. Of course, this statement is most
interesting if the critical value p1/2 is not too close to either 0 or 1. Indeed,
it is common to define the monotone set A to have a sharp threshold if for all
ε ∈ (0, 1),

p1−ε − pε
min(p1/2, 1− p1/2)

= o(1) .

Corollary 9.18 states that A experiences a sharp threshold whenever min(p1/2, 1−
p1/2) log n → ∞. Determining the location of the critical value is often a very
challenging problem whose solution requires problem-specific tools. The study of
such techniques goes beyond the scope of this book.

Proof As mentioned above, the symmetry assumption and Corollary 9.16 imply

δp ≤
√

Pp(A)
np(1−p) ≤

√
1

np(1−p) . Plugging this estimate into the lower bound of

Theorem 9.17, we have

dPp(A)

dp
≥ Pp(A)(1− Pp(A))

2c(p)/(p(1− p)) log
c(p)

4p(1− p)
√

1
np(1−p)

=
Pp(A)(1− Pp(A))

2c(p)/(p(1− p)) log

(√
n

16
·

log 1−p
p√

p(1− p)(1− 2p)

)

(using c(p) = 1
1−2p log 1−p

p )

=
Pp(A)(1− Pp(A))

4c(p)/(p(1− p)) log
n

16

+
Pp(A)(1− Pp(A))

2
· 1− 2p

p(1− p) log 1−p
p

log
log 1−p

p√
p(1− p)(1− 2p)

≥ Pp(A)(1− Pp(A))

2
log

n

16

where at the last step we used the fact that c(p)/(p(1−p)) ≤ 1/2 and that, since
p(1− p) ≤ 1,

1− 2p

p(1− p) log 1−p
p

log
log 1−p

p√
p(1− p)(1− 2p)

≥ 1− 2p

log 1−p
p

log
log 1−p

p

1− 2p
≥ 0

simply because x log(1/x) ≥ 0 for all x ∈ [0, 1] and (1 − 2p)/ log((1 − p)/p) ∈
[0, 1/2].

Therefore, for any p ≤ p1/2, since 1− Pp(A) ≥ 1/2, we have

dPp(A)

dp
≥ Pp(A)

4
log

n

16
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or, equivalently,
d(logPp(A))

dp
≥ 1

4
log

n

16
.

Using this estimate in the interval [pε, p1/2], we obtain

log
1

2
− log ε ≤

(
p1/2 − pε

) 1

4
log

n

16
,

that is, p1/2 − pε ≥ 4 log(1/(2ε))/ log(n/16). Since the same upper bound holds
for p1−ε − p1/2, the proof is complete. 2

9.7 Bibliographic remarks

The study of influences was initiated by Ben-Or and Linial (1990) and were made
popular by the influential paper of Kahn, Kalai, and Linial (1988). Since then
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For an excellent survey of influences, threshold phenomena, and many related
topics, we refer to Kalai and Safra (2006).
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particular, Lemma 9.3 and Theorem 9.4 appear in Falik and Samorodnitsky
(2007). Rossignol (2006) uses essentially the same arguments. Theorem 9.5 was
first proved by Kahn, Kalai, and Linial (1988). The ‘‘tribes” example (Example
9.6) was constructed by Ben-Or and Linial (1990). Theorem 9.7 is due to Friedgut
(1998).

Theorem 9.9 was first proved by Talagrand (1994a). The original proofs of
Theorems 9.5 and 9.7 both use the Fourier analysis techniques shown in Section
9.4.

Several attempts have been made to obtain analogs of Theorems 9.4 and 9.9
beyond the binary hypercube with a product measure. Indeed, O’Donnell and
Wimmer (2009), Keller, Mossel, and Sen (2012a, 2012b), Cordero-Erausquin and
Ledoux (2011) obtain extensions in various directions.

Benjamini, Kalai, and Schramm (2003) apply Talagrand’s inequality (The-
orem 9.9) to prove a sub-linear bound for the variance of first passage perco-
lation, improving the argument of Example 3.13. Benäım and Rossignol (2006)
use Theorem 9.4 to derive exponential concentration inequalities for first passage
percolation.

The material of Section 9.3 is due to Devroye and Lugosi (2008). They extend
Theorem 9.8 to real-valued functions defined on the r-ary cube {0, 1, . . . , r−1}n
for integers r > 2.

The proof of Theorem 9.11 appears in Friedgut and Kalai (1996).
Threshold phenomena have been studied extensively in the context of ran-

dom graphs, see Erdős and Rényi (1960), Bollobás (2001), Janson,  Luczak and
Ruciński (2000). The first general results about threshold phenomena are due to
Margulis (1974), Russo (1982), Bollobás and Thomason (1987). Russo’s lemma
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is due to Margulis (1974) and Russo (1982), see also Grimmett (1989). Corol-
lary 9.18 is due to Talagrand (1994a). The best known constants were proved by
Rossignol (2006).

The results presented here only give satisfactory conditions for the existence
of sharp thresholds if the critical value is bounded away from zero and one. Also,
we only treat product distributions on the binary hypercube while more general
product–and even some non-product spaces are of great interest. Indeed, gen-
eralizations in these directions have been in the focus of intensive research. A
small sample of the literature the interested reader may consult includes Bol-
lobás and Riordan (2006b, 2006a), Bourgain and Kalai (1997), Bourgain, Kahn,
Kalai, Katznelson and Linial (1992), Friedgut (1999, 2005), Hatami (2012),
Kalai (2004), Mossel, O’Donnell and Oleszkiewicz (2010), Talagrand (1993, 1997,
1999), van den Berg (2008).

9.8 Exercises

Exercise 9.1 Let f : {−1, 1}n → {0, 1} be binary-valued and let g : {−1, 1}n → R be a
real-valued function. Write A = {x : f(x) = 1} and define the set B = {x : g(x) ≥ 1/2}.
Show that

P (A4B) ≤ 4E
[
(f − g)2]

where A4B = {x : f(x) 6= 1{g(x)≥1/2} denotes the symmetric difference of A and B.

Exercise 9.2 Give a proof of Theorem 9.5 based on Theorem 9.9 (with possibly dif-
ferent constants).

Exercise 9.3 Show that Theorem 9.9 holds with C = 9/10. Hint: Show that for any
f , ∑

S 6=∅

f̂(S)2

3|S| ≤
∑

S⊂{1,...,n}

f̂(S)2

2|S|+ 1
=

∫ 1

0

∑
S⊂{1,...,n}

f̂(S)2γ2|S|dγ

and use the Bonami-Beckner inequality (Corollary 5.17) to show

V ar(f) ≤ 3

n∑
i=1

∫ 1

0

∑
S⊂{1,...,n}

ĝi(S)2γ2|S|dγ ≤ 3

n∑
i=1

∫ 1

0

‖gi‖21+γ2dγ .

Use Hölder’s inequality and some calculus to bound∫ 1

0

‖gi‖21+γ2dγ ≤ ‖gi‖22
∫ 1

0

(
‖gi‖1
‖gi‖2

)2(1−γ2)/(1+γ2)

dγ ≤ 6

5

‖gi‖22
1 + log ‖gi‖1‖gi‖2

.

(This simple proof of Talagrand’s inequality was suggested by Benjamini, Kalai, and
Schramm (2003).)

Exercise 9.4 Prove the following version of Theorem 9.8. Assume f : {−1, 1}n → R
satisfies

∑n
i=1(f(x)− f(x(i)))2

− ≤ v for some v > 0 and let B = maxx,i |f(x)− f(x(i))|.
Show that there is a constant K such that for all δ < γ ≤ 1/2, by taking a = Q1−γ +B
and b = Q1−δ,

Q1−δ −Q1−γ ≤ B +K

√
vγ

δ log e2

2γ

.
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Exercise 9.5 Let f : {−1, 1}n → R be such that

|f(x)− f(x(i))| ≤ B for all x and i and

n∑
i=1

(f(x)− f(x(i)))2
+ ≤ φ(f(x))

where φ is a nonnegative nondecreasing function. Show that there exists a constant K
such that for all δ < γ ≤ 1/2,

Q1−δ −Q1−γ ≤ K
√
φ(Q1−δ +B)γ

δ log e2

2γ

.

In particular, recalling the notation ak = Q1−2−k ,

ak+1 − ak ≤ K
√
φ(ak+1 +B)

k

(see Devroye and Lugosi (2008)).

Exercise 9.6 Let A ⊂ {−1, 1}n be a monotone set with critical parameter p1/2. Prove
that for every 0 < ε < 1/2 there exists a constant c such that p1−ε−pε ≤ cmin(p1/2, 1−
p1/2). (Bollobás and Thomason (1987)).

Exercise 9.7 Let k ∈ {1, . . . , n} and let B = {x : ‖x‖ ≥ k} be a Hamming ball in
{−1, 1}n and let A ⊂ {−1, 1}n be any monotone set whose critical parameter p1/2 is
at least that of B. Show that for any p ≥ p1/2, Pp(A) ≤ Pp(B).

Exercise 9.8 Generalize Theorem 9.5 to the case when the distribution over {−1, 1}
is Pp, the product of n independent Bernoulli(p) measures. More precisely, show that
for any set A ⊂ {−1, 1}n,

n∑
i=1

Ipi (A)2 ≥ (2− ε)2(Pp(A)(1− Pp(A)))2 log2 n

n

and

max
i=1,...,n

Ipi (A) ≥ (2− ε)Pp(A)(1− Pp(A)) logn

n

where ε = log(Pp(A)(1−Pp(A))p(1− p) log2 n)/(c(p) logn). Use the second inequality,
together with Russo’s lemma, to prove Corollary 9.18.

Exercise 9.9 Prove the following generalization of Theorem 9.7 to the distribution
Pp: let ε ∈ (0, 1). There exists a subset of m = bI(f)/εc variables and a real-valued
function g : {−1, 1}n → R depending on these m variables only such that

E
[
(f − g)2] ≤ 2I(f)c(p)

p(1− p) log(1/4ε) + log(c(p)/(p(1− p)))

where c(p) = (1/(1 − 2p)) log((1 − p)/p). Conclude, by using Russo’s lemma, that if
A ⊂ {−1, 1}n is a monotone set such that there exist absolute constants K1,K2 ∈ (0, 1)
such that p3/4− p1/4 ≥ K1 and min(p1/2, 1− p1/2) ≥ K2 then A may be approximated
by a junta (i.e., by a function depending on a bounded number of variables).
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Exercise 9.10 Let A ⊂ {−1, 1}n be a monotone set such that p1/2 = 1/2. Show that
there exists a universal constant c > 0 such that p3/4 − p1/4 ≥ c/

√
n.

Exercise 9.11 Prove the following generalization of Russo’s lemma. Let f : {−1, 1}n →
R be a real-valued function and let X = (X1, . . . , Xn) be a vector of independent, iden-
tically distributed components with P {Xi = 1} = 1− P {Xi = −1} = p. Then

dEf(X)

dp

=

n∑
i=1

E (f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)− f(X1, . . . , Xi−1,−1, Xi+1, . . . , Xn)) .

(Rossignol, 2006).

Exercise 9.12 (concentration and influence.) Let A ⊂ {−1, 1}n and let X be
uniformly distributed on {−1, 1}n. Let d(X,A) = miny∈A

∑n
i=1 1{Xi 6=yi} denote the

Hamming distance of X to the set A. Prove that

Ed(X,A) ≤ I(A)

2P (A)
.

(Talagrand, 1999).
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ISOPERIMETRY ON THE HYPERCUBE AND GAUSSIAN
SPACES

The purpose of this chapter is to explore further the rich connection between
concentration and isoperimetry on the n-dimensional binary cube and also on
Rn, equipped by the canonical Gaussian measure.

The close relationship between concentration inequalities and isoperimetry is
a recurring theme of this book. Since our focus is on functions of independent
random variables, the associated measure spaces are product spaces. The sim-
plest product space is the binary hypercube, which deserves special attention not
only because it is a canonical example but also because the complex isoperimetric
behavior of subsets of the hypercube have a lot to teach us about more general
product spaces. Also, isoperimetric results for the binary hypercube often lead
naturally to their analogs for the canonical Gaussian measure via the central
limit theorem.

As a first example, in Section 4.4, we have seen that among all sets A ⊂
{−1, 1}n of a given number of points (say, of size |A| = 2n−1), sub-cubes have
the smallest edge boundary. We proved this as an easy consequence of Han’s
inequality, which is also at the basis of logarithmic Sobolev inequalities, used
in Chapter 5 to prove concentration via the entropy method. This is in a sharp
contrast with the fact that the vertex boundary is minimized by Hamming balls
(see Section 7.3). The contrast is sharp because, among all monotone sets, Ham-
ming balls maximize the size of the edge boundary (see Theorem 9.11) and at
the same time it is obvious that a sub-cube of size 2n−1 maximizes the size of
the vertex boundary among all monotone sets. Recall also from Chapter 7 that
the vertex isoperimetric theorem leads immediately to a sub-Gaussian concen-
tration inequality for Lipschitz functions of n independent symmetric Bernoulli
variables.

In this chapter we introduce a third alternative for measuring the size of the
boundary of a subset of the binary hypercube and prove a corresponding isoperi-
metric inequality, see Corollary 10.7 below. This inequality shows that edge and
vertex boundaries cannot be small at the same time, which explains, intuitively,
the conflict between edge and vertex isoperimetric problems mentioned above.
This isoperimetric result is the consequence of Bobkov’s inequality (Theorem
10.2), a powerful functional inequality which may be regarded as a sharpening
of the logarithmic Sobolev inequality of Theorem 5.1.

One of the most important corollaries of Bobkov’s inequality is the Gaussian
isoperimetric theorem. To describe this beautiful result, recall from Section 7.2
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that the classical isoperimetric problem asks which subsets of Rn have minimal
volume among those with a given surface area (where volume and surface area
are measured with respect to the n-dimensional Lebesgue measure). According
to the classical isoperimetric theorem (Theorem 7.5), Euclidean balls are these
extremal sets. As it is emphasized in Chapter 7, an equivalent formulation of the
classical isoperimetric problem asks one to determine the sets of a given volume
such that the set of points within a certain distance to the set has minimal
volume. This second formulation avoids handling the notion of a surface area
and allows one to ask the same question in any metric measurable space.

A case of fundamental importance is that of Rn equipped with the canon-
ical Gaussian measure (i.e., with the standard normal distribution with mean
vector (0, . . . , 0) and identity covariance matrix). For this case, the (Gaussian)
isoperimetric problem is formulated as follows: among all measurable sets in Rn
with a given probability under the canonical Gaussian distribution, for which
ones does the set of points within a certain Euclidean distance have minimal
Gaussian probability?

In Section 7.2 we already pointed out that the Tsirelson-Ibragimov-Sudakov
inequality may be used to obtain Gaussian isoperimetric inequalities. However,
in this chapter we show that the Gaussian isoperimetric problem may be solved
exactly.

The Gaussian isoperimetric theorem (see Theorems 10.15 and 10.14 below)
states the beautiful fact that half-spaces are the solution of the Gaussian isoperi-
metric theorem. Following Bobkov, we prove this theorem starting from Bobkov’s
inequality on the hypercube and then applying the central limit theorem. This
strategy is similar to what we already used in Section 3.7 to derive the Gaussian
Poincaré inequality from the Efron-Stein inequality and in Section 5.3 to prove
the Gaussian logarithmic Sobolev inequality from its analog on the hypercube.

We also extend Bobkov’s inequality on the hypercube to asymmetric Bernoulli
distributions. This simple extension allows us to derive some further results on
threshold widths for certain monotone sets. (Recall Chapter 9 for the basic re-
sults.) In particular, in Section 10.3 we provide a simple proof for some deep
results pioneered by Margulis.

The main work of this chapter is done in Section 10.1. Once we prove Bobkov’s
inequality, the rest of the results follow easily.

10.1 Bobkov’s inequality for functions on the hypercube

The purpose of this section to prove an inequality for functions f : {−1, 1}n → R
defined on the binary hypercube. In this section we restrict our attention to the
case when the hypercube is equipped with the uniform distribution, that is, we let
X = (X1, . . . , Xn) ∈ {−1, 1}n be a vector of independent Rademacher random
variables. We may think about Bobkov’s inequality as another member of the
family of inequalities to which the Efron-Stein inequality and the logarithmic
Sobolev inequality belong. Denote the i-th component of the discrete gradient
vector ∇f(x) = (∇1f(x), . . . ,∇nf(x)) of f by ∇if(x) =

(
f(x) − f

(
x(i)
))
/2,
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Fig. 10.1. The Gaussian isoperimetric function γ(x) between the upper and
lower bounds of Lemma 10.3.

where x(i) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn). Then the Efron-Stein inequality,
specialized to this case, states that V ar(f(X)) ≤ E‖∇f(X)‖2, while by the
logarithmic Sobolev inequality of Theorem 5.1, Ent(f2) ≤ 2E‖∇f(X)‖2.

To state Bobkov’s inequality, we need to introduce the function

γ(x) = ϕ(Φ−1(x)) for x ∈ (0, 1) .

where ϕ(x) = (1/
√

2π)e−x
2/2 is the standard Gaussian density, and Φ(x) =∫ x

−∞ ϕ(y) dy is the Gaussian distribution function. We also define γ(0) = γ(1) =

0. We call γ the Gaussian isoperimetric function. (In statistics 1/γ = (Φ−1)′ is
known as the quantile-density function of the normal distribution.) The Gaussian
isoperimetric function γ is concave and symmetric around 1/2. This is a conse-
quence of the following lemma that summarizes some of the basic properties of
γ. We leave the proof as an easy exercise.

Lemma 10.1 The Gaussian isoperimetric function γ satisfies

1. γ′(x) = −Φ−1(x) for all x ∈ (0, 1),

2. γ(x)γ′′(x) = −1 for all x ∈ (0, 1),

3. (γ′)2 is convex over (0, 1).

We are now ready to state the key result of this chapter.

Theorem 10.2 (bobkov’s inequality.) Suppose X is uniformly distributed
over {−1, 1}n. Then for all n ≥ 1 and for all functions f : {−1, 1}n → [0, 1],

γ(Ef(X)) ≤ E
√
γ(f(X))2 + ‖∇f(X)‖2 .
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The next lemma, which describes the behavior of γ, helps us interpret Bobkov’s
inequality.

Lemma 10.3 For all x ∈ [0, 1/2],

x

√
1

2
log

1

x
≤ γ(x) ≤ x

√
2 log

1

x
.

Moreover,

lim
x→0

γ(x)

x
√

2 log 1
x

= 1 .

This lemma implies that γ(x)/
(
x
√

log(1/x)
)

remains bounded as x tends to 0.
The proof is left as an exercise (see Exercise 10.4).

Next we turn to the proof of Theorem 10.2. Just as the logarithmic Sobolev
inequalities of Chapter 5 and the Bonami-Beckner inequality (see Theorem 5.18),
Bobkov’s inequality is also proved by induction over dimension. First we prove
the theorem for n = 1 and then use Minkowski’s inequality in the induction
argument to extend the result to all dimensions n > 1.

Lemma 10.4 (the case n = 1.) Let X be a Rademacher random variable (i.e.,
P {X = 1} = P {X = −1} = 1/2). For all functions f : {−1, 1} → [0, 1],

γ(Ef(X)) ≤ E

√
γ(f(X))2 +

(f(X)− f(−X))2

4
.

The proof is based on elementary algebraic manipulations based on the fol-
lowing technical lemma.

Lemma 10.5 For any c ∈ (0, 1/2] and x ∈ [0, c], we have

γ(c+ x)2 + γ(c− x)2 + 2x2 − 2γ(c)2 ≥ 2(γ′(c))2x2 .

and
γ(c+ x)2 − γ(c− x)2

x
≤ 4γ(c)γ′(c) .

Proof The first inequality follows by observing that both the function γ(c +
x)2 + γ(c− x)2 + 2x2− 2γ(c)2− 2(γ′(c))2x2 and its derivative are zero at x = 0,
and it is convex on [0, c). (This follows by the second and third properties of γ
in Lemma 10.1.)

To prove the second inequality, first note that

γ(c+ x)2 − γ(c− x)2

x
=

∫ x
0

(
(γ2(c+ s))′ − (γ2(c− s))′

)
ds

x
.

Since for s = 0, the integrand on the right-hand side is 4γ(c)γ′(c), it suffices to
prove that the integrand is a non-increasing function of s. To prove this, observe
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that since γ γ′′ = −1, (by Lemma 10.1), the derivative of the integrand with
respect to s is

(γ2(c+ s))′′ − (γ2(c− s))′′ = 2
(
(γ′(c+ s))2 − (γ′(c− s))2

)
.

Since (γ′(x))2, is convex and symmetric around 1/2, it is non-increasing on
(0, 1/2]. Thus, if c+s ≤ 1/2 then (γ′(c+s))2−(γ′(c−s))2 ≤ 0 while if c+s ≥ 1/2
then (γ′(c + s))2 = (γ′(1 − c − s))2 ≤ (γ′(c − s))2 as 1 − c − s ≥ c − s. In all
cases, (γ′(c+ s))2 − (γ′(c− s))2 ≤ 0. This concludes the proof. 2

Proof of Lemma 10.4 Introducing c = (f(1) + f(−1))/2 and x = |f(1) −
f(−1)|/2, the statement of the lemma may be written, equivalently, as

γ(c) ≤ 1

2

√
γ(c+ x)2 + x2 +

1

2

√
γ(c− x)2 + x2 . (10.1)

where c ∈ (0, 1) and x ∈ [0,min(c, 1 − c)]. As γ is symmetric around 1/2, we
may assume, without loss of generality, that 0 ≤ x ≤ c ≤ 1/2. It is convenient
to introduce the notation

h(x) = γ(c+ x)2 + x2 − γ(c)2 .

Squaring both sides of (10.1) and rearranging, (10.1) becomes

(γ(c)2 − h(x)) + (γ(c)2 − h(−x)) ≤ 2
√

(γ(c)2 + h(x))(γ(c)2 + h(−x)) .

We may assume that left-hand side is positive, otherwise there is nothing to
prove. Then, squaring both sides of the last inequality and rearranging, (10.1)
turns out to be equivalent to

(h(x)− h(−x))2 ≤ 8γ(c)2(h(x) + h(−x)) ,

which may be rewritten as

(
γ(c+ x)2 − γ(c− x)2

)2 ≤ 8γ(c)2
(
γ(c+ x)2 + γ(c− x)2 + 2x2 − 2γ(c)2

)
.

By the first inequality of Lemma 10.5, for all c ∈ (0, 1/2] for all x ∈ [0, c],

8γ(c)2
(
γ(c+ x)2 + γ(c− x)2 + 2x2 − 2γ(c)2

)
≥ 16γ(c)2(γ′(c))2x2 .

So, in order to prove (10.1) under the assumption that (γ(c)2− h(x)) + (γ(c)2−
h(−x)) > 0, it suffices to check that

(γ(c+ x)2 − γ(c− x)2)2 ≤ 16γ(c)2(γ′(c))2x2 .

But as 0 ≤ x ≤ c ≤ 1/2, γ(c+ x) ≥ γ(c− x), and γ′(c) ≥ 0, this last inequality
follows from the second inequality of Lemma 10.5. 2
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With the case of n = 1 proved, we now turn to the induction step to complete
the proof of Bobkov’s inequality. We state and prove this step in a somewhat
more general scenario than what is needed for the proof of Bobkov’s theorem.
This generality will be helpful when we extend Bobkov’s inequality to the product
of not necessarily symmetric Bernoulli distributions on the hypercube. We show
that if, for some function α : (0, 1) → R, an inequality like (10.1) holds for a
distribution P on a set X , then it also holds for the n-fold product of P on the
product space Xn.

Consider a vector X = (X1, . . . , Xn) of independent random variables, whose
components take their values in a measurable set X . Assume that for each
i = 1, . . . , n, we have an operator ∇̃i that assigns a real-valued function X → R
to a real-valued function X → R. When we write ∇̃if(x1, . . . , xn), it is im-

plicitely understood that ∇̃i acts on the function f(x1, . . . , xi−1, ·, xi+1, . . . , xn)
with x1, . . . , xi−1, xi+1, . . . , xn fixed. Thus, in this case we consider f as a func-

tion of its i-th variable only. The only requirement for ∇̃i is that it should be
measurable in the sense that if X is a random variable taking values in Xn and f
is measurable, then ∇̃if(X) should be a random variable. Moreover, we assume
that for any f : Xn → R,

∣∣∣∇̃iE [f(X) | Xi]
∣∣∣ ≤ E

[∣∣∣∇̃if(X)
∣∣∣ | Xi

]
. (10.2)

Note that if X = {−1, 1}, the components of the discrete gradient vector

∇̃if(x) = ∇if(x) = f(x)−f(x(i))
2 appearing in Bobkov’s inequality (Theorem

10.2) satisfy this requirement. The main induction argument is summarized in
the following lemma.

Lemma 10.6 (induction lemma.) Let X = (X1, . . . , Xn) be a vector of in-
dependent random variables taking values in the set Xn. Assume that the op-
erators ∇̃i, i = 1, . . . , n satisfy condition (10.2). Assume that the function
α : [0, 1]→ [0,∞) is such that for all i ≤ n and for all functions g : X → [0, 1],

α(Eg(Xi)) ≤ E

√
α(g(Xi))2 + |∇̃ig(Xi)|2 .

Then for all functions f : Xn → [0, 1],

α(Ef(X)) ≤ E

√
α(f(X))2 + ‖∇̃f(X)‖2

where ‖∇̃f(X)‖2 =
∑n
i=1

(
∇̃if(X)

)2
.

Proof The lemma is proved by induction over n. For n = 1 there is nothing
to prove, so let n ≥ 2. The induction hypothesis is that the lemma holds for
1, . . . , n− 1.

Recall that En−1 stands for the conditional expectation operator conditioned
on Xn (i.e., integration with respect to X1, . . . , Xn−1) and E(n) stands for expec-
tation with respect to the variable Xn only (i.e., conditional on X1, . . . , Xn−1).
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For each y ∈ X and x(n) ∈ Xn−1, denote fy(x(n)) = f(x(n), y). As usual, we
denote X(n) = (X1, . . . , Xn−1).

Fix xn ∈ X for now. Then

En−1

√
1

2

(
α
(
f
(
X(n), xn

))2
+ ‖∇̃f

(
X(n), xn

)
‖2
)

= En−1

√√√√α
(
fxn(X(n))

)2
+ ‖∇̃fxn(X(n))‖2
2

+

(
∇̃nf(X(n), xn)

)2

2

≥




(
En−1

√
α
(
fxn

(
X(n)

))2
+ ‖∇̃fxn

(
X(n)

)
‖2
)2

2

+

(
En−1

∣∣∣∇̃nf
(
X(n), xn

∣∣
))2

2




1/2

where we used Minkowski’s inequality by taking, in Theorem 2.16, q = 2, the
X-variable to be uniform on {1, 2}, and Y -variable to be X(n), and

Z =

√
α
(
fxn

(
X(n)

))2
+ ‖∇̃fxn

(
X(n)

)
‖2

if the X-variable equals 1 and ∇̃nf
(
X(n), xn

)
if it equals 2.

As for each fixed xn, fxn is a function of n − 1 identically distributed inde-
pendent random variables, we may apply the induction hypothesis to the first
term on the right-hand side of the inequality above and get

En−1

√
1

2

(
α
(
f
(
X(n), xn

))2
+ ‖∇̃f

(
X(n), xn

)
‖2
)

≥

√√√√α
(
En−1fxn

(
X(n)

))2

2
+

(
En−1

∣∣∣∇̃nf
(
X(n), xn

)∣∣∣
)2

2

≥

√√√√α
(
En−1fxn

(
X(n)

))2

2
+

(
∇̃nEn−1f

(
X(n), xn

))2

2
,

where the last line follows from our assumption on the operator ∇̃n.
Taking now expectation with respect to the distribution of Xn, we obtain
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E

√
α(f(X))2 + ‖∇̃f(X)‖2

= E(n)

[
En−1

√
α
(
f
(
X(n), Xn

))2
+ ‖∇̃f

(
X(n), Xn

)
‖2
]

≥ E(n)

[√
α
(
En−1fXn

(
X(n)

))2
+
(
∇̃nEn−1fXn

(
X(n)

))2
]
.

Now let the function g : X → [0, 1] be defined by g(x) = En−1fx
(
X(n)

)
. Then

the right-hand side of the last inequality is just

E(n)

√
α (g(Xn))

2
+
(
∇̃g(Xn)

)2

which can be lower bounded by invoking the induction hypothesis once more.
This finally leads to

E

√
α(f(X))2 + ‖∇̃f(X)‖2 ≥ α

(
E(n)g(Xn)

)

= α (Ef(X)) .

2

Combining Lemmas 10.4 and 10.6, we obtain Theorem 10.2.

10.2 An isoperimetric inequality on the binary hypercube

While the original purpose of Bobkov’s inequality was to provide a functional
inequality that implies the Gaussian isoperimetric theorem (see Theorem 10.14
below), it has proved to be a powerful tool in understanding the isoperimetric
structure of the binary hypercube. Indeed, a trivial application of Theorem 10.2,
described in this section, provides an interesting interpolation between the edge
and vertex isoperimetric theorems on the hypecube.

As explained in the introduction of this chapter, the vertex isoperimetric
theorem states that, among all sets A ⊂ {−1, 1}d of a given size, Hamming balls
minimize the size of the vertex boundary ∂V (A) (defined as the set of vertices
of {−1, 1}n that are outside A but are connected with at least one vertex that
belongs to A), while the size of the edge boundary ∂E(A) (i.e., the set of edges
between A and Ac) is minimized by sub-cubes. At the same time, among all
monotone sets, Hamming balls maximize the size of the edge boundary and sub-
cubes maximize the size of the vertex boundary. This apparent conflict between
the sizes of edge and vertex boundaries suggests that no monotone set can have
a simultaneously small edge and vertex boundary. This is indeed the case as we
show it below in Corollary 10.10.

As a simple result of the same flavor, consider the following corollary of
Bobkov’s inequality.
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Let A ∈ {−1, 1}n be a (not necessarily monotone) set and consider the in-
dicator function f(x) = 1{x∈A}. Since γ(0) = γ(1) = 0, Bobkov’s inequality,
applied to f , implies

γ(P (A)) ≤ E‖∇1{x∈A}‖ =
1

2
E

√√√√
n∑

i=1

(1{x∈A} − 1{x(i)∈A})2

where P (A) = |A|2−n is the probability of A under the uniform distribution.
Defining the symmetric vertex boundary of A by ∂V (A) = ∂V (A) ∪ ∂V (Ac), we
clearly have

γ(P (A)) ≤ E‖∇1{x∈A}‖ = E1{X∈∂V (A)}‖∇1{x∈A}‖ ,

so by the Cauchy-Schwarz inequality, we obtain

γ(P (A)) ≤
√
P (∂V (A))

√
E‖∇1{X∈A}‖2

Now clearly, 4‖∇1{x∈A}‖2 =
∑n
i=1(1{x∈A} − 1{x(i)∈A})

2 is the number of edges

betweenA toAc incident to x if x ∈ ∂V (A). Thus, E‖∇1{X∈A}‖2 = |∂E(A)|2−(n+1) =
I(A)/2 where I(A) is the total influence of A. Thus, we have the following result:

Corollary 10.7 (an isoperimetric inequality on the cube.) For any sub-
set A of {−1, 1}n,

P (∂V (A)) · I(A) ≥ 2γ (P (A))
2
.

The lemma asserts that the size of the edge boundary (total influence) and
the vertex perimeter (in the sense of |∂V (A)|) cannot be simultaneously small
if |A| is large. For example, for any set with cardinality |A| = 2n−1, we have
that P (∂V (A))I(A) ≥ 1/π. Note that for the sub-cube A = {x : x1 = 1},
P (∂V (A))I(A) = 1 and for the Hamming ball A = {x :

∑
i xi > 0} (for n even),

P (∂V (A))I(A) ∼ 4/π is also bounded by a constant so the inequality above is
essentially saturated by both extremes.

In the next section we show that for monotone sets, Corollary 10.7 may be
refined by replacing the symmetric vertex boundary ∂V (A) by the “real” vertex
boundary ∂V (A).

10.3 Asymmetric Bernoulli distributions and threshold phenomena

In this section we present a variant of Bobkov’s inequality, (Theorem 10.2). The
result shown here differs from Bobkov’s in three aspects. First, it holds not only
for uniformly distributed vectors over the discrete hypercube {−1, 1}n, but for
products of asymmetric Bernoulli distributions. That is, X = (X1, . . . , Xn) is
supposed to have independent, identically distributed components with P {Xi =
1} = 1− P {Xi = −1} = p for some p ∈ (0, 1). Second, we restrict out attention
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to monotone functions f : {−1, 1}n → [0, 1], that is, we assume that for all
i = 1, . . . , n and x1, . . . , xi−1, xi+1, . . . , xn ∈ {−1, 1},

f(x1, . . . , xi−1,−1, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn) .

Finally, the discrete gradient ∇f is replaced by its “positive part” ∇+f =
(∇+

1 f, . . . ,∇+
n f) whose components are defined by

∇+
i f =

(
f(x)− f(x(i)

)
+
.

Theorem 10.8 (tillich-zémor inequality.) Let p ∈ (0, 1), let f : {−1, 1}n →
[0, 1] be a monotone function and let X = (X1, . . . , Xn) be a vector of indepen-
dent Bernoulli random variables with P {Xi = 1} = 1 − P {Xi = −1} = p.
Then

γ(Ef(X)) ≤ E
√
γ(f(X))2 + 2 log(1/p)‖∇+f(X)‖2 ,

The proof of the theorem is similar to that of Bobkov’s inequality. First we
prove it for n = 1 and then use the induction lemma (Lemma 10.6) to extend it
to higher dimensions.

Lemma 10.9 Let X be a random sign, with P {X = 1} = p. For all monotone
functions f : {−1, 1} → [0, 1],

γ(Ef(X)) ≤ E
√
γ(f(X))2 + 2 log(1/p)(f(x)− f(−x))2

+ .

Proof Let f(−1) = c and f(1) = c+ x, with x ∈ [0, 1− c]. Let q = 1− p. The
inequality in the lemma is equivalent to

γ(c+ px)− qγ(c) ≤ p
√
γ(c+ x)2 + 2x2 log(1/p) .

The left-hand side is non-negative since γ is concave and non-negative. Thus,
equivalently, we need to prove

(γ(c+ px)− qγ(c))
2 − p2γ(c+ x)2 − 2p2x2 log(1/p) ≤ 0 .

For a fixed value of c, let us denote the expression on the left-hand side by F (x).
Whatever the value of c, F (0) = 0 and F ′(0) = 0, so it suffices to prove that F
is concave on [0, 1 − c). The first and second derivatives may be computed and
simplified using Lemma 10.1, and we obtain

F ′(x)

2
= pγ′(c+ px) (γ(c+ cx)− qγ(c))− 2p2x log(1/p)− p2γ′(c+ x)γ(c+ x)

and

F ′′(x)

2
= p2

(
(γ′(c+ px))2 − (γ′(c+ x))2

)
− 2p2 log(1/p)− p2qγ(c)γ′′(c+ px) .
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Note that

(γ′(c+ px))2 − (γ′(c+ x))2 = 2

∫ c+px

c+x

γ′(t)γ′′(t)dt

= −2

∫ c+px

c+x

γ′(t)
γ(t)

dt (by Lemma 10.1)

= 2 log
γ(c+ x)

γ(c+ px)
.

This allows us to further simplify the expression of F ′′(x):

F ′′(x)

2p2
= 2 log

pγ(c+ x)

γ(c+ px)
+

qγ(c)

γ(c+ px)

= 2 log

(
pγ(c+ x) + qγ(c)

γ(c+ px)
− qγ(c)

γ(c+ px)

)
+

qγ(c)

γ(c+ px)

≤ 2 log

(
1− qγ(c)

γ(c+ px)

)
+

qγ(c)

γ(c+ px)
,

where the last inequality follows from the fact that γ(c + x) is a concave and
non-negative function of x on [0, 1− c) while log is increasing.

The lemma then follows by observing that 2 log(1 − u) + u is zero at u = 0
and non-increasing on [0, 1). 2

Proof of Theorem 10.8 The proof is an almost immediate consequence of
Lemma 10.9 and the general induction argument. The only issue is raised by
the fact that Lemma 10.6 formally does not handle the restriction to monotone
functions. However, if f is monotone, so are En−1fx(X(n)) and fXn and the
proof of Lemma 10.6 goes through. 2

We may now apply Theorem 10.8 for the indicator function f(x) = 1{x∈A}
of any monotone subset of the binary hypercube.

For any set A ⊂ {−1, 1}n, define the function

hA(x) = ‖∇+
1{x∈A}‖2 =

n∑

i=1

(
1{x∈A} − 1{x(i)∈A}

)
+
.

Clearly, hA(x) = 0 if x /∈ A and otherwise hA(x) is the number of edges leaving
A from x. E

√
hA(X) may be interpreted as some kind of a “surface area” of

the set A and the following corollary is an isoperimetric inequality based on this
notion. It sharpens and generalizes Corollary 10.7 for monotone sets.

Observe that
(
1{x∈A} − 1{x(i)∈A}

)
+

= 1 if and only if the i-th variable is

pivotal for A and xi = 1. Since these two events are independent, we have that
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EhA(X) = p · Ip(A) is p times the total influence of the set A (recall Section
9.5). Then by the Cauchy-Schwarz inequality,

E
√
hA(X) = E

√
hA(X)1{X∈∂V A} ≤

√
pIp(A)Pp(∂V (A)

(recall that Pp(A) =
∑
x∈A p

‖x‖(1− p)n−‖x‖).
Corollary 10.10 (an isoperimetric inequality for monotone sets) Let
p ∈ (0, 1), and let X = (X1, . . . , Xn) be a vector of independent Bernoulli random
variables with P {Xi = 1} = 1 − P {Xi = −1} = p. Then for any monotone set
A ∈ {−1, 1}n,

E
√
hA(X) ≥ 1√

2 log(1/p)
γ (Pp(A)) .

In particular,

2Pp(∂V (A)) · Ip(A)p log
1

p
≥ γ(P (A))2 .

Part of the beauty of these inequalities lies in their dimension-free nature.
Indeed, n does not appear anywhere in the expressions. To appreciate the sharp-
ness of this result, it is instructive to check the cases of the Hamming ball A =
{x :

∑n
i=1 xi ≥ n/2}, the sub-cube {x : x1 = 1}, and the singleton {(1, . . . , 1)}.

As we saw it in Section 9.6, inequalities for the total influence may be used
to study the evolution of the probability Pp(A) of a monotone set A ∈ {−1, 1}n
Indeed, by Russo’s lemma, dPp(A)/dp = Ip(A). For example, Corollary 10.10 im-
mediately implies that for sets with a small vertex boundary, Pp(A) experiences
a sharp transition around the critical probability p1/2 (defined as the value for
which Pp1/2

(A) = 1/2 (see Exercise 10.1). Another application of Corollary 10.10
is the next result which gives interesting sufficient conditions for a monotone set
that guarantee narrow thresholds. This corollary of the Tillich-Zémor inequal-
ity sharpens a classical result of Margulis. Recall that Φ denotes the Gaussian
distribution function.

Theorem 10.11 (margulis’ graph connectivity theorem.) Let k > 0
and let A ⊂ {−1, 1}n be a monotone set such that for all x ∈ ∂V (A), hA(x) ≥ k.
Then

Pp(A) ≤ Φ
(√

2k
(√
− log p1/2 −

√
− log p

))
for 0 < p < p1/2

Pp(A) ≥ Φ
(√

2k
(√
− log p1/2 −

√
− log p

))
for p1/2 < p < 1 .

Proof Since hA(x) ≥ k1{x∈∂V (A)}, the total influence may be bounded from
below as

Ip(A) = EhA(X) ≥ E
√
khA(X) ≥

√
k

2 log(1/p)
γ (Pp(A))
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by Corollary 10.10. Thus, by Russo’s lemma, we have

dPp(A)

dp
≥
√

k

2p2 log(1/p)
γ (Pp(A)) .

Since γ(s)γ′′(s) = −1 (by Lemma 10.1), this may be re-written as

γ′′(Pp(A))
dPp(A)

dp
≤ −

√
k

2p2 log(1/p)
.

Suppose p < p1/2. Integrating this inequality between p and p1/2, we obtain

γ′(Pp1/2
(A))− γ′(Pp(A)) ≤

√
2k
(√
− log p1/2 −

√
− log p

)
.

The proof of the first inequality is finished by noting that γ′(Pp1/2
(A)) = γ′(1/2) =

0 and γ′(Pp(A))) = −Φ−1(Pp(A)), by Lemma 10.1. The second inequality follows
similarly. 2

The theorem above implies that if k is large, that is, if every vertex on
the boundary of A has many edges connecting it to the complement of A, then
Pp(A) experiences a sharp transition around the critical value p1/2. The following
example explains the name of the theorem.

Example 10.12 (connectivity of random subgraphs of a finite graph.)
Consider the following random graph model. Let G = (V,E) be a finite connected
graph with vertex set V and edge set E. Now remove every edge of G at random,
independently, with probability p. Let A be the event that the remaining graph
is disconnected. We may represent A as a subset of {−1, 1}|E| as follows: every
binary vector x ∈ {−1, 1}|E| represents a graph such that a component 1 repre-
sents a removed edge of G and −1 a remaining edge. Then the set A representing
all connected graphs is clearly monotone. We are interested in the evolution of
Pp(A), the probability that the remaining graph is disconnected. Suppose that
the graph G is k + 1-edge-connected, that is, the graph remains connected af-
ter the removal of any set of k edges. In this case, for any disconnected graph
x ∈ ∂V (A) on the boundary of A, hA(x) ≥ k and therefore Theorem 10.11 is
applicable. It shows that as p grows from 0 to 1, the probability Pp(A) jumps

from values close to 0 to values close to 1 in an interval of length O(1/
√
k).

Remark 10.3 The “surface area” E
√
hA(X) may also be related to the sum

of the squared influences studied in Chapter 9. In fact,
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√√√√
n∑

i=1

Ipi (A)2 =

(
1

p2

n∑

i=1

(
E
(
1{X∈A} − 1{X(i)∈A}

)
+

)2
)1/2

≤ 1

p
E

√√√√
n∑

i=1

(
1{X∈A} − 1{X(i)∈A}

)2

+

=
1

p
E
√
hA(X) ,

where the inequality follows from the fact that if Y1, . . . , Yn are random variables

with a finite second moment, then
(∑n

i=1(EYi)
2
)1/2 ≤ E

(∑n
i=1 Y

2
i

)1/2
by the

convexity of the Euclidean norm and Jensen’s inequality.

10.4 The Gaussian isoperimetric theorem

In this section we prove the celebrated Gaussian isoperimetric theorem, which
states that, among all sets of a given Gaussian measure, the Gaussian surface
area (defined below) is minimized by half-spaces. The proof presented here is
based on Bobkov’s inequality (Theorem 10.2). The key ingredient is a functional
inequality which extends Theorem 10.2 from the uniform distribution over the
hypercube to the Gaussian distribution using the central limit theorem. The
argument is similar to the way we obtained the Gaussian Poincaré inequality or
the Gaussian logarithmic Sobolev inequality from their discrete analogues.

Theorem 10.13 (bobkov’s gaussian inequality.) Let X = (X1, . . . , Xn) be
a vector of independent standard Gaussian random variables. Let f : Rn → [0, 1]
be a differentiable function with gradient ∇f . Then

γ(Ef(X)) ≤ E
√

(γ(f(X))2) + ‖∇f(X)‖2 ,
where γ = ϕ ◦ Φ−1 is the Gaussian isoperimetric function.

Proof It suffices to prove that the theorem holds for all f : Rn → [0, 1] that
are twice differentiable and have a compact support because the extension to all
differentiable f may be done by a routine density argument.

Let k be a positive integer, and let ε = (εi,j)i=1,...,n,j=1,...,k be a vector of
independent Rademacher random variables. Define the function fk : {−1, 1}nk →
[0, 1] by

fk(ε) = f




k∑

j=1

εi,j√
k
, . . . ,

k∑

j=1

εn,j√
k


 .

Now we may apply Theorem 10.2 for the function fk and otain

γ (Efk(ε)) ≤ E
√
γ2(fk(ε)) + ‖∇fk(ε)‖2 .

(Note that, with an abuse of notation, here ∇ stands for the discrete gradient,
introduced in Section 10.1.)
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Now all we have to do is to let k go to infinity on both sides of the inequality.
Indeed, by the central limit theorem, limk→∞ γ (Efk(ε)) = γ(Ef(X)), where X
is a vector of n independent standard Gaussian random variables. On the other
hand, proceeding exactly the same way as in the proofs of the Gaussian Poincaré
and Gaussian logarithmic Sobolev inequalities, by the central limit theorem, we
also have

lim
k→∞

E
√
γ2(fk(ε)) + ‖∇fk(ε)‖2 = E

√
γ(f(X))2 + ‖∇f(X)‖2 .

2

In the rest of this section we show how Bobkov’s Gaussian inequality may be
used to derive the Gaussian isoperimetric theorem.

Recall that the t-blowup of a set A ⊂ Rn is defined by

At = {x : d(A;x) < t}

where d(A, x) = infy∈A ‖x− y‖ is the Euclidean distance of x to the set A.
In analogy with the definition of surface area used in Section 7.2, me may

define the Gaussian boundary measure of a Borel set A by

lim
t↘0

P (At \A)

t

whenever the limit exists, where P is the canonical Gaussian measure on Rn.
The Gaussian isoperimetric problem is to determine which (Borel) sets A

have minimal Gaussian boundary measure among all sets in Rn with a given
probability p. The Gaussian isoperimetric theorem states the beautiful fact that
the extremal sets are linear half-spaces in all dimension and for all p:

Theorem 10.14 (gaussian isoperimetric theorem.) Let P be the canonical
Gaussian distribution on Rn and let A ∈ Rn be a Borel set. Then

lim inf
t→0

P (At \A)

t
≥ γ(P (A)) .

Moreover if A is a half-space defined by A = {x : x ∈ Rn, x1 ≤ z}, then

lim
t→0

P (At \A)

t
= γ(P (A)) = ϕ(z) .

(Recall that γ(x) = ϕ(Φ−1(x)) denotes the Gaussian isoperimetric function.)

Proof The theorem is an almost immediate consequence of Theorem 10.13.
However, the Gaussian isoperimetric theorem is concerned with characteristic
functions of sets while Bobkov’s Gaussian inequality deals with differentiable
functions. We apply Bobkov’s inequality to smooth approximations of indicator
functions.



296 Isoperimetry on the hypercube and Gaussian spaces

First note that if P (A \ A) > 0 there is nothing to prove where A denotes
the closure of A. Hence we may assume that P (A \A) = 0 and indeed, without
loss of generality, we may even assume that A is open.

For each t > 0, define ft : Rn → [0, 1] by

ft(x) =

(
1− d(A, x)

t

)

+

.

Clearly, ft(x) = 1 for all x ∈ A, ft(x) = 0 for x /∈ At, and ft is 1/t-Lipschitz.
However, ft is not differentiable. We may further smooth it by convolution with
a Gaussian kernel. Thus, for σ > 0, we define

ft,σ(x) =

∫

Rn
ft(y)

1

(
√

2πσ)n
exp

(
−‖x− y‖

2

2σ2

)
dy .

For each σ > 0, the function ft,σ still maps Rn to [0, 1], it is infinitely many
times differentiable, and remains 1/t-Lipschitz (Exercise 10.11).

Now we may apply Bobkov’s Gaussian inequality. Indeed, if X denotes a
standard Gaussian vector, then for each t, σ > 0, by Theorem 10.13,

γ (Eft,σ(X)) ≤ Eγ(ft,σ(X)) + E‖∇ft,σ(X)‖ .
If we let σ tend to 0, by the dominated convergence theorem, we have

lim
σ→0

γ (Eft,σ(X)) = γ (Eft(X)) , and lim
σ→0

Eγ(ft,σ(X)) = Eγ(ft(X))

Since ft(x) = 1 for x ∈ A and ft(x) = 0 for x /∈ At, we have γ(ft(x)) ≤
(1/
√

2π)1{At\A} and therefore Eγ(ft(X)) ≤ (1/
√

2π)P {At \ A}. Now by the
Lipschitz property of ft,σ, we have ‖∇ft,σ(X)‖ ≤ 1/t. Also, if x is in the interior
of A or outside the closure of At, ‖∇ft,σ(x)‖ → 0 as σ → 0. If x is in the interior
of At \A, then ‖∇ft,σ(x)‖ → 1/t. Hence, by dominated convergence,

lim
σ→0

E‖∇ft,σ‖ =
P (At \A)

t
.

Combining all the above,

γ(Eft(x)) ≤ (1/
√

2π)P (At \A) +
P (At \A)

t
.

Letting finally t→ 0,

γ(P (A)) ≤ lim inf
t→0

P (At \A)

t

which is just the lower bound in the Gaussian isoperimetric theorem.
The fact that half-spaces achieve equality is obvious. 2

Next we describe an equivalent version of the Gaussian isoperimetric theorem,
in the spirit of measure concentration described in the introduction of Chapter
7. It gives a sharp lower bound for the Gaussian measure of the blowup of any
set in terms of the measure of the set.
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Theorem 10.15 (gaussian concentration theorem.) Let P be the canon-
ical Gaussian distribution on Rn and let A ⊂ Rn be a Borel set. Then for all
t ≥ 0,

P (At) ≥ Φ
(
Φ−1(P (A)) + t

)
.

Equality holds if A is a half-space.

In the proof we need the following simple technical observation whose proof
is left as an exercise.

Proposition 10.16 If A is a finite union of open balls in Rn, then P (At) is a
differentiable function of t > 0.

Proof of Theorem 10.15 We call a Borel set A ⊂ Rn smooth if P (At) is a
differentiable function of t on (0,∞).

Observe that if A is smooth, then

dΦ−1(P (At))

dt
=
dP (At)

dt
× 1

γ (P (At))
.

It follows from the Gaussian isoperimetric theorem that the right-hand side is

at least 1 since dP (At)
dt = lims→0

P (At+s\At)
s . By integrating this inequality,

Φ−1 (P (At)) = Φ−1 (P (A)) +

∫ r

0

dΦ−1(P (As))

ds
ds

≥ Φ−1 (P (A)) + t .

Hence, the theorem holds for all smooth sets. The remaining work is to extend
this to all Borel sets.

Note first that if P (A) = 0, the theorem is automatically satisfied and there-
fore we may focus on Borel sets A with positive probability. By Proposition 10.16,
the concentration property holds for any finite union of open balls.

Now let A be any Borel set with P (A) > 0. Let 0 < ε < t. Then by
Vitali’s covering theorem, there exists a countable collection of disjoint open
balls {B1, B2, . . .}, all intersecting A and diameter at most ε, such that P (A \
∪∞n=1Bn) = 0. But then

P (At) ≥ P (∪∞n=1(Bn)t−ε)

= lim
n→∞

P (∪ni=1(Bi)t−ε)

≥ lim
n→∞

Φ
(
Φ−1 (P (∪ni=1Bi)) + t− ε

)

= Φ
(
Φ−1 (P (∪∞n=1Bn)) + t− ε

)

≥ Φ
(
Φ−1 (P (A)) + t− ε

)
.

The argument is completed by taking ε to 0. 2
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Note that the Gaussian concentration theorem and the Gaussian isoperimet-
ric theorem are, in fact, equivalent in the sense that the Gaussian concentration
theorem implies that for every Borel set A ⊂ Rn,

lim inf
t→0

P (At \A)

t
≥ lim inf

t→0

Φ
(
Φ−1(P (A)) + t

)
− Φ

(
Φ−1(P (A))

)

t
= γ(P (A))

which is just the statement of Theorem 10.14. See Exercise 10.7 for a more
general argument.

10.5 Lipschitz functions of Gaussian random variables

Recall that by the Gaussian concentration inequality (Theorem 5.6), any Lips-
chitz function of independent Gaussian random variables has sub-Gaussian tails.
This result may be sharpened by combining the Gaussian concentration theorem
(Theorem 10.15) with Lévy’s inequality (Theorem 7.1). We obtain the following:

Theorem 10.17 Let X = (X1, . . . , Xn) be a vector of n independent standard
normal random variables. Let f : Rn → R denote a Lipschitz function with
Lipschitz constant L and let Mf(X) denote a median of f(X). Then, for all
t > 0,

P {f(X)−Mf(X) ≥ t} ≤ 1− Φ(t/L) .

Recall that, according to Gordon’s inequality (Exercise 7.8), 1 − Φ(t) ≤
(1/t
√

2π)e−t
2/2. The Gaussian concentration inequality fails to capture the cor-

rective factor t−1. The inequality of Theorem 10.17 cannot be improved in general
as for f(x) = n−1/2

∑n
i=1 xi, equality is achieved for all t > 0. Note however, that

the refinement above bounds the probability of deviations around the median
rather than around the mean.

10.6 Bibliographical remarks

Bobkov’s inequality (Theorem 10.2) on the hypercube was first established by
Bobkov (1997) as a first step in his elementary proof of the Gaussian isoperimet-
ric inequality. It is Bobkov’s argument that we follow in this chapter. Bobkov’s in-
duction lemma (Lemma 10.6) was further generalized by Bobkov and Götze (1999,
Lemma 2.1).

Theorem 10.8 is due Tillich and Zémor (2001), just like Corollary 10.10. The
history of this inequality goes back to Margulis (1974) and was subsequently
improved by Talagrand (1993), and Bobkov and Götze (1999). It was Talagrand
(1993) who promoted the use of E

√
hA(X) as an adequate measure of surface

area for monotone subsets of the hypercube. Linial and Rozenman (2002) char-
acterize the monotone sets of a given volume that minimize the surface area
E
√
hA(X) under the uniform distribution.

Talagrand (1997) proved that under the uniform probability on {−1, 1}n,
E
√
hA(X) can be O(1) only if

∑n
i=1 Ii(A)2 is Ω(1). Talagrand (1997) also proves
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that there exist b > 0 and a ∈ (0, 1/2) such that for every monotone set A ⊂
{−1, 1}n,

E‖∇1{A}‖

≥ bP (A)(1− P (A))

(
log

e

P (A)(1− P (A))

)1/2−a(
log

e∑
i≤n I

2
i (A)

)a
,

where P is the uniform distribution over {−1, 1}n.
The Gaussian isoperimetric theorem was first established independently by

Borell (1975) and Tsirelson and Sudakov (1974). Borell’s proof relied on Lévy’s
isoperimetric theorem for Euclidean spheres.

In a series of papers Ehrhard developed a proof of the Gaussian isoperimetric
theorem based on Gaussian rearrangment techniques, see Ehrhard (1982, 1983b,
1983a, 1984, 1986), and also Borell (1986).

Ledoux (1996) proved a version of Theorem 10.14 with sub-optimal constants
using semigroup techniques.

The equivalence between the Gaussian isoperimetric theorem (Theorem 10.15)
and Bobkov’s Gaussian inequality (Theorem 10.13) was already pointed out by
Ehrhard (1984), see also Bakry and Ledoux (1996), Capitaine, Hsu and Ledoux
(1997), and Barthe and Maurey (2000).

The proof of Theorem 10.13 given here is from Bobkov (1997). The theorem is
extended in Barthe and Maurey (2000) who also provide a proof of Theorem 10.13
based on stochastic calculus.

Borell and Ehrhard (see Ehrhard (1986)) obtained the following Gaussian
version of the Brunn-Minkowski inequality: for all convex sets A,B in Rn,

Φ−1 (P (λA+ (1− λ)B)) ≥ λΦ−1 (P (A)) + (1− λ)Φ−1 (P (B)) (10.4)

where P is the canonical Gaussian measure on Rn.

10.7 Exercises

Exercise 10.1 (sharp threshold for sets with small vertex boundary.) Let
A ∈ {−1, 1}n be a nonempty monotone set and let Pp(A) be its probability under the
product of Bernoulli(p) measures. For a ∈ [0, 1], let pa be the unique value such that
Ppa(A) = a. Show that for any ε ∈ (0, 1/2),

p1−ε − p1/2 ≤
(log 2)(1/2− ε)
ε2 log(1/ε)

inf
q∈(1/2,1−ε)

Pq(∂V (A)) .

Derive a similar upper bound for p1/2 − pε. Hint: Use Corollary 10.10.

Exercise 10.2 (cheeger constant for univariate distributions.) Let P denote
a probability distribution on Rn. Let αP denote the associated isoperimetric function
defined, for p ∈ (0, 1),

αP (p) = inf
A⊂Rn:P (A)=p

lim inf
t→0

P (At \A)

t



300 Isoperimetry on the hypercube and Gaussian spaces

where the infimum is taken over all measurable sets with probability p. The Cheeger
constant of P is defined by

κ(P ) = inf
p∈(0,1)

αP (p)

min(p, 1− p)) .

When n = 1, let F denote the distribution function of P . Assume that P is absolutely
continuous and let f denote its density. Prove that

κ(P ) = ess inf
a<x<b

f(x)

min(F (x), 1− F (x))
,

where a = inf{x : F (x) > 0} and b = sup{x : F (x) < 1}.
Compute κ(P ) for the standard Gaussian distribution and for the Laplace distri-

bution (whose density is 1
2

exp(−|x|). (See Bobkov and Houdré (1997).)

Exercise 10.3 (cheeger constant in product spaces.) With the notation of the
previous exercise, let Pn denote the n-fold product of the measure P on the real line.
Prove that

κ(Pn) ≥ 1

2
√

6
κ(P ) .

(Bobkov and Houdré, 1997, Theorem 1.1)

Exercise 10.4 (approximation of the gaussian isoperimetric function.) Prove
Lemma 10.3. Hint: The lower bound on γ follows easily from Gordon’s inequality (Ex-
ercise 7.8). The upper bound follows from Lemma 10.9.

Exercise 10.5 (gaussian measure) Let A = {x : x ∈ Rn, 〈x, u〉 < λ} be a half-
space in Rn for some u ∈ Rn and λ ∈ R. Let P denote the canonical Gaussian distri-
bution on Rn. Show that for any t > 0,

Φ−1(P (At)) = Φ−1(P (A)) + t .

Exercise 10.6 (proof of proposition 10.16.) Let P be an absolutely continuous
probability distribution on Rn and let A be a finite union of open balls. Prove that
P (At) is a differentiable function of t > 0.

Exercise 10.7 (from isoperimetry to concentration.) Assume that a probabil-
ity distribution P on Rn satisfies, for all Borel sets A ⊂ Rn,

lim inf
t↘0

P (At \A)

t
≥ cf(F−1(P (A))) ,

where c ∈ (0, 1] is a constant and F is a continuously differentiable distribution function
over R and f its derivative. Prove that for all Borel sets A and all t ≥ 0,

P (At) ≥ F
(
F−1(P (A)) + ct

)
Exercise 10.8 (functional inequalities involving α(x) = x(1−x).) Consider the
discrete gradient ∇i on the cube {−1, 1}n whose components are defined by ∇+

i f(x) =
(f(x)− f(x(i))+. Let X = (X1, . . . , Xn) be a vector of independent random signs such
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that P {X = 1} = 1− P {X = −1} = p. Denote κ(p) = (1− p)/(1 + p). Prove that for
all functions f : {−1, 1}n → [0, 1],

α(Ef(X)) ≤ E
√
α(f(X))2 + max(κ(p), κ(1− p))‖∇+f(X)‖2 .

Show that if f is monotone increasing,

α(Ef(X)) ≤ E
√
α(f(X))2 + κ(p)‖∇+f(X)‖2 .

Show that for any monotone set A ⊂ {−1, 1}n,

E‖∇+
1{A}‖ ≥

√
1 + p

1− pP (A)(1− P (A)) .

Is this inequality tight for the majority function, dictatorships, singletons? See Bobkov
and Götze (1999, page 254, Proposition 2.3).

Exercise 10.9 (sharp threshold in channel coding.) A binary linear block code
C of length n is a subset of {0, 1}n such that for any u, v ∈ C, u ⊕ v ∈ C where ⊕
denotes coordinate-wise addition modulo 2. Let C be a binary linear block code such
that the Hamming distance of any two distinct elements of C is at least 2∆. Suppose an
element (a codeword) v ∈ C of the code is transmitted over a binary symmetric channel
with crossover probability p ∈ (0, 1). This means that the received message is v ⊕ X
where X is a vector of i.i.d. Bernoulli (p) random variables. If maximum likelihood
decoding is used, then the decoder picks an element of C that is closest (in Hamming
distance) to v ⊕ X. Let Av ⊂ {0, 1}n be the set such that for all x ∈ Av, v ⊕ x is
decoded back to v. The decoding error associated with the codeword v is defined by
errv(p) = 1−P {X ∈ Av}. Denote by pc by errv(pc) = 1/2. Use Theorem 10.11 to show
that for all v ∈ C,

errv(p) ≤ Φ
(√

2∆(
√
− log pc −

√
− log p)

)
for 0 < p < pc

errv(p) ≥ Φ
(√

2∆(
√
− log pc −

√
− log p)

)
for pc < p < 1 .

(Tillich and Zémor, 2001, Theorem 3).

Exercise 10.10 (bobkov’s gaussian inequality implies the gaussian logarith-
mic sobolev inequality.) Derive the Gaussian logarithmic Sobolev inequality (The-
orem 5.4) from Bobkov’s inequality (Theorem 10.13). Is it possible to derive in the
same way Theorem 5.1 from Theorem 10.2? Hint: Consider√

log 1
ε

ε

(
E
√
γ2(εf2) + ‖ε∇f2‖2 − γ(εEf2)

)
,

let ε → 0, and use limε→0 γ(ε)/
(
ε
√

2 log(1/ε)
)

= 1. (Ledoux (2000) notes that the

fact that the logarithmic Sobolev inequality is a consequence of Bobkov’s inequality
was pointed out by W. Beckner.)

Exercise 10.11 (regularization argument in the proof of the gaussian isoperi-
metric theorem.) Show that the function ft,σ : Rn → [0, 1], defined in the proof of
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the Gaussian isoperimetric theorem is infinitely many times differentiable, and 1/t-
Lipschitz for all σ > 0.

Check furthermore that when σ → 0, ‖∇ft,σ‖ → 0 outside At \A, and tends to 1/t
in At \A.

Exercise 10.12 (gaussian isoperimetry and the brunn-minkowski inequality.)
Derive the Gaussian isoperimetric theorem for convex sets from the Gaussian Brunn-
Minkowski inequality (see inequality (10.4)).
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THE VARIANCE OF SUPREMA OF EMPIRICAL PROCESSES

One of the principal driving forces behind the development of concentration in-
equalities has been the interest in understanding the magnitude of stochastic
fluctuations of a norm of a sum of independent vector-valued random variables,
or, equivalently, the supremum of an empirical process. This, and the next two
chapters are dedicated to this subject. We are now prepared to apply the ma-
chinery developed in the previous chapters to this particular case. Concentration
inequalities for the suprema of empirical processes have countless applications in
probability, statistics, machine learning, harmonic analysis, and high-dimensional
geometry, just to name a few principal areas.

In the first chapter devoted to this topic, we focus our attention to the vari-
ance of the supremum of an empirical process. In this, relatively simple, problem,
we gain insight into some of the principal phenomena in a transparent way. In the
two subsequent chapters technically more challenging exponential concentration
inequalities are developed and some tools for bounding the expected value are
surveyed.

We start by defining what we mean by an empirical process. To avoid compli-
cations arising from measurability problems, we only consider processes indexed
by countable index sets. In fact, the reader will not lose the essence of any argu-
ment by considering finite index sets only.

Let T denote a countable index set. Suppose that we are given, for each i =
1, . . . , n, a collection Xi = (Xi,s)s∈T of real-valued random variables and assume
that X1, . . . , Xn are independent but not necessarily identically distributed. The
empirical process indexed by T is the collection of random variables

∑n
i=1Xi,s,

s ∈ T . The supremum of this empirical process is simply

Z = sup
s∈T

n∑

i=1

Xi,s .

If T contains only one element, then Z is a sum of real-valued random variables.
However, if T has more elements, then understanding the behavior of the random
variable Z is a more complicated matter.

One may attempt to analyze suprema of empirical processes by decomposing
the problem in two parts. One part is understanding the behavior of the expected
value EZ of the supremum and the other is determining, or at least bounding,
the random fluctuations of Z around its expectation. It turns out that it is
possible to make meaningful statements about the fluctuations of suprema of
empirical processes without understanding much of their expected value. The
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concentration inequalities discussed in this book turn out to be useful tools,
as illustrated in this chapter and the following one. Interestingly, concentration
inequalities even prove helpful in investigating the behavior of the expected value
EZ. This is explored in Chapter 13.

We have already encountered suprema of some special empirical processes.
The first example we discussed are Rademacher averages (see Section 3.2). In-
deed, let (αi,s) be a collection of real numbers indexed by i = 1, . . . , n and s ∈ T
and let ε1, . . . , εn be independent Rademacher variables (that is, P {εi = −1} =
P {εi = 1} = 1/2). Then Xi,s = αi,sεi, and

Z = sup
s∈T

n∑

i=1

Xi,s = sup
s∈T

n∑

i=1

αi,sεi

is the Rademacher average already mentioned in Chapter 3.
Another important example of a supremum of an empirical process is the

norm of a sum of random vectors. To see the connection, consider first the `p
norm of a vector y = (y1, . . . , yd) ∈ Rd defined as ‖y‖p = (

∑d
i=1 |yi|p)1/p where

p ∈ (1,∞). Let q = p/(p − 1) be the conjugate of p. The space Rd with the
`q norm is called the dual space of Rd endowed with `p. Now let T = {α : α ∈
Qd, ‖α‖q ≤ 1} be the countable set of vectors in Rd with rational coordinates
whose `q norm is at most 1. Then each α in T defines the linear functional on

Rd by α(y) =
∑d
i=1 yiαi. Then supα∈T α(y) = ‖y‖p and therefore if Y1, . . . , Yn

are independent random vectors taking values in Rd, then

Z =

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
p

= sup
α∈T

n∑

i=1

d∑

s=1

Yi,sαs

is the supremum of an empirical process. Indeed, the same argument works not
only for the `p norm but in any separable Banach space B with norm ‖ · ‖B. If T
denotes a dense countable subset of the unit ball of the dual B′ of B, then

‖y‖B = sup
α∈T

α(y) .

Defining the random variable Xi,α = α(Yi), the supremum of the empirical
process indexed by T is just

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
B

= sup
α∈T

n∑

i=1

α(Yi) = sup
α∈T

n∑

i=1

Xi,α .

We have already faced some examples of concentration inequalities for norms
of sums of independent random vectors. Norms of Gaussian random vectors
are discussed in Section 5.4 and the Bonami-Beckner inequalities of Section 5.8
translate into concentration inequalities for suprema of Rademacher processes.
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Note also that the largest eigenvalue of a random symmetric matrix discussed in
Examples 3.14 and 6.8 also fits in this framework.

Often the indices s ∈ T may be associated with measurable functions fs :
X → R, s ∈ T defined on some set X . If Y1, . . . , Yn are independent random
variables taking values in X , then by defining Xi,s = fs(Yi), the supremum of
the empirical process equals

sup
s∈T

n∑

i=1

Xi,s = sup
s∈T

n∑

i=1

fs(Yi) .

In most applications of empirical processes appearing in statistics and machine
learning, this is the most frequent notation. A classical example is the Kolmogorov-
Smirnov statistics. The Yi’s are assumed to be independently and uniformly dis-
tributed over [0, 1] and for each rational s ∈ [0, 1], a function fs is defined by
fs(x) = 1{x≤s} − s. Then the (one-sided) Kolmogorov-Smirnov statistics is the
supremum

sup
s∈[0,1]

n∑

i=1

(
1{Yi≤s} − s

)
= sup
s∈[0,1]∩Q

n∑

i=1

(
1{Yi≤s} − s

)
.

This chapter is mostly devoted to upper bounding the variance of suprema
of empirical processes but we also mention upper bounds for the second moment
EZ2. Our main tool is, once again, the Efron-Stein inequality. Various estimates
of the variance are derived and the bounds often involve one of the following
three quantities:

V =

n∑

i=1

E sup
s∈T

X2
i,s

Σ2 = E sup
s∈T

n∑

i=1

X2
i,s

σ2 = sup
s∈T

n∑

i=1

EX2
i,s .

Clearly, σ2 ≤ Σ2 ≤ V . In the lack of a standard terminology, we will refer
to V , Σ2, and σ2 as the strong variance, weak variance, and wimpy variance,
respectively. In general, there may be significant gaps between any two of these
quantities. A notable difference is the case of Rademacher averages when σ2 =
Σ2.

In this and the next two chapters, results are stated and proved for empirical
processes indexed by finite or countable sets. These results can often be easily
extended to suprema of empirical processes indexed by uncountable sets. The
empirical process is said to be separable if there exists a countable subset S ⊂ T
such that, almost surely, for all i = 1, . . . , n and for all t ∈ T , there exists a
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sequence {tn} of elements of S such that Xi,tn converges to Xi,t, that is, T
contains a dense countable subset S with respect to the topology of pointwise
convergence. The subset S is sometimes called the separant.

If T admits a countable separant S, then

Z = sup
t∈T

n∑

i=1

Xi,t = sup
s∈S

n∑

i=1

Xi,s almost surely.

This shows that the supremum of a separable empirical process is measurable.
Let Y = sups∈S

∑n
i=1Xi,s be the supremum of the empirical process indexed by

the countable separant. Note that Y is the monotone limit of maxima computed
over finite sets. One can also easily check that V ar(Z) = V ar(Y ), whether the
quantities are finite or not. Moreover, almost surely, we also have

sup
t∈T

n∑

i=1

X2
i,t = sup

s∈S

n∑

i=1

X2
i,s .

All results stated in this and the next two chapters for suprema of empirical
processes indexed by finite of countable sets extend to suprema of separable
processes.

In Section 11.1 we start by showing how the Efron-Stein inequality implies
that V ar(Z) ≤ V and V ar(Z) ≤ Σ2 + σ2. A natural question is then whether
V ar(Z) ≤ σ2. However, this is easily shown to be false by a counterexample (see
Exercise 11.1).

In Section 11.2 we proceed with a discussion of Nemirovski’s inequality. Ne-
mirovski’s original inequality relates EZ2 with V . We argue that it makes sense
to bound EZ2 in terms of Σ2 and that this may improve significantly the orig-
inal inequality. We point out that the difference between the weak and strong
variances can be quite substantial.

Even though σ2 may be smaller than V ar(Z), Σ2 (and therefore also V ar(Z))
can be upper bounded by a linear combination of EZ and σ2. This result follows
from some basic symmetrization and contraction inequalities from empirical pro-
cess theory presented in Section 11.3. The connexion between wimpy and weak
variances Σ2 ≤ 2EZ+σ2 can be established in a simple way for centered empiri-
cal processes uniformly bounded by 1 and with identically distributed summands,
see Theorem 11.10.

Connecting the wimpy and weak variances without the uniform boundedness
assumption requires more effort, namely an appropriate truncation argument.
This is the subject of the Hoffmann-Jørgensen inequalities described in Sec-
tion 11.5.

11.1 General upper bounds for the variance

In Section 3.2 we already saw how the Efron-Stein inequality allows one to derive
sharp upper bounds for the variance of Rademacher averages. Here we show
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that they prove equally useful when dealing with suprema of general empirical
processes. The following proposition describes easy and general upper bounds for
the variance. Despite their simplicity, these bounds can be sharp, for example
when the index set T contains only one element.

Theorem 11.1 Let Z = sups∈T
∑n
i=1Xi,s be the supremum of an empirical

process as defined above. Then

V ar(Z) ≤ V .

If EXi,s = 0 for all i = 1, . . . , n and for all s ∈ T , then

V ar(Z) ≤ Σ2 + σ2 .

Proof To prove the first inequality, introduce Zi = sups∈T
∑
j:j 6=iXj,s. Let

ŝ ∈ T be such that Z =
∑n
i=1Xi,ŝ and let ŝi be such that Zi =

∑
j 6=iXj,ŝi .

(We implicitly assume here that the suprema in the definition of Z and Zi are
achieved. This is not necessarily the case if T is not a finite set. In that case one
can define ŝ and ŝi as appropriate approximate minimizers and the argument
carries over.) Then

(Z − Zi)+ ≤ (Xi,ŝ)+ ≤ sup
s∈T
|Xi,s|

and

(Z − Zi)− ≤ (Xi,ŝi)− ≤ sup
s∈T
|Xi,s| ,

so

n∑

i=1

(Z − Zi)2 ≤
n∑

i=1

sup
s∈T

X2
i,s .

The first inequality follows from Efron-Stein inequality.

To prove the second, for each i = 1, . . . , n, let Z ′i = sups∈T
(∑

j 6=iXj,s +X ′i,s

)

where X ′i is an independent copy of Xi. Note that

(Z − Z ′i)
2
+ ≤

(
Xi,ŝ −X ′i,ŝ

)2
.

Denoting by E′ the expectation with respect to the random variablesX ′1, . . . , X
′
n,

by the Efron-Stein inequality,
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V ar(Z) ≤ E

n∑

i=1

(Z − Z ′i)
2
+

≤ E

n∑

i=1

E′
[(
Xi,ŝ −X ′i,ŝ

)2]

≤ E

n∑

i=1

(
X2
i,ŝ + E′

[
X ′2i,ŝ

])

(as X ′i,ŝ is independent of ŝ and E′X ′i,ŝ = 0)

≤ E sup
s∈T

n∑

i=1

X2
i,s + sup

s∈T

n∑

i=1

EX2
i,s .

2

Note that Theorem 11.1 still holds if the process is assumed to be separable,
see Exercise 11.3.

11.2 Nemirovski’s inequality

Next we show how the upper bounds for the variance described in the previous
section can be used to obtain bounds for EZ2 where Z is the norm of a sum
of independent vector-valued random variables. Let X1, . . . , Xn be independent
random variables with values in a complete separable normed space B satisfying
EXi = 0 and let

Sn =

n∑

i=1

Xi .

In this section, we assume that all E
[
‖Xi‖2B

]
are finite. Our purpose is to relate

E
[
‖Sn‖2B

]
to the values E

[
‖Xi‖2B

]
, i = 1, . . . , n. The original question raised by

Nemirovski was whether there exists a constant κ = κ(B) such that

E
[
‖Sn‖2B

]
≤ κ(B)

n∑

i=1

E
[
‖Xi‖2B

]
.

If the normed space B is a Euclidean space (or more generally a Hilbert space),
then E

[
‖Sn‖2B

]
=
∑n
i=1 E

[
‖Xi‖2B

]
and we may take κ(B) = 1.When considering

other norms, this simple connection breaks down. If B is finite-dimensional (e.g.,
B = Rd endowed with the `p norm with p ∈ [1,∞]), then κ(B) ≤ dim(B) (see
Section 13.5 and the bibliographic remarks for references). However, in some
interesting cases, much better bounds are possible. In this section, we focus on
Rd equipped with the `∞ norm ‖y‖∞ = maxi=1,...,d |yi|. In Section 13.4, we point
out that the results presented here extend to Gaussian and Rademacher sums of
symmetric matrices equipped with an operator norm. In Section 13.5, we discuss
the case of Rd under the `p norm for 1 ≤ p <∞.
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Theorem 11.2 Let X1, . . . , Xn be independent random variables taking their
values in Rd such that they are symmetric (i.e., −Xi has the same distribution
as Xi). Let Sn =

∑n
i=1Xi. If Σ2 = E maxj=1,...,d

∑n
i=1X

2
i,j, define

C(n, d) = sup
E ‖Sn‖2∞

Σ2
,

where the supremum is taken over all distributions of independent, Rd-valued
symmetric random variables X1, ..., Xn with finite Σ2.

Then, C(n, d) is a non-decreasing function of both d and n, and

C(n, d) ≤ 2(1 + log(2d)) .

Moreover, letting C(∞, d) = limn→∞ C(n, d), we have, for d ≥ 2,

C(∞, d) ≥
(

Φ−1

(
1− 1

2(d+ 1)

))2

and

lim
d→∞

C(∞, d)

2 log(d)
= 1 .

The proof of Theorem 11.2, uses the next technical lemma.

Lemma 11.3 Let X1, . . . , Xn be independent standard Gaussian random vari-
ables. Let Φ denote the distribution function of the standard Gaussian distribu-
tion. Then

Φ−1 (1− 1/(2(n+ 1))) ≤ E max
i=1,...,n

|Xi| ≤
√

2 log(2n) .

and

E max
i=1,...,n

X2
i ≤ 1 + 2 log(2n) .

Moreover,

lim
n→∞

E maxi=1,...,n |Xi|√
2 log n

= lim
n→∞

E maxi=1,...,nX
2
i

2 log n
= 1 .

Proof As

E max
i=1,...,n

|Xi| = E max
i=1,...,n

max(−Xi, Xi) ,

Theorem 2.5 implies that E maxi=1,...,n |Xi| ≤
√

2 log(2n). The random vari-
able maxi=1,...,n |Xi| is distributed like Φ−1 ((1 + max(U1, . . . , Un))/2), where
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U1, . . . , Un are independent uniformly distributed over [0, 1]. By convexity of
Φ−1 over [1/2, 1), Jensen’s inequality implies

E max
i=1,...,n

|Xi| ≥ Φ−1

(
1 + E max(U1, . . . , Un)

2

)
= Φ−1

(
1− 1

2(n+ 1)

)
.

By the Gaussian Poincaré inequality (Theorem 3.20), as the maximum of the
absolute values is a 1-Lipschitz function,

E max
i=1,...,n

X2
i ≤ 1 +

(
E max
i=1,...,n

|Xi|
)2

.

The last statement follows from the fact that limt→∞ Φ−1(1− 1/t)/
√

2 log t = 1
(see Exercise 11.7). 2

Proof Throughout this proof ‖ · ‖ stands for ‖ · ‖∞. The fact that C(n, d) is
non-decreasing in both n and d is obvious from the definition.

By definition of the variance,

E
[
‖Sn‖2

]
= V ar(‖Sn‖) + (E‖Sn‖)2

.

Since

‖Sn‖ = max
j=1,...,d
b∈{−1,1}

n∑

i=1

bXi,j ,

we may write ‖Sn‖ as the supremum of an empirical process with a finite index
set. By Theorem 11.1,

V ar(‖Sn‖) ≤ 2Σ2 .

As the random variables Xi are assumed to be symmetric, (X1, . . . , Xn) is dis-
tributed as ε1X1, . . . , εnXn where the εi are independent Rademacher variables.
Then

E ‖Sn‖ = E max
j=1,...,d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣

and fixing the variables Xi’s and bounding the expectation with respect to the
εi, it follows from Theorem 2.5 that

E

[
max

j=1,...,d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣ | X1, . . . , Xn

]
≤

√√√√2 log (2d) max
j=1,...,d

n∑

i=1

X2
i,j .

Taking expectation on both sides of this inequality and using Jensen’s inequality
to bring the expectation under the square root sign, we obtain

E‖Sn‖ = E max
j=1,...,d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣ ≤

√√√√2 log (2d)E max
j=1,...,d

n∑

i=1

X2
i,j .
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Combining this inequality with the bound V ar(‖Sn‖) ≤ 2Σ2 and the definition
of the variance, we finally get

E ‖Sn‖2 ≤ 2(1 + log(2d))Σ2 .

This proves that C(n, d) ≤ 2 (1 + log (2d)) for all n and d.
Let χ2

d denote the chi-square distribution with d degrees of freedom. (This is
the distribution of the sum of the squares of d independent standard Gaussian
random variables.)

The lower bound for C(∞, d) follows simply by considering the case when
each Xi is a d-dimensional standard Gaussian vector. Then for each j = 1, . . . , d,
(1/n)(

∑n
i=1Xi,j)

2 is distributed according to χ2
1. Hence ‖Sn‖/

√
n is distributed

as the maximum of the absolute values of d independent standard Gaussian
random variables. By Jensen’s inequality, Lemma 11.3 implies

E‖Sn‖2
n

≥
(

Φ−1

(
1− 1

2(d+ 1)

))2

.

On the other hand, Σ2 is the expected value of the maximum of d independent
χ2
n-distributed random variables. By Theorem 2.7, we have

Σ2 ≤ n+ 2
√
n log d+ 2 log d .

Putting these two bounds together,

C(n, d) ≥

(
Φ−1

(
1− 1

2(d+1)

))2

1 + 2
√

log d/n+ 2 log d/n
.

The last statement follows from the fact that limt→∞Φ−1(1− 1/t)/
√

2 log t = 1.
2

In the rest of this section we compare the strong and weak variances

V =

n∑

i=1

E max
j=1,...,d

X2
i,j and Σ2 = E max

j=1,...,d

n∑

i=1

X2
i,j .

Since
Σ2 ≥ E max

i=1,...,n
max

j=1,...,d
X2
i,j ,

we clearly have
Σ2 ≤ V ≤ nΣ2 .

On the other hand,

V ≤ E
d∑

j=1

n∑

i=1

X2
i,j ≤ dΣ2 ,

and therefore
Σ2 ≤ V ≤ min(n, d)Σ2 .

Next we illustrate in two different examples that the ratio V/Σ2 can indeed be
of the order of min(n, d).
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Consider first the case whenXi,j = εiai,j where ε1, . . . , εn are i.i.d. Rademacher
random variables. Then

Σ2 = max
j=1,...,d

n∑

i=1

a2
i,j while V =

n∑

i=1

max
j=1,...,d

a2
i,j .

Choosing aj,j = 1 for every j ≤ min(n, d) and ai,j = 0 otherwise, we see that
Σ2 = 1 while V = min(n, d). This shows that the ratio V/Σ2 can indeed achieve
the maximal possible value min(n, d).

It is even more interesting to notice that the ratio V/Σ2 can be large even
when the variables Xi,j are i.i.d. standard normal random variables. In this case

E ‖Sn‖2∞ = V = nE max
j=1,...,d

Y 2
j

where Y1, . . . , Yd are independent standard normal random variables. On the
other hand, as we have seen it in the proof of Theorem 11.2,

Σ2 ≤ n+ 2
(√

n log d+ log d
)
.

Since Σ2 ≥ n, we obtain

E maxj=1,...,d Y
2
j

1 + 2
√

(log d)/n+ 2 (log d) /n
≤ V

Σ2
≤ E max

j=1,...,d
Y 2
j .

To interpret this bound, we distinguish three different asymptotic regimes of
dependence of d = dn on n as n→∞.

Case 1. Assume first limn→∞(log dn)/n = 0. By Lemma 11.3, we have V/Σ2 ∼
2 log (dn) as n → ∞. Since the convergence of (log dn) /n to 0 can be arbitrary
slow, the ratio V/Σ2 is close to its maximal value n.

Case 2. If limn→∞(log dn)/n = α for some α > 0, then V/Σ2 is of the order of
n in the sense that

lim inf
n→∞

V

nΣ2
≥ 2α

1 +
√

2α+ 2α
.

Case 3. Finally, if limn→∞(log dn)/n =∞, then limn→∞ V/(nΣ2) = 1.

11.3 The symmetrization and contraction principles

The bound V ar(Z) ≤ Σ2 +σ2 of Theorem 11.1 shows that by understanding Σ2,
one has a good grasp at the size of the random fluctuations of the supremum
of the empirical process. However, often the “wimpy” variance σ2 is easier to
interpret than Σ2. Luckily, if an upper bound for sups∈T |Xi,s| is available, σ2 and
Σ2 may be related by a simple inequality which we present next. This inequality is
based on symmetrization inequalities and contraction principles, that are useful
and frequently used tools in the theory of empirical processes. We start with a
simple symmetrization inequality.
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Lemma 11.4 (symmetrization inequalities.) Let X1, . . . , Xn be indepen-
dent random vectors where Xi = (Xi,s)s∈T . Assume that the process is centered,
that is, for each i = 1, . . . , n and s ∈ T , EXi,s = 0. Let ε1, . . . , εn be a sequence
of independent Rademacher variables independent of X1, . . . , Xn. Then

1

2
E sup
s∈T

∣∣∣∣∣
n∑

i=1

εiXi,s

∣∣∣∣∣ ≤ E sup
s∈T

∣∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣∣ ≤ 2E sup
s∈T

∣∣∣∣∣
n∑

i=1

εiXi,s

∣∣∣∣∣

and

E sup
s∈T

n∑

i=1

Xi,s ≤ 2E sup
s∈T

n∑

i=1

εiXi,s .

Proof We start with the second inequality. The proof of the last inequality is
similar. Let X ′1, . . . , X

′
n be distributed as X1, . . . , Xn but independent of them.

This means that the random vectors Xi − X ′i are independent and symmetric,
distributed as the εi(Xi −X ′i). Thus,

E sup
s∈T

∣∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣∣ = E sup
s∈T

∣∣∣∣∣
n∑

i=1

(
Xi,s −EX ′i,s

)
∣∣∣∣∣

≤ E sup
s∈T

∣∣∣∣∣
n∑

i=1

(
Xi,s −X ′i,s

)
∣∣∣∣∣ (by Jensen’s inequality)

= E sup
s∈T

∣∣∣∣∣
n∑

i=1

εi
(
Xi,s −X ′i,s

)
∣∣∣∣∣

≤ 2E sup
s∈T

∣∣∣∣∣
n∑

i=1

εiXi,s

∣∣∣∣∣ .

The first inequality follows by a similar argument:

1

2
E sup
s∈T

∣∣∣∣∣
n∑

i=1

εiXi,s

∣∣∣∣∣ =
1

2
E sup
s∈T

∣∣∣∣∣
n∑

i=1

εi(Xi,s −EX ′i,s)

∣∣∣∣∣

≤ 1

2
E sup
s∈T

∣∣∣∣∣
n∑

i=1

εi(Xi,s −X ′i,s)
∣∣∣∣∣ (by Jensen’s inequality)

=
1

2
E sup
s∈T

∣∣∣∣∣
n∑

i=1

(Xi,s −X ′i,s)
∣∣∣∣∣

≤ E sup
s∈T

∣∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣∣ .

2
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Symmetrization inequalities motivate the use of conditional Rademacher av-
erages in empirical process theory. The conditional Rademacher average associ-
ated with the empirical process

∑n
i=1Xi is the conditional expectation of the

supremum of the symmetrized empirical process
∑n
i=1 εiXi, given X1, . . . , Xn,

defined as

E

[
sup
s∈T

n∑

i=1

εiXi,s

∣∣∣∣X1, . . . , Xn

]
.

We have already encountered conditional Rademacher averages in Section 3.3
where we showed that if sups∈T ,i≤n |Xi,s| ≤ 1 almost surely, then the conditional
Rademacher average is a self-bounding function. This implies that conditional
Rademacher averages are relatively stable (their variance is not larger than their
expected value) and have sub-Poissonian tails (see Section 6.7). Lemma 11.4
complements this observation. It shows that, up to a constant factor, condi-
tional Rademacher averages estimate the expected value of the supremum of the
underlying empirical process.

Another simple and useful tool in empirical process theory is the so-called
contraction principle. We start by an easy version followed by a more general
formulation.

Theorem 11.5 Let x1, . . . , xn be vectors whose real-valued components are in-
dexed by T , that is, xi = (xi,s)s∈T . Let αi ∈ [0, 1] for i = 1, . . . , n. Let ε1, . . . , εn
be independent Rademacher random variables. Then

E sup
s∈T

n∑

i=1

εiαixi,s ≤ E sup
s∈T

n∑

i=1

εixi,s .

Proof Let Ψ: (RT )n → R be defined by

Ψ(x1, . . . , xn) = E sup
s∈T

n∑

i=1

εixi,s .

The function Ψ is convex since it is a linear combination of suprema of lin-
ear functions. It is also invariant under sign change in the sense that for all
(η1, . . . , ηn) ∈ {−1, 1}n,

Ψ(x1, . . . , xn) = Ψ(η1x1, . . . , ηnxn) .

Fix (x1, . . . , xn) ∈ (RT )n. Consider the restriction of Ψ to the convex hull of
the 2n points of the form (η1x1, . . . , ηnxn), with (η1, . . . , ηn) ∈ {−1, 1}n. The
supremum of Ψ is achieved at one of the vertices (η1x1, . . . , ηnxn). The se-
quence of vectors (αixi, . . . , αnxn) lies inside the convex hull of (η1x1, . . . , ηnxn),
(η1, . . . , ηn) ∈ {−1, 1}n and therefore
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E sup
s∈T

n∑

i=1

εiαixi,s = Ψ(α1x1, . . . , αnxn)

≤ Ψ(x1, . . . , xn)

= E sup
s∈T

n∑

i=1

εixi,s .

2

The next theorem generalizes Theorem 11.5. It serves not only for comparing
expectations but also higher moments, moment generating functions, and tail
probabilities.

Theorem 11.6 (contraction principle) Let x1, . . . , xn be vectors whose real-
valued components are indexed by T , that is, xi = (xi,s)s∈T . For each i = 1, . . . , n
let ϕi : R → R be a Lipschitz function such that ϕi(0) = 0. Let ε1, . . . , εn be
independent Rademacher random variables. and let Ψ : [0,∞) → R be a non-
decreasing convex function. Then

E

[
Ψ

(
sup
s∈T

n∑

i=1

εiϕi(xi,s)

)]
≤ E

[
Ψ

(
sup
s∈T

n∑

i=1

εixi,s

)]

and

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣∣
n∑

i=1

εiϕi(xi,s)

∣∣∣∣∣

)]
≤ E

[
Ψ

(
sup
s∈T

∣∣∣∣∣
n∑

i=1

εixi,s

∣∣∣∣∣

)]
.

The proof is based on the following technical lemma.

Lemma 11.7 Let Ψ : R → R denote a convex non-decreasing function. Let
ϕ : R→ R be a 1-Lipschitz function such that ϕ(0) = 0. Let T ⊂ R2. Then

Ψ

(
sup
s∈T

(s1 + ϕ(s2))

)
+ Ψ

(
sup
s∈T

(s1 − ϕ(s2))

)

≤ Ψ

(
sup
s∈T

(s1 + s2)

)
+ Ψ

(
sup
s∈T

(s1 − s2)

)
.

Proof Since Ψ is convex and non-decreasing, if a, b, c, d are such that 0 ≤ d−c ≤
b− a and c ≤ a, then

Ψ(d)−Ψ(c) ≤ Ψ(b)−Ψ(a) . (11.1)

Denote by ŝ = (ŝ1, ŝ2) and t̂ = (t̂1, t̂2) the elements of T that achieve the suprema
on the left-hand side. It suffices to show that

Ψ (ŝ1 + ϕ(ŝ2)) + Ψ
(
t̂1 − ϕ(t̂2)

)
≤ Ψ (ŝ1 + ŝ2) + Ψ

(
t̂1 − t̂2

)
,

or, equivalently,
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Ψ
(
t̂1 − ϕ(t̂2)

)
−Ψ

(
t̂1 − t̂2

)
≤ Ψ (ŝ1 + ŝ2)−Ψ (ŝ1 + ϕ(ŝ2)) .

As Ψ is non-decreasing we have both

ŝ1 + ϕ(ŝ2) ≥ t̂1 + ϕ(t̂2)

and
ŝ1 − ϕ(ŝ2) ≤ t̂1 − ϕ(t̂2) ,

which implies
ϕ(t̂2)− ϕ(ŝ2) ≤ ŝ1 − t̂1 ≤ ϕ(ŝ2)− ϕ(t̂2) ,

and therefore
|ŝ1 − t̂1| ≤ ϕ(ŝ2)− ϕ(t̂2) ≤ |ŝ2 − t̂2| ,

where the last inequality follows from the fact that ϕ is 1-Lipschitz.
First consider the case when ŝ2 and t̂2 are both positive. We may assume

that ŝ2 ≥ t̂2 ≥ 0 because otherwise we may exchange the roles of ŝ and t̂ and
change the sign of ϕ. This implies that ŝ2 − ϕ(ŝ2) ≥ t̂2 − ϕ(t̂2) ≥ 0. Moreover,
as ŝ1 + ϕ(ŝ2) ≥ t̂1 + ϕ(t̂2) ≥ t̂1 − t̂2, (11.1) allows us to conclude.

Consider now the case where ŝ2 and t̂2 are both negative. Similarly to the
previous case, we may assume that t̂2 ≤ ŝ2 ≤ 0 Now we have 0 ≤ ϕ(ŝ2) − ŝ2 ≤
ϕ(t̂2)− t̂2 and ŝ1 + ŝ2 ≤ ŝ1 −ϕ(ŝ2) ≤ t̂1 −ϕ(t̂2). Once again, (11.1) allows us to
conclude.

To end the proof, consider the situation when t̂2 ≤ 0 ≤ ŝ2. Then Ψ
(
t̂1 − ϕ(t̂2)

)
−

Ψ
(
t̂1 − t̂2

)
≤ 0 and 0 ≤ Ψ (ŝ1 + ŝ2) − Ψ (ŝ1 + ϕ(ŝ2)) as −t̂2 ≤ −ϕ(t̂2) and

ϕ(ŝ2) ≤ ŝ2. This is enough to conclude. The last case can be handled by chang-
ing the sign of ϕ and permuting ŝ and t̂. 2

Proof of Theorem 11.6 We first prove the first inequality. It suffices to prove
that, if T ⊂ Rn is a finite set of vectors s = (s1, . . . , sn), then

E

[
Ψ

(
sup
s∈T

n∑

i=1

εiϕi(si)

)]
≤ E

[
Ψ

(
sup
s∈T

n∑

i=1

εisi

)]
.

The key step is that for an arbitrary function A : T → R,

E

[
Ψ

(
sup
s∈T

A(s) +

n∑

i=1

εiϕi(si)

)]
≤ E

[
Ψ

(
sup
s∈T

A(s) +

n∑

i=1

εisi

)]
. (11.2)

The base case n = 1 is handled by Lemma 11.7. In this case (11.2) is equivalent
to

E

[
Ψ

(
sup
u∈U

(u1 + εϕ(u2))

)]
≤ E

[
Ψ

(
sup
u∈U

(u1 + εu2)

)]
,

where U = {(A(s), s) : s ∈ T } .
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The proof of (11.2) goes by induction on n:

E

[
Ψ

(
sup
s∈T

A(s) +

n∑

i=1

εiϕi(si)

)]

= E

[
E

[
Ψ

(
sup
s∈T

A(s) +

n−1∑

i=1

εiϕi(si) + εnϕn(sn)

)∣∣∣∣ε1, . . . , εn−1

]]

≤ E

[
E

[
Ψ

(
sup
s∈T

A(s) + εnsn +

n−1∑

i=1

εiϕi(si)

)∣∣∣∣ε1, . . . , εn−1

]]

= E

[
E

[
Ψ

(
sup
s∈T

A(s) + εnsn +

n−1∑

i=1

εiϕi(si)

)∣∣∣∣εn
]]

≤ E

[
E

[
Ψ

(
sup
s∈T

A(s) + εnsn +

n−1∑

i=1

εisi

)∣∣∣∣εn
]]

= E

[
Ψ

(
sup
s∈T

A(s) + εnsn +

n−1∑

i=1

εisi

)]

where the first inequality follows from the base case, and the second by assuming
that (11.2) holds for n− 1 Rademacher variables.

We turn to the proof of the second inequality in the theorem. By Jensen’s
inequality,

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣∣
n∑

i=1

εiϕi(si)

∣∣∣∣∣

)]

= E

[
Ψ

(
1

2
sup
s∈T

(
n∑

i=1

εiϕi(si)

)

+

+
1

2
sup
s∈T

(
n∑

i=1

−εiϕi(si)
)

+

)]

≤ 1

2
E

[
Ψ

(
sup
s∈T

(
n∑

i=1

εiϕi(si)

)

+

)]
+

1

2
E

[
Ψ

(
sup
s∈T

(
n∑

i=1

−εiϕi(si)
)

+

)]
.

The second inequality in the theorem now follows by invoking twice the first
inequality and noting that the function Ψ((x)+) is convex and non-decreasing.
2

11.4 Weak and wimpy variances

In this section, we bound the weak variance Σ2 by its wimpy counterpart for
empirical processes with uniformly bounded random summands. More precisely,
we show how symmetrization (Lemma 11.4) and contraction (Theorem 11.6)
allow us to upper bound Σ2 using EZ and σ2.
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Theorem 11.8 Define Z = sups∈T
∑n
i=1Xi,s where EXi,s = 0 and |Xi,s| ≤ 1

for all i = 1, . . . , n and s ∈ T . Then

V ar(Z) ≤ Σ2 + σ2 ≤ 8EZ + 2σ2 .

The key to the proof of Theorem 11.8 is the following simple lemma.

Lemma 11.9 Under the conditions of Theorem 11.8,

Σ2 ≤ σ2 + 2E sup
s∈T

n∑

i=1

εiX
2
i,s ,

where ε1, . . . , εn are independent Rademacher variables.

Proof Clearly,

Σ2 = E sup
s∈T

n∑

i=1

((
X2
i,s −EX2

i,s

)
+ EX2

i,s

)

≤ E sup
s∈T

n∑

i=1

(
X2
i,s −EX2

i,s

)
+ σ2 .

On the other hand, by Lemma 11.4,

E sup
s∈T

n∑

i=1

(
X2
i,s −EX2

i,s

)
≤ 2E sup

s∈T

n∑

i=1

εiX
2
i,s .

2

Proof of Theorem 11.8 By Theorem 11.1, it suffices to prove that Σ2 ≤ 8EZ+
σ2. But by Lemma 11.9, this amounts to showing that 2E sups∈T

∑n
i=1 εiX

2
i,s ≤

4EZ . As ϕ(x) = x2 is 2-Lipschitz on [−1, 1], by Theorem 11.6,

E sup
s∈T

n∑

i=1

εiX
2
i,s ≤ 2E sup

s∈T

n∑

i=1

εiXi,s .

Finally, as each Xi,s is centered, by the symmetrization inequalities,

E sup
s∈T

n∑

i=1

εiX
2
i,s ≤ 4E sup

s∈T

n∑

i=1

Xi,s .

2

When the random vectorsXi are identically distributed and uniformly bounded,
the bound of Theorem 11.8 can be improved as it is shown next.
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Theorem 11.10 Let Z = sups∈T
∑n
i=1Xi,s be the supremum of an empirical

process such that X1, . . . , Xn are independent and identically distributed and for
all i = 1, . . . , n and s ∈ T , |Xi,s| ≤ 1 with probability 1 and EXi,s = 0. Then

V ar (Z) ≤ 2EZ + σ2 .

We prove that even if we do not assume that the summands are identically
distributed,

V ar (Z) ≤ 2EZ +

n∑

i=1

sup
s∈T

EX2
i,s .

Of course, if the random vectors Xi are identically distributed, the second ex-
pression on the right-hand side equals σ2.

The theorem follows from a careful usage of the Efron-Stein inequality. The
key observation is that the supremum of the empirical process satisfies a certain
self-bounding property. Recall that various versions of self-bounding functions
are investigated in Chapters 3 and 6. Here we need a slightly different notion. In
order to show the essence of the argument, we generalize the statement to such
self-bounding random variables. To this end, consider a random variable Z that
is a function of independent random variables X1, . . . , Xn for which the following
assumptions hold: for every i = 1, . . . , n, there exists a measurable function Zi
of X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn) and a random variable Yi such that for
some constant a ∈ [0, 1] ,

Yi ≤ Z − Zi ≤ 1 , E(i)Yi ≥ 0 , and Yi ≤ a , (11.3)

where E(i) denotes the conditional expectation given X(i), and

n∑

i=1

(Z − Zi) ≤ Z . (11.4)

Note that if these assumptions are satisfied, then Zi ≤ E(i)Z as E(i)Z − Zi =
E(i)[Z − Zi] ≥ E(i)Yi ≥ 0. Also observe that if Yi ≡ 0, then the condition
simplifies to the self-bounding property introduced in Chapter 3.

Lemma 11.11 Let Z be a real-valued function of the independent random vari-
ables X1, . . . , Xn satisfying assumptions (11.3) and (11.4). Then for every i =
1, . . . , n,

E(i)
(
Z −E(i)Z

)2 ≤ E(i) (Z − Zi)2 ≤ (1 + a)E(i) [Z − Zi] + E(i)Y 2
i .

Proof The first inequality is obvious. To prove the second, set ϕ (x) = x2 −
(1 + a)x. Then, since (Z − Zi) − Yi ≥ 0 and ((Z − Zi)− 1) + (Yi − a) ≤ 0, we
have

ϕ (Z − Zi)− ϕ (Yi) = [(Z − Zi)− Yi] [((Z − Zi)− 1) + (Yi − a)] ≤ 0 .
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Hence,
E(i)ϕ (Z − Zi) ≤ E(i)ϕ (Yi) ,

and therefore

E(i) (Z − Zi)2 ≤ (1 + a)E(i) [Z − Zi] + E(i)Y 2
i − (1 + a)E(i)Yi

which leads to the desired result thanks to the assumption E(i)Yi ≥ 0. 2

Proof of Theorem 11.10 The assumptions of Lemma 11.11 are satisfied by
suprema of centered empirical processes with sups∈T |Xi,s| upper bounded by 1 if
we choose a = 1. Indeed, let ŝ denote an element of T that achieves the supremum
in the definition of Z. For each i = 1, . . . , n, let Zi = sups∈T

∑
j 6=iXj,s . Let ŝi

denote an element of T that achieves the supremum in Zi. Then

Xi,ŝi =

n∑

j=1

Xj,ŝi −
∑

j 6=i
Xj,ŝi ≤ Z − Zi ≤

n∑

j=1

Xj,ŝ −
∑

j 6=i
Xj,ŝ = Xi,ŝ .

Summing over i in the inequalities on the right-hand side, we get the self-
bounding condition

n∑

i=1

(Z − Zi) ≤ Z .

We assume furthermore that for every i = 1, . . . , n and s ∈ T , EXi,s = 0 and
|Xi,s| ≤ 1 almost-surely. Then defining Yi by Yi = Xi,ŝi , we get

E(i)Yi = 0 and Yi ≤ 1 .

Now Theorem 11.10 follows as an immediate consequence of Lemma 11.11 and
the Efron-Stein inequality (Theorem 3.1). 2

11.5 Unbounded summands

The bounds presented in the previous section are only useful when the random
variable maxi=1,...,n sups∈T |Xi,s| is uniformly bounded. In other cases, one way
to bound the variance of suprema of empirical process proceeds by complement-
ing the contraction principle with some kind of truncation. A convenient device
is the so-called Hoffmann-Jørgensen inequality. Before describing this device, we
establish the following “maximal” inequality.

Lemma 11.12 (lévy’s maximal inequality.) Let X1, . . . , Xn be indepen-
dent (not necessarily identically distributed) symmetric random variables where

Xi = (Xi,s)s∈T . Define Sk =
∑
i≤kXi and Sk,s =

∑k
i=1Xi,s for k = 1, . . . , n.

Let Zk = sups∈T |Sk,s|. Then, for t ≥ 0,

P

{
max
k≤n

Zk ≥ t
}
≤ 2P {Zn ≥ t} .
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Proof Let E denote the event {Zn ≥ t} and for each k = 1, . . . , n, let Ak
denote the event {maxj<k Zj < t and Zk ≥ t}. The collection of events Ak
forms a partition of the event {maxk≤n Zk ≥ t}. Note that for each k, the random
vectors Sn − Sk and −(Sn − Sk) are identically distributed and independent of
Sk. Observe that

2Zk = sup
s∈T
|Sk,s + (Sn,s − Sk,s) + Sk,s − (Sn,s − Sk,s)|

≤ sup
s∈T
|Sk,s + (Sn,s − Sk,s)|+ sup

s∈T
|Sk,s − (Sn,s − Sk,s)|

= Zn + sup
s∈T
|Sk,s − (Sn,s − Sk,s)| .

The two expressions on the right-hand side of the last display are identically
distributed thanks to the symmetry assumption. On Ak, as Zk ≥ t, we have
either Zn ≥ t or sups∈T |Sk,s − (Sn,s − Sk,s)| ≥ t. Thus,

2P {Zn ≥ t and Ak}
= P {Zn ≥ t and Ak}

+P

{
sup
s∈T
|Sk,s − (Sn,s − Sk,s)| ≥ t and Ak

}

≥ P

{(
Zn ≥ t or sup

s∈T
|Sk,s − (Sn,s − Sk,s)| ≥ t

)
and Ak

}

= P {Ak} .

Summing over all k = 1, . . . , n,

2P {Zn ≥ t} =

n∑

k=1

2P {Zn ≥ t and Ak} ≥
n∑

k=1

P {Ak} = P

{
max
k≤n

Zk ≥ t
}
.

2

The next lemma is the simplest representative of a family of results known as
the Hoffmann-Jørgensen inequalities.

Lemma 11.13 (hoffmann-jørgensen inequality) Let Xi = (Xi,s)s∈T , i =
1, . . . , n be independent (not necessarily identically distributed) random variables.

For k = 1, . . . , n, let Sk =
∑k
i=1Xi and Sk,s =

∑k
i=1Xi,s. Let Zk = sups∈T |Sk,s|

and M = supi≤n,s∈T |Xi,s|. Then for all t, u, v > 0,

P

{
max
k≤n

Zk ≥ t+ u+ v

}

≤ P {M ≥ v}+ P

{
max
k≤n

Zk ≥ t
}
P



 sup

1≤j≤k≤n,
s∈T

|Sk,s − Sj,s| ≥ u



 .
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Proof Let the event Ak be defined by Zj < s for all j < k and Zk ≥ t. The
event E = {maxk≤n Zk ≥ t+ u+ v} can be partitioned as E = ∪nk=1E ∩Ak.

On Ak ∩ E, for some k ≤ m ≤ n, Zm ≥ t+ u+ v. But

Zm ≤ Zk−1 + sup
s∈T
|Xk,s|+ sup

s∈T
|Sm,s − Sk,s| ,

so

Ak ∩ E ⊆
(
Ak ∩

{
sup
s∈T
|Xk,s| ≥ v

})
∪


Ak ∩



 sup
m≥k,
s∈T

|Sm,s − Sk,s| ≥ u








⊆ (Ak ∩ {M ≥ v}) ∪


Ak ∩



 sup
m≥k,
s∈T

|Sm,s − Sk,s| ≥ u






 .

As Ak and (Sm − Sk)m≥k are independent,

P {Ak ∩ E} ≤ P {Ak and M ≥ v}+ P {Ak}P



 sup
m≥k,
s∈T

|Sm,s − Sk,s| ≥ u





≤ P {Ak and M ≥ v}+ P {Ak}P



 sup

0≤j≤m,
s∈T

|Sm,s − Sj,s| ≥ u



 .

Summing over all k leads to the desired result.

2

If we assume that the random vectors are symmetrically distributed, combin-
ing the Hoffmann-Jørgensen inequality and Lévy’s maximal inequality, we obtain
the following corollary.

Corollary 11.14 Consider the conditions and notation of Lemma 11.13 and
assume that each Xi,s has a symmetric distribution. Then for all t, v > 0,

P {Zn ≥ 2t+ v} ≤ P

{
max
k≤n

Zk ≥ 2t+ v

}

≤ P {M ≥ v}+ 4 (P {Zn ≥ t})2
.

This result may be used to relate the expectation of Zn, the tail probability
of Zn and the expectation of M as follows.

Corollary 11.15 Under the conditions of Corollary 11.14, let t > 0 be such
that P {Zn > t} < 1/4. Then

EZn ≤
( √

4t+
√
EM

1− (4P {Zn > t})1/2

)2
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Proof Let α, β, γ be positive and such that α+ β + γ = 1. Then, by Corollary
11.14,

EZn ≤
∫ ∞

0

P

{
max
k≤n

Zk > x

}
dx

≤
∫ ∞

0

P {M > αx} dx+

∫ ∞

0

4P {Zn > βx}P {Zn > γx} dx

=
EM

α
+

4

β

∫ ∞

0

P {Zn > x}P
{
Zn >

γx

β

}
dx

≤ EM

α
+

4t

β
+

4

γ
P {Zn > t}EZn .

Now letting δ =
√
EM +

√
4t+

√
4P {Zn > t}EZn and choosing α =

√
EM/δ,

β =
√

4t/δ and γ =
√

4P {Zn > t}EZn/δ, we end up with

EZn ≤
(√

EM +
√

4t+
√

4P {Zn > t}EZn
)2

.

2

Next we relate the expected value of the Rademacher process generated by
the large values of the sups∈T |Xi,s| with the expected value of M.

Lemma 11.16 Under the conditions of Corollary 11.14, let ε1, . . . , εn denote
independent Rademacher variables. Let λ > 4 and define t0 = λEM . Then

E max
s∈T

∣∣∣∣
n∑

i=1

εiXi,s1{sups∈T |Xi,s|>t0}

∣∣∣∣ ≤
(

1 + 2
√
λ

1− 2/
√
λ

)2

EM .

Proof We use Corollary 11.15 with Z = maxs∈T
∣∣∑n

i=1 εiXi,s1{sups∈T |Xi,s|>t0}
∣∣

and M = maxi≤n,s∈T |Xi,s|. We obtain

EZ ≤
( √

4t0 +
√
E[M ]

1− (4P {Z > t0})1/2

)2

.

The right-hand side may be bounded further by observing that, by Markov’s
inequality,

P {Z > t0} ≤ P {M > t0} ≤
EM

t0
=

1

λ
.

2

Even though the statement and derivation of Lemma 11.15 resort to heavy no-
tation and sophisticated arguments, the statement lends itself to a simple in-
terpretation. Given the choice of t0, with high probability there is at most one
index 1 ≤ i ≤ n such that Xi,s1{sups∈T |Xi,s|>t0} 6= 0. The sum then reduces to a
single summand, and thus with high probability, Z is distributed like M .
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Now we are prepared to establish a connection between the wimpy and the
weak variances of the supremum of an empirical process, it generalizes Theo-
rem 11.8.

Theorem 11.17 Let Z = sups∈T
∑n
i=1Xi,s denote the supremum of an empir-

ical process. Assume the random variables Xi are symmetric for i = 1, . . . , n.
Let M = supi=1,...,n,s∈T X

2
i,s. Then

Σ2 ≤ σ2 + 64
√
EM EZ + 182EM .

Proof Let ε1, . . . , εn denote independent Rademacher random variables, and
let t0 = λEM with λ > 4. By Lemma 11.9, we have

Σ2 ≤ σ2 + 2E sup
s∈T

n∑

i=1

εiX
2
i,s .

The last expression can be split into two parts:

E sup
s∈T

n∑

i=1

εiX
2
i,s ≤ E sup

s∈T

n∑

i=1

εiX
2
i,s1{sups∈T X

2
i,s≤t0}

+E sup
s∈T

n∑

i=1

εiX
2
i,s1{sups∈T X

2
i,s>t0}

≤ E sup
s∈T

n∑

i=1

εiX
2
i,s1{sups∈T X

2
i,s≤t0}

+E sup
s∈T

∣∣
n∑

i=1

εiX
2
i,s1{sups∈T X

2
i,s>t0}

∣∣ .

The first term on the right-hand side is bounded by 2
√
t0E sups∈T |

∑n
i=1 εiXi,s|

thanks to the contraction principle (Theorem 11.6). The second term may be
handled using Lemma 11.16:

E sup
s∈T

∣∣
n∑

i=1

εiX
2
i,s1{sups∈T |X2

i,s|>t0}
∣∣ ≤

(
1 + 2λ1/2

1− 2/λ1/2

)2

EM .

The proof is completed by taking λ = 16. 2

A shallow comparison between Lemma 11.17 and Theorem 11.10 might suggest
that the last lemma is completely satisfactory. Considering a Gaussian setting,
where (Xi,j)1≤j≤d is a standard Gaussian vector for each i = 1, . . . , n, shows
that is not the case. The upper bound on Σ2 − σ2 derived from Lemma 11.17 is
approximately

√
4n log(nd) log(d) while a better upper bound is

√
4n log(d) +

2 log d as Σ2 − σ2 is the expected value of the maximum of d independent sub-
gamma random variables with variance factor 2n and scale factor 2.
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11.6 Bibliographic remarks

Waart Suprema of empirical processes play a fundamental role in statistics and
machine learning, see, for example, the monographs of van der Vaart and Wellner
(1996), van de Geer (2000), and Massart (2006) for surveys.

Nemirovski’s inequality was first stated in Nemirovski (2000). It has been
used in high-dimensional statistics by Greenshtein and Ritov (2004). Nemirovski
showed that if B is Rd endowed with the `p norm where 2 ≤ p ≤ ∞, then there
exists a constant K(p, d) such that

E‖Sn‖2p ≤ K(p, d)V

where V = E
∑n
i=1 ‖Xi‖2p. Duembgen, van de Geer, Veraar and Wellner (2010)

re-examined Nemirovski’s results and established, using a variety of methods
from linear analysis, convex geometry, and high-dimensional probability, that
for d ≥ 3,

K(p, d) ≤ min (d, 2e log d, p− 1) .

Morover they proved that for p = ∞, lim infd→∞K(∞, d)/(2 log d) ≥ 1. Note
that, for the example that is used in the derivation of the lower bound for C(∞, d)
in Theorem 11.2, we had E‖Sn‖2p = V.

Symmetrization techniques were popularized by Paul Lévy. Ledoux and Ta-
lagrand (1991) provide a thorough description of the impact of symmetrization
on the analysis of sums of independent random vectors. In the field of empiri-
cal process theory, Lemma 11.4 was advocated by Giné and Zinn (1984). Sym-
metrization had been used in different ways by Vapnik and Chervonenkis (1971,
1974, 1981) in their influential papers (see also Vapnik 1982,1998) in order to de-
velop deviation inequalities for suprema of empirical processes, see Exercises 12.1
and 12.3. Symmetrization still plays an important role in empirical process the-
ory, see Panchenko (2003).

The contraction principle for Rademacher sums (Theorem 11.6) is due to
Ledoux and Talagrand (1991, Chapter 4). Theorem 11.6 is part of a collection of
related results also called contraction principles. See Exercises 11.12, 11.13, and
11.14 for some related results. Note that while all these exercises can be solved
by invoking Theorem 11.6, simpler proofs exist, see for example (Ledoux and
Talagrand, 1991, Chapter 4). The proof of Theorem 11.8 can be found in Massart
(2000a).

Theorem 11.10 is due to Rio (2001). Variants can be found in Bousquet
(2002b), see Exercise 11.16.

Lévy’s inequalities were derived by Paul Lévy in a general investigation of
sums of independent random vectors, see again Ledoux and Talagrand (1991) for
an excellent exposition. The Hoffmann-Jørgensen inequality appears in Hoffmann-
Jørgensen (1974) as an extension of Kolmogorov’s converse maximal inequality.
The latter relates moments of a sum of centered independent real-valued sym-
metric random variables with its quantiles and with the moments of the maxima
of the summands (see Exercise 11.18). A more general version of Lemma 11.15,
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as well as a thorough discussion of the topic and its implications, can be found
in de la Peña and Giné (1999, Section 1.2). Lemma 11.16 is due to Giné, Lata la,
and Zinn (2000).

11.7 Exercises

Exercise 11.1 Show that it is not necessarily true that the variance of an the supre-
mum of an empirical process is upper bounded by the wimpy variance. Hint: consider
n = 1, T = {1, 2}, and binary-valued random variables.

Exercise 11.2 (a bad example for variance bounds.) Consider T = {1, . . . , n}
and assume that the Xi,s are i.i.d. exponential random variables with mean 1. Then
Z = sups∈T

∑n
i=1 Xi,s is the supremum of n i.i.d. random variables. Compute the

expectation and the variance of Z. Compute the variance upper bound provided by
Theorem 11.1. Compare. Letting Zi = sups∈T

∑n
j 6=iXj,s, compute the upper bound∑n

i=1 E
[
(Z − Zi)2

]
and compare the result with the true value of V ar(Z). Hint: the

expectation and variance of Z are respectively Hn the n-th harmonic number, and H2
n

the n-th harmonic number of the second kind (H2
n ≤ π2/6).

Exercise 11.3 Prove that Theorem 11.1 still holds if the index set is not assumed to
be countable but the process is separable. Hint: let S ⊆ T be a separant. Let s1, s2, . . .
be an enumeration of the elements of S. Apply Theorem 11.1 to the empirical process
indexed by s1, . . . , sn and use the monotone convergence theorem.

Exercise 11.4 (symmetrization and asymmetric processes.) For i = 1, . . . , n and
s = 1, . . . , n, let Xi,s be independent random variables with P {Xi,s = n/(n − 1)} =
(n−1)/n and P {Xi,s = −n} = 1/n. Let ε1, . . . , εn be independent random Rademacher
variables that are independent of (Xi,s), 1 ≤ i, s ≤ n. Let T = {1, . . . , n}. Prove that
for sufficiently large n,

E sup
s∈T

n∑
i=1

εiXi,s ≥
n

2

log n
4

log logn
.

Deduce from this observation that

1

2
E sup
s∈T

n∑
i=1

εiXi,s > E sup
s∈T

n∑
i=1

Xi,s .

Compare with Theorem 11.4. Hint: Note that with high probability, at least n/4
Rademacher variables are negative. Use and prove the fact that the maximum of
n independent binomial random variables with parameters n/4 and 1/n is at least
log(n/4)/ log logn.

Exercise 11.5 (improved symmetrization inequalities.) Let X1, . . . , Xn be inde-
pendent random vectors Xi = (Xi,s)s∈T . Let Ψ denote a convex increasing function.
Assume that for each i = 1, . . . , n and s ∈ T , Xi,s is integrable and centered. Let
ε1, . . . , εn be independent of Rademacher random variables. Prove that

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣
)]
≤ E

[
Ψ

(
sup
s∈T

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣
)]
≤ E

[
Ψ

(
2 sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣
)]

.
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Exercise 11.6 . Prove that Theorem 11.4 still holds if the index set is assumed to be
separable. Hint: proceed as in Exercise 11.3.

Exercise 11.7 (bounding the gaussian quantile function.) Let Φ be the stan-
dard Gaussian distribution function. Prove that for t ≥ 5,

Φ−1(1− 1/t) ≥
√

2 log t− log log t− log(4π)

and that for t ≥ 2

Φ−1(1− 1/t) ≤
√

2 log t− log log t− log(π) .

Hint: use Lemma 10.1.

Exercise 11.8 (nemirovski’s inequality in the non-symmetric case.) Using the
notation of Theorem 11.2, prove that even if the Xi are not assumed to be symmetric
but centered,

E ‖Sn‖2∞ ≤ 2 (1 + 4 log (2d)) Σ2 .

Exercise 11.9 (optimality of the constant in the contraction principle.)
Prove the optimality of the constant 1/2 on the left-hand side of the contraction prin-
ciple (Theorem 11.6). Hint: let T = {1, 2}, X deterministic, and X1,1 = X2,1 = 1 while
X1,2 = X2,2 = −1. Let ϕ1(x) = x, ϕ2(x) = −|x| and Ψ the identity. (See the remark
following statement of Theorem 4.12 in Ledoux and Talagrand (1991).)

Exercise 11.10 (contraction principle and tail bounds.) Let B denote a sepa-
rable Banach space with norm ‖·‖B. Let ε1, . . . , εn be independent Rademacher random
variables. Let 1 ≥ λ1 ≥ · · · ≥ λn ≥ 0. Let v1, . . . , vn ∈ B. Prove that for all t > 0,

P

{∥∥∥∥∥
n∑
i=1

λiεivi

∥∥∥∥∥
B

> t

}
≤ 2P

{∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
B

> t

}
.

(See Theorem 4.4 in Ledoux and Talagrand (1991).)

Exercise 11.11 (contraction principle for gaussian sums.) Let Ψ : R+ → R
be a non-decreasing convex function. Let X1, . . . , Xn be independent random vectors
Xi = (Xi,s)s∈T . Assume that for each i, s, Xi,s is integrable and centered. For each
i = 1, . . . , n, let ϕi : R → R denote a Lipschitz function such that ϕi(0) = 0. Let
Y1, . . . , Yn be independent standard Gaussian random variables. Prove that

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣∣
n∑
i=1

Yiϕi(Xi,s)

∣∣∣∣∣
)]
≤ E

[
Ψ

(
2 sup
s∈T

∣∣∣∣∣
n∑
i=1

YiXi,s

∣∣∣∣∣
)]

(See Corollary 3.17 in Ledoux and Talagrand (1991).)

Exercise 11.12 (corollary of contraction principle i.) Let B denote a separa-
ble Banach space with norm ‖ · ‖B. Let X1, . . . , Xn be independent B-valued symmetric
random variables. Let λ1, . . . , λn be real numbers with ‖λ‖∞ = supi=1,...,n |λi|. Prove
that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

λiXi

∥∥∥∥∥
p

B

]
≤ ‖λ‖p∞E

[∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

B

]
.
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(See Garling (2007, p.188).)

Exercise 11.13 (corollary of contraction principle ii.) Let B denote a separa-
ble Banach space with norm ‖ · ‖B. Let X1, . . . , Xn and Y1, . . . , Yn denote independent
real-valued symmetric random variables with |Xn| ≤ |Yn| for all n almost surely. Let
v1, . . . , vn ∈ B. Prove that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
p

B

]
≤ E

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
p

B

]
.

(See Garling (2007, p.188).)

Exercise 11.14 (corollary of contraction principle iii.) Let B denote a sepa-
rable Banach space with norm ‖·‖B. Let X1, . . . , Xn and Y1, . . . , Yn denote independent
real-valued symmetric random variables with E|Yi| ≥ 1/C for all i and Xn = sign(Yn).
Let v1, . . . , vn ∈ B. Prove that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
p

B

]
≤ CpE

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
p

B

]
.

(See Garling (2007, p.188).)

Exercise 11.15 (comparison of gaussian and rademacher sums.) Let B de-
note a separable Banach space with norm ‖ · ‖B. Let X1, . . . , Xn be independent
Rademacher variables and let Y1, . . . , Yn be independent standard Gaussian variables.
Let v1, . . . , vn ∈ B. Prove that

E

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
B

]
≤
√

2 logn E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
B

]
.

Hint: See Inequality (4.9) in Ledoux and Talagrand (1991).

Exercise 11.16 (another variance bound.) Let |αi,s| ≤ 1 for all i = 1, . . . , n and
s ∈ T . Let Y1, . . . , Yn be independent centered random variables such that for all
integers q ≥ 2,

E|Yi|q ≤ q!
cq−2σ2

2

for some constants c and σ. Let Z = sups∈T
∑n
i=1 αi,sYi. Show that

V ar(Z) ≤ nσ2 + 2EZ .

Hint: this result is a by-product of Bousquet (2002b, Theorem 2.12).

Exercise 11.17 Using the notation of Theorem 11.10, letting E = EZ/n, prove that

V ar(Z) ≤ nσ2 + (2− E)EZ .

Hint: Use the same pattern of proof, but replace Zi by Zi − E. See Rio (2012).
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Exercise 11.18 (hoffmann-jørgensen inequality for higher moments.) Let
Xi = (Xi,s)s∈T for i = 1, . . . , n be independent symmetric (not necessarily identically
distributed) random vectors. Let Z = sups∈T

∣∣∑n
i=1 Xi,s

∣∣ and M = maxi≤n,s∈T |Xi,s|.
Prove that for any p ≥ 2, there exists a constant κp such that

E [Zp]1/p ≤ κp
(
EZ + E[Mp]1/p

)
.

Show that as p → ∞, κp/p remains bounded. Hint: follow the pattern of proof of
Corollary 11.15. (Note that it is possible to choose κp so that (log p)κp/p remains
bounded as p→∞, see Lata la (1997) and de la Peña and Giné (1999, Theorem 1.5.11
and Example 1.5.12).)

Exercise 11.19 (sub-gamma summands.) Let (αi,s) be a collection of real numbers
indexed by i = 1, . . . , n and s ∈ T such that |αi,s| ≤ 1 for all i and s. Let X1, . . . , Xn
be independent centered random variables such that for all integers q ≥ 2,

E|Xi|q ≤ q!
cq−2σ2/n

2

for some constants c and σ. Let Z = sups∈T
∑
i=1,...,n αi,sXi. Check that V ar(Z) ≤ 2σ2

and that

V ar(Z) ≤ σ2 sup
s∈T

n∑
i=1

α2
i,s/n+ E sup

s∈T

n∑
i=1

α2
i,sX

2
i

and

V ar(Z) ≤ 2σ2 sup
s∈T

n∑
i=1

α2
i,s/n+ 2E sup

s∈T

n∑
i=1

εiα
2
i,sX

2
i .

Hint: use Theorem 11.1, then use Theorem 11.17 to upper bound the last summand.

Exercise 11.20 Let X = (X1, . . . , Xn) be uniformly distributed over [−1, 1]n. Let
Z =

√∑n
i=1 X

2
i be the Euclidean norm of X. Prove that√

n/3− 1 ≤ EZ ≤
√
n/3.

Prove also that
P
{
Z ≥ EZ + t

√
n
}
≤ e−nt

2/8 .

Hint: Represent Z as the supremum of an empirical process. Use Theorem 11.1 to check
that V ar(Z) ≤ 4/3. Use Theorem 6.10 to establish the tail bound. This provides an
example where the weak and wimpy variance estimates (Σ2 and σ2) are of the same
order or magnitude and where they are both significantly smaller than EZ. The bound
provided by Theorem 11.8, Σ2 ≤ σ2 + 8EZ is not sharp in this case.
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SUPREMA OF EMPIRICAL PROCESSES: EXPONENTIAL
INEQUALITIES

In this chapter we continue the study of suprema of empirical processes started in
Chapter 11. We use the same notation introduced there. Recall that T denotes a
finite or countable index set and Xi = (Xi,s)s∈T for i = 1, . . . , n are independent
(not necessarily identically distributed) real vector-valued random variables. The
empirical process indexed by the index set T is the vector-valued random variable∑n
i=1Xi. Its supremum is defined as

Z = sup
s∈T

n∑

i=1

Xi,s .

While Chapter 11 focuses on upper bounds for the variance of Z, in this chapter
we prove exponential concentration inequalities. Our main tool is the entropy
method introduced in Chapter 6.

The concentration inequalities derived in Section 5.5 for the suprema of Gaus-
sian and Rademacher processes rely on specific tools such as the Bernoulli and
the Gaussian logarithmic Sobolev inequalities. To establish analogous bounds for
more general distributions, we may start with the modified logarithmic Sobolev
inequality of Theorem 6.6. In this chapter we derive extensions of Hoeffding’s,
Bernstein’s, and Bennett’s inequalities for suprema of empirical processes. To
this end, we tailor the modified logarithmic Sobolev inequality to our needs in
an increasingly sophisticated way in Sections 12.2 and 12.4. The argument of
Section 12.3 combines symmetrization techniques from Section 11.3 with the
convex distance inequality to obtain an exponential inequality for suprema of
self-normalized empirical processes.

The main result in this chapter is Bousquet’s inequality (Theorem 12.5),
a Bennett-type inequality for suprema of centered empirical processes, proved
in Section 12.4. In Section 12.5 we survey a variety of related results such as
tail bounds for sums of possibly non-identically distributed terms and left-tail
inequalities.

In Section 12.6 we describe an application to Pearson’s chi-square statistics.

12.1 An extension of Hoeffding’s inequality

To warm up, we start with the following extensions of Hoeffding’s inequality
(Theorem 2.2) to empirical processes.
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Theorem 12.1 Assume that the sequences of vectors (bi,s)s∈T and (ai,s)s∈T ,
i = 1, . . . , n are such that ai,s ≤ Xi,s ≤ bi,s holds for all i = 1, . . . , n and s ∈ T
with probability 1. Denote

v = sup
s∈T

n∑

i=1

(bi,s − ai,s)2 and V =

n∑

i=1

sup
s∈T

(bi,s − ai,s)2 .

Then for all λ ∈ R,

logEeλ(Z−EZ) ≤ vλ2

2
and logEeλ(Z−EZ) ≤ V λ2

8
.

The first inequality is a consequence of Theorem 6.5, while the second follows
from the bounded-differences inequality (Theorem 6.2). Clearly, v ≤ V but the
second inequality may be better thanks to the better constant factor.

12.2 A Bernstein-type inequality for bounded processes

In this section we describe an improvement of the Hoeffding-type inequalities
of the previous section in the same spirit as Bernstein’s inequality improves
Hoeffding’s for sums of independent random variables.

Such an inequality may be proved for suprema of uniformly bounded empiri-
cal processes as a simple application of the “exponential Efron-Stein inequality”
of Theorem 6.16 combined with concentration of self-bounding functions (The-
orem 6.12). Recall that

Σ2 = E sup
s∈T

n∑

i=1

X2
i,s and σ2 = sup

s∈T

n∑

i=1

EX2
i,s

denote the weak variance and the wimpy variance associated to the empirical
process.

Theorem 12.2 Assume that EXi,s = 0, and |Xi,s| ≤ 1 for all s ∈ T and
i = 1, . . . , n. Then for all 0 ≤ λ < 1/2,

logEeλ(Z−EZ) ≤ 2(Σ2 + σ2)λ2

2(1− 2λ)

and for t ≥ 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2 (2(Σ2 + σ2) + t)

)
.

Proof For each i = 1, . . . , n, let Z ′i = sups∈T (X ′i,s+
∑
j 6=iXj,s) whereX ′1, . . . , X

′
n

are independent of each other and of X1, . . . , Xn and X ′i has the same distribu-
tion as Xi.
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Introduce W = sups∈T
∑n
i=1X

2
i,s and denote by ŝ ∈ T the index for which∑n

i=1Xi,s is largest, that is, Z =
∑n
i=1Xi,ŝ. Then clearly, (Z − Z ′i)2

+ ≤ (Xi,ŝ −
X ′i,ŝ)

2 for each i ≤ n. Then, since E[X ′i,ŝ | X1, . . . , Xn] = 0,

n∑

i=1

E
[
(Z − Z ′i)2

+ | X1, . . . , Xn

]
≤

n∑

i=1

E
[
(Xi,ŝ −X ′i,ŝ)2 | X1, . . . , Xn

]

≤ W + sup
s∈T

n∑

i=1

E
[
(X ′i,s)

2
]

= W + σ2 .

Now by the exponential Efron-Stein inequality (Theorem 6.16),

logEeλ(Z−EZ) ≤ λ

1− λ logEeλ(W+σ2)

for λ ∈ [0, 1).
As W is a self-bounding function of X1, . . . , Xn (see Section 6.7), Theo-

rem 6.12 implies that

logEeλW ≤ Σ2
(
eλ − 1

)
.

Combining the last two inequalities, we obtain

logEeλ(Z−EZ) ≤ λ

1− λΣ2
(
eλ − 1

)
+ λσ2 .

Using the fact that (eλ − 1)(1 − λ) ≤ (eλ − 1)e−λ = 1 − e−λ ≤ λ for λ ∈ [0, 1),
we have

logEeλ(Z−EZ) ≤ λ2(Σ2 + σ2)

(1− λ)2
.

For λ ∈ [0, 1/2) the right-hand side may be upper bounded by

2(Σ2 + σ2)λ2

2(1− 2λ)
,

which concludes the proof of the first inequality. To get the inequalities for the
tail probabilities, observe that this bound has the same form as the upper bound
for the logarithmic moment generating function of sub-gamma random variables
discussed in Section 2.4 (with a variance factor 2(Σ2 + σ2) and scale parameter
2). The proof of the tail bound follows by the calculations of Section 2.4. 2

When the random variables (Xi)1≤i≤n are identically distributed, Theorem 12.5
represents an improvement on Theorem 12.2. A comparable improvement for
non-identically distributed variables is described in Section 12.5.
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12.3 A symmetrization argument

Next we describe a variant of the Bernstein-type inequality of the previous sec-
tion. Here the argument is based on symmetrization of tail probabilities and
concentration of convex Lipschitz functions of bounded independent random
variables (Theorem 6.10). The important difference with respect to Theorem
12.2 is that here we do not assume any boundedness of the random vectors. In-
stead, the tail inequalities involve a random quantity that may be more difficult
to control.

Theorem 12.3 Let X ′1, . . . , X
′
n be i.i.d. random vectors, independent of X1, . . . , Xn.

Let

W = E

[
sup
s∈T

n∑

i=1

(Xi,s −X ′i,s)2

∣∣∣∣X1, . . . , Xn

]
.

Then for all t ≥ 0,

P
{
Z ≥ EZ + 2

√
tW
}
≤ 4e−t/4

and
P
{
Z ≤ EZ − 2

√
tW
}
≤ 4e−t/4 .

Note that W is a random variable. Its expected value satisfies V ar(Z) ≤
EW ≤ 4Σ2. One may interpret the result as sub-Gaussian inequalities for the
“self-normalized” variables (Z −EZ)/

√
W .

The proof relies on the following technical lemma.

Lemma 12.4 Let f1, f2, f3 : X 2n → R be functions of 2n variables and define
Zi = fi(X1, . . . , Xn, X

′
1, . . . , X

′
n) for i ∈ {1, 2, 3} where X1, . . . , Xn, X

′
1, . . . , X

′
n

are independent random variables taking values in X . Define

Z ′i = E [Zi | X1, . . . , Xn]

for i ∈ {1, 2, 3}. Assume that Z3 ≥ 0 and that there exists κ > 0 such that for
all t > 0,

P
{
Z1 ≥ Z2 + (Z3t)

1/2
}
≤ κe−γt .

Then, for all t ≥ 0,

P
{
Z ′1 ≥ Z ′2 + (Z ′3t)

1/2
}
≤ κe−γt .

Proof As
√
xy = infθ>0(θx+ y/(4θ)),

Z1 ≥ Z2 + (Z3t)
1/2 if and only if sup

θ>0
4θ(Z1 − Z2 − θZ3) ≥ t

and similarly

Z ′1 ≥ Z ′2 + (Z ′3t)
1/2 if and only if sup

θ>0
4θ(Z ′1 − Z ′2 − θZ ′3) ≥ t .
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If we define U = supθ>0 4θ(Z1 − Z2 − θZ3) and U ′ = supθ>0 4θ(Z ′1 − Z ′2 − θZ ′3)
then, by Jensen’s inequality,

U ′ = sup
θ>0

4θE[Z1 − Z2 − θZ3 | X1, . . . , Xn] ≤ E[U | X1, . . . , Xn] .

But by another application of Jensen’s inequality, for any non-decreasing convex
function ϕ, we have

Eϕ(U ′) ≤ E[ϕ(E[U | X1, . . . , Xn])] ≤ Eϕ(U) .

We may conclude using the tail comparison inequality of Exercise 2.24. 2

Proof The proof uses Lemma 12.4 with Z1 = Z and Z2 = sups∈T
∑n
i=1X

′
i,s.

Note that E [Z2 | X1, . . . , Xn] = EZ. By the lemma, it suffices to prove that

P
{
Z1 ≥ Z2 + 2

√
tW ′

}
≤ 4e−t/4 ,

where W ′ = sups∈T (Xi,s −X ′i,s)2.
For each i = 1, . . . , n, introduce Yi = (Xi + X ′i)/2, Y ′i = (Xi − X ′i)/2 and

also let ε1, . . . , εn be independent Rademacher variables. By exchangeability
of Xi and X ′i, the joint distribution of (Yi, Y

′
i ,W

′)i≤n is the same as that of
(Yi, εiY

′
i ,W

′)i≤n. Note thatW ′ = 4 sups∈T
∑n
i=1 Y

′2
i,s, while Z1 = sups∈T

∑n
i=1(Yi,s+

Y ′i,s) and Z2 = sups∈T
∑n
i=1(Yi,s − Y ′i,s). Thus, we have

P
{
Z1 ≥ Z2 + 2

√
tW ′

}

= P

{
sup
s∈T

n∑

i=1

(Yi,s + εiY
′
i,s) ≥ sup

s∈T

n∑

i=1

(Yi,s − εiY ′i,s) + 2
√
tW ′

}
.

We bound the probability above conditionally, by fixing the values of X1, . . . , Xn

and X ′1, . . . , X
′
n. Then

φ1(ε1, . . . , εn) = sup
s∈T

n∑

i=1

(Yi,s + εiY
′
i,s)

and

φ2(ε1, . . . , εn) = sup
s∈T

n∑

i=1

(Yi,s − εiY ′i,s)

are convex functions on [−1, 1]n that are Lipschitz with constant
√
W ′. If M

denotes the common median of φ1 = φ1(ε1, . . . , εn) and φ2 = φ2(ε1, . . . , εn),
then, denoting by P ε conditional probability with the values of the Xi, X

′
i fixed,

P
{
Z1 ≥ Z2 + 2

√
tW ′ | X1, . . . , Xn, X

′
1, . . . , X

′
n

}

= P ε

{
φ1 ≥ φ2 + 2

√
tW ′

}

≤ P ε

{
φ1 ≥M +

√
tW ′

}
+ P ε

{
φ2 ≤M −

√
tW ′

}

≤ 4e−t/4 (by Theorem 7.12).
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The lower tail inequality is proved similarly. 2

For uniformly bounded empirical processes, one may recover a version of
Theorem 12.2 from Theorem 12.3. Indeed, if |Xi,s| ≤ 1 for all i = 1, . . . , n and
s ∈ T , then W/4 is a self-bounding function. This may be seen by introducing

Wi = E


sup
s∈T

n∑

j 6=i
(Xj,s −X ′j,s)2

∣∣∣∣X(i)




and noting that 0 ≤ W −Wi ≤ 4 for all i = 1, . . . , n and
∑n
i=1(W −Wi) ≤ W .

Hence, by Theorem 6.12,

P
{
W ≥ EW +

√
8tEW + 4t/3

}
≤ e−t/4 .

The last inequality may be combined with Theorem 12.3 to obtain

P
{
Z ≥ EZ + 4

√
tΣ2 + t

√
2
}
≤ 4e−t/4 .

12.4 Bousquet’s inequality for suprema of empirical processes

Theorem 12.2 is a useful tool for bounding deviations of the supremum of an
empirical process from its mean, but it is not completely satisfactory. Indeed,
if the index set T is reduced to a single element, Theorem 12.2 implies Bern-
stein’s inequality with a sub-optimal constant but one does nor recover Ben-
nett’s inequality (Theorem 2.9). In this section we prove a Bennett-style con-
centration inequality for the supremum of an empirical process. As before, let
Z = sups∈T

∑n
i=1Xi,s. The proof is more involved than that of Theorem 12.2

as it does not follow directly from Theorem 6.16.

Theorem 12.5 (bousquet’s inequality.) Let X1, . . . , Xn be independent iden-
tically distributed random vectors. Assume that EXi,s = 0, and that Xi,s ≤ 1
for all s ∈ T . Let v = 2EZ + σ2 (where σ2 = sups∈T

∑n
i=1 EX

2
i,s is the wimpy

variance). Let φ(u) = eu − u− 1 and h(u) = (1 + u) log(1 + u)− u, for u ≥ −1.
Then for all λ ≥ 0,

logEeλ(Z−EZ) ≤ vφ(λ) .

Also, for all t ≥ 0,

P {Z ≥ EZ + t} ≤ e−vh(t/v) .

Recall that, by Theorem 11.10, V ar(Z) ≤ v which makes the appearance of
v natural in the statement of the theorem. By bounding h(u) as in Section 2.7,
the theorem implies

P {Z ≥ EZ + t} ≤ exp

(
− t2

2(v + t/3)

)
.
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We introduce some notation used in the proof. For all i = 1, . . . , n, let Zi =
sups∈T

∑
j:j 6=iXi,s and let ŝi ∈ T be an index such that

∑
j:j 6=iXj,ŝi = Zi. As

Z ≥∑n
j=1Xj,ŝi , we have Xi,ŝi ≤ Z − Zi ≤ Xi,ŝ and

n∑

i=1

(Z − Zi) ≤
n∑

i=1

Xi,ŝ = Z .

Denoting Yi = Z − Zi, we have E(i)Yi ≥ E(i)Xi,ŝi = 0 (recall that E(i) denotes
conditional expectation conditioned on X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn)).
We also have Yi ≤ 1 with probability one.

Just as the proof of Theorem 6.12, the proof of Theorem 12.5 starts from the
modified logarithmic Sobolev inequality of Theorem 6.6. The next step is to find
an appropriate upper bound for eλZφ(−λ(Z−Zi)). In the proof of Theorem 6.12
this was achieved by using the elementary inequality φ(−λx)/φ(−λ) ≤ x for
0 ≤ x ≤ 1. However, in the proof of Theorem 12.5 we need to handle negative
values of x as well and for this reason we need the following lemma:

Lemma 12.6 If β ≥ 0, then, for all λ ≥ 0 and x ≤ 1,

φ(−λx)

φ(−λ)
≤ x+

(
βx2 − x

)
e−λx

1 + (β − 1) e−λ
.

The following lemma provides a tool that we may use for proving Lemma
12.6:

Lemma 12.7 Let I be an interval containing 0. Let f, g : I → R be twice
differentiable functions such that f(0) = g(0) = f ′(0) = g′(0) = 0, g′′(0) > 0,
and xg′(x) > 0 for every x 6= 0. The function ρ defined by ρ(0) = f ′′(0)/g′′(0)
and ρ(x) = f(x)/g(x) if x ∈ I \ {0} is continuous and non-decreasing on I
whenever f ′′g′ − f ′g′′ ≥ 0 on I.

Proof Note first that g(0) = 0 and xg′(x) > 0 for every x 6= 0 implies that
g(x) > 0 whenever x 6= 0. Hence ρ is well defined and twice differentiable on
I \ {0}. The continuity of ρ at 0 follows from l’Hôpital’s rule. For every x 6= 0,
ρ′(x) has the same sign as

g′(x)

(
f ′(x)

g′(x)
− f(x)

g(x)

)
, or, equivalently, as ∆(x)

def
= x

(
f ′(x)

g′(x)
− f(x)

g(x)

)
.

Now the extended mean value theorem ensures that for some number c between
0 and x,

f ′(c)
g′(c)

=
f(x)

g(x)
.

Moreover, the function f ′/g′ (taking value f ′′(0)/g′′(0) at 0) is continuous on I
and the assumption f ′′g′−f ′g′′ ≥ 0 ensures that f ′/g′ is non-decreasing. Hence,
for every x 6= 0,
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x
f ′(c)
g′(c)

≤ xf
′(x)

g′(x)
,

and therefore ∆(x) ≥ 0. This proves that ρ′(x) ≥ 0 from which the monotonicity
of ρ follows. 2

Proof of Lemma 12.6 To prove the lemma, it suffices to show that for all
λ ≥ 0 and β ≥ 0, the function ρ(x) = φ(−λx)/(x +

(
βx2 − x

)
e−λx) (with

ρ(0) = λ2/(2(β + λ))) is non-decreasing for x ∈ (−∞, 1].
The lemma obviously holds for λ = 0. Fix λ > 0 and β ≥ 0. We may rewrite

ρ as ρ = f/g with

f(x) = eλxφ(−λx) = λxeλx − eλx + 1 and g(x) = xeλx + βx2 − x .

Then, for every x 6= 0,

xg′(x) = x2
(
λeλx + 2β

)
+ x

(
eλx − 1

)
> 0

and
f ′′(x)g′(x)− f ′(x)g′′(x) = λ2eλx

(
φ (λx) + 2βλx2

)
> 0 ,

and therefore Lemma 12.7 implies the monotonicity of ρ. 2

The first step of the proof of Bousquet’s inequality is the following lemma.
It is based on the modified logarithmic Sobolev inequality of Theorem 6.6 and
uses Lemma 12.6 to upper bound the expectation of exp(λZ)φ(−λ(Z − Zi))
conditionally on X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn). Here we use β = 1/2.

Lemma 12.8 Let Z, φ, and v be defined as in Theorem 12.5. Let f(λ) = φ(λ)+
λ/2. If G(λ) = logEeλ(Z−EZ), then, for λ ≥ 0,

f(λ)G′(λ)− f ′(λ)G(λ) ≤ (v/2) (λf ′(λ)− f(λ)) .

Proof Recall the modified logarithmic Sobolev inequality (Theorem 6.6):

Ent(eλZ) = λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑

i=1

E
[
eλZφ (−λ(Z − Zi))

]
.

Since Z − Zi ≤ 1, Lemma 12.6 with β = 1/2 implies that for all i = 1, . . . , n,

φ (−λ(Z − Zi)) eλZ
≤ θ(λ)

(
(Z − Zi)eλZ +

(
1/2(Z − Zi)2 − (Z − Zi)

)
eλZi

)
,

where θ(λ) = φ(−λ)/(1− (1/2) exp(−λ)). Taking conditional expectations, from
Lemma 11.11,

E(i)
[
(Z − Zi)2/2− (Z − Zi)

]
≤ 1

2
E(i)[X2

i,ŝi
] ,
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and therefore

E(i)
[
φ (−λ(Z − Zi)) eλZ

]

≤ θ(λ)

(
E(i)

[
(Z − Zi)eλZ

]
+

1

2
E(i)[X2

i,ŝi
]eλZi

)

≤ θ(λ)

(
E(i)

[
(Z − Zi)eλZ

]
+

1

2
sup
s∈T

E[X2
i,s]e

λZi

)
.

Using that E(i)[Z − Zi] ≥ 0 and applying Jensen’s inequality,

eλZi ≤ eλE(i)Z ≤ E(i)eλZ .

Thus, for every i = 1, . . . , n, we have

E(i)
[
φ (−λ(Z − Zi)) eλZ

]
≤ θ(λ)E(i)

[(
Z − Zi +

1

2
sup
s∈T

E[X2
i,s]

)
eλZ

]
.

Plugging this last inequality into the modified logarithmic Sobolev inequality
and using the fact that

∑n
i=1(Z − Zi) ≤ Z,

Ent(eλZ) ≤ θ(λ)

(
E

[
eλZ

(
Z +

1

2

n∑

i=1

sup
s∈T

E[X2
i,s]

)])

≤ θ(λ)

(
E

[
eλZ

(
Z −EZ + EZ +

σ2

2

)])
,

by recalling the notation σ2 =
∑n
i=1 sups∈T E[X2

i,s] = sups∈T
∑n
i=1 E[X2

i,s].
This last inequality may be rewritten as

Ent(eλ(Z−EZ)) ≤ θ(λ)
(
E
[
(Z −EZ)eλ(Z−EZ)

]
+
v

2
Eeλ(Z−EZ)

)
,

or, dividing both sides by E exp(λ(Z −EZ)), as

λG′(λ)−G(λ) ≤ θ(λ)
(
G′(λ) +

v

2

)
.

The lemma follows by noticing that f ′(λ) > 0 for λ ≥ 0 and rearranging the last
inequality. 2

Bousquet’s inequality now follows easily from Lemma 6.25:

Proof of Theorem 12.5 Let

g(λ) =
v

2
· λf

′(λ)− f(λ)

f2(λ)

for λ > 0 and g(0) = v, where f(λ) = φ(λ) + λ/2.
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It is easy to check that g is continuous on [0,+∞). By Lemma 12.8, G(λ) =
logEeλ(Z−EZ) satisfies

f(λ)G′(λ)− f ′(λ)G(λ) ≤ f2(λ)g(λ)

for λ ≥ 0. From Lemma 6.25, it follows that for all λ ≥ 0,

G(λ) ≤ v

2
f(λ)

∫ λ

0

xf ′(x)− f(x)

f2(x)
dx ,

Observing that (xf ′(x)−f(x))/f2(x) = (−x/f(x))′ and that limx↓0 x/f(x) = 2,
finally leads to the desired result G (λ) ≤ vφ(λ).

The tail bound follows using the computation shown in Chapter 2. 2

12.5 Non-identically distributed summands and left-tail inequalities

In this section we present, without proof, two inequalities related to the con-
centration bounds of the previous sections. First note that, unlike Bennett’s in-
equality that holds not only for sums of i.i.d. random variables but also for sums
of independent, non-identically distributed bounded and centered random vari-
ables, Bousquet’s inequality requires that the vectors X1, . . . , Xn are identically
distributed. The following inequality, though not quite as sharp as Bousquet’s,
is a step in this direction:

Theorem 12.9 Let X1, . . . , Xn be independent vector-valued random variables
and let Z = sups∈T

∑n
i=1Xi,s. Assume that for all i ≤ n and s ∈ T , EXi,s =

0, and |Xi,s| ≤ 1. Let v = 2EZ + σ2 where σ2 = supt∈T
∑n
i=1 EX

2
i,s. Then

V ar(Z) ≤ v and for all λ > 0,

logEeλ(Z−EZ) ≤ vλ

2

(
exp((e2λ − 1)/2)− 1

)
.

In particular, for all t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t

4
log (1 + 2 log(1 + t/v))

)
.

The proof of this theorem is quite technical and we do not include it here.
Note that the variance bound is the same as in the case of identically distributed
summands (Theorem 11.10).

Bennett’s inequality also holds not only for right tails but also for left tails
(i.e., for bounding P {Z ≤ EZ − t}). Whether such an inequality is true for
suprema of centered bounded empirical processes is a natural question. However,
the proofs of Theorems 12.5 and 12.9 are tailored to handle deviations above the
mean. In view of Theorem 12.5, one may wonder whether logEeλ(Z−EZ) ≤
vφ (λ) also holds for λ ≤ 0 (where φ(λ) = exp(λ)− λ− 1). This is still unknown
but we do have the following results. Once again, the proofs are omitted.

The next theorem can be proved using variants of the entropy method.
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Theorem 12.10 (klein-rio bound.) Using the notation and assumptions of
Theorem 12.9, for all λ ≤ 0,

logEeλ(Z−EZ) ≤ v

9
φ (−3λ) ,

and for all t ≥ 0,

P {Z ≤ EZ − t} ≤ exp

(
−v

9
h

(
3t

v

))

where h(t) = (t+ 1) log(t+ 1)− t.
The next theorem can be proved using a variant of the transportation method.

Theorem 12.11 (samson’s bound.) Recall the notation and assumptions of
Theorem 12.9 and let

S2 = E sup
s∈T

n∑

i=1

E
[
(Xi,s −X ′i,s)2

+ | Xi,s

]
.

where X ′1, . . . , X
′
n are independent copies of X1, . . . , Xn. For all λ ≤ 0,

logEeλ(Z−EZ) ≤ S2

4
φ (−2λ) ,

and for all t ≥ 0,

P {Z ≤ EZ − t} ≤ exp

(
− t2

2(S2 + 2t/3)

)
.

Note that by Theorem 11.1, S2 is an upper bound for the variance of Z and
S2 ≤ Σ2 + σ2, where Σ2 = E sups∈T

∑n
i=1X

2
i,s.

Theorems 12.5 and 12.9 are often used through the next corollary which
follows from bounds on the inverse of h : t→ (1 + t) log(1 + t)− t over [0,∞). In
particular, one may prove that

h−1(x) ≥





√
2x+ 3x for x ≥ 0

2x/ log(x) for x ≥ 3

2
√
x for 0 ≤ x ≤ 2/9 .

Corollary 12.12 Consider the setup of Theorem 12.9. Let φ(u) = eu − u − 1,
and h(u) = (1 + u) log(1 + u)− u, for u ≥ −1. Then for all λ > 0,

logEeλ(Z−EZ) ≤ vφ(λ) ,

and
logEe−λ(Z−EZ) ≤ v

9
φ(3λ) .
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Also, for all t ≥ 0,

P

{
Z ≥ EZ +

√
2vt+

t

3

}
≤ e−t ,

P

{
Z ≤ EZ −

√
2vt− t

8

}
≤ e−t ,

and for t ≥ 3v,
P {Z ≥ EZ + 2t/ log(t/v)} ≤ e−t .

12.6 Chi-square statistics and quadratic forms

As an illustration of the power of Bousquet’s inequality, we present an applica-
tion to Pearson’s chi-square statistic, a random variable well-known in statistical
theory.

Let p1, . . . , pm > 0 be such that
∑m
j=1 pj = 1 and suppose that the random

vector (N1, . . . , Nm) has a multinomial distribution with parameters n, p1, . . . , pm.
Pearson’s chi-square statistic is defined by

Z2 =

m∑

j=1

(Nj − npj)2

npj
.

As it is well known from classical statistics (and follows easily from a multivariate
central limit theorem), if m is fixed and n → ∞, Z2 converges in distribution
to the square of the norm of a standard Gaussian vector. Here we derive a non-
asymptotic concentration inequality. To this end, introduce the random variables
Wi,j for i = 1, . . . , n and j = 1, . . . ,m, defined by

Wi,j =

{
1/
√
pj if Yi = j

0 otherwise

where Y1, . . . , Yn are independent random variables with distribution P {Yi =
j} = pj for j = 1 . . . ,m. Then we may write Nj =

√
pj
∑n
i=1Wi,j and Z2 can

written as

Z2 =
1

n

m∑

j=1

(
n∑

i=1

(Wi,j −EWi,j)

)2

.

The key idea is to represent the (non-negative) random variable Z as the supre-
mum of an empirical process. Indeed, if T is a dense countable subset of the unit
Euclidean ball in Rm, then, by the Cauchy-Schwarz inequality,

Z = sup
s∈T

1√
n

n∑

i=1




m∑

j=1

sj(Wi,j −EWi,j)




which is of the form sups∈T
∑n
i=1Xi,s with Xi,s =

∑m
j=1 sj(Wi,j −EWi,j)/

√
n.
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Note first that by the Cauchy-Schwarz inequality,

EZ ≤
√
EZ2 =

√
m− 1 .

The wimpy variance may be bounded by straighforward calculation as

σ2 = sup
s∈T

V ar




m∑

j=1

sj
Nj − npj√

npj


 ≤ 1 .

Denoting pmin = minj=1,...,m pj , we may bound the variance of Z by Theo-
rem 11.10 to obtain

V ar(Z) ≤ σ2 + 2

√
1

npmin
EZ ≤ 1 + 2

√
m− 1

npmin
.

On the other hand, Theorem 12.5 may be used directly to obtain the following
exponential tail inequality:

Theorem 12.13 Let Z2 be Pearson’s chi-square statistic defined above. Then
for all ε, t > 0,

P

{
Z ≥ (1 + ε)

√
m− 1 +

√
2t+ κ (ε)

√
1

npmin
t

}
≤ e−t ,

where κ (ε) = 2
(

1
3 + ε−1

)
.

12.7 Bibliographic remarks

Theorem 12.1 was noted by Massart (1998). Hoeffding-type inequalities for sums
of independent random vectors may also be derived using Marton’s transporta-
tion method, see Chapter 8.

The material from Section 12.3 is based on Panchenko (2003), though the
proof shown here gives slightly worse constants. Panchenko’s theorem can be
regarded as the latest in a long series of papers starting with Vapnik and Cher-
vonenkis (1971, 1974, 1981). Some of the results stated in these papers are given
below in Exercises 12.1, 12.3, and 12.4. Panchenko was the first to blend the
symmetrization and conditioning arguments that are the heart of the original
arguments of Vapnik and Chervonenkis, with Talagrand’s convex distance in-
equality.

Concentration inequalities for suprema of self-normalized empirical processes
have been derived using the entropy method by Bercu, Gassiat and Rio (2002).
Adopting the notation of this chapter, they considered

Z = sup
s∈T

∑n
i=1Xi,s√∑n
i=1X

2
i,s

where each Xi,s is assumed to be centered with unit variance. Assuming that
supn=1,2,...E [sups∈T

∑n
i=1Xi,s] /

√
n is finite, Bercu, Gassiat and Rio (2002)
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prove exponential tail bounds for Z using a variant of the entropy method start-
ing from Theorem 6.6.

Theorem 12.5 is due to Bousquet (2002b). This is a refinement of a series
of related results pioneered by Talagrand (1996b) (see also Talagrand 1994b).
Ledoux (1997) showed that the Bennett-type inequality for suprema of bounded
empirical processes described in Talagrand (1996b) can be derived by the entropy
method in a transparent way. Massart (2000a) proved that the constants in
Talagrand’s inequality can be kept reasonable. Panchenko (2001) investigated the
potential and limits of Talagrand’s approach. Rio (2001, 2002) derived Bennett-
and Bernstein-type inequalities with the same variance factor as in Theorem
12.5 but with a sub-optimal scale factor, see Exercise 12.10. The proof in Rio
(2002) starts with the modified logarithmic Sobolev inequality of Theorem 6.6.
Bousquet (2002b) derived a version of Lemma 12.6.

Rio (2012) refined Theorem 12.5: using the notation of this theorem, letting
E = EZ/n, he established

logEeλ(Z−EZ) ≤ (v − E2)

(1− E)2
φ((1− E)λ)

(see Exercises 12.7 and 12.8).
Most results of Sections 12.5 are due to Klein and Rio (2002, 2005). Theorem

12.11 and many related results are due to Samson (2007) who used the infimum-
convolution approach to concentration pioneered by Maurey (1991).

The tail bounds for Pearson’s chi-square statistic are taken from Castellan
(2003) and Massart (2006) who also refine Theorem 12.13 to make it suitable
for certain statistical applications. Early tail bounds for Pearson’s chi-square
statistic were proved by Mason and van Zwet (1987).

This chapter focuses on tail bounds for suprema of centered empirical pro-
cesses. However, certain non-centered empirical processes appear in some ap-
plications in statistics and they also occur in the derivation of left tail bounds
in Klein and Rio (2005). Variance and tail bounds for such quantities are de-
scribed in Boucheron and Massart (2010).

12.8 Exercises

Exercise 12.1 (vapnik-chervonenkis inequalities.) Let C denote a class of sub-
sets of a measurable space X and let P be a probability distribution over X . Let Pn and
P ′n denote the empirical distributions defined by two independent samples of n random
variables drawn from the distribution P and let νn = Pn−P. Let h(X1, . . . , X2n) denote
the vc-entropy of C in a 2n-sample X1, . . . , X2n. (Recall the definition of vc-entropy
from Section 4.5.) Prove that for all ε > 0,

P

{
sup
A∈C
|νn(A)| ≥ 2ε

}
≤ 4E

[
2h(X1,...,X2n)

]
e−nε

2/2 .

Hint: Prove first that
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P

{
sup
A∈C
|νn(A)| ≥ 2ε

}
≤ 2P

{
sup
A∈C
|Pn(A)− P ′n(A)| ≥ ε

}
.

Second, use the fact that the distribution of 2n-samples is invariant under permutation
and prove that

P

{
sup
A∈C
|Pn(A)− P ′n(A)| ≥ ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e−2nε2 .

Now the improved symmetrization inequality given in Exercise 11.5 can be used to
prove in a few lines that

P

{
sup
A∈C
|νn(A)| ≥ 2ε

}
≤ 2E

[
2h(X1,...,Xn)

]
e−nε

2/2 .

(See Vapnik and Chervonenkis (1971, 1981)). Recall that Theorem 6.14 implies that the

so-called annealed vc-entropy log2 E
[
2h(X1,...,X2n)

]
and Eh(X1, . . . , X2n) are within

a constant factor of each other.)

Exercise 12.2 (self-normalization.) Let X1, . . . , Xn be independent symmetric
real random variables. Prove that for all t > 0,

P

{ ∑n
i=1 Xi√∑n
i=1 X

2
i

≥ t

}
≤ e−t

2/2 .

See Bercu, Gassiat and Rio (2002), Giné, Koltchinskii and Wellner (2003), Giné and
Koltchinskii (2006) and Maurer and Pontil (2009) for more material on concentration
for self-normalized empirical processes.

Exercise 12.3 (vapnik-chervonenkis inequality for relative deviation.) Con-
sider the notation introduced in Exercise 12.1. Prove that for all ε > 0,

P

{
sup
A∈C

P (A)− Pn(A)√
P (A)

≥ 2ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e−nε

2/2 .

Hint: use a symmetrization of the tail probabilities, as in Exercise 12.1, to show that

P

{
sup
A∈C

P (A)− Pn(A)√
P (A)

≥ 2ε

}
≤ 2P

{
sup
A∈C

P ′n(A)− Pn(A)√
(Pn(A) + P ′n(A))/2

≥ ε

}
.

(See Vapnik and Chervonenkis (1974) and also Anthony and Shawe-Taylor (1993),Haus-
sler (1992) and Bartlett and Lugosi (1999).)

Exercise 12.4 (vapnik-chervonenkis inequality for relative deviation, con-
tinued.) Prove that for all ε > 0,

P

{
sup
A∈C

Pn(A)− P (A)√
Pn(A)

≥ 2ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e−nε

2/2 .

Hint: See Exercise 12.3. See Vapnik and Chervonenkis (1974), Anthony and Shawe-
Taylor (1993), Haussler (1992), Bartlett and Lugosi (1999).
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Exercise 12.5 (sub-gamma summands.) Let (αi,s) be a collection of real numbers
indexed by i = 1, . . . , n and let s ∈ T be such that |αi,s| ≤ 1 for all i and s. Let
X1, . . . , Xn be independent centered random variables such that for all integers q ≥ 2,

E|Xi|q ≤ q!
cq−2σ2/n

2

for some constants c and σ (note that this implies that Xi is sub-gamma with variance
factor σ2/n and scale factor c). Let Z = sups∈T

∑
i≤n αi,sXi. Let

v = σ2 + 2EZ .

Prove that for λ ≥ 0,

logEeλ(Z−EZ) ≤ vλ2

2(1− cλ)

(see Bousquet 2002b, Theorem 2.12).

Exercise 12.6 Let Z and (Zi)i≤n be defined as in Theorem 12.5. Prove that

n∑
i=1

E
[
eλZ − eλZi

]
≤ EeλZ log

(
EeλZ

)
.

Hint: Use Theorem 6.6 and the self-bounding property
∑n
i=1(Z −Zi) ≤ Z, Rio (2002).

Exercise 12.7 Let Z and (Zi)i≤n be defined as in Theorem 12.5, that is, Z = sups∈T
∑n
j=1 Xj,s

and Zi = sups∈T
∑
j 6=iXj,s. Prove that

logEeλZ

n
≤ logEeλZn

n− 1
.

Hint: Use Theorem 6.6 as in Exercise 12.6, but replace Zi by Z̃i = Zi + lnE exp(λZ)−
lnE exp(λZi) (Rio, 2012). Note that it has been observed long time ago that EZ/n ≤
EZn/(n− 1) (Pollard, 1984).

Exercise 12.8 Letting θ(y) = exp(y)φ(−y)/(yφ(y) + y2/2), for y ≥ 0, prove that for
y ≥ 0 and x ≤ y,

exφ(−x) ≤ θ(y)

(
yφ(x) +

x2

2

)
.

Rio (2012) uses this inequality and Exercise 12.7 to refine Theorem 12.5, see Exercise
12.9.

Exercise 12.9 Using the notation of Theorem 12.5, letting E = EZ/n and ṽ = nσ2 +
(2− E)EZ, the aim of this exercise is to prove that, for λ > 0,

logEeλ(Z−EZ) ≤ ṽ

(1− E)2
φ((1− E)λ) .

Note first that for λ ≥ 0 satisfying λṽ ≥ 2n(1−E), the inequality follows from the fact

that Z ≤ n. Proceed as in the proof of Theorem 12.5, but replace Zi by Z̃i = Zi + E
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for each 1 ≤ i ≤ n. Let θ(y) = exp(y)φ(−y)/(yφ(y) + y2/2) and use Exercise 12.8 to
establish that for λ ≥ 0,

φ
(
−λ(Z − Z̃i)

)
eλZ

≤ λθ(λ(1− E))

(
(1− E)eλZ + eλZ̃i

[
λ

(
(Z − Z̃i)2

2
− (1− E)(Z − Z̃i)

)
− (1− E)

])
.

Follow the pattern of analysis of Theorem 11.10 and Exercise 11.17 to establish that
for λ ≥ 0,

E
[
φ
(
−λ(Z − Z̃i)

)
eλZ

]
≤ λθ(λ(1− E))E

[
(1− E)eλZ + eλZ̃i

(
λṽ

2n
− (1− E)

)]
.

Henceforth, assume 0 ≤ λṽ/2n ≤ (1− E). Use Exercise 12.7, to establish

EeλZ̃i
(
λṽ

2n
− (1− E)

)
≤
(
λṽ

2n
− (1− E)

)
E
[
eλZ

](
1− 1

n
logEeλ(Z−EZ)

)
,

and that

Ent(eλZ)

EeλZ
≤ nλθ(λ(1− E))

(
(1− E) +

(
λṽ

2n
− (1− E)

)(
1− 1

n
logEeλ(Z−EZ)

))
.

Letting G(λ) = logEeλ(Z−EZ), prove that for 0 ≤ λ ≤ 2n(1 − E)/ṽ, G satisfies the
differential inequality

λG′(λ)−G(λ) ≤ λθ(λ(1− E))

(
(1− E)G(λ) +

λṽ

2

)
.

Solve the differential inequality. Hint: θ(x) is the derivative of log((φ(t) + t/2)/t).

Exercise 12.10 (a sub-optimal bennett-type inequality.) Recall the notation of
Theorem 12.5. Prove that for all λ > 0,

logEeλ(Z−EZ) ≤ vλ
(
eλ − 1

)
/2 .

Hint: Define Zi, ŝi as in the proof of Theorem 12.5. Starting from Theorem 6.6, use
Exercise 12.6 to establish

Ent(eλZ)

≤ λEeλZ logEeλZ +

n∑
i=1

E
[
eλZiE(i)

[
eλXi,ŝiφ(−λXi,ŝi)− φ(λXi,ŝi)(λXi,ŝi)+

]]
.

Use the fact that exφ(−x) − x+φ(x) ≤ x2/2 for x ∈ R in order to conclude. (See Rio
(2001, 2002).)

Exercise 12.11 (sums of independent positive semi-definite matrices.) Let
X1, . . . , Xn be independent random positive semi-definite d× d matrices. Assume that
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for all i ≤ n, the operator norm of Xi satisfies ‖Xi‖ ≤ a almost surely. Let Z =
‖
∑n
i=1 Xi‖. Prove that

V ar(Z) ≤ aEZ ,
and that for all λ ∈ R,

logEeλ(Z−EZ) ≤ (EZ/a)φ(aλ) .

Hint: use the fact that ‖
∑n
i=1 Xi‖ is self-bounding. (See Tropp 2010a.)

Exercise 12.12 (spectrum of a gram matrix.) Let X1, . . . , Xn be independent
identically distributed random vectors taking values in Rd. The associated Gram matrix
G is an n×n matrix with entries Gi,j = 〈Xi, Xj〉. Let λ1 ≥ · · · ≥ λn be a non-increasing
rearrangement of the eigenvalues of G. Assume that the Xi are almost surely bounded.
Prove Bennett-like concentration inequalities for Z =

∑k
j=1 λj where 1 ≤ k ≤ d. Hint:

The nonzero eigenvalues of G are the same as the nonzero eigenvalues of
∑n
i=1 XiX

T
i .

Use the Courant-Fisher variational characterization of eigenvalues to check that Z is a
self-bounding function. Then use the results from Exercise 12.11. (See Shawe-Taylor.
and Cristianini 2004 and Zwald and Blanchard 2006.)

Exercise 12.13 Let X1, . . . , Xn be independent sub-gamma random variables with
expectation not larger than µ, variance factor smaller than v and scale factor smaller
than c (thus, for t ≥ 0, P {Xi ≥ µ+

√
2vt+ ct} ≤ e−t). Let M = max(X1, . . . , Xn).

Prove that EM2 is not essentially larger than the square of the upper-bound on
EM derived in Chapter 2 (Theorem 2.6), namely, for all λ > 0, letting Hn =

∑n
i=1 1/i,

prove that EM ≤ µ+
√

2vHn + cHn,

EM2 ≤
(
µ+
√

2vHn + cHn
)2

+
10v

logn
+
c2π2

3

and

logEeλM ≤ λ
(
µ+ 2

√
vHn + cHn

)
+

λ2(c+
√
v/Hn)2

2(1− λ(c+
√
v/Hn))

.

Hint: You may assume that there exist independent random variables Y1, . . . , Yn such
that Xi ≤ Yi and P {Yi ≥ µ+

√
2vt+ ct} = e−t for all 1 ≤ i ≤ n. In order to bound the

higher moments of max(Y1, . . . , Yn), combine Rényi’s representation of order statistics
(see de Haan and Ferreira (2006, Chapter 2)), the Efron-Stein inequality and Theorem
6.6. Check the tightness of the bounds by assuming that X1, . . . , Xn are indeed gamma-
distributed. This exercise shows that the right tail of the maximum of n independent
sub-gamma random variables with scale factor c is not substantially heavier than the
tail of a Gumbel distribution with scale c.

Exercise 12.14 Let X1, . . . , Xn be centered, independent sub-gamma random vari-
ables, with variance factor v and scale factor c (i.e., for t ≥ 0, P {Xi ≥

√
2vt + ct} ≤

e−t). Let τn =
√

2v logn + c logn. Let Z =
∑n
i=1 Xi1{|Xi|≥τn}. Prove that EZ ≤

τn + c+
√
v/(2 logn) and that for 0 ≤ λ ≤ τn/2,

logEeλZ ≤ eλτn + λτn − 1

1− λτn

and P {Z ≥ t} ≤ 2 exp(−t/(4τn)) for t ≥ 0. Hint: Use a quantile coupling argu-
ment: there exists a probability space with random variables X1, . . . , Xn as above
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and independent exponentially distributed random variables Y1, . . . , Yn with |Xi| ≤√
2vYi + cYi for all 1 ≤ i ≤ n, almost surely. Bound log (E exp (λZ)) by the quantity

n logE
[
exp

(
λ(
√

2vY1 + cY1)
)
1{Y1≥logn}

]
. This bound should be compared with those

from Exercise 12.13. For small values of λ, they are both of order λτn. This should not
come as a surprise. With overwhelming probability, Z coincides with max(X1, . . . , Xn),
as there is at most one index 1 ≤ i ≤ n such that |Xi| ≥ τn. This is a special case of
the setting of Lemma 11.16.

Exercise 12.15 (a corollary of bousquet’s inequality.) Using the notation of
Theorem 12.5, prove that for all 0 < η ≤ 1, δ > 0, and for all t ≥ 0,

P {Z ≥ (1 + η)EZ + t} ≤ exp

(
− t2

2(1 + δ)σ2

)
+ exp

(
− δt

2(1 + δ)(2/η + 1/3)

)
.

Hint: prove exp(−(1/u + v)) ≤ max(exp(−(λ/u)), exp(−(1 − λ)/v)) for u, v > 0 and
λ ∈ [0, 1]. (See Lemma 1 in Adamczak (2008).)

Exercise 12.16 (suprema of empirical processes with unbounded summands.)
Let X1, . . . , Xn be independent identically distributed random vectors. Assume that
(i) The empirical process is symmetric: for each s ∈ T , Xi,s and −Xi,s have the
same distribution; (ii) There exist independent random variables (Yi)i≤n such that
Yi ≥ maxs∈T |Xi,s| and Yi is sub-gamma with variance factor σ2 and scale factor c (by
Theorem 2.3, this entails V ar(Xi,s) ≤ 8σ2 + 32c2). Let Z = sups∈T

∑n
i=1 Xi,s and let

τn =
√

2σ2 logn + c logn. For each i ≤ n and s ∈ T , let Vi,s = Xi,s1{|Xi,s|<τn} and
Wi,s = Xi,s−Vi,s. Let Z1 = sups∈T

∑n
i=1 Vi,s and Z2 = sups∈T

∑n
i=1 Wi,s . Check that

EZ ≥ EZ1−EZ2, EZ2 ≤ τn(1 + 1/ logn), and P {Z2 ≥ t} ≤ 2 exp (−t/(8τn)). Check
also that for η > 0, ε > 0, t > 0,

P {Z ≥ (1 + η)EZ + t} ≤ P
{
Z1 ≥ (1 + η)EZ1 − (1 + η)EZ2 + (1− ε)t

}
+P {Z2 ≥ εt} .

Prove that for all 0 < δ < 1, for all t ≥ 0,

P {Z ≥ (1 + η)EZ + t} ≤ exp

(
− (1− 2ε)2t2

16(1 + δ)n(σ2 + 4c2)

)
+ exp

(
− δ(1− 2ε)t

2(1 + δ)κτn

)
+ 2 exp

(
− εt

8τn

)
.

Hint: Use the results of Exercises 12.14 and 12.15. Note that the last bound is trivial
if εt ≤ 4τn. This truncation-and-separation approach was popularized by Hoffmann-
Jørgensen (1974). Chapter 6 of Ledoux and Talagrand (1991) describes the interplay
between this approach and concentration of measure. de la Peña and Giné (1999),
Giné, Lata la and Zinn (2000), Adamczak (2008), and Mendelson (2010) describe further
advances in this direction. This exercise is inspired by Adamczak (2008) who describes
more general results and applications.
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THE EXPECTED VALUE OF SUPREMA OF EMPIRICAL
PROCESSES

In Chapters 11 and 12 we studied deviations of suprema of empirical processes
around their expected values and obtained useful, often tight concentration in-
equalities. A remarkable feature of these inequalities is that a lot can be said
about concentration properties without knowing what the expected values are.
Bounding the expected value of the supremum of an empirical process is a cen-
tral object of the study of empirical processes and the purpose of this chapter is
to present elements of this rich theory. Interestingly, concentration inequalities
provide an important tool in deriving tight upper bounds for such expectations,
as pointed out below.

We have already faced simple situations when concentration inequalities help
derive upper bounds for suprema of random variables; recall the maximal in-
equalities of Section 2.5 that, in fact, serve as the basis of some of the arguments
to follow.

In Section 13.1 we discuss the perhaps most important basic technique for
obtaining sharp upper bounds for suprema of empirical processes, the so-called
chaining argument (Lemma 13.1). Chaining bounds relate the expected value
of the supremum of an empirical process with metric properties of the set in-
dexing the empirical process. Such inequalities proved successful in many areas
ranging from the general theory of stochastic processes to statistics. The chaining
arguments we present here are not always the sharpest possible and more sophis-
ticated arguments, such as the so-called “generic chaining” approach, sometimes
give more accurate results. However, chaining still provides simple and useful
answers in many applications. Perhaps the best known bound obtained using
classical chaining is Dudley’s entropy integral bound for the expectation of the
supremum of Gaussian processes (see Corollary 13.2 below). In Section 13.2 we
present Sudakov’s lower bound for the expected value of the supremum of Gaus-
sian processes which may be regarded as a partial converse to Dudley’s entropy
integral upper bound.

The rest of this chapter describes examples in which chaining and concentra-
tion inequalities interact.

Section 13.3 deals with empirical processes indexed by vc-classes. This ap-
plication does not fit exactly in the framework of Lemma 13.1. Nevertheless,
supplementing chaining with symmetrization (Lemma 11.4) paves the way to
sharp bounds.
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Section 13.4 and Section 13.5 revisit Nemirovski’s inequality already in-
vestigated in Section 11.2. While in Section 11.2, we consider E‖Sn‖2 where
Sn =

∑n
i=1Xi with Xi independent random vectors with bounded components,

in Section 13.4, we are interested in sums of random matrices endowed with the
operator norm. The main result of Section 13.4 is Rudelson’s inequality that
establishes an upper bound for the expected operator norm of Rademacher and
Gaussian sums of symmetric matrices.

Section 13.6 takes one step further the analysis of the Johnson-Lindenstrauss
lemma discussed in Sections 2.9 and 5.6. The Klartag-Mendelson theorem pre-
sented here describes sufficient conditions on the metric properties of a general
set that guarantee that a random projection of the set to a low-dimensional
subspace is an approximate isometry, with high probability.

In Section 13.7 Bousquet’s inequality (Theorem 12.5) is used in an essential
way with techniques called ‘‘peeling (or slicing) and re-weighting” to obtain
bounds for normalized empirical processes.

In Section 13.8, Theorem 13.19 is put to work. It allows us to derive an
approximate isometry property of the random mapping L2(P )→ L2(Pn).

Finally, in Section 13.9 we present an application in which sharp risk bounds
are obtained for a classification problem in statistical learning theory.

13.1 Classical chaining

In this section we describe the basic chaining argument. In the simplest version
of chaining, one discretizes the set T indexing the stochastic process {Xt : t ∈ T }
and the maximal value supt∈T Xt is approximated by maxima over successively
refining discretizations. To make this formal, we introduce the notion of δ-nets.

Let (T , d) be a totally bounded pseudo-metric space and let δ > 0. A δ-net is
a finite set Tδ ⊂ T with maximal cardinality such that for all s, t ∈ Tδ with s 6= t,
one has d(s, t) > δ (i.e., every pair of distinct elements of T is δ-separated).

Let B(t, δ) denote the closed ball of radius δ centered at t. Since Tδ has
maximal cardinality, the collection of closed balls with radius δ centered at the
points of Tδ covers T , that is,

T ⊆
⋃

t∈Tδ
B(t, δ) .

Note that the cardinality N (δ, T ) of a δ-net Tδ coincides with the maximal
number of disjoint closed balls of radius δ/2 that can be packed into T . N (δ, T )
is called the δ-packing number of T .

A proper δ-covering of T is a finite set Tδ ⊂ T such that

T ⊆
⋃

x∈Tδ
B(x, δ) .

The minimal cardinality of any δ-covering is denoted by N ′(δ, T ). It is called the
δ-covering number of T .
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Packing and covering numbers are closely related as one always has

N (2δ, T ) ≤ N ′ (δ, T ) ≤ N (δ, T ) .

The second inequality follows by the argument above and the first may also be
seen easily. These quantities reflect the “size” or “massiveness” of the totally
bounded set T .

The δ-entropy number H(δ, T ) is defined as the logarithm of the δ-packing
number:

H(δ, T ) = logN(δ, T ) .

The function H(·, T ) is called the metric entropy of T .
The next lemma is at the core of the chaining argument. To avoid worrying

about measurability issues, we assume that T is a finite set. One may extend
all results of this chapter to processes indexed by separable metric spaces by
standard arguments that we do not detail here.

Lemma 13.1 Let T be a finite pseudometric space and let (Xt)t∈T be a collec-
tion of random variables such that for some constants a, v, c > 0,

logEeλ(Xt−Xt′ ) ≤ aλd(t, t′) +
vλ2d2(t, t′)

2 (1− cλd(t, t′))

for all t, t′ ∈ T and all 0 < λ < (cd(t, t′))−1
. Then, for any t0 ∈ T ,

E

[
sup
t∈T

Xt −Xt0

]
≤ 3aδ + 12

√
v

∫ δ/2

0

√
H (u, T )du+ 12c

∫ δ/2

0

H (u, T ) du

where δ = supt∈T d(t, t0).

Proof For any integer j, let δj = δ2−j and let Tj be a δj-net of T . By the
definition of the metric entropy, for any integer j we can define a mapping Πj :
T → Tj such that

d (t,Πj(t)) ≤ δj for all t ∈ T .
Since T is finite, there exists a positive integer J such that for all t ∈ T ,

Xt = XΠ0(t) +

J∑

j=0

(
XΠj+1(t) −XΠj(t)

)
.

Moreover, by the definition of δ, we may assume that T0 = {t0}, so Π0(t) = t0
and therefore

E

[
sup
t∈T

Xt −Xt0

]
≤

J∑

j=0

E

[
sup
t∈T

XΠj+1(t) −XΠj(t)

]
.

Now observe that for every integer j,
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|{(Πj(t),Πj+1(t)) : t ∈ T }| ≤ e2H(δj+1,T )

and that by the triangle inequality, for any t ∈ T ,

d (Πj(t),Πj+1(t)) ≤ 3δj+1 .

Hence, by the maximal inequality of Corollary 2.6,

E

[
sup
t∈T

XΠj+1(t) −XΠj(t)

]

≤ 3

(
aδj+1 + 2δj+1

√
vH(δj+1, T ) + 2cδj+1H(δj+1, T )

)
.

Hence, summing over j,

E

[
sup
t∈T

Xt −Xt0

]
≤ 3a

J+1∑

j=1

δj + 6

J+1∑

j=1

δj

(√
vH(δj , T ) + cH(δj , T )

)

≤ 3aδ + 12
√
v

∫ δ/2

0

√
H(u, T )du+ 12c

∫ δ/2

0

H(u, T )du

where at the last step we used the fact that metric entropy H(u, T ) is nonin-
creasing as a function of u. 2

Letting a = c = 0, Lemma 13.1 allows us to recover Dudley’s classical bound
for suprema of centered processes with sub-Gaussian increments.

Corollary 13.2 (dudley’s entropy integral.) Let T be a finite pseudomet-
ric space and let (Xt)t∈T be a collection of random variables such that

logEeλ(Xt−Xt′ ) ≤ λ2d2 (t, t′)
2

for all t, t′ ∈ T and all λ > 0. Then for any t0 ∈ T ,

E

[
sup
t∈T

Xt −Xt0

]
≤ 12

∫ δ/2

0

√
H(u, T )du ,

where δ = supt∈T d(t, t0).

This entropic bound is often tight, though in some situations it fails to give
sharp bounds (see Exercises 13.4, 13.5). Note that it also provides an upper
bound for suprema of Rademacher processes: if Z = supt∈T

∑n
i=1 αi,tεi where

the εi are independent Rademacher variables, then the condition of Corollary
13.2 is satisfied with d2(t, t′) =

∑n
i=1(αi,t − αi,t′)2.

Chaining is by no means the only possible technique for obtaining upper
bounds for the expected supremum of empirical processes. In fact, chaining does
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not always lead to sharp bounds and may often be bypassed by exploiting the
special structure of the problem at hand. In the section of exercises several such
cases are described.

For an example in which Lemma 13.1 fails to provide the best bounds, con-
sider a Gaussian chaos of order 2 defined as follows: Let X = (X1, . . . , Xn) be
a vector of independent standard normal random variables and let T be a finite
collection of symmetric matrices A = (ai,j)n×n with ai,i = 0 for i = 1, . . . , n.
Then

Z = sup
A∈T

XTAX

is the supremum of a Gaussian chaos process indexed by T . From the analysis
of Example 2.12, we get that for any A,B ∈ T ,

logEeλ(XTAX−XTBX) ≤ λ2‖A−B‖2hs

1− 2λ‖A−B‖ .

where ‖A‖hs =
(∑n

i=1 µ
2
i

)1/2
is the Hilbert-Schmidt norm of the matrix A (with

eigenvalues µ1, . . . , µn) and ‖A‖ = maxi |µi| is the operator norm.
Let Hhs(δ, T ) denote the δ-entropy of T with respect to the Hilbert-Schmidt

norm, and let Hop(δ, T ) denote the δ-entropy of T with respect to the operator
norm. Let δhs and δop be the diameters of T under the Hilbert-Schmidt and the
operator norms. Since ‖A‖ ≤ ‖A‖hs, we may invoke Lemma 13.1 to establish the
bound

EZ ≤ 12

∫ δhs/2

0

(√
2Hhs(u, T ) + 2Hhs(u, T )

)
du .

However, this upper bound may be improved by a technique called “generic
chaining” to

EZ ≤ κ
(∫ δhs/2

0

√
2Hhs(u, T )du+

∫ δop/2

0

2Hop(u, T )du

)

where κ > 0 is a universal constant. The proof of this bound is left as a guided
exercise (Exercise 13.10). In Section 13.3 we discuss another example in which
raw chaining gives suboptimal bounds, though with a simple additional trick one
may obtain much tighter bounds.

Note that even in the case of linear Gaussian processes, chaining may not
give optimal results. An example is when the process is indexed by an ellipsoid.
See Exercises 13.5, 13.19 and 13.20 for some details.

13.2 Lower bounds for Gaussian processes

In this section we describe lower bounds for the expected value of the supre-
mum of a Gaussian process. We start with Slepian’s lemma, a classical result
that relates the maxima of two Gaussian vectors. This result is at the basis of
Sudakov’s lower bound, a counterpart of Corollary 13.2 for Gaussian processes.
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Theorem 13.3 (slepian’s lemma.) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
be Gaussian random vectors with EXi = EYi for all i = 1, . . . , n. Let δXi,j =

E[(Xi −Xj)
2] and δYi,j = E[(Yi − Yj)2] for all i, j ∈ {1, . . . , n}. If δXi,j ≤ δYi,j for

all i, j ∈ {1, . . . , n}, then

E max
i=1,...,n

Xi ≤ E max
i=1,...,n

Yi .

If |δXi,j − δYi,j | ≤ ε for all i, j ∈ {1, . . . , n}, then

∣∣∣∣E max
i=1,...,n

Xi −E max
i=1,...,n

Yi

∣∣∣∣ ≤
√
ε log n .

Note that by taking Y = 0, we recover the inequality for the expected
maximum of n Gaussian random variables derived in Section 2.5. While the
maximal inequality holds for sub-Gaussian variables, indexsubjectSlepian’s lem-
maSlepian’s lemma uses the Gaussian property in an essential way.

The proof crucially uses the following property of Gaussian vectors: If F :
Rn → R is continuously differentiable with moderate growth in the sense that
for any a > 0, lim‖x‖→∞ f(x)e−a‖x‖

2

= 0 and X = (X1, . . . , Xd) is a centered
Gaussian vector, then for any i = 1, . . . , n,

E [XiF (X)] =

n∑

j=1

E[XiXj ]E
∂F

∂xj
(X) ,

see Exercise 13.3. If F = ∂h/∂xi, this integration-by-parts formula can be rewrit-
ten as

E
[
∇h(X)TX

]
=

n∑

i=1

E

[
Xi

∂h

∂xi
(X)

]

=

n∑

i=1

n∑

j=1

E[XiXj ]E
∂2h

∂xi∂xj
(X)

= trace
(
E[XXT ]E∇2h(X)

)
.

Proof Without loss of generality, we may assume that X and Y are indepen-
dent. Let λ > 0 and let f : Rn → R be defined as

f(x1, . . . , xn) =
1

λ
log

(
n∑

i=1

eλxi

)
.

Let X̃i = Xi−EXi and Ỹi = Yi−EYi for i = 1, . . . , n. Introduce the covariance
matrices σX and σY (σXi,j = E[X̃iX̃j ] and σYi,j = E[ỸiỸj ] for 1 ≤ i, j ≤ n). For

0 ≤ t ≤ 1, define Zt = (Zt,1, . . . , Zt,n)T as a random vector with components

Zt,i = X̃i

√
1− t+ Ỹi

√
t+ EXi .
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The function h(t) = Ef(Zt) defined for t ∈ [0, 1] is differentiable with derivative

h′(t) = E

[
∇f(Zt)

T

(
Ỹ

2
√
t
− X̃

2
√

1− t

)]
.

As X̃ and Ỹ are independent, working conditionally on X̃ = x̃, using the
integration-by-parts formula with respect to the Gaussian vector Ỹ leads to

E

[
∇f

(
x̃
√

1− t+ Ỹ
√
t+ EX

)T Ỹ

2
√
t

]

=
1

2
√
t
trace

(
σYE

[√
t∇2f

(
x̃
√

1− t+ Ỹ
√
t+ EX

)])

=
1

2
trace

(
σYE

[
∇2f

(
x̃
√

1− t+ Ỹ
√
t+ EX

)])
.

Taking expectation with respect to X̃ and proceeding in a similar way to trans-

form E
[
∇f(Zt)

T X̃
2
√

1−t

]
, we get

h′(t) =
1

2
E
[
trace

(
∇2f(Zt)(σ

Y − σX)
)]
.

Let p(z) = ∇f(z). Then straightforward calculation shows that the Hessian
of f may be written as

∇2f(z) = λ diag (p(z))− λp(z)p(z)T .
As
∑n
i=1 pi(z) = 1,

trace
(
diag (p(z)) (σY − σX)

)
=

n∑

i=1

pi(z)
(
σYi,i − σXi,i

)

=
1

2

∑

1≤i,j≤d
pi(z)pj(z)

(
σYi,i − σXi,i + σYjj − σXj,j

)
.

Substituting the right-hand side into the expansion of trace
(
∇2f(z)(σY − σX)

)

leads to

trace
(
∇2f(z)

(
σY − σX

))

=
λ

2

∑

1≤i,j≤n
pi(z)pj(z)

(
σYi,i − σXi,i + σYjj − σXj,j − 2σYi,j + 2σXi,j

)

=
λ

2

∑

1≤i,j≤n
pi(z)pj(z)

(
δYi,j − δXi,j

)

=
λ

2
trace

(
p(z)p(z)T

(
δY − δX

))
.

If δY − δX ≥ 0, then h′(t) ≥ 0 and h(1) = Ef(Y ) ≥ Ef(X) = h(0). This holds
for all choices of λ ≥ 0.
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Since

max
i=1,...,n

xi ≤
1

λ
log

(
n∑

i=1

eλxi

)
≤ 1

λ
log n+ max

i=1,...,n
xi ,

the first statement of the theorem follows by taking λ→∞.
On the other hand, if 0 ≤

∣∣δYi,j − δXi,j
∣∣ ≤ ε for all 1 ≤ i, j ≤ n, then

|Ef(Y )−Ef(X)| =
∣∣∣∣
∫ 1

0

h′(s)ds

∣∣∣∣

≤ λ

4

∫ 1

0

E
∣∣trace

(
p(Zs)p(Zs)

T
(
δY − δX

))∣∣ ds

≤ λ

4
ε .

Combining this with the inequalities linking f(x) and maxi=1,...,n xi, we have
∣∣∣∣E max

i=1,...,n
Yi −E max

i=1,...,n
Xi

∣∣∣∣ ≤
λε

4
+

log n

λ
.

Optimizing over λ, we obtain
∣∣∣∣E max

i=1,...,n
Yi −E max

i=1,...,n
Xi

∣∣∣∣ ≤
√
ε log n .

2

We are now prepared to prove a lower bound that complements Dudley’s
bound (Corollary 13.2):

Theorem 13.4 (sudakov’s lower bound.) Let T be a finite set and let
(Xt)t∈T be a Gaussian vector with EXt = 0. Then

E sup
t∈T

Xt ≥
1

2
min
t 6=t′∈T

√
E
[
(Xt −Xt′)

2
]

log |T | .

Proof Let (Zt)t∈T be independent standard Gaussian random variables. Let

δ = min
t6=t′

(
E
[
(Xt −Xt′)

2
])1/2

and

Yt =
δ√
2
Zt, for every t ∈ T .

As for every t 6= t′ ∈ T , E
[
(Yt − Yt′)2

]
= δ2 ≤ E

[
(Xt −Xt′)

2
]
, by Theo-

rem 13.3,
δE sup

t∈T
Zt ≤

√
2E sup

t∈T
Xt .

On the other hand,

E sup
t∈T

Zt ≥
1√
2

√
log |T | .

The proof of this last statement is left as exercise (Exercise 13.6). 2
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√
H(ε, T )

ε

Fig. 13.1. Dudley’s entropy bound is proportional to the area under the curve√
H(ε, T ), while Sudakov’s lower bound is the area of the largest rectangle

that can be fitted under the same curve.

Sudakov’s lower bound may be rewritten in terms of metric entropy as follows.
Let (Xt)t∈T be centered Gaussian random variables indexed by the finite set T .
Let d be the pseudo-metric on T defined by d(t, t′)2 = E[(Xt −Xt′)

2]. Then by
Theorem 13.4, for all ε > 0 smaller than the diameter of T ,

E sup
t∈T

Xt ≥
1

2
ε
√
H(ε, T ) .

Exercise 13.4 provides an example where Sudakov’s lower bound is tight while
Dudley’s entropy integral upper bound is not. Note that Slepian’s lemma may
also be used to derive upper bounds for the expected value of the supremum of
some Gaussian processes such as the largest eigenvalue of some random matrices
(see Exercises 13.7 and 13.8).

13.3 Chaining and VC-classes

In this section we are concerned with uniform deviations of relative frequencies
from the corresponding probabilities. To be more precise, let X be some set en-
dowed with a probability measure P and let X1, . . . , Xn be independent random
variables taking values in X , distributed according to P .

Let A = {At : t ∈ T } denote a collection of (measurable) subsets of X
indexed by a (finite) set T . We are interested in uniform deviations of empirical
averages, that is, in the behavior of the random variable

sup
t∈T

1

n

n∑

i=1

(1{Xi∈At} − P (At)) .

For t ∈ T , denote Zt = n−1/2
∑n
i=1(1{Xi∈At} − P (At)) and
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Z = sup
t∈T

Zt .

We may introduce a pseudo-metric d on T defined by

d(t, t′) =
√
P {1{Xi∈At} 6= 1{Xi∈At′}} .

Then for all t, t′ ∈ T , V ar(Zt − Zt′) ≤ d2(t, t′) and it follows immediately from
Bernstein’s inequality that

logEeλ(Zt−Zt′ ) ≤ λ2d2(t, t′)
2(1− λ/√n)

.

This bound may be used to applly Lemma 13.1. However, this simple argument
may be improved by a simple symmetrization argument that we outline next.

A key ingredient of this approach is the notion of universal entropy. For δ > 0,
and a probability measure Q on X , let N(δ,A, Q) denote the maximal cardinality
N of a subset {t1, . . . , tN} of the index set T such that Q(Ati4Atj ) > δ2 for
every i 6= j (here A4B is the symmetric difference of A and B). The universal
δ-metric entropy (also called Koltchinskii-Pollard entropy) of A is defined by

H(δ,A) = sup
Q

logN(δ,A, Q)

where the supremum is taken over the set of all probability measures Q concen-
trated on some finite subset of X .

Lemma 13.5 Let A = {At : t ∈ T } be a countable class of measurable subsets
of X and let X1, . . . , Xn be independent random variables taking values in X ,
with common distribution P . Assume that for some σ > 0,

P (At) ≤ σ2 for every t ∈ T .

Let

Z = n−1/2 sup
t∈T

n∑

i=1

(1{Xi∈At} − P (At))

and denote Dσ = 6
∑∞
j=0 2−j

√
H
(
2−(j+1)σ,A

)
. If σ2 ≥ D2

σ/(5n), then

EZ ≤ 3σDσ .

The same upper bound is valid for Z− = n−1/2 supt∈T
∑n
i=1(P (At)−1{Xi∈At}).

Proof By the symmetrization inequalities of Lemma 11.4,

E sup
t∈T

n∑

i=1

(1{Xi∈At} − P (At))

≤ 2E

[
E

[
sup
t∈T

n∑

i=1

εi1{Xi∈At}

∣∣∣∣X1, . . . , Xn

]]
,
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where ε1, . . . , εn are independent Rademacher variables. Define the random vari-
able

δ2
n = max

(
sup
t∈T

1

n

n∑

i=1

1{Xi∈At}, σ
2

)
.

Clearly, δ2
n ≤ σ2 + Z/

√
n. As a Rademacher sum is sub-Gaussian, we may use

Lemma 13.1 to obtain

EZ≤6E


√δ2

n

∞∑

j=0

2−j
√
H (2−j−1δn,A)


 ≤ 6

√
Eδ2

n

∞∑

j=0

2−j
√
H
(
2−(j+1)σ,A

)
,

where we used the fact that H(δ,A) is a non-increasing function of δ. Thus, have

EZ ≤ Dσ

√
σ2 + EZ/

√
n .

Solving this quadratic inequality for EZ, we get

EZ ≤ D2
σ

2
√
n

(
1 +

√
1 +

4σ2n

D2
σ

)
.

When σ2 ≥ D2
σ/(5n), the right-hand side may be bounded further by 3σDσ, as

announced.
To bound EZ−, we may use the inequality just obtained: by the same argu-

ment as above,

EZ− ≤ Dσ

√
σ2 + EZ/

√
n .

Under the condition σ2 ≥ D2
σ/(5n), EZ/

√
n ≤ 3σDσ/

√
n ≤ 3

√
5σ2, and there-

fore

EZ− ≤ σDσ

√
1 + 3

√
5 ≤ 3σDσ .

2

The universal entropy appearing in the bound of Lemma 13.5 may be esti-
mated in an elegant way in terms of the combinatorial notion of the vc dimension
of the class A that we already introduced in Section 3.3. Recall the definition:
for an vector x = (x1, . . . , xn) of n points of X , the trace of A on x is defined by

tr(x) = {A ∩ {x1, . . . , xn} : A ∈ A} .

The vc dimension D(x) of A (with respect to x) is the cardinality k of the largest
subset {xi1 , . . . , xik} of {x1, . . . , xn} for which 2k = |tr(xi1 , . . . , xik)|. A is called

a vc class if V
def
= supn≥1 supx∈Xn D(x) < ∞. V is called the vc dimension of

A.
The next lemma shows how the vc dimension controls the universal entropy.
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Lemma 13.6 (haussler’s vc bound for universal entropy.) Let A de-
note a vc class of subsets of X with vc dimension V . For every positive δ > 0,

H(δ,A) ≤ 2V log(e/δ) + log(e(V + 1)) ≤ 2V log(e2/δ) .

The proof of this lemma, which we do not reproduce here, relies on deli-
cate combinatorial properties of the trace of a vc class on a finite sample. A
slightly weaker but much easier version is left to the reader as a guided exercise
Exercise 13.11.

In Exercises 13.16 and 13.15, other ways of bounding the universal entropy
are shown. Combining Lemma 13.5 and Haussler’s bound, we immediately obtain
the following.

Theorem 13.7 Recall the notation of Lemma 13.5. Assume that A is a vc class
with vc dimension V . Suppose supt∈T P (At) ≤ σ2. Then

max
(
EZ,EZ−

)
≤ 72σ

√
V log

4e2

σ

provided that σ ≥ 24
√
V log (4e2/σ) /(5n).

Proof By Haussler’s bound, the quantity Dσ introduced in Lemma 13.5 may
be bounded by

Dσ ≤ 24

√
V log

4e2

σ
.

2

Note that the upper bound depends on the sampling distribution P only
through the condition σ2 ≥ supt∈T P (At). If we are ready to upper bound σ
by 1, we obtain a distribution-free bound.

Exercise 13.18 provides an example in which the factor
√

log(e/σ) in the
upper bound can be dropped. Exercises 13.15 and 13.16 describe possible gener-
alizations and refinements of Theorem 13.7.

13.4 Gaussian and Rademacher averages of symmetric matrices

In this section we study norms of certain random matrices. More precisely, we
consider Gaussian and Rademacher sums of symmetric matrices and investigate
the behavior of their operator norm. Since such and operator norm may be
considered as the supremum of a stochastic process, one may be tempted to
use chaining. However, it is possible to obtain much sharper bounds using the
specific features of the process. Recall that the operator norm of a symmetric
d× d matrix M is defined by ‖M‖ = supu∈Rd:‖u‖2≤1 |uTMu|.
Theorem 13.8 (rudelson’s inequality.) Let A1, . . . , An be symmetric d×d
matrices. Let X1, . . . , Xn be independent standard Gaussian random variables.
Let Z = ‖∑n

i=1XiAi‖. If σ2 =
∥∥∑n

i=1A
2
i

∥∥, then

V ar(Z) ≤ σ2 and EZ ≤
√

2 log(2d)σ .
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The theorem also remains valid if the Gaussian coefficients X1, . . . , Xn are
replaced by independent Rademacher random variables. The details of the easy
modification are left to the reader.

Recall that any symmetric matrix A can be diagonalized in an orthogonal
basis, that is, there exists an orthogonal matrix O and diagonal matrix D with
real diagonal coefficients such that A = ODOT . Then if f is a real-valued func-
tion defined on an interval that contains all eigenvalues of A, we may define the
matrix f(A) as f(A) = Of(D)OT , where f(D) is the diagonal matrix computed
by applying f to each diagonal coefficient of D.

The proof of the bound for the variance is an easy corollary of the Gaussian
Poincaré inequality. The non-trivial part is the bound for the expectation. A key
ingredient of the proof of this second bound is the Golden-Thompson inequality
(see Exercise 13.29) which implies that for symmetric matrices A and B,

trace (exp(A+B)) ≤ trace (exp(A) exp(B)) .

This inequality allows us to bound the moment generating function of the norm
of
∑n
i=1XiAi and proceed with an argument similar to the one used in Section

2.5 to bound the expected maximum of sub-Gaussian random variables.

Proof The bound for the variance follows from the Gaussian Poincaré inequal-
ity which implies that the variance of the maximum of centered Gaussian vari-
ables is always bounded by the maximum of the variances, see Exercise 3.24 (and
also Theorem 5.8). But Z may be represented as the supremum of a Gaussian
process, since

Z =

∥∥∥∥∥
n∑

i=1

XiAi

∥∥∥∥∥ = sup
u∈Rd:‖u‖2≤1

∣∣∣∣∣u
T

n∑

i=1

XiAiu

∣∣∣∣∣ .

This implies

V ar(Z) ≤ sup
u∈Rd:‖u‖2≤1

V ar

(
n∑

i=1

Xiu
TAiu

)
= sup
u∈Rd:‖u‖2≤1

n∑

i=1

(
uTAiu

)2
.

Now, let Ai =
∑d
j=1 λi,jgi,jg

T
i,j where (gi,j)j=1,...,d is an orthonormal family of

eigenvectors of Ai and (λi,j)j=1,...,d is the sequence of corresponding eigenvalues.
For any u ∈ Rd with ‖u‖2 ≤ 1,
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n∑

i=1

(
uTAiu

)2
=

n∑

i=1




d∑

j=1

λi,j(u
T gi,j)

2




2

≤
n∑

i=1




d∑

j=1

λ2
i,j(u

T gi,j)
2




=

n∑

i=1

(
uTA2

iu
)

≤
∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥ ,

where the first inequality follows from Jensen’s inequality and the fact that∑d
j=1(uT gi,j)

2 = 1 as ‖u‖2 ≤ 1 and the vectors (gi,j)j=1,...,d form an orthonormal

basis of Rd. This proves the first inequality.
To prove the bound for the expected value, denote M =

∑n
i=1XiAi. The

basic idea is similar to the maximal inequality of Theorem 2.5. To obtain an upper
bound for E‖M‖, we bound the exponential of E‖M‖, via Jensen’s inequality,
by the moment generating function of ‖M‖. Let s > 0 be a parameter to be
optimized later. Then

esE‖M‖ ≤ Ees‖M‖ (by Jensen’s inequality)

= Eesmaxi=1,...,d |λi(M)|

= E max
i=1,...,d

max
(
esλi(M), e−sλi(M)

)

≤ 2E trace (exp(sM)) .

We now use the Golden-Thompson inequality to bound E trace (exp(sM)). To
this end, introduce the matrix D0 = s2

∑n
i=1A

2
i /2 and, recursively, Dj+1 =

Dj + sXj+1Aj+1− s2/2A2
j+1 for j = 1, . . . , n. Thus, Dn = sM . Note that, using

the fact that the Xi are standard Gaussian random variables,

E exp
(
sXjAj − s2A2

j/2
)

is the identity matrix. For every j = 1, . . . , n,
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E trace (exp(Dj+1)) = E trace
(
exp

(
Dj + sXj+1Aj+1 − s2A2

j+1/2
))

≤ E
[
trace (exp(Dj)) exp

(
sXj+1Aj+1 − s2A2

j+1/2
)]

(by the Golden-Thompson inequality)

= trace
(
E
[
exp(Dj) exp

(
sXj+1Aj+1 − s2A2

j+1/2
)])

(by linearity of the trace)

= trace
(
E exp(Dj)E exp

(
sXj+1Aj+1 − s2A2

j+1/2
))

(by independence)

= trace (E exp(Dj)])

= E trace (exp(Dj)) .

Combining these inequalities,

E trace (exp(sM)) = E trace (exp(Dn))

≤ E trace (exp(D0))

= trace

(
exp

(
s2

n∑

i=1

A2
i /2

))

≤ d exp

(
s2

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥ /2
)
.

Putting everything together, we have

exp (sE ‖M‖) ≤ 2d

(
exp

(
s2

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥ /2
))

= 2des
2σ2/2 .

Taking logarithms, dividing both sides by s, and optimizing over s leads to the
desired result. 2

We emphasize that once one has a good bound for the expected value of
‖∑n

i=1XiAi‖, it is easy to obtain bounds that hold with high probability. Indeed,
from Theorem 5.6 we get, without further work,

P
{
Z ≥ t+

√
2 log(2d)σ

}
≤ e−t2/(2σ2)

for all t > 0. Also, apart from the variance bound given in the theorem, we have
(V ar(Z))1/2 ≤ EZ by Exercise 5.17.

Equipped with Rudelson’s inequality it is easy to obtain a random-matrix
version of Theorem 11.2 where the `d∞ norm is replaced by the operator norm
for d× d matrices:



364 The expected value of suprema of empirical processes

Corollary 13.9 Let X1, . . . , Xn be independent random variables taking their
values in the space of d × d symmetric matrices such that they are symmet-
ric (i.e., −Xi has the same distribution as Xi). Let Sn =

∑
i=1Xi and Σ2 =

E‖∑n
i=1X

2
i ‖. Then

E
[
‖Sn‖2

]
≤ 2(1 + log(2d))Σ2 .

The proof parallels the proof Theorem 11.2, but Rudelson’s inequality replaces
Corollary 2.6 when there is a need to bound E [‖∑n

i=1 εiXi‖ | X1, . . . , Xn].

13.5 Variations of Nemirovski’s inequality

Just like in Section 11.2, we consider norms of sums of Rd-valued independent
random variables. But while Nemirovski’s inequality (Theorem 11.2) concerns
the `∞-norm, here we use chaining arguments to derive bounds for the `p norm
for p ≥ 1.

The setup is the following: let X1, . . . , Xn be independent random vectors in
Rd with EXi = 0 and let

Sn =

n∑

i=1

Xi .

In Section 11.2 obtained upper bounds for E‖Sn‖2∞. Here we deal with `p norms
and derive bounds for E‖Sn‖2p for p ≥ 1.

The key to our approach is to represent the norm as the supremum of an
empirical process. Indeed, if q = p/(p − 1) (with q = ∞ for p = 1) and Bq =
{x ∈ R : ‖x‖q ≤ 1} is the unit ball under the `q norm, then we may write

‖Sn‖p = sup
t∈Bq

n∑

i=1

〈t,Xi〉

where 〈x, y〉 denotes the inner product in Rd.
Based on this representation, it is natural to introduce the ‘‘weak variance”

Σ2
p = E sup

t∈Bq

n∑

i=1

〈t,Xi〉2 .

Then by Theorem 11.1, V ar(‖Sn‖p) ≤ 2Σ2
p. The next theorem shows that

E‖Sn‖2p may also be bounded in terms of the weak variance.

Theorem 13.10 Let X1, . . . , Xn be independent zero-mean random vectors in
Rd and let Sn =

∑n
i=1Xi. Then for all p ≥ 1,

E ‖Sn‖2p ≤ 578 dΣ2
p .

We need the following estimate of the metric entropy of unit balls whose
proof is left as an exercise (Exercise 13.22).
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Lemma 13.11 For all q ≥ 1 and for all u ∈ (0, 1], the metric entropy H(u,Bq)
of the unit ball Bq under the `q metric satisfies

H(u,Bq) ≤ d log

(
1 +

2

u

)
.

Proof of Theorem 13.10 Writing

E‖Sn‖2p = V ar(‖Sn‖p) + (E‖Sn‖p)2

and recalling that V ar(‖Sn‖p) ≤ 2Σ2
p, it suffices to bound E‖Sn‖p. We do this

by symmetrization, followed by chaining.
By the symmetrization inequalities of Lemma 11.4,

E‖Sn‖ ≤ 2E sup
t∈Bq

n∑

i=1

εi〈t,Xi〉 ,

where ε1, . . . , εn are independent Rademacher variables.
Working conditionally on the Xi, supt∈Bq

∑n
i=1 εi〈t,Xi〉 is the supremum

of a process indexed by Bq. This process has sub-Gaussian increments as the
following argument shows: by Hoeffding’s inequality, for all λ > 0 and t, t′ ∈ Bq,

E

[
exp

(
λ

n∑

i=1

εi〈t− t′, Xi〉
)∣∣∣X1, . . . , Xn

]

≤ exp

(
λ2

2

n∑

i=1

〈t− t′, Xi〉2
)

= exp

(
λ2

2
‖t− t′‖2q

n∑

i=1

〈
t− t′
‖t− t′‖q

, Xi

〉2
)

≤ exp

(
λ2

2
‖t− t′‖2q sup

t∈Bq

n∑

i=1

〈t,Xi〉2
)
.

Now we may use Dudley’s bound (Corollary 13.2), conditionally on X1, . . . , Xn,
to conclude that

E

[
sup
t∈Bq

n∑

i=1

εi〈t,Xi〉
∣∣∣X1, . . . , Xn

]
≤
(

sup
s∈Bq

n∑

i=1

〈s,Xi〉2
)1/2

12

∫ 1

0

√
H(u,Bq)du .

By Jensen’s inequality,

(E [‖Sn‖])2 ≤ 4


E



(

sup
s∈Bq

n∑

i=1

〈s,Xi〉2
)1/2

12

∫ 1

0

√
H (u,Bq)du






2

≤ 576 Σ2
p

(∫ 1

0

√
H(u,Bq)du

)2

.
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Combining this with the fact that V ar(‖Sn‖2p) ≤ 2Σ2
p,

E‖Sn‖2 ≤
(

2 + 576

(∫ 1

0

√
H (u,Bq)du

)2
)

Σ2
p

≤ Σ2
p

(
2 + 576

∫ 1

0

H (u,Bq)du

)
.

By Lemma 13.11, the entropy integral can be upper bounded by d log(33/22).
2

Recall that in the bound of Theorem 11.2 for the `∞ norm, the dependence of
the upper bound in d is only logarithmic. This suggests that the bound of The-
orem 13.10 may not be tight at least for large values of p. Further variations on
Nemirovski’s inequality for other finite dimensional normed spaces are described
in Exercises 13.23, 13.24, and 13.25.

13.6 Random projections of sparse and large sets

In this section we return to the Johnson-Lindenstrauss problem already studied
in Sections 2.9 and 5.6. First recall the setup: we consider A ⊂ RD where D is a
large positive integer. Suppose d < D (typically d� D) and define the random
map W : RD → Rd that assigns to each α = (α1, . . . , αD) ∈ RD the vector
W (α) = (1/

√
d) (W1(α), . . . ,Wd(α)) ∈ Rd with

Wi (α) =

D∑

j=1

αjXi,j

where Xi,1, . . . , Xi,d are independent copies of a random variable X satisfy-
ing EX = 0 and V ar(X) = 1. In this section we only consider when X is
either a standard Gaussian or a Rademacher random variable. The Johnson-
Lindenstrauss lemma (Theorem 2.13) states that if A is finite, then after ap-
plying the random projection W , the pairwise distances between elements of A
are preserved up to a factor 1 ± ε with high probability, if d is of the order of
ε−2 log |A|. As we already argued in Section 5.6, this result only depends on the
cardinality of A and it does not take the structure of the set A into account.
In particular, it is vacuous if A is an infinite set. There we extended the basic
Johnson-Lindenstrauss lemma to take the structure of the set A into account.
First we briefly recall this result.

The random map W is called an ε-isometry on A if

∣∣∣∣
‖W (α)−W (α′)‖2
‖α− α′‖2 − 1

∣∣∣∣ ≤ ε for all distinct α, α′ ∈ A.

Here ‖ · ‖ denotes the Euclidean norm. The set T of normalized differences of
elements of A plays a crucial role in the analysis:



Random projections of sparse and large sets 367

T =

{
a− a′
‖a− a′‖ , (a, a

′) ∈ A×A with a 6= a′
}
.

This set indexes the empirical processes whose suprema are in the focus of our
attention:

V = sup
α∈T

(
‖W (α)‖2 − 1

)
and V ′ = sup

α∈T

(
1− ‖W (α)‖2

)
.

In particular, Theorem 5.10 shows that when the quantity

∆ = d (max(EV,EV ′))
2

is small, then one may project to low-dimensional spaces without significantly
changing the metric structure of the set. More precisely, we showed that if
d ≥ 20(∆ + log(2/δ))ε−2, then the random map W is an ε-isometry on A with
probability at least 1− δ.

When A is finite, by Corollary 2.6, ∆ ≤ 32 log |A| as long as d ≥ log |A|. The
goal of this section is to obtain sharp bounds for ∆ taking the finer structure of
A into account. In particular, ∆ may be finite even when A is infinite. At first
sight, it might seem a routine task to relate ∆ with some notion of ”richness”
of the index set T . Indeed, the process d(‖W (α)‖2 − 1) and its opposite fit in
the scope of Lemma 13.1, see Exercise 13.26. However, one can do much better
by taking into account some specific features of the empirical processes under
consideration. Indeed, for all α ∈ T, ‖W (α)‖2 − 1 is centered and its variance
does not depend on α.

Note that Theorem 5.10 is stated for Gaussian random projections but a
minor modification of its proof reveals that it remains valid when the Xi,j are
Rademacher random variables. In the sequel we restrict our attention to these
cases.

A remarkable feature of the Johnson-Lindenstrauss lemma and Theorem 5.10
is that the dimension D of the set A does not play any role. Indeed, we could
have formulated Theorem 5.10 so as to accommodate separable Hilbert spaces.
The same remark goes for most of the rest of the section. However, for the ease
of exposition, we present the results in the finite-dimensional context.

In order to obtain sharper bounds for EV and EV ′ than one would get
by ordinary chaining, we use the following “splitting” argument. It is a key
ingredient in the proof of both Theorems 13.13 and 13.15 below.

Lemma 13.12 Let T ⊂ RD denote a finite set of vectors of unit Euclidean
norm. Let W : RD → Rd be the random linear map defined above. Let δ ∈ (0, 1)
and let Tδ be a δ-net of T . Let

DδT = {α− α′ : ‖α− α′‖ ≤ δ, α, α′ ∈ T} .

Let V and V ′ be defined as above. Then, for all θ > 0,
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EV ≤ (1 + θ)E sup
α∈Tδ

(
‖W (α)‖2 − 1

)
+

(
1 +

1

θ

)
E sup
α∈DδT

‖W (α)‖2 + θ ,

and for all θ ∈ (0, 1),

EV ′ ≤ (1− θ)E sup
α∈Tδ

(
1− ‖W (α)‖2

)
+

(
1

θ
− 1

)
E sup
α∈DδT

‖W (α)‖2 + θ .

Proof First notice that

V = sup
α∈T

(
‖W (α)‖2 − 1

)
=

(
sup
α∈T
‖W (α)‖

)2

− 1 .

Let Π : T → Tδ be such that for every α ∈ T , Πα is a nearest neighbor of α in
Tδ. Then

sup
α∈T
‖W (α)‖ ≤ sup

α∈Tδ
‖W (α)‖+ sup

α∈T
‖W (α−Πα)‖ .

As 2ab ≤ θa2 + b2/θ,

(
sup
α∈T
‖W (α)‖

)2

≤ (1 + θ)

(
sup
α∈Tδ

‖W (α)‖
)2

+

(
1 +

1

θ

)(
sup
α∈T
‖W (t−Πα)‖

)2

,

and therefore

V ≤ (1 + θ) sup
α∈Tδ

(
‖W (α)‖2 − 1

)
+

(
1 +

1

θ

)
sup

α∈DδT
‖W (α)‖2 + θ .

Taking expectations on both sides leads to desired result. The proof of the second
inequality is similar. 2

Before stating the main result of the section, we consider the easier but
important special case when A is the collection of k-sparse vectors in RD, that
is, vectors with at most k nonzero coordinates. Thus, the set A is the union of(
D
k

)
k-dimensional subspaces of RD. It is usually assumed that k � D.

Lemma 13.13 Consider the random projection W : RD → Rd defined above,
where the Xi,j are either standard Gaussian or Rademacher random variables.
Let A be the set of all k-sparse vectors in RD. If the unique solution ε∗ > 0 of
the equation

dε2 = 2k log

(
2eD

kε

)

is smaller than 1/2, then max (EV,EV ′) ≤ 16ε∗.
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Proof The index set T = {(a−a′)/‖a−a′‖ : a, a′ ∈ A} may be partitioned into(
D
2k

)
subsets defined by picking 2k coordinates among the D possible ones. An

ε∗-net can be constructed for each subset and the union Tε∗ of the
(
D
2k

)
ε∗-nets

has cardinality at most
(
D
2k

)
(1 + 2/ε∗)2k by Lemma 13.11.

The set Dε∗T , defined as in Lemma 13.12, enjoys the useful property that
Dε∗T ⊆ ε∗T , which implies

E sup
α∈Dε∗ (T )

‖W (α)‖2 ≤ ε2
∗E sup

α∈T
‖W (α)‖2 ≤ ε2

∗(1 + EV ) .

By Lemma 13.12, for any θ > 0,

EV ≤ (1 + θ)E sup
α∈Tε∗

(
‖W (α)‖2 − 1

)
+

(
1 +

1

θ

)
E sup
α∈Dε∗ (T )

‖W (α)‖2 + θ

≤ (1 + θ)E sup
α∈Tε∗

(
‖W (α)‖2 − 1

)
+

(
1 +

1

θ

)
ε∗

2(1 + EV ) + θ .

We choose θ = ε∗, so that (1 + 1/θ) ε2
∗ = ε∗(1 + ε∗) < 1. Rearranging, we have

EV ≤ 1

1− ε∗(1 + ε∗)

(
(1 + ε∗)E

[
sup
α∈Tε∗

(
‖W (α)‖2 − 1

)]
+ ε∗ (2 + ε∗)

)
.

Now supα∈Tε∗

(
‖W (α)‖2 − 1

)
is the maximum of at most

(
D
2k

)
(1 + 2/ε∗)2k sub-

gamma random variables with variance factor 2/d and scale factor 2/d. By Corol-
lary 2.6,

E sup
α∈Tε∗

(
‖W (α)‖2 − 1

)

≤
√

4
2k

d
log

(
eD

2k

(
1 +

2

ε∗

))
+

1

d
2k log

(
eD

2k

(
1 +

2

ε∗

))

≤
√

4
2k

d
log

(
2eD

kε∗

)
+

2k

d
log

(
2eD

kε∗

)
= 2ε∗ + ε2

∗ .

Combining the obtained bounds and using that ε∗ ≤ 1/2 leads to

EV ≤ 16ε∗ .

In order to upper bound EV ′, we use the second inequality in Lemma 13.12.
Choosing again θ = ε∗, and proceeding as in the proof of the upper bound for
EV ,

EV ′ ≤ (1− ε∗)E sup
α∈Tε∗

(
1− ‖W (α)‖2

)
+ ε∗ + ε∗(1 + EV )

≤ (1− ε∗)(2ε∗ + ε2
∗) + ε∗(2 + 16ε∗) ≤ 12ε∗ .

2
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Combining Theorem 5.10 and Lemma 13.13, we obtain the following, so-called
restricted isometry property of Gaussian and Rademacher random projections.
The remarkable feature is that when d is roughly of the order of k logD, then
the random projection preserves the metric structure of the set of all k-sparse
vectors.

Corollary 13.14 (restricted isometry property.) Consider the random
projection W : RD → Rd defined above, where the Xi,j are either standard Gaus-
sian or Rademacher random variables. Let A be the set of all k-sparse vectors in
RD. If the unique solution ε∗ > 0 of the equation

dε2 = 2k log

(
2eD

kε

)

is smaller than 1/2, then there exists a universal constant κ such that for every
ε, δ ∈ (0, 1), if d ≥ 20(162dε2

∗ + log(2/δ))ε−2, then the random map W is an
ε-isometry on A with probability at least 1− δ.

The main result of this section is the next theorem that gives general con-
ditions for a random projection to be an approximate isometry, in terms of the
metric entropy of the projected set A. It implies Corollary 13.14 but it is signif-
icantly more general.

Theorem 13.15 (klartag-mendelson theorem.) Let A ⊂ RD and consider
the random projection W : RD → Rd defined above, where the Xi,j are either
standard Gaussian or Rademacher random variables. Let T = {(a−a′)/‖a−a′‖ :
a, a′ ∈ A} and define

γ(T ) =

∫ 1

0

√
H(x, T )dx ,

where H(x, T ) is the x-entropy of T (with respect to the Euclidean distance).
There exists an absolute constant κ′′, such that for all ε, δ ∈ (0, 1) if d ≥
κ′′ε−2

(
γ2(T ) + log(2/δ)

)
, then W is an ε-isometry on A, with probability at

least 1− δ.
This generalization of the Johnson-Lindenstrauss theorem is relevant even

when considering finite sets A. It tells us that the sensitivity of the random
projection method depends on the “metric size” of the set A rather than on
its cardinality. As an example, consider the case of Corollary 13.14, when A is
the set of all k-sparse vectors in RD. It is not hard to check that in this case,
γ2(T ) ≤ 2k log(D/(2k)), essentially recovering the result of of Corollary 13.14.
In this case, as in many others, the cardinality of A does not matter!

In order to prove the Klartag-Mendelson theorem, by Theorem 5.10, it suffices
to show that there exists a universal constant κ such that

dmax(EV,EV ′)2 ≤ κγ2(T ) .

This is shown in Proposition 13.17 below.
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The rough idea is the following. Since V and V ′ are suprema of centered and
normalized chi-square random variables, a glimpse at Lemma 13.1 suggests that
a reasonable upper bound should involve both

∫ √
H(x, T )dx and

∫
H(x, T )dx.

Indeed when the Xi,j are standard Gaussian, it is easy to check that ‖W (α)‖2−
‖W (α′)‖2 is sub-Gamma with variance factor proportional to ‖α−α′‖2 and scale
factor proportional to ‖α−α′‖ (see Exercise 13.26). Surprisingly, it is possible to
engineer an upper bound that only involves

∫ √
H (x, T )dx, just as if the process

increments were purely sub-Gaussian. The proof of Theorem 13.15 relies on the
splitting argument of Lemma 13.12. It improves on the proof of Lemma 13.13 in
two respects. First, the chaining lemma (Lemma 13.1) is used to upper bound

E supα∈Tδ

(
‖W (α)‖2 − 1

)
. The cutoff δ is tuned in such a way that the sub-

Gaussian term dominates the sub-gamma term. Second, when upper bounding
E supα∈DδT ‖W (α)‖2, the key observation is that {‖W (α)‖ , α ∈ DδT} has sub-
Gaussian increments. This is established in the next lemma. (Recall the definition
of the set G(v) of sub-Gaussian random variables from Section 2.3.)

Lemma 13.16 Let W : RD → Rd be the random map defined as above. Let T
be a bounded subset of RD and let δ > 0 be such that ‖α‖ ≤ δ for every α ∈ T .
Let Z = d supα∈T ‖W (α)‖. Then

V ar(Z) ≤ δ2 and Z −EZ ∈ G(δ2)

when X is Gaussian and

V ar(Z) ≤ 2δ2 and Z −EZ ∈ G(4δ2)

when X is Rademacher.

Proof Z may be considered as the supremum of a Gaussian (or a Rademacher)
process. Indeed, the representation of the norm as a supremum of linear functions
implies that

Z = sup
u∈Rd:‖u‖=1

sup
α∈T

d∑

i=1

D∑

j=1

uiαjXi,j .

On the other hand, the wimpy variance equals

σ2 = sup
u∈Rd:‖u‖=1

sup
α∈T

d∑

i=1

D∑

j=1

uiα
2
j = sup

α∈T

D∑

j=1

α2
j ≤ δ2 .

Now we may use the variance bounds proved in Chapter 3 and the exponential
concentration inequalities from Chapter 5 to conclude. 2

Now we are ready to state and prove the key ingredient needed to complete
the proof of Theorem 13.15.
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Proposition 13.17 Consider the setup of Theorem 13.15. There exists a abso-
lute constant κ′ such that

dmax(EV,EV ′)2 ≤ κ′γ2(T )

(
1 +

γ(T )√
d

)2

.

Proof Thanks to standard separability arguments, we may assume that T is a
finite set. By the splitting lemma (Lemma 13.12), for any θ > 0

EV ≤ (1 + θ)E sup
α∈Tδ

(
‖W (α)‖2 − 1

)
+ (1 + 1/θ)E sup

α∈DδT
‖W (α)‖2 + θ .

We choose θ = γ(T )/
√
d and bound the two expectations on the right-hand side

by κγ(T )/
√
d and κ′γ(T )2/d, where κ, κ′ are universal constants.

Let the cutoff δ be chosen as δ = 2−J+1, where

J = sup
{
j ≥ 0, H

(
2−j+1, T

)
≤ d
}
.

Note that δ is well defined. Indeed, ifH(2, T ) = 0 then
{
j ≥ 0, H

(
2−j+1, T

)
≤ d
}

is a non-empty set, while J =∞ means that δ = 0.
If δ = 0, E supα∈DδT ‖W (α)‖2 = 0, so we may assume that δ > 0. By the

definition of δ, H(δ/2, T ) > d. Lemma 13.16 implies that

E sup
α∈DδT

‖W (α)‖2 ≤
(
E sup
α∈DδT

‖W (α)‖
)2

+
2δ2

d
.

On the other hand, the increments ‖W (α)‖ − ‖W (α′)‖ ≤ ‖W (α− α′)‖ satisfy
the condition of Lemma 13.1 with a = 1, v = 4/d and c = 0. It follows that

E sup
α∈DδT

‖W (α)‖ ≤ 3δ +
12δ√
d

∞∑

j=1

2−j
√
H (δ2−j ,DδT ) .

Our choice of the value of δ implies that for every x > 0,H(x,DδT ) ≤ 2H (x/2, T ),
and therefore

E sup
s∈DδT

‖W (α)‖ ≤ 3δ +
24δ
√

2√
d

∞∑

j=2

2−j
√
H (δ2−j , T ) .

Since H(δ/2, T ) > d, if follows that

E sup
α∈DδT

‖W (α)‖ ≤ 24δ
√

2√
d

∞∑

j=1

2−j
√
H (δ2−j , T ) .

Setting

Γ =

∞∑

j=1

2−j
√
H (δ2−j , T ) ,
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the condition H (δ/2, T ) > d entails Γ2 > d/4 > 1/4, so

E sup
α∈DδT

‖W (α)‖2 ≤ 576
δ2Γ2

d
+

4δ2

d
≤ 592× δ2Γ2

d
.

Thanks to the monotonicity of H and to the fact that δ ≤ 2,

E sup
α∈DδT

‖W (α)‖2 ≤ cγ
2(T )

d

for some absolute constant c. Now, Bernstein’s inequality and Lemma 13.1 allow

us to derive an upper bound for E supα∈Tδ

(
‖W (α)‖2 − 1

)
as follows. Recall

that for every α ∈ Rd,

‖W (α)‖2 =
1

d

d∑

i=1

W 2
i (α) .

By the Cauchy-Schwarz inequality, for all α, α′ and every integer k ≥ 2,

E

[∣∣∣Wi(α)2 −Wi (α′)
2
∣∣∣
k
]

≤
(
E
[
|Wi(α)−Wi (α′)|2k

]
E
[
|Wi (α) +Wi (α′)|2k

])1/2

≤ ‖α− α′‖k ‖α+α′‖k sup
α∈RD:‖α‖=1

E
[
Wi(α)2k

]

≤ 4k ‖α− α′‖k ‖α+ α′‖k k!

2
,

where the last inequality comes from the observation that each Wi(α) is sub-

Gaussian (see Section 2.9). Let α0 ∈ Tδ, and setX(α) = ‖W (α)‖2 . As EX(α0) =
1,

E sup
α∈Tδ

(
‖W (α)‖2 − 1

)
= E

[
sup
α∈Tδ

X(α)−X(α0)

]
.

As the conditions of Lemma 13.1 are satisfied with a = 0, v = 8/d and c = 8/d,
we get

E sup
α∈Tδ

(
‖W (α)‖2 − 1

)
≤ 6√

d

∞∑

j=1

2−j
(
√

8H (2−j , Tδ) +
8H
(
2−j , Tδ

)
√
d

)
.

Now, since Tδ is a δ-net, by the definition of δ, log |Tδ| ≤ d, and therefore
H (., Tδ) ≤ d, which implies that

E sup
α∈Tδ

(
‖W (α)‖2 − 1

)
≤ 84√

d

∞∑

j=1

2−j
√
H (2−j , Tδ)

≤ 84√
d

∞∑

j=1

2−j
√
H (2−j , T ) ≤ 168√

d
γ(T ) .
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It is now time to collect bounds. Choose θ = γ(T )/
√
d and invoke Lemma 13.12

to obtain

E sup
α∈T

(
‖W (α)‖2 − 1

)
≤ 952

γ (T )√
d

(
1 +

γ (T )√
d

)
,

completing the proof of the upper bound for EV . In order to control EV ′, we
use the second inequality from Lemma 13.12,

EV ′ ≤ (1− θ)E sup
α∈Tδ

(
1− ‖W (α)‖2

)
+

(
1

θ
− 1

)
E sup
α∈Dδ(T )

‖W (α)‖2 + θ ,

with θ = γ (T ) /
√
d. We can indeed prove that

EV ′ ≤ C γ (T )√
d

with C ≥ 2, by assuming without loss of generality that γ (T ) /
√
d ≤ 1/2. 2

13.7 Normalized processes: slicing and reweighting

Sometimes one is interested in bounding the supremum of an empirical pro-
cess sups∈T

∑n
i=1Xi,s that is quite inhomogeneous in the sense that the vari-

ance V ar(
∑n
i=1Xi,s) varies with s. To illustrate such a situation, consider the

Kolmogorov-Smirnov statistic already discussed in Chapter 11. In this example,
Y1, . . . , Yn are independent random variables, uniformly distributed over [0, 1].
The (one-sided) Kolmogorov-Smirnov statistic is

Z = sup
s∈[0,1]

n∑

i=1

(
1{Yi≤s} − s

)
.

As half-lines form a vc-class with vc-dimension 1, it follows from Theorem
13.7 that EZ = O(

√
n), and this is the correct order of magnitude. (See Ex-

ercise 13.18 for an alternative argument.) For small and large values of s, the
variance of 1{Yi≤s} is small and the maximal value is unlikely to be achieved for
such indices. Indeed, it is not difficult to see that Z is not very different from
sups∈[1/4,3/4]

∑n
i=1

(
1{Yi≤s} − s

)
. The knowledge EZ and the availability of con-

centration inequalities tell us little about the fluctuations of
∑n
i=1

(
1{Yi≤s} − s

)

for small and large values of s. By dividing each 1{Yi≤s} − s by its standard
deviation, one obtains a re-weighted process that may contain more interesting
information.

In this section we discuss the so-called peeling (or stratification, or slicing)
techniques which, in combination with re-weighting, allows one to investigate fine
properties of empirical processes. Such techniques will be used in the next two
sections to obtain sharp bounds for uniform relative deviations of L2 distances
and the risk of empirical risk minimization in classification.
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The basic idea is that by decomposing the class such that each component
contains random variables with similar variances, one may take full advantage
of Bousquet’s inequality (Theorem 12.5).

The following lemma illustrates how slicing the index set T into subcollections
can be used to investigate reweighted processes.

Call a function ψ : [0,∞)→ [0,∞) sub-linear if it is non-decreasing, continu-
ous, ψ(x)/x is non-increasing, and ψ(1) ≥ 1. Note that if ψ and ρ are sub-linear,
then so are ψ◦ρ and ψ+ρ. Moreover, for any α ≥ ψ(1), the equation αr2 = ψ(r)
has a unique solution in (0, 1]. One can easily check that every sub-linear function
ψ is sub-additive in the sense that ψ(u+ v) ≤ ψ(u) + ψ(v) (see Exercise 13.41).

Lemma 13.18 Let T be a countable index set and let L : T → [0,∞). Assume
that there exists s ∈ T such that L(s) = infs∈T L(s). Let (Zs)s∈T denote a
stochastic process indexed by T . Assume that there exists a sub-linear function
ψ and rcr > 0 such that for all r ≥ rcr,

E sup
s:s∈T ,L(s)≤r2

|Zs − Zs| ≤ ψ(r) .

Then, for all r ≥ rcr,

E sup
s∈T

r2

r2 + L(s)
|Zs − Zs| ≤ 4ψ(r) .

Proof Let r ≥ rcr. We decompose the index set T into slices according to the
value of the function L as follows. Let T0 =

{
s : s ∈ T , L(s) ≤ r2

}
and for k ≥ 1,

let
Tk =

{
s : s ∈ T , r222(k−1) < L(s) ≤ r222k

}
.

Let Vr = sups∈T
r2

r2+L(s) |Zs − Zs|. Then

EVr ≤
∞∑

k=0

E sup
s∈Tk

r2 |Zs − Zs|
r2 + L(s)

≤ ψ(r) +

∞∑

k=1

r2

r2 + r222(k−1)
E sup
s∈Tk
|Zs − Zs|

≤ ψ(r) +

∞∑

k=1

1

1 + 22(k−1)
ψ(2kr)

≤ ψ(r) + 2

∞∑

k=1

2k−1

1 + 22(k−1)
ψ(r) (since ψ is sub-linear)

≤ 2

(
1 +

∞∑

k=0

2−k
)
ψ(r) .

2
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Theorem 13.19 For i = 1, . . . , n, let Xi = (Xi,s)s∈T be a collection of random
variables indexed by a countable set T and suppose that X1, . . . , Xn are indepen-
dent and identically distributed. Assume that for all i ≤ n and s ∈ T , EXi,s = 0
and that |Xi,s| ≤ 1 almost surely. Let L : T → [0,∞) which achieves its mini-
mum at s ∈ T . Assume that sups∈T ,i≤n |Xi,s − Xi,s| ≤ 1. Let σ : T → [0,∞)

be such that for every s ∈ T , E (Xi,s −Xi,s)
2 ≤ σ2(s). Assume there exists a

sub-linear function ρ such that for all s ∈ T , σ(s) ≤ ρ
(
L(s)1/2

)
and there exists

a sub-linear ψ such that for all r satisfying
√
nr2 ≥ ψ(r),

√
nE sup

s∈T
σ(s)≤r

∣∣∣∣∣
n∑

i=1

1

n
(Xi,s −EXi,s −Xi,s + EXi,s)

∣∣∣∣∣ ≤ ψ(r) .

Let ε, δ ∈ (0, 1] and let r(δ) > 0 be the unique solution of equation

√
nr2 =

1

ε

(
8ψ(ρ(r)) + ρ(r)

√
log 1/δ +

2 log 1/δ

3
√
n

)
.

Then, with probability at least 1− 2δ, for all s ∈ T
∣∣∣∣∣
n∑

i=1

1

n
(Xi,s −EXi,s −Xi,s + EXi,s)

∣∣∣∣∣ ≤ ε(L(s) + r2(δ)) .

By taking ε = 1 in Theorem 13.19 and defining r∗ as the solution of the
equation

√
nr2 = ψ(ρ(r)), we get that with probability at least 1 − 2δ, for all

s ∈ T
∣∣∣∣∣
n∑

i=1

1

n
(Xi,s −EXi,s −Xi,s + EXi,s)

∣∣∣∣∣ ≤ L(s) + 130r2
∗ + 4

log 1/δ

n
.

This follows in a straightforward manner by observing that if ε = 1,

r(δ)2 ≤ 130r2
∗ + 4

log 1/δ

n
.

The proof of this is left to the reader (see Exercise 13.42).

Proof Denote Xi,s = Xi,s−EXi,s for all i ≤ n and s ∈ T . We prove that with
probability at least 1− δ, for all s ∈ T ,

n∑

i=1

1

n
(Xi,s −Xi,s) ≤ ε(L(s) + r2(δ)) .

A similar argument can be applied to prove that with probability at least 1− δ,
n∑

i=1

1

n
(Xi,s −Xi,s) ≤ ε(L(s) + r2(δ)) .
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Let r be such that
√
nr2 > ψ(r) . Define the random variable

Vr = sup
s∈T

r2

∑n
i=1(1/n)(Xi,s −Xi,s)

L(s) + r2
.

Then Vr is the supremum of a centered empirical process indexed by T . Moreover,
as L(s) ≤ r2, we have σ(s) ≤ ρ(r), and therefore, by the assumption of the
theorem,

E sup
s∈T

L(s)≤r2

∣∣∣∣∣
n∑

i=1

1

n
(Xi,s −Xi,s)

∣∣∣∣∣ ≤
ψ(ρ(r))√

n
.

Since the class of sub-linear functions is closed by composition, by Lemma 13.18,

EVr ≤ 4
ψ(ρ(r))√

n
.

Note that if L(s) ≤ r2,

V ar

(
r2(Xi,s −Xi,s)

(L(s) + r2)

)
≤ E(Xi,s −Xi,s)

2 ≤ ρ2(r) ,

while for each s ∈ T , as 2
√
L(s)r ≤ L(s) + r2,

V ar

(
r2(Xi,s −Xi,s)

(L(s) + r2)

)
≤
(
rρ(
√
L(s))√

4L(s)

)2

.

Thus if L(s) ≥ r2, by the sub-linearity of ρ,

V ar

(
r2(Xi,s −Xi,s)

L(s) + r2

)
≤ ρ2(r)

4
.

On the other hand, for all i ≤ n, s ∈ T , almost surely
∣∣∣∣r2 (Xi,s −Xi,s)

L(s) + r2

∣∣∣∣ ≤ 1 .

Now we may use Bousquet’s inequality (Theorem 12.5) to conclude that, with
probability at least 1− δ,

Vr ≤ EVr +

√
2

n
(2EVr + ρ2(r)) log

1

δ
+

1

3n
log

1

δ

≤ 2EVr + ρ(r)

√
log 1

δ

n
+

4

3

log 1
δ

n

≤ 8
ψ(ρ(r))√

n
+ ρ(r)

√
log 1

δ

n
+

4

3

log 1
δ

n
.
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Using the definition of r(δ), this implies that, with probability at least 1− δ, for
all s ∈ T ,

n∑

i=1

1

n
(Xi,s −Xi,s) ≤ ε

(
L(s) + r2(δ)

)
.

2

13.8 Relative deviations for L2 distances

This section offers an easy application of the peeling/reweighting technique pre-
sented in the previous section. Let T be a countable set and let X1, . . . , Xn be
independent identically distributed vector-valued random variables where Xi =

(Xi,s)s∈T . We may define a metric d on T by d(s, s′) =
(
E(X1,s −X1,s′)

2
)1/2

.
The basic question we investigate here is how well the random empirical metric

dn(s, s′) =
(∑n

i=1(1/n)(Xi,s −Xi,s′)
2
)1/2

approximates the metric d.
The next theorem reveals that if the subset of T formed by those s ∈ T

with small values of EX2
1,s is not too “rich,” the empirical metric space (T , dn)

faithfully approximates (T , d), at least above a certain scale.

Theorem 13.20 Let X1, . . . , Xn be defined as above and suppose EXi,s = 0 and
|Xi,s| ≤ 1 almost surely for all i = 1, . . . , n and s ∈ T . Assume that there exists
s ∈ T for which Xi,s = 0 almost surely. Assume that there exists a sub-linear
function φ such that for all r ≥ 0 such that

√
nr2 ≥ φ(r),

√
nE sup

s∈T ,EX2
1,s≤r2

1

n

∣∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣∣ ≤ φ(r) .

Let ε ∈ (0, 1) and let r(δ) > 0 be the unique solution of the equation

√
nr2 =

1

ε

(
128φ(r) + r

√
log 1/δ +

4 log(1/δ)

3
√
n

)
.

Then, with probability at least 1− 2δ, for all s ∈ T ,

∣∣∣∣∣
1
n

∑n
i=1X

2
i,s

EX2
1,s

− 1

∣∣∣∣∣ ≤ ε
(

1 +
r(δ)2

EX2
1,s

)
.

The theorem implies that if r∗ is defined as the positive solution of
√
nr2 =

8φ(r), then with probability at least 1 − 2δ, for all s ∈ T such that EX2
i,s ≥

130r2
∗/ε

2 + (4/n) log(1/δ), one has

∣∣∣∣∣
1
n

∑n
i=1X

2
i,s

EX2
1,s

− 1

∣∣∣∣∣ ≤ 2ε .
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Proof The proof is a simple application of Theorem 13.19 to the family of
random variables

{
X2
i,s : s ∈ T , i ≤ n

}
. Note first that

sup
s∈T
i≤n

∣∣X2
i,s −EX2

i,s

∣∣ ≤ 1 .

Second, choosing L(s) = σ2(s) = EX2
i,s, L is minimized by s while letting

ρ(r) = r for all r ≥ 0, E
[
(X2

i,s)
2
]
≤ ρ2(L(s)

1/2
) . The only point that needs to

be checked is that

√
nE sup

s∈T ,σ2(s)≤r2

1

n

∣∣∣∣∣
n∑

i=1

X2
i,s −EX2

i,s

∣∣∣∣∣ ≤ 8φ(r) .

But this follows by symmetrization (Lemma 11.4) and by the contraction prin-
ciple (Lemma 11.6) as x 7→ x2 is 2-Lipschitz over [−1, 1]. We may apply Theo-
rem 13.19 on

{
(X2

i,s : s ∈ T , i ≤ n
}

with ψ = 16φ. 2

13.9 Risk bounds in classification

We close this chapter by describing an application of the techniques introduced in
Section 13.7 to construct risk bounds for empirical risk minimization in binary
classification. The classification problem is at the heart of statistical learning
theory and its analysis served as a driving force for the development of empirical
process theory. Here we present just a sample from the rich theory of classifica-
tion. We apply Theorem 13.19 to obtain sharp bounds for the risk of a classifier
that minimizes the empirical risk over a vc class of candidate classifiers.

The setup is described as follows. In binary classification the observation X
is a random variable taking values in some set X and its binary label Y is a
{0, 1}-valued random variable. The joint distribution of X and Y is denoted by
P . A classifier is a measurable function s : X → {0, 1}. The risk of classifier s is
P {Y 6= s(X)}. The so-called Bayes classifier s∗(X) = 1{E[Y |X]≥1/2} minimizes
the risk among all possible classifiers.

In statistical learning, the joint distribution P is unknown but a sample
(X1, Y1), . . . , (Xn, Yn) of independent pairs, distributed according to P , is avail-
able. Given a collection T of classifiers, one may choose ŝ ∈ T by minimiz-
ing the empirical risk

∑n
i=1 1{Yi 6=s(Xi)} over s ∈ T . In this section we work

with the simplifying, and perhaps unrealistic, assumption that s∗ ∈ T , that is,
the Bayes classifier is in the class of candidate classifiers. The performance of
the empirical risk minimizer is measured by the excess risk `(s, s∗) = P {Y 6=
s(X)} −P {Y 6= s∗(X)}. Letting η(X) = E[Y |X], it is straightforward to verify
that `(s, s∗) = E [|2η(X)− 1||s(X)− s∗(X)|]. We also assume that the collec-
tion of sets {{x ∈ X : s(x) = 1} : s ∈ T } is a vc-class with vc-dimension
V . Introducing Zi,s = 1{Yi 6=s(Xi)} for i ≤ n and s ∈ T , the set of classifiers is

endowed with the pseudo-metric d(s, t) =
√
E[(Z1,s − Z1,t)2].

Bounds on excess loss depend on the richness of T , the sample size n, but
also on how “noisy” the observations are. One way to quantify a “low-noise”
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assumption is by the Mammen-Tsybakov noise conditions according to which
there exist h ∈ [0, 1] and θ ≥ 1 such that

`(s, s∗) ≥ hθd2θ(s, s∗), for all s ∈ T .

The simplest and strongest condition belongs to the case θ = 1. In this case one
has |2η(X)− 1| = h almost surely.

Theorem 13.21 (risk bounds for vc classes.) Assume that ŝ minimizes
the empirical risk on a sample of size n over a vc-class T of vc-dimension V .
Assume that the Bayes classifier belongs to T , and the Mammen-Tsybakov noise
condition is satisfied by some h > 0 and θ ≥ 1. Then

E`(ŝ, s∗) ≤ κ
(
V (1 + log(nh2θ/V ))

nh

)θ/(2θ−1)

,

where κ is a universal constant that does not depend on n, T , h, θ.

Proof The proof is based on an application of Theorems 13.19 and 13.7. Since∑n
i=1 Zi,ŝ ≤

∑n
i=1 Zi,s∗ ,

`(ŝ, s∗) ≤ 1

n

n∑

i=1

(Zi,s∗ −EZi,s∗ − Zi,ŝ + EZi,ŝ) .

Thus, the excess risk is bounded by the oscillation of the centered empirical risk
process between s∗ and ŝ.

Let φ : [0, 1]→ R+ be defined by

φ(r) = 72r

√
V log

(
4e

r

)

By Theorem 13.7, for r ∈ [0, 1],

E sup
s∈T : d(s,s∗)≤r

∣∣∣∣∣
n∑

i=1

(Zi,s∗ −EZi,s∗ − Zi,s + EZi,s)

∣∣∣∣∣ ≤ φ(r) .

One may easily verify that φ is sub-linear.
We now apply Theorem 13.19. Since h−1/2(

√
`(s, s∗))1/θ ≥ d(s, s∗), we may

choose ρ(r) = h−1/2r1/θ. As 0 ≤ θ ≤ 1, ρ is sub-linear.
Let r∗ be the non-negative solution of

√
nr2φ(ρ(r)). By Theorem 13.19, with

probability at least 1− 2 exp(−x), for all s ∈ T ,
∣∣∣∣∣
n∑

i=1

(Zi,s∗ −EZi,s∗ − Zi,s + EZi,s)

∣∣∣∣∣ ≤ ε
(
`(s, s∗) + 130r2

∗ + 4
x

n

)
.

Thus, with probability at least 1− 2e−x,
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`(ŝ, s∗) ≤ ε
(
`(ŝ, s∗) + 130r2

∗ + 4
x

n

)
.

Rearranging, we obtain

`(ŝ, s∗) ≤ ε

1− ε
(

130r2
∗ + 4

x

n

)
.

Integrating with respect to x leads to

E`(ŝ, s∗) ≤ ε

1− ε

(
130r2

∗ +
4

n

)
.

It remains to upper bound r2
∗. From

√
nr2
∗ = 72h−1/2r

1/θ
∗

√
V log

(
4e

h−1/2r
1/θ
∗

)
,

as r∗ ≤ 1, we may deduce

r∗ ≥
(

72

√
V

nh
log

(
4e

h−1/2

))θ/(2θ−1)

.

This entails

r2
∗ ≤


K2 V

nh
log


 4e

h−1/2
(
K
√

V
nh log

(
4e

h−1/2

))1/(2θ−1)







θ/(2θ−1)

.

2

13.10 Bibliographic remarks

The notion of metric entropy was introduced by Kolmogorov and Tikhomirov
(1961) to quantify the performance of non-linear approximation methods in func-
tional analysis. We refer to the books by DeVore and Lorentz (1993) and Lorentz,
Golitschek, and Makovoz (1996) for an in-depth exposition of entropic arguments
in approximation theory.

The idea of chaining in order to upper bound the supremum of a Brownian
motion was initiated by Kolmogorov, see Slutsky (1937) and Čentsov (1956). In
the context of general Gaussian processes, chaining was introduced by Dudley
(1967) in order to provide a sufficient condition for the existence of an almost
surely continuous version of a Gaussian process. Since Dudley (1967), chaining
provided a generic method to derive tail bounds for suprema of processes as
suggested in Exercise 13.9. When dealing with suprema of bounded empirical
processes, such bounds can be compared with bounds obtained by combining
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concentration inequalities and upper bounds for the expectation. The proof pat-
tern used in Section 13.1 is due to Pisier (1983). A general approach would consist
in using “majorizing measures” (also called “generic chaining”) as introduced by
Fernique (1975), rather than metric entropy. We refer to Ledoux and Talagrand
(1991) and Talagrand (1994b, 1996a, 2005) for an extensive study of this topic.

Slepian’s lemma (Theorem 13.3) first appears in Slepian (1962), see also Fer-
nique (1975), Gordon (1985) for improvements and generalizations. The proof
presented here is based on an argument of Chatterjee (2005b), see also Piter-
barg (1982). Sudakov’s inequality (Theorem 13.4) is from Sudakov (1969). Li
and Shao (2001) survey many related inequalities for Gaussian processes.

In empirical process theory, arguments based on uniform entropy numbers
were pioneered by Koltchinskii (1981) and Pollard (1984). vc classes of sets
were introduced by Vapnik and Chervonenkis (1971). Uniform bounds on L2

covering numbers for vc-classes were first obtained by Pollard (1982, 1984) and
Dudley (1987), see Exercise 13.11. Lemma 13.6 was proved by Haussler (1995)
using combinatorial properties of traces of vc-classes that were first established
by Haussler, Littlestone and Warmuth (1994). Conditions on uniform entropy
numbers that generalize those satisfied by vc classes of sets play an important
role in the analysis of functional central limit theorems, see van der Vaart and
Wellner (1996). The concept of a vc-class of sets can be used to define vc
subgraph classes of functions and vc-major classes (see Exercises 13.13, 13.14).
An analog of the vc dimension, called the fat-shattering dimension for classes
of functions was introduced by Kearns and Schapire (1994), see Anthony and
Bartlett (1999) for a survey and Mendelson and Vershynin (2003) where the
relevant generalization of Lemma 13.6 is established.

Upper bounds on the expected value of suprema of empirical prcesses indexed
by classes of functions with regularly varying uniform entropy numbers can be
found in Talagrand (1994b), Mendelson (2002b), Giné and Koltchinskii (2006),
Koltchinskii (2008) (see Exercise 13.18).

Lemma 13.8 was first proved by Rudelson (1999) using non-commutative
Khinchine inequalities due to Lust-Piquard and Pisier (1991). The approach de-
scribed in Section 13.4 was pioneered by Ahlswede and Winter (2002). The pre-
sentation given here follows Imbuzeiro Oliveira (2010). Alternative proofs using
Lieb’s concavity theorem may be found in Tropp (2010a, 2010b). For a general
treatment of matrix inequalities, we recommend Bhatia (1997). Exercises 13.31,
13.32, and 13.33 describe how Rudelson’s inequality and concentration inequal-
ities for suprema of empirical processes can be combined in order to establish
concentration inequalities for operator norms of sums of random symmetric ma-
trices.

Theorem 13.15 is due to Klartag and Mendelson (2005) who actually prove a
stronger result since they are able to replace the functional γ(T ) that comes from
classical chaining, by Talagrand’s γ2(T ) which is obtained by generic chaining
(Talagrand, 2005) and is known to sharply characterize the expected value of
suprema of Gaussian processes. A purely Gaussian version of this result had pre-
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viously been established by Gordon (1988). The restricted isometry property de-
scribed in Corollary 13.14 was introduced by Candès, Romberg, and Tao (2006).
Its proof via Lemma 13.13 is due to Baraniuk, Davenport, DeVore and Wakin
(2008).

Mendelson, Pajor and Tomczak-Jaegermann (2007) go beyond the scope of
Theorem 13.15 and attempt to control

∑
s∈T (1/n)

∑n
i=1X

2
i,s− 1 where (Xi)i≤n

are independent random vectors with EXi,s = 0 and EX2
i,s = 1 for all s ∈ T ,

just assuming that Xi,s−Xi,s′ is sub-Gaussian with variance factor proportional
to the squared distance between s and s′. They provide an extension of Lemma
13.16.

Baraniuk and Wakin (2009) use the same device to perform dimensionality
reduction of a manifold of smooth data using random linear projections. They
establish an upper bound for the rank of random projections needed to guarantee
that, with high probability, all pairwise Euclidean and geodesic distances between
points on the manifold are approximately preserved.

Theorem 13.15 and Lemma 13.13 provide transparent proofs of upper bounds
on the Gelfand numbers of `np balls derived by Kashin (1977).

The fact that random matrices with independent rows are almost isometric
embeddings is central to the emerging field of compressed sensing, see Donoho
(2006a), Candès and Tao (2006). This question is closely related to the control
of the largest and smallest singular values of the random matrix (Xi,j)i≤d,j≤D.
This question has been further explored by Rudelson and Vershynin (2010). We
refer the reader to Vershynin (2012) and references therein for more details on
non-asymptotic results in the booming theory of random matrices.

Adamczak, Litvak, Pajor and Tomczak-Jaegermann (2010) consider exten-
sions of the Johnson-Lindenstrauss problem in which the columns of the ran-
dom projection matrix do not have i.i.d. sub-Gaussian coefficients but are rather
sampled from a log-concave distribution (such as the uniform distribution over
a convex body).

A host of useful bounds for the expected value of suprema of empirical and
Rademacher processes can be found in van der Vaart and Wellner (1996), Giné
and Guillou (2001), Giné and Koltchinskii (2006), Giné, Koltchinskii and Wellner
(2003), Massart (2006). Tail bounds for the Kolmogorov-Smirnov statistic have
attracted considerable attention. Dvoretzky, Kiefer and Wolfowitz (1956) were
the first to obtain sub-Gaussian inequalities. Massart (1990) proved that

P

{
sup
s∈R
|(Pn − P )((−∞, s])| ≥ t

}
≤ 2e−2nt2 .

We refer to Shorack and Wellner (1986) for classical results on the oscillations
of the empirical process indexed by half-lines. The analysis of the modulus of
oscillation of empirical processes indexed by general classes of sets goes back to
the work of Alexander (1987) (see also van de Geer (2000) for applications to M -
estimation). The impact of concentration inequalities on this topic is thoroughly
investigated in Giné, Koltchinskii and Wellner (2003), Giné and Koltchinskii
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(2006), Massart (2000b), Massart and Nédélec (2006), Massart (2006), Bartlett
and Mendelson (2006). Giné, Koltchinskii and Wellner (2003, 2006) consider dif-
ferent reweighting techniques. Indeed they normalize (Pn−P )fs by its standard
deviation σ(fs) = (Pf2

s − (Pfs)
2)1/2 rather than its variance, see also Bartlett

and Mendelson (2006). This approach allows them to investigate moduli of con-
tinuity of empirical processes, that is, quantities like

sup
T[r,r′)

|(P − Pn)fs|
ω(σ(fs))

where Trn,r′n = {s : σ(fs) ∈ [rn, r
′
n)} and ω is some positive non-decreasing

function.
Giné, Koltchinskii and Giné, Koltchinskii and Wellner (2003) and Giné and

Koltchinskii (2006) describe improvements which take into account the L2(P )
norm of the envelop of the class.

Versions of Theorems 13.19 and 13.20 can be found in Massart (2006, 2000b),
Koltchinskii (2006), and Bartlett and Mendelson (2006) The version presented
here follows Boucheron, Bousquet and Lugosi (2005a).

Theorem 13.21 is due to Massart and Nédélec (2006). Matching lower bound
for risk estimates can be found in this paper. For surveys on the classifica-
tion problem, we refer the reader to Devroye, Györfi and Lugosi (1996) and
Boucheron, Bousquet and Lugosi (2005a).

13.11 Exercises

The chaining idea

Exercise 13.1 (entropy numbers and ε-entropy.) Considering entropy numbers
rather than packing numbers provides an alternative approach to chaining. Sticking to
the notation of Section 13.1, define the nth entropy number en(S) for n ∈ N, as

en(S) = inf
{
ε : N(ε, S) ≤ 22n

}
= inf {ε : H(ε, S) ≤ 2n log(2)} .

Using the notation of Lemma 13.1, prove that

E

[
sup
s∈S

Xs −Xs0
]
≤ aδ +

√
v

∞∑
j=1

en(S)2n/2 + c

∞∑
j=1

en(S)2n .

Hint: for n ∈ N, let Sn be a en(S)-packed subset of S with maximal cardinality. By

the definition of en(S), |Sn| ≤ 22n+1

. For n ≥ 1, let Πn map each s ∈ S on a nearest-
neighbor in Sn−1 and let Π0(s) = s0. (See Talagrand (2005).)

Exercise 13.2 (another look at corollary 2.6.) Let X1, . . . , Xn be independent
random vectors indexed by T . Let ε1, . . . , εn be independent Rademacher variables.
Assume maxi≤n sups∈T |Xi,s| ≤ 1, EXi,s = 0 and let σ2 ≥ sups∈T

∑n
i=1 E[X2

i,s]/n.
Prove that there exists a universal constant κ such that:

E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣ ≤ κmax
(
σ
√
nlog |T |, log |T |

)
.
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Hint: Use the contraction principle and the maximal inequality for sub-Gaussian ran-
dom variables (Theorem 2.5). (See Koltchinskii 2008).

Exercise 13.3 (stein’s integration-by-parts formula.) Prove that F : Rn → R
is continuously differentiable such that for any a > 0, lim‖x‖→∞ f(x) exp(−a‖x‖2) = 0
and X = (X1, . . . , Xd) is a centered Gaussian vector, then for any 1 ≤ i ≤ d,

E [XiF (X)] =

d∑
j=1

E[XiXj ]E

[
∂F

∂xj
(X)

]
.

Hint: Use integration by parts to establish the formula in dimension 1, then proceed by
conditioning. That this is a characteristic property of Gaussian vectors is at the core
of Stein’s approach to prove central limit theorems, see Chatterjee and Dey (2010),
Chatterjee (2005a) and references therein.

Exercise 13.4 (chaining and its limitations.) Let Y1, . . . , Yn, . . . be a countable
collection of independent standard Gaussian random variables. Let

Z = sup
i=1,2,...

Yi/
√

log max(i, 2) .

The random variable Z is the supremum of a Gaussian process. The natural dis-
tance associated with this Gaussian process is d(s, s′) = (1/ log s+ 1/ log s′)

1/2
for

s 6= s′, s, s′ ≥ 2. Check that for δ < 1/2, the δ-entropy of the index set N satisfies
κ′/δ2 ≥ H(δ,N) ≥ κ/δ2 for some constants κ, κ′. What kind of upper bound on EZ
can be deduced from Corollary 13.2? What kind of lower bound can be deduced from
Sudakov’s lower bound (Theorem 13.4)? Prove that EZ < ∞ (10 is a plausible and
generous upper bound ). Hint: use the fact that for m ≥ 2, maxi:1≤i/2m≤2 Yi/

√
log i ≤

maxi:1≤i/2m≤2 |Yi|/
√
m log 2. Derive tail bounds for the latter quantity. Use the union

bound. See Talagrand (1996a, 2005). Note that the random variables Yi/
√

log max(i, 2)
have very different variances and that deriving sharp upper bounds for the expectation
of the supremum relies on slicing the family of random variables into pieces with similar
variances, and computing tight bounds for suprema over the slices.

Exercise 13.5 (gaussian processes indexed by ellipsoids.) Let X1, . . . , Xn be
independent standard Gaussian random variables. Let (a1, . . . , an) ∈ Rn, with ai > 0
for 1 ≤ i ≤ n. Let T = {s = (s1, . . . , sn) :

∑n
i=1 s

2
i /a

2
i ≤ 1}. Let Z = sups∈T

∑n
i=1 siXi.

Prove that EZ ≤ (
∑n
i=1 a

2
i )

1/2. Prove also that

E sup
s,s′∈T ,‖s−s′‖≤c

n∑
i=1

(si − s′i)Xi ≤

√√√√8

n∑
i=1

min(a2
i , c

2) .

What upper bound does Theorem 13.2 imply in this case? (See Talagrand (1996a) for
a discussion.)

Exercise 13.6 (expectation of a maximum of independent gaussian random
variables.) Let (Xs)s∈T be independent standard Gaussian random variables. Prove
that for |T | ≥ 2,

E max
s∈T

Xs ≥
1√
2

√
log |T | .
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Exercise 13.7 (operator norm of a gaussian matrix) Let X = (Xi,j)1≤i,j≤n be
a standard Gaussian vector considered as an n × n matrix. (This is sometimes called
the Ginibre ensemble.) Let Y = (Yi)i≤n be a standard Gaussian vector and let Y ′

be an independent copy of Y . Let K = Sn−1 × Sn−1 ⊂ R2n be the set of pairs of
unit vectors from Rn. Let Z = sup(u,v)∈K u

TXv be the operator norm of X and let
U = sup(u,v)∈K(〈u, Y 〉 + 〈v, Y ′〉) be the sum of two independent isonormal processes.
Prove that

EZ ≤ EU ≤ 2
√
n .

Hint: The second inequality is special case of the bound obtained in Exercise 13.5. The
first inequality can be obtained using Theorem 13.3. Note that uTXv = trace(XvuT ).

Check that for (u, v) and (s, t) in K, E
[(
uTXv − sTXt

)2]
= ‖vuT − tsT ‖2hs and∥∥vuT − tsT∥∥2

hs
≤ ‖u− s‖2 + ‖v − t‖2 (see Davidson and Szarek (2001)).

Exercise 13.8 (the largest eigenvalue of a random matrix distributed as
the gue.) Recall the definition of the gue from Section 5.10. The largest eigenvalue of
an n× n random matrix from the gue is the supremum of a Gaussian process indexed
by the unit sphere Sn−1 = {u ∈ Cn : ‖u‖2 = 1}:

Z = sup
u∈Sn−1

u∗Xu = sup
u∈Sn−1

trace(Xuu∗) ,

where u∗ is the conjugate transpose of the complex column vector u. Use chaining or
a comparison argument as in Exercise 13.7 to prove that EZ ≤ C for some universal
constant C ≥ 1. Hint: Check that for u, v ∈ Sn−1,

E
[
(u∗Xu− v∗Xv)2] =

1

n
‖uu∗ − vv∗‖2hs ,

and that ‖uu∗ − vv∗‖2hs ≤ 4‖u− v‖2.

Exercise 13.9 (tail bounds via chaining.) Let (T , d) , (Xs)s∈T , a, v, c, δ, and s0

be defined as in Theorem 13.1. Let

E = 3aδ + 6δ

∞∑
j=1

2−j
(√

v(j + 2H (δj)) + c(j + 2H (δj))
)
.

Prove that there exists a universal constant κ such that for any u > 1

P

{
sup
s∈S

Xs −Xs0 ≥ uE
}
≤ κe−u .

Hint: The event
{∃s ∈ T ;Xs −Xs0 ≥ uE}

is included in

⋃
s∈T

J⋃
j=0

{
XΠj+1s −XΠjs ≥ δj+1

(
3ua+ 2

√
uv(j + 2H (δj+1)) + cu(j + 2H (δj+1))

)}
.

The probability of the events on the right side are upper bounded by
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exp(2H (δj+1)) exp (−u(j + 2H (δj+1))) .

Up to a constant, E is not larger than the upper bound on expectation described in
Lemma 13.1.

Exercise 13.10 (chaining, families of distances.) Recall the definition of a Gaus-
sian chaos of order two from Example 2.12. Let X = (X1, . . . , Xn) be a standard
Gaussian vector. Let T be a collection of symmetric n× n real matrices with zeroes in
the diagonal entries. Let Z = supA∈T X

T (A−A0)X for some fixed An ∈ T . Let ‖A‖op

and ‖A‖hs be the operator and Hilbert-Schmidt norms of A. Let Hhs(u), Hop(u) denote
the u-entropy of T under the two norms. Let

E =

∫ δhs/2

0

√
2Hhs(u, T )du+

∫ δop/2

0

2Hop(u, T )du .

Prove that there exists a universal constant κ such that for any u > 1,

P {Z ≥ uE} ≤ κe−u .

Hint: For each n = 1, 2, . . ., let εop,n be defined by inf {ε : Hop(ε, T ) ≤ 2n} and define
εhs,n similarly. Let Top,n and Ths,n be the corresponding εop,n− and an εhs,n−nets. For
each n, Top,n and Ths,n define two partitions Bn and Cn of T : the cell associated with
an element A ∈ Top,n is{

A′ : A′ ∈ T , ‖A′ −A‖op = min
M∈Top,n

‖M −A′‖
}
.

The cells of Cn are defined in a similar way. For each n, the partition An is obtained
by intersecting the cells of Bn−1 and Cn−1. For each n, let Πn map each A ∈ T to a
distinguished element of A’s cell in An. Let J be the smallest index n such that An is
trivial. Check that for u > 1, {Z ≥ uE} is included in

⋃
A∈T

J−1⋃
j=0

{
XΠj+1s −XΠjs ≥

(
2δhs,j−1

√
u(j + 2j+1 log 2) + 2uδop,j−1(j + 2j+1 log 2)

)}
.

We refer to Talagrand (2005, Theorem 1.2.7, Section 2.5, and Chapter 5) for a thorough
discussion of generic chaining. Generic chaining provides tails bounds for suprema of
processes whose increments are controlled by a family of distances. Talagrand discusses
the possibility and the difficulties of deriving matching lower bounds.

VC classes and uniform entropy bounds

Exercise 13.11 (a suboptimal bound on the metric entropy of vc-classes.)
Using the notation of Lemma 13.6 prove that for all κ > 1,

H(δ, T ) ≤ κ

κ− 1
V log

(
2κ

V δ2

)
.

Hint: Assume there exist N elements A1, . . . , AN of the vc-class T that are δ-separated
under L2(Q) where Q is a probability distribution over X . Pick n = 2 logN2/δ2 samples
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independently at random according to Q. Show that the vc-entropy of T on this sample
is at least logN while, according to Sauer’s lemma it is also less than V log(en/V ) if
n ≥ V where V is the vc-dimension of T in X . Proofs of Sauer’s lemma can be found
in Sauer (1972), Frankl (1983), Bollobás (1986), Ledoux and Talagrand (1991). See
Haussler (1995) and also Pollard (1990).

Exercise 13.12 (density of 1-inclusion graphs.) Let C be a collection of subsets
of X . Let x = (x1, . . . , xn) be a sample of n (not necessarily distinct) elements from X .
Recall that the trace of C on x is defined as

tr(x) = {J : J ⊆ {1, . . . , n},∃A ∈ C, ∀i ∈ {1, . . . , n}, i ∈ J ⇔ xi ∈ A} .

As the trace tr(x) may be identified as a subset of {0, 1}n, it induces a subgraph of
the n-cube. This subgraph is called the 1-inclusion graph. The density dens(x) of this
subgraph is the ratio between the number of edges and the number of vertices. Prove
that dens(x) ≤ 1

2
log2 |tr(x)|. Prove that if C is a vc-class with vc-dimension V , then

dens(x) ≤ V/2. Is this bound tight? Let X1, . . . , Xn be independent identically dis-
tributed X -valued random variables. Let Z = dens(X1, . . . , Xn). Prove that Z is a
self-bounding random variable. 1-inclusion graphs were introduced in Haussler, Lit-
tlestone and Warmuth (1994). Their combinatorial properties were used to investigate
the behavior of some online classification algorithms. The analysis of 1-inclusion graphs
proved also useful when deriving sharp bounds on the universal entropy of vc-classes.

Exercise 13.13 (vc-subgraph classes of functions.) The subgraph of a function
f : X → R is the set {(x, t) : x ∈ X , t ∈ R, t < f(x)}. A class F of functions X → R is
vc-subgraph with vc-dimension V if the collection of all subgraphs defined by choosing
f ∈ F is a vc-class of subsets of X × R with vc-dimension V . For any probability
measure Q on X , let ‖f‖Q be the L2(Q) norm of f . Prove that for any vc-subgraph
class of functions with vc-dimension V and envelope F (i.e., supf∈F |f(x)| ≤ F (x)
for all x ∈ X ), and any Q, the packing numbers of F with respect to the L2(Q)-
pseudometric satisfy

N (δ‖F‖Q,F , Q) ≤ κ(V + 1)(16e)V+1

(
1

δ

)2V

.

Hint: use E[|f(X) − f ′(X)|] = Q ⊗ λ{(x, t) : f(x) ≤ t < f ′(x) ∧ f ′(x) ≤ t < f(x)}
where X is distributed according to Q and also that E[|f(X)− f ′(X)|2] ≤ E[|f(X)−
f ′(X)|2F (X)]. Use Theorem 13.6. See van der Vaart and Wellner (1996, Chapter 2.6).

Exercise 13.14 (vc-major classes of functions.) A class F of real-valued func-
tions defined on a set X is a vc-major class with vc-dimension V if the collection of
all subsets {x : x ∈ Xf(x) > t} defined by choosing f ∈ F and t ∈ R is a vc-class of
subsets of X with vc-dimension V . Prove that a bounded vc-major class of functions
is a multiple of the symmetric convex hull of a vc-class of indicator functions. Hint:
use the fact that if 0 ≤ f ≤ 1, f(x) = limm→∞

∑m
i=1 1/m1{f(x)>i/m} (van der Vaart

and Wellner, 1996, Chapter 2.6).

Exercise 13.15 (regularly varying universal entropy numbers and suprema
of empirical processes.) A measurable function f : R+ → R is said to be regularly
varying at ∞ with regular variation index α ∈ R, if f(x) > 0 for all sufficiently large x
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and for all x ∈ R+, limt→∞ f(tx)/f(t) = xα. Let (As)s∈T be some countable class of
measurable subsets of X . Assume there exists a non-increasing function ψ : (0, 1]→ R
such that ψ(1/x) is regularly varying with regular variation index smaller than 2 such
that

H(δ, T ) ≤ ψ(δ)

where H(δ) = supQ logN(δ, T , Q) is the universal δ-metric entropy of T as defined in

Section 13.3. Assume that σ ∈ (0, 1) is such that P (As) ≤ σ2, for every s ∈ T . Let
X1, . . . , Xn drawn i.i.d. from the distribution P on X and let

Z+
T = sup

s∈T

1√
n

n∑
i=1

(1{Xi∈As} − P {Xi ∈ As})

Z−T = sup
s∈T

1√
n

n∑
i=1

(P {Xi ∈ As} − 1{Xi∈As})

Then there exists a universal constant K (that may depend on ψ but not on σ) such
that

max
(
EZ−T ,EZ

+
T
)
≤ Kσ

√
ψ(σ/2) .

Hint: check first that

EZ+
T ≤ K

√
σ2 + EZ+

T /
√
n

∫ σ/2

0

√
ψ(u)du

Check that
√
ψ(1/x)/x2 is regularly varying of index smaller than −1 and use Kara-

mata’s theorem (Bingham, Goldie and Teugels, 1987) to deduce that

lim
σ→0+

∫ σ/2

0

√
ψ(u)du =

1

1− α/2
σ

2

√
ψ(σ/2) .

See also Giné, Koltchinskii and Giné, Koltchinskii and Wellner (2003), Giné and Koltchin-
skii (2006).

Exercise 13.16 (empirical processes indexed by classes of bounded func-
tions.) Consider the same setting as in Exercise 13.15, but instead of assuming that the
functions indexed by T are {0, 1}-valued, assume that they take their values in [0, 1]. De-
rive comparable upper bounds for suprema of empirical processes. Hint: The only diffi-
cult part consist of upper bounding Eδ2

n = E sups∈T Pnf
2
s as a function of σ2 and EZ+

T .
Use symmetrization and the contraction principle to prove that Eδ2

n ≤ σ2 +8EZ+
T /
√
n.

Exercise 13.17 Assume {fs : s ∈ T } is a pointwise separable class of functions map-
ping from X → R with envelope function g (i.e., ∀x ∈ X , ∀s ∈ T , |fs(x)| ≤ g(x) ≤ b
where b ∈ R). Assume there exists κ > 0 and a non-increasing function ψ : R+ → R
such that ψ(1/x) is regularly varying with index smaller than 2 and for all probability
distribution Q,

log(δ, T , Q) ≤ ψ
(
κ‖g‖L2(Q)

δ

)
.

Let X1, . . . , Xn be independently distributed according to P . Assume that Efs(X)2 ≤
σ2 for all s ∈ T . Let Z and Z− be defined as in Theorem 13.7. Prove that there exists
a universal constant κ′ (that may depend on ψ but not on σ, P , or T ) such that
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max
(
EZ,EZ−

)
≤ κ′σ

(
ψ

(
κ‖g‖L2(P )

σ

))1/2

provided σ ≥
√
ψ(κ‖g‖L2(P )/σ). This result generalizes Theorem 13.7 where the trivial

constant envelope is used (see Theorem 3.1, Giné and Koltchinskii 2006).

Exercise 13.18 (the logarithmic factor in theorem 13.7.) The Kolmogorov-
Smirnov statistics is an example where the factor

√
log(E/σ) can be dropped in Theo-

rem 13.7. Let T = Q∩[0, σ] for some σ ∈ (0, 1]. For s ∈ T , let As = [0, s]. Let U1, . . . , Un
be independently and uniformly distributed over [0, 1] and let Xi,s = 1{Ui∈As} − s.
Check that (As)s∈T is a vc class with vc-dimension 1. Prove that for σ ∈ (0, 1],

E

[
1√
n

sup
s∈[0,σ2]

n∑
i=1

Xi,s

]
≤ 4σ .

Hint: use the symmetrization inequalities (Theorem 11.4), Lemma 11.12, and Hoeffd-
ing’s inequality. Note that Theorem 3.1 from Giné and Koltchinskii (2006) can be used
to prove that the logarithmic term is not necessary. This can be done by choosing
carefully the envelope function. This result can be generalized to multidimensional
cumulative distribution functions.

Exercise 13.19 (suprema of empirical processes indexed by balls in hilbert
spaces of functions.) Let X,X1, . . . , Xn be independently distributed according to
P . Let L2(P ) be the set of functions such that Ef(X)2 <∞. Let T be a d-dimensional
subspace of centered functions from L2(P ). Prove that

E sup
f∈T

E[f(X)2]≤R2

n∑
i=1

f(Xi) ≤ 2R
√
nd .

Hint: use symmetrization. See also Exercise 13.5. Note that if the unit ball of T has an
envelope function F that satisfies E maxi=1,...,n F (Xi)

2 ≤ nd/κ2 then the expectation
can be lower bounded by R

√
nd/(2κ). See Koltchinskii (2008).

Exercise 13.20 (suprema of empirical processes indexed by intersection of
ellipsoids.) Let X,X1, . . . , Xn be independently distributed over X according to P .
Let L2(P ) be the set of functions on X such that Ef(X)2 < ∞. Assume (gj)1≤j≤d is
an orthonormal system of centered functions in L2(P ), and let (λj)j≤d be a sequence
of positive integers. Let

E1(R) =

{
f : f =

d∑
j=1

αjgj ,

d∑
i=1

α2
j

λj
≤ R2

}
,

E2(R) =

{
f : f =

d∑
j=1

αjgj ,

d∑
i=1

α2
j ≤ R2

}
.

Prove that

E sup
f∈E1(1)∩E2(R)

n∑
i=1

f(Xi) ≤ 4

√√√√n

d∑
j=1

λj ∧R2 .
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Hint: use symmetrization. See also Exercise 13.5. This problem arises in statistical
learning theory in the analysis of the so-called kernel machines, see Mendelson (2002a),
Cucker and Zhou (2007), Steinwart and Christmann (2008) for more material on the
role of reproducing kernel Hilbert spaces in statistical learning theory.

Exercise 13.21 (maximal inequalities for convex hulls of vc-classes.) The
symmetric convex hull of a collection F of functions on X is defined by

sconv(F) =

{
k∑
i=1

λifi : k ∈ N,
k∑
i=1

|λi| ≤ 1, fi ∈ F for 1 ≤ i ≤ k

}
.

Prove that for some universal constant κ > 0,

E sup
g∈sconv(F)

∣∣∣∣∣
n∑
i=1

εig(Xi)

∣∣∣∣∣ ≤ κE sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣ ,
where the X1, . . . , Xn are independently distributed over X and ε1, . . . , εn are inde-
pendent Rademacher variables. See van der Vaart and Wellner (1996)

Norms of sums of random vectors

Exercise 13.22 (metric entropy of unit balls.) For p ∈ [1,∞], and positive
integer d, let Bdp be the unit ball of `dp. Prove that ε-entropy of Bdp under the `dp metric
H
(
ε,Bdp

)
satisfies

d log
1

ε
≤ H

(
ε,Bdp

)
≤ d log

(
1 +

2

ε

)
.

Hint: Use a volume argument. For any 0 < ε < 1, `dp balls of radius ε/2 centered on an
ε-net for Bdp are disjoint and included in (1+ε/2)Bdp . The volume of εBdp is εd times the
volume of Bdp . Meanwhile, Bdp is included in the union of `dp balls of radius ε centered
on a ε-net for Bdp .

Exercise 13.23 (on the constants in nemirovski’s inequality.) Recall the no-
tation and setup of Theorem 13.10 and let V =

∑n
i=1 E‖Xi‖

2
p denote the “strong

variance.” Prove that

E‖Sn‖2p ≤ K(p, d)V ,

where

K(p, d) =

{
d2/p−1 if 1 ≤ p ≤ 2

d1−2/p if 2 ≤ p ≤ ∞ .

(Nemirovski 2000.)

Exercise 13.24 (an improvement.) Using the notation of the previous exercise,
prove that for p ≥ 2, one may choose

K(p, d) ≤ inf
q∈[2,p]∪R

(q − 1)d2/q−2/p

(see Duembgen, van de Geer, Veraar and Wellner 2010).
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Exercise 13.25 (nemirovski’s inequality and the banach-mazur distance.) Let
B and B′ denote two Banach spaces. The Banach-Mazur distance dbm(B,B′) between
B and B′ is defined as

inf
{
‖T‖ · ‖T−1‖ : T is an isomorphism between B and B′

}
,

where ‖T‖ = sup{‖Tx‖B′/‖x‖B : x ∈ B}. Prove that if Xi are independent random
vectors from B, and Sn =

∑n
i=1 Xi, then

E‖Sn‖2B ≤ (dbm(B,H))2 V

where H is any Hilbert space (Duembgen, van de Geer, Veraar and Wellner, 2010).

Exercise 13.26 (distribution of Wi(α)2 −Wi(α
′)2.) Using the notation of Section

13.6 and assuming that (Xi,j)i≤d,j≤D are independent standard Gaussian, prove that
Wi(α)2−Wi(α

′)2 is distributed like sin(θ)Y1− sin(θ)Y2 where θ is the angle between α
and α′, and Y1, Y2 are independent χ2

1-distributed random variables. Deduce from this
exact representation that for λ < d/(8‖α− α′‖),

logEeλ(‖W (α)‖2−‖W (α′)‖2) = −d
2

log

(
1− 4λ2(1− 〈α, α′〉2)

d2

)
≤ λ28‖α− α′‖2)/d

2 (1− 8λ‖α− α′‖/d)
.

Exercise 13.27 (star shaping.) For i = 1, . . . , n, let Xi = (Xi,s)s∈T be indepen-
dent identically distributed centered random vectors. For r ≥ 0, let Tr = {s : s ∈
T , E[X2

i,s] ≤ r2}. Let L be a function on T that satisfies E[X2
i,s]

1/2 ≤ L(s). Assume
that for all s ∈ T , |Xi,s| ≤ 1 almost surely. Prove that the function

ψ∗(r) = E sup
s∈T ,α∈[0,1]
αL(s)≤r

n∑
i=1

αXi,s .

defined for r ≥ 0 is sub-linear. Prove that for every r > 0,

E sup
s∈T

r

max(r, L(s))

n∑
i=1

Xi,s ≤ ψ∗(r) .

The so-called “star-shaping” technique, originally used in asymptotic geometry, has
been successfully used in statistical learning theory, see Bartlett and Mendelson (2006),
Mendelson and Philips (2004), Mendelson (2003, 2002b, 2002a), Bartlett, Bousquet and
Mendelson (2002b), Bartlett and Mendelson (2002).

Exercise 13.28 (lie product formula.) Let A,B be n×n matrices (not necessarily
symmetric or Hermitian). The exponential of a matrix exp(A) is defined by the power
series expansion exp(A) =

∑∞
n=0 A

n/n!. Prove that

exp(A+B) = lim
m→∞

(
exp

A

m
exp

B

m

)m
.
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Hint: First check that for any n× n matrices X,Y ,

‖Xm − Y m‖ ≤ m(max(‖X‖, ‖Y ‖))m−1‖X − Y ‖ .

Then apply this bound to Xm = exp
(
A+B
m

)
and Ym = exp A

m
exp B

m
to show that

‖Xm
m − Y mm ‖ = O(1/m). See Bhatia (1997, Chapter IX), and the references therein.

Exercise 13.29 (golden-thompson inequality.) Let A and B be two n × n Her-
mitian matrices. Prove that

trace(exp(A+B)) ≤ trace(exp(A) exp(B)).

Hint: Check first that for any two Hermitian positive semi-definite matrices X,Y , for
all m = 1, 2, . . . ,

trace
(
(XY )2m) ≤ trace

(
(X2Y 2)m

)
.

Combine this inequality with the Lie product formula (Exercise 13.28) using X =
exp(A/m), Y = exp(B/m) with m = 2k+1, take k to infinity and use the continuity
of the trace to conclude. The Golden-Thompson inequality is a special case of the
following more general statement: if f is a complex-valued function over the space of
matrices that satisfies f(XY ) = f(Y X) and |f

(
X2m

)
| ≤ |f

(
(XX∗)m

)
| , then 0 ≤

f(exp(A + B)) ≤ f(expA expB) for any Hermitian matrices A,B. See Bhatia (1997,
Chapter IX).

Exercise 13.30 (rudelson’s inequality for rademacher sums.) Let A1, . . . , An
be symmetric d × d matrices. Let X1, . . . , Xn be independent Rademacher random
variables. Let Z = ‖

∑n
i=1 XiAi‖ and σ2 =

∥∥∑n
i=1 A

2
i

∥∥. Prove that

V ar(Z) ≤ σ2 and EZ ≤
√
π log(2d)σ .

Hint: The proof of the variance bound parallels the proof of the Gaussian case in The-
orem 13.8. Replace Exercise 3.24 by Example 3.6. The proof of the upper bound on
expectation follows from Theorem 13.8 by a general comparison argument, see Exer-
cise 11.14.

Exercise 13.31 (matrix hoeffding inequalities.) Let X1, . . . , Xn be independent
symmetric d×d matrices. Let A1, . . . , An be deterministic symmetric d×d matrices. Let
‖ · ‖ denote the operator norm. Assume EXi = 0 and A2

i −X2
i is positive semidefinite

almost surely for all 1 ≤ i ≤ n. Let Z =
∥∥∑n

i=1 Xi
∥∥ and σ2 =

∥∥∑n
i=1 A

2
i

∥∥. Prove that

EZ ≤ 2
√

2 log dσ

V ar(Z) ≤ σ2

P {Z ≥ EZ + t} ≤ e−t
2/8 .

Hint: use results and methods from Section 13.4, symmetrization inequalities (Lemma
11.4), and the bounded-differences inequality. See Tropp (2010a).

Exercise 13.32 (sums of positive semi-definite matrices.) Let X1, . . . , Xn be
independent symmetric positive semi-definite d×dmatrices. Let ‖·‖ denote the operator
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norm. Assume that ‖Xi‖ ≤ 1 almost surely for all 1 ≤ i ≤ n. Let Z = ‖
∑n
i=1 Xi‖.

Prove that V ar(Z) ≤ EZ and that Z satisfies the following Bennett-style inequalities:

P {Z ≥ EZ + t} ≤ exp

(
−EZh

(
t

EZ

))
for t ≥ 0, while

P {Z ≤ EZ − t} ≤ exp

(
−EZh

(
−t
EZ

))
for 0 ≤ t ≤ EZ, where h(t) = (t+ 1) log(t+ 1)− t. Prove that EZ satisfies

EZ ≤ 2
√

2 log d
√
EZ +

∥∥∥∥∥E
n∑
i=1

Xi

∥∥∥∥∥ .
Hint: To prove the first part, verify that Z = ‖

∑n
i=1 Xi‖ is self-bounding and use The-

orem 6.12. The last relation entails EZ ≤ 8 log d+2
∥∥E∑n

i=1 Xi
∥∥ . It is immediate that

EZ ≥
∥∥E∑n

i=1 Xi
∥∥. On the other hand, letting n = d, and letting all Xi be uniformly

distributed among the orthogonal projections on the lines generated by vectors of the
canonical basis, it is not hard to verify that EZ is not smaller than the maximum
number of balls that fall into one bin when throwing d balls into d bins at random. The
latter is known to be tightly concentrated around log(d)/ log(log(d)). Compare with
matrix Chernoff bounds in Tropp (2010a) and in Ahlswede and Winter (2002). The
latter upper bounds the probability that Z is larger than µ + t by d exp(−µh(t/µ))
where µ =

∥∥E∑n
i=1 Xi

∥∥ . Obviously, d exp(−µh(t/µ)) ≥ exp
(
−EZh

(
t

EZ

))
.

Exercise 13.33 (bennett- and bernstein-type inequalities for matrices.) Let
X1, . . . , Xn be independent symmetric random d × d matrices. Let ‖ · ‖ denote the
operator norm. Assume that EXi = 0 and ‖Xi‖ ≤ 1 almost surely for all 1 ≤ i ≤ n. Let
Z = ‖

∑n
i=1 Xi‖. Prove that V ar(Z) ≤ v = ‖E

∑n
i=1 X

2
i ‖ + 2EZ and that Z satisfies

Bennett- and Bernstein-style inequalities with variance factor v and scale factor 1. Hint:
use Bousquet’s inequality. See Tropp (2010a).

Suprema of some classical processes

Exercise 13.34 (le cam’s poissonization lemma.) Let T be a finite index set. Let
Xi = (Xi,s)s∈T , i = 1, 2, . . . be independently identically distributed and centered. Let
Nn be a Poisson random variable with expectation n, independent of the Xi. Prove
that (

1− 1

e

)
E sup
s∈T

n∑
i=1

Xi,s ≤ E sup
s∈T

Nn∑
i=1

Xi,s .

Hint: Let (Yi)i∈N be Poisson random variables with expectation 1 independent of the
Xi. Use the fact that the left-hand side equals E sups∈T

∑n
i=1(E[Yi ∧ 1])Xi,s (van der

Vaart and Wellner, 1996).

Exercise 13.35 (variance of the supremum of the kac process.) Let T be a
finite set. Let Xi = (Xi,s)s∈T , i = 1, 2, . . . be independently identically distributed and
centered random vectors with |Xi| ≤ 1. Let Nn be a Poisson random variable with
expectation n, independent of the Xi. Let Nn be Poisson distributed with expectation
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n and independent of the Xi. Let Zk = sups∈T
∑k
i=1 Xi,s. The supremum of the Kac

process is defined by

Z = sup
s∈T

Nn∑
i=1

Xi,s = ZNn .

Let σ2 = sups∈T EX2
1,s. Prove that

V ar(Z) ≤ ENnσ
2 + 2EZ

+ENnE

(E [sup
s∈T

Nn+1∑
i=1

Xi,s − sup
s∈T

Nn∑
i=1

Xi,s

∣∣∣Nn])2


≤ ENnσ
2 + 2EZ + ENnE

[(
E[Zmax(Nn,1)|Nn]

max(Nn, 1)

)2
]
.

Hint: use the Poisson Poincaré inequality (Exercise 3.21) and Theorem 11.10.

Exercise 13.36 (variance of the supremum of the kac process, continued.)
Using the notation of Exercise 13.35, prove that

V ar(Z) ≤ E sup
s∈T

Nn∑
i=1

X2
i,s + ENn sup

s∈T
EX2

1,s ,

see Reynaud-Bouret (2003, page 109).

Exercise 13.37 (variance of the supremum of the kac process indexed by a
vc-class.) Use the notation of Theorem 13.7 and Exercise 13.35 to prove that the
variance of the Kac process indexed by a vc class with vc dimension V , where each
set has probability at most than σ2, is upper bounded by

nσ2 + κσ

√
V n log

e

σ
+ κV σ2 log

e

σ
,

where κ is a universal constant.

Exercise 13.38 (cramér-von mises statistic.) . The Cramér-von Mises statistis is
defined as

Z2 = n

∫ 1

0

(Pn([0, x])− x)2dx ,

where Pn([0, x]) =
∑n
i=1 1{Xi≤x} is the empirical measure defined by X1, . . . , Xn that

are independently distributed according to the uniform distribution. Show that Z is
the supremum of an empirical process. Derive an upper bound for EZ. Compute the
Efron-Stein upper bounds for V ar(Z). Hint: Use the Riesz-Fischer theorem to represent
Z as the supremum of an empirical process. Namely, denoting by T the class of rational
sequences (si)i≤N with

∑
i∈N s

2
i = 1, prove that

Z = sup
s∈T

∞∑
i=1

√
n

∫ 1

0

si
√

2 sin(2πix)(Pn([0, x])− x)dx

(van der Vaart and Wellner, 1996, Chapter 2.13).
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Exercise 13.39 (anderson-darling statistic.) The Anderson-Darling statistic is
defined by

Z2 = n

∫ 1

0

(Pn([0, x])− x)2

x(1− x)
dx .

Prove that Z is the supremum of an empirical process. Compute the Efron-Stein upper
bound on the variance of Z and compare it to EZ2 = 1. Hint: proceed as in the previous
exercise.

Exercise 13.40 (higher criticism statistic.) Define the higher-criticism statistic
by

Z = sup
s∈[1/

√
n,1−1/

√
n]

|Pn([0, s])− s|√
ns(1− s)

where Pn denotes the empirical distribution defined by a sample X1, . . . , Xn drawn
independently from the uniform distribution over [0, 1], Use the tools of Section 13.7
to show that EZ ≤

√
2 log logn. Prove that the variance of Z is bounded by a function

of 1/(2 log logn). Hint: It is known that

P

√2 log logn

Z − (
√

2 log logn+
log
√

log logn
2π√

2 log logn
)

 < t

→ e−e
−t
,

that is, that after centering and rescaling, Z converges in law to a Gumbel distribution.
See Donoho and Jin (2004), Jaeschke (1979), and de Haan and Ferreira (2006).

Exercise 13.41 (properties of sub-linear functions.) Recall that ψ : [0,∞) →
[0,∞) is sub-linear if it is non-decreasing, continuous, ψ(x)/x is non-increasing, and
ψ(1) ≥ 1. Prove the following: (a) If ψ and ρ are sub-linear then so are ψ ◦ρ and ψ+ρ.
(b) For any α ≥ ψ(1), the equation αr2 = ψ(r) has a unique solution in (0, 1]. (c) If ψ
is sub-linear, then ψ(u+ v) ≤ ψ(u) +ψ(v). (d) If X is a positive random variable, then
Eψ(X) ≤ 2ψ (EX).

Exercise 13.42 Let ψ and ρ denote non-trivial sub-linear functions. Let r∗ denote
the unique positive solution of the equation

√
nr2 = ψ(ρ(r)). For some a, b, c ∈ [0,∞)

with a ≥ 1, let u denote the unique solution of equation r2 = a√
n
ψ(ρ(r)) + b√

n
ρ(r) + c.

Check that
u2 ≤ 2

(
a2 + b2

)
r2
∗ + 2c.

See Koltchinskii (2006), Massart and Nédélec (2006), Massart (2000b, 2006).

Exercise 13.43 (johnson-lindenstrauss theorem for sparse vectors.) Con-
sider the notation of Lemma 13.13. For a subset A ⊆ RD, let conv(A) denote the
convex hull of A and for λ > 0, let λA = {λx : x ∈ A} and A−A = {x− y : x, y ∈ A}.
Let A be the subset of unit vectors of RD whose components of index larger than k are
zero. For 0 < ε < 1, let Aε be an ε-net for A. Prove that for 0 < ε < 1, A ⊆ 2conv(Aε).
Use this inclusion and the contraction principle (see Lemma 11.5 and Exercise 11.11)
to establish that

E sup
α∈A
‖W (α)‖ ≤ 2E sup

α∈Aε
‖W (α)‖ .

Use this result to give another proof of Lemma 13.13. See Mendelson, Pajor and
Tomczak-Jaegermann (2008).
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Φ-ENTROPIES

In Chapter 3 we introduced a machinery that allows one to derive bounds for the
variance of a function of independent random variables. Then, in Chapters 5 and
6, with the help of logarithmic Sobolev inequalities and their modifications, we
were able to derive exponential concentration inequalities, somewhat analogous
to the Efron-Stein inequality. We call this the entropy method because it is
based on a crucial sub-additivity property of the entropy, shown in Chapter 4.
A necessary condition for the entropy method to work is the finiteness of the
moment generating function of the random variable of interest.

The purpose of this chapter and the next is to introduce a methodology
to bound higher moments of functions of independent random variables. This
method, though more technical than the entropy method, is at least as powerful
and works for random variables that are not necessarily exponentially integrable.

Our approach is based on a generalization of the entropy method. The basic
pillar of the method is the introduction of certain convex functionals of random
variables that we call Φ-entropies. These functionals may be thought of as a
common generalization of the variance and the entropy of a random variable.

In Section 14.1 we start by investigating the sub-additivity properties of Φ-
entropies. We establish a duality formula, generalizing the one proved for the
“ordinary” entropy in Section 4.9 and characterize Φ-entropies that are sub-
additive.

The next step in our program of extending the entropy method consists of
deriving inequalities that we coin “Φ-Sobolev inequalities,” generalizing the mod-
ified logarithmic Sobolev inequalities obtained in Sections 6.3 and 6.8. This is
done in Section 14.2.

We close this chapter by deriving, in Section 14.3, sharp Φ-Sobolev inequal-
ities for Bernoulli distributions. As a corollary, we obtain the optimal constant
of the logarithmic Sobolev inequality for unbalanced Bernoulli distributions.

14.1 Φ-entropy and its sub-additivity

Let Φ : [0,∞) → R be a convex function and assign, to every nonnegative
integrable random variable Z, the number

HΦ(Z) = EΦ(Z)− Φ(EZ) ,

By Jensen’s inequality, HΦ(Z) is always nonnegative. We call HΦ(Z) the Φ-
entropy of Z.

Observe that with Φ(x) = x2, the Φ-entropy is just the variance of Z, while
for Φ(x) = x log x, HΦ(Z) reduces to the “ordinary” notion of entropy introduced
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in Chapter 4. In the next chapter we show that other choices of Φ, in particular,
Φ(x) = xa for a ∈ (1, 2] yield interesting variants and an appropriate modification
of the entropy method based on such Φ entropies leads to non-trivial moment
inequalities.

Just as before, we are interested in random variables Z that are functions
of independent random variables. In particular, we consider Z = f(X1, . . . , Xn)
where X1, . . . , Xn are independent random variables taking values in a set X
and f is a nonnegative function on Xn.

The key property that we need is the following sub-additivity inequality of
Φ-entropies:

HΦ(Z) ≤ E

n∑

i=1

H
(i)
Φ (Z)

where H
(i)
Φ (Z) = E(i)Φ(Z)−Φ(E(i)Z) is the conditional entropy and, as before,

E(i) denotes conditional expectation conditioned on the n − 1-vector X(i) =
(X1, . . . , Xi−1, Xi+1, . . . , Xn).

When Φ(x) = x2, this sub-additivity property is just the Efron-Stein in-
equality (Theorem 3.1) while with Φ(x) = x log x it becomes the sub-additivity
inequality of the “ordinary” entropy, see Theorem 4.22.

Here we show that Φ-entropies are sub-additive for a large class of convex
functions Φ. In fact, we characterize the class of functions Φ that give rise to
entropy functionals with the sub-additive property.

First we point out that sub-additivity is equivalent to a simple “Jensen-type”
inequality. On the one hand, observe that for n = 2 and setting Z = f(X1, X2),
the sub-additivity property reduces to

HΦ

(∫
f(x,X2)dµ1(x)

)
≤
∫
HΦ (f(x,X2)) dµ1(x) , (14.1)

where µ1 denotes the distribution of X1. On the other hand, (14.1) implies the
sub-additivity property. Indeed let Y1 be distributed like X1, and let Y2 be dis-
tributed like the n−1-tuple X2, . . . , Xn. Let µ1 and µ2 denote the corresponding
distributions. Then Z = f(Y1, Y2) is a measurable function of the two indepen-
dent random variables Y1 and Y2. By the Tonelli-Fubini theorem,
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HΦ(Z) =

∫∫ (
Φ(f(y1, y2))− Φ

(∫
f(y′1, y2)dµ1(y′1)

)

+ Φ

(∫
f(y′1, y2)dµ1(y′1)

)

− Φ

(∫∫
f(y′1, y

′
2)dµ1(y′1)dµ2(y′2)

))
dµ1(y1)dµ2(y2)

=

∫ (∫ [
Φ(f(y1, y2))− Φ

(∫
f(y′1, y2)dµ1(y′1)

)]
dµ1(y1)

)
dµ2(y2)

+

∫ (
Φ

(∫
f(y′1, y2)dµ1(y′1)

)

− Φ

(∫∫
f(y′1, y

′
2)dµ1(y′1)dµ2(y′2)

))
dµ2(y2)

=

∫
HΦ(f(Y1, y2)dµ2(y2) +HΦ

(∫
f(y′1, Y2)dµ1(y′1)

)

≤
∫
HΦ(f(Y1, y2)dµ2(y2) +

∫
HΦ (f(y′1, Y2)) dµ1(y′1) ,

where the last step follows from (14.1). In other words, we get

HΦ(Z) ≤ EH
(1)
Φ (Z) +

∫
HΦ (f(x1, X2, . . . , Xn)) dµ1(x1) .

Proceeding by induction, (14.1) leads to the sub-additivity property for every n.
Thus, the sub-additivity property of HΦ is equivalent to what we could call

the Jensen property, that is, (14.1). This implies that in order to prove sub-
additivity of a Φ-entropy, it suffices to show that it has the Jensen property.

Our approach of establishing that the functional HΦ satisfies the Jensen
property is by following the lines of the proof of the sub-additivity property for
the “usual” entropy shown in Section 4.13. The key of this proof is a duality
formula that expresses HΦ as a supremum of affine functions.

Theorem 14.1 (sub-additivity of Φ-entropy.) Let C denote the class of
functions Φ : [0,∞)→ R that are continuous and convex on [0,∞), twice differ-
entiable on (0,∞), and such that either Φ is affine or Φ′′ is strictly positive and
1/Φ′′ is concave. For all Φ ∈ C, the entropy functional HΦ is sub-additive.

As mentioned above, the main ingredient of the proof of Theorem 14.1 is a
duality formula for Φ-entropy of the form

HΦ (Z) = sup
T∈T

E [ψ1 (T )Z + ψ2 (T )] ,

for convenient functions ψ1 and ψ2 and a suitable class of nonnegative variables
T . Such a formula obviously implies that the functional HΦ is convex. On the
other hand, it also implies the Jensen property and therefore the sub-additivity
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property for HΦ by the following simple argument: consider again Z = f(Y1, Y2)
as a function of Y1 = X1 and Y2 = (X1, . . . Yn). Then

HΦ

(∫
f(y1, Y2)dµ1(y1)

)

= sup
T∈T

∫ [
ψ1(T (y2))

∫
f(y1, y2)dµ1(y1) + ψ2(T (y2))

]
dµ2(y2)

(by Fubini’s theorem)

= sup
T∈T

∫ (∫
[ψ1(T (y2))f(y1, y2) + ψ2(T (y2))] dµ2(y2)

)
dµ1(y1)

≤
∫ (

sup
T∈T

∫
[ψ1(T (y2))f(y1, y2) + ψ2(T (y2))] dµ2(y2)

)
dµ1(y1)

=

∫
(HΦ(f(y1, Y2))) dµ1(y1) .

Thus, in order to complete the proof of Theorem 14.1, the following lemma
is sufficient.

Denote the convex set of nonnegative and integrable random variables Z by
L+

1 .

Lemma 14.2 (duality formula for Φ-entropies.) Let Φ ∈ C and Z ∈ L+
1 .

If Φ (Z) is integrable, then

HΦ(Z) = sup
T∈L+

1 ,T 6=0

{
E
[(

Φ′ (T )− Φ′ (ET )
)
(Z − T ) + Φ(T )

]
− Φ (ET )

}
.

Proof The case when Φ is affine is trivial: HΦ equals zero, and so does the
expression defined by the duality formula.

Note that the expression within the brackets on the right-hand side equals
HΦ(Z) for T = Z, so the proof of Lemma 14.2 amounts to checking that

HΦ(Z) ≥ E
[(

Φ′(T )− Φ′ (ET )
)
(Z − T ) + Φ(T )

]
− Φ (ET )

under the assumption that Φ(Z) is integrable and T ∈ L+
1 .

Assume first that Z and T are bounded and bounded away from 0. For any
λ ∈ [0, 1], we set Tλ = (1− λ)Z + λT and

g(λ) = E [(Φ′ (Tλ)− Φ′ (ETλ)) (Z − Tλ)] +HΦ (Tλ) .

Our aim is to show that the function g if non-increasing on [0, 1]. Noticing that
Z−Tλ = λ(Z−T ) and using our boundedness assumptions to differentiate under
the expectation, we have

g′(λ) = −λ
(
E
[
(Z − T )

2
Φ′′ (Tλ)

]
− (E [Z − T ])

2
Φ′′ (ETλ)

)

+E [(Φ′ (Tλ)− Φ′ (ETλ)) (Z − T )]

+E [Φ′ (Tλ) (T − Z)]− Φ′ (ETλ)E [T − Z] ,
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that is,

g′(λ) = −λ
(
E
[
(Z − T )

2
Φ′′ (Tλ)

]
− (E [Z − T ])

2
Φ′′ (ETλ)

)
.

Now, by the Cauchy-Schwarz inequality,

(E [Z − T ])
2

=

(
E

[
(Z − T )

√
Φ′′ (Tλ)

1√
Φ′′ (Tλ)

])2

≤ E

[
1

Φ′′ (Tλ)

]
E
[
(Z − T )

2
Φ′′ (Tλ)

]
.

Using the concavity of 1/Φ′′, Jensen’s inequality implies that

E

[
1

Φ′′ (Tλ)

]
≤ 1

Φ′′ (ETλ)
,

which leads to

(E [Z − T ])
2 ≤ 1

Φ′′ (ETλ)
E
[
(Z − T )

2
Φ′′ (Tλ)

]
,

which is equivalent to g′(λ) ≤ 0 and therefore g(1) ≤ g(0) = HΦ(Z). This means
that for any T , E [(Φ′(T )− Φ′ (ET )) (Z − T )] +HΦ(T ) ≤ HΦ (Z).

In the general case we consider the sequences Zn = (Z ∨ 1/n) ∧ n and Tk =
(T ∨ 1/k)∧k and our purpose is to take the limit, as k, n→∞, in the inequality

HΦ(Zn) ≥ E [(Φ′ (Tk)− Φ′ (ETk)) (Zn − Tk) + Φ (Tk)]− Φ (ETk)

which we can also write as

E [ψ(Zn, Tk)] ≥ −Φ′ (ETk)E [Zn − Tk]− Φ (ETk) + Φ (EZn) , (14.2)

where ψ(z, t) = Φ(z)− Φ(t)− (z − t)Φ′(t). Since we have to show that

E [ψ (Z, T )] ≥ −Φ′ (ET )E [Z − T ]− Φ(ET ) + Φ(EZ) (14.3)

with ψ ≥ 0, we can always assume ψ (Z, T ) to be integrable (since otherwise
(14.3) is trivially satisfied). Taking the limit when n and k go to infinity on the
right-hand side of (14.2) is easy, while the treatment of the left hand side requires
some care. Note that ψ(z, t), as a function of t, decreases on (0, z) and increases
on (z,∞). Similarly, as a function of z, ψ(z, t) decreases on (0, t) and increases
on (t,+∞). Hence, for every t, ψ(Zn, t) ≤ ψ(1, t) + ψ(Z, t) while for every z,
ψ(z, Tk) ≤ ψ(z, 1) + ψ(z, T ). Hence, given k,

ψ(Zn, Tk) ≤ ψ(1, Tk) + ψ(Z, Tk) ,
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as ψ((z ∨ 1/n) ∧ n, Tk) → ψ(z, Tk) for every z, we can apply the dominated
convergence theorem to conclude that Eψ(Zn, Tk) converges to Eψ(Z, Tk) as
n→∞. Hence, we have

Eψ(Z, Tk) ≥ −Φ′ (ETk)E [Z − Tk]− Φ (ETk) + Φ (EZ) .

Now we also have ψ(Z, Tk) ≤ ψ(Z, 1)+ψ(Z, T ) and we can apply the dominated
convergence theorem again to ensure that Eψ(Z, Tk) converges to Eψ(Z, T ) as
k →∞. Taking the limit as k →∞ implies that (14.3) holds for every T,Z ∈ L+

1

such that Φ(Z) is integrable and ET > 0. If Z 6= 0 a.s., (14.3) is achieved for
T = Z while if Z = 0 a.s., it is achieved for T = 1 and the proof of the lemma
is now complete in its full generality. 2

Remark 14.4 Note that since the supremum in the duality formula of Lemma
14.2 is achieved for T = Z (or T = 1 if Z = 0), the duality formula remains true
if the supremum is restricted to the class TΦ of variables T such that Φ(T ) is
integrable. Hence, we may also write the alternative formula

HΦ(Z) = sup
T∈TΦ

{E [(Φ′(T )− Φ′(ET )) (Z − T )] +HΦ(T )} .

Remark 14.5 Note that Lemma 14.2 generalizes the duality formula of Theo-
rem 4.13 for the ”usual” entropy. Indeed, taking Φ(x) = x log x, we get

Ent(Z) = sup
T
{E [(log (T )− log (ET ))Z]}

where the supremum is extended to the set of nonnegative and integrable random
variables T with ET > 0. Another case of interest is Φ(x) = xp, with p ∈ (1, 2].
In this case, one has, by the previous remark,

HΦ(Z) = sup
T

{
pE
[
Z
(
T p−1 − (ET )

p−1
)]
− (p− 1)HΦ(T )

}
,

where the supremum is extended to the set of nonnegative variables in Lp.

Remark 14.6 For the sake of simplicity we have focused on nonnegative vari-
ables and convex functions Φ on [0,∞). This restriction can be suppressed and
one may consider Φ that is a convex function on R and define the Φ-entropy
of a real valued integrable random variable Z by the same formula as in the
nonnegative case. Assuming this time that Φ is differentiable on R and twice
differentiable on R \ {0}, the proof of the duality formula above can be easily
adapted to cover this case provided that 1/Φ′′ can be extended to a concave
function on R. In particular, if Φ(x) = |x|p, where p ∈ (1, 2], one gets

HΦ(Z) = sup
T

{
pE

[
Z

( |T |p
T
− |ET |

ET

p)]
− (p− 1)HΦ (T )

}

where the supremum is extended to Lp. Note that for p = 2 this formula reduces
to the classical one for the variance
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V ar(Z) = sup
T
{2Cov(Z, T )− V ar(T )} ,

where the supremum is extended to the set of square integrable variables. This
means that the sub-additivity inequality for the Φ-entropy also holds for convex
functions Φ on R under the condition that 1/Φ′′ is the restriction to R \ {0} of
a concave function on R.

We close this section by pointing out that, provided that Φ′′ is strictly pos-
itive, the condition 1/Φ′′ concave is necessary for the sub-additivity property
to hold. In fact, even more is true: the concavity of 1/Φ′′ is necessary for the
Φ-entropy HΦ to be convex on the set of bounded and nonnegative random
variables.

Proposition 14.3 Let Φ : [0,∞) → R be a strictly convex function which is
twice differentiable on (0,∞). Let the probability space (Ω,A,P ) be rich enough
in the sense that P maps A onto [0, 1]. If HΦ is convex on the set of of bounded,
nonnegative random variables, then Φ′′(x) > 0 for every x > 0 and 1/Φ′′ is
concave on (0,∞).

Proof Let θ ∈ [0, 1] and let x, x′, y, y′ > 0. By the assumption on the probabil-
ity space, we may define a pair of random variables (X,Y ) by

(X,Y ) =

{
(x, y) with probability θ
(x′, y′) with probability 1− θ.

Then convexity of HΦ means that

HΦ (λX + (1− λ)Y ) ≤ λHΦ(X) + (1− λ)HΦ(Y )

for every λ ∈ (0, 1). Defining, for every u, v > 0,

Fλ(u, v) = −Φ (λu+ (1− λ)v) + λΦ(u) + (1− λ)Φ(v) ,

the inequality is equivalent to

Fλ (θ(x, y) + (1− θ)(x′, y′)) ≤ θFλ(x, y) + (1− θ)Fλ(x′, y′) .

Hence, Fλ is convex on (0,∞)2. This implies, in particular, that the determinant
of the Hessian matrix of Fλ is nonnegative at each point (x, y). Thus, setting
xλ = λx+ (1− λ)y,

[Φ′′(x)− λΦ′′(xλ)] [Φ′′(y)− (1− λ)Φ′′(xλ)] ≥ λ(1− λ) [Φ′′(xλ)]
2

which means that

Φ′′(x)Φ′′(y) ≥ λΦ′′(y)Φ′′(xλ) + (1− λ)Φ′′(x)Φ′′(xλ) .

If Φ′′(x) = 0 for some point x, we see that either Φ′′(y) = 0 for every y, which
is impossible because Φ is assumed to be strictly convex, or there exists some
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y such that Φ′′(y) > 0 and then Φ′′ is identically equal to 0 on the nonempty
open interval with endpoints x and y which also contradicts the assumption of
strict convexity of Φ. Hence Φ′′ is strictly positive at each point of (0,∞) and
the inequality above becomes

1

Φ′′ (λx+ (1− λ)y)
≥ λ

Φ′′(x)
+

(1− λ)

Φ′′(y)

which implies that 1/Φ′′ is concave. 2

14.2 From Φ-entropies to Φ-Sobolev inequalities

Now we describe the next step in our program of deriving moment inequalities
for functions of independent random variables. The program follows the outline
of the entropy method for proving exponential concentration inequalities. Recall
that, after establishing the sub-additive property of the entropy, we used sym-
metrization and variational arguments to derive modified logarithmic Sobolev
inequalities (recall Theorems 6.6 and 6.15). The following lemma generalizes
these symmetrization and variational arguments.

Lemma 14.4 Let Φ be a continuous and convex function on [0,∞). Then, de-
noting by Φ′ the right derivative of Φ, for every nonnegative and integrable ran-
dom variable Z,

HΦ(Z) = inf
u≥0

E [Φ(Z)− Φ(u)− (Z − u)Φ′(u)] .

Let Z ′ be an independent copy of Z. Then

HΦ(Z) ≤ 1

2
E [(Z − Z ′) (Φ′(Z)− Φ′(Z ′))] = E

[
(Z − Z ′)+ (Φ′(Z)− Φ′(Z ′))

]
.

If, moreover, ψ(x) = (Φ(x)− Φ(0)) /x is concave on (0,∞), then

HΦ(Z) ≤ 1

2
E [(Z − Z ′) (ψ(Z)− ψ(Z ′))] = E

[
(Z − Z ′)+ (ψ(Z)− ψ(Z ′))

]
.

Proof Without loss of generality, we assume that Φ(0) = 0. By the convexity
of Φ, for all u > 0,

−Φ(EZ) ≤ −Φ(u)− (EZ − u)Φ′(u) ,

and therefore
HΦ(Z) ≤ E [Φ(Z)− Φ(u)− (Z − u)Φ′(u)] .

Since the latter inequality becomes an equality when u = EZ, the variational
formula is proven. Since Z ′ is an independent copy of Z, we further get that

HΦ(Z) ≤ E [Φ(Z)− Φ(Z ′)− (Z − Z ′) Φ′(Z ′)]

≤ −E [(Z − Z ′) Φ′(Z ′)]
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and by symmetry,

2HΦ(Z) ≤ −E [(Z ′ − Z) Φ′(Z)]−E [(Z − Z ′) Φ′(Z ′)] ,

which leads to the second inequality of the lemma. To prove the third inequality,
we simply note that

1

2
E [(Z − Z ′) (ψ(Z)− ψ(Z ′))]−HΦ(Z) = −EZEψ(Z) + Φ(EZ) .

But the concavity of ψ implies that Eψ(Z) ≤ ψ(EZ) = Φ(EZ)/EZ and the
result follows. 2

The next lemma shows that we can apply the third inequality of the lemma
whenever Φ ∈ C. In particular, for Φ(x) = xp, with p ∈ (1, 2], it improves on the
second inequality by a factor of p.

Lemma 14.5 If Φ ∈ C, then both Φ′ and ψ(x) = (Φ(x)− Φ (0)) /x are concave
on (0,∞).

Proof Without loss of generality we may assume that Φ(0) = 0. If Φ is strictly
convex,

1

Φ′′((1− λ)u+ λx)
≥ 1− λ

Φ′′(u)
+

λ

Φ′′(x)
(by the concavity of 1/Φ′′)

≥ λ

Φ′′(x)
(since by the strict convexity of Φ, Φ′′(x) > 0).

In any case, the concavity of 1/Φ′′ implies that for every λ ∈ (0, 1) and every
x, u > 0,

λΦ′′ ((1− λ)u+ λx) ≤ Φ′′(x) ,

that is, for all t > 0,
λΦ′′(t+ λx) ≤ Φ′′(x) .

Letting λ → 1, we see that Φ′′ is non-increasing, that is, Φ′ is concave. Setting
ψ(x) = Φ(x)/x, one has

x3ψ′′(x) = x2Φ′′(x)− 2xΦ′(x) + 2Φ(x) .

The convexity of Φ and its continuity at 0 imply that limx→0 xΦ′(x) = 0. Also,
by concavity of Φ′,

x2Φ′′(x) ≤ 2x (Φ′(x)− Φ′ (x/2)) ,

so limx→0 x
2Φ′′(x) = 0 and therefore limx→0 x

3ψ′′(x) = 0. Denoting (abusively)
by Φ(3) the right derivative of Φ′′ (which is well defined since 1/Φ′′ is concave) and
by γ the right derivative of x3ψ′′(x), we have γ(x) = x2Φ(3)(x). Then γ(x) ≤ 0
since Φ′′ is non-increasing. Thus, x3ψ′′(x) is non-increasing. Since x3ψ′′(x) tends
to 0 at 0, this means that x3ψ′′(x) ≤ 0 and therefore ψ′′(x) ≤ 0, proving the
concavity of ψ. 2
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Now we are prepared to prove analogs of the “modified logarithmic Sobolev
inequalities” of Theorems 6.6 and 6.15. In analogy of this terminology, we may
call the following two theorems modified Φ-Sobolev inequalities. The purpose
of these inequalities is to upper bound the Φ-entropy of a conveniently chosen
convex function of the variable of interest Z.

In what follows, X1, . . . , Xn denote independent random variables, taking val-
ues in some space X and f : Xn → I is a function mapping into a (possibly infi-
nite) interval I ⊂ R. Let Z = f(X1, . . . , Xn) and let Z ′i = f(X1, . . . , X

′
i, . . . , Xn)

be obtained by replacing the variable Xi by an independent copy X ′i.
As in Section 6.9, we introduce the random variables

V + =

n∑

i=1

E′
[
(Z − Z ′i)2

+

]

and

V − =

n∑

i=1

E′
[
(Z − Z ′i)2

−
]
,

where E′ denotes expectation with respect to the variables X ′1, . . . , X
′
n only.

If fi : Xn−1 → I are arbitrary measurable functions, we write Zi = fi(X
(i)) =

fi(X1, . . . , Xi−1, Xi+1, . . . , Xn) and

V =

n∑

i=1

(Z − Zi)2 .

Then we have the following “Φ-Sobolev” inequalities.

Theorem 14.6 Let Φ ∈ C and let η be a non-decreasing, nonnegative and dif-
ferentiable convex function on I. Let ψ(x) = (Φ(x)− Φ(0)) /x. If the function
ψ ◦ η is convex, then

HΦ(η(Z)) ≤ E
[
V +η′

2
(Z)ψ′(η(Z))

]
.

On the other hand, if Φ′ ◦ η is convex and Zi ≤ Z for all i = 1, . . . , n, then

HΦ(η(Z)) ≤ 1

2
E
[
V η′

2
(Z)Φ′′ (η(Z))

]
.

Proof First fix x < y and assume that g = Φ′ ◦ η is convex. Setting

h(t) = Φ(η(y))− Φ(η(t))−
(
η(y)− η(t)

)
g(t) ,

we have
h′(t) = −g′(t) (η(y)− η(t)) .

But for every t ≤ y, the monotonicity and convexity assumptions on η and g
yield
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0 ≤ g′(t) ≤ g′(y) and 0 ≤ η(y)− η(t) ≤ (y − t)η′(y) ,

hence

−h′(t) ≤ (y − t) η′(y)g′(y) .

Integrating this inequality with respect to t on [x, y], we obtain

Φ(η(y))− Φ(η(x))− (η(y)− η(x)) Φ′(η(x)) ≤ 1

2
(y − x)

2
η′

2
(y)Φ′′(η(y)) .

Now sub-additivity of the Φ-entropy (Theorem 14.1), combined with the varia-
tional inequality of Lemma 14.4 and the inequality above lead to

HΦ (η(Z)) ≤ 1

2

n∑

i=1

E
[
(Z − Zi)2

η′
2
(Z)Φ′′ (η(Z))

]

and therefore to the second inequality of the theorem.
Under the assumption that ψ ◦ η is convex, we have

0 ≤ η(y)− η(x) ≤ (y − x)η′(y)

and

0 ≤ ψ(η(y))− ψ(η(x)) ≤ (y − x)η′(y)ψ′(η(y)) ,

which implies

(η(y)− η(x)) (ψ(η(y))− ψ(η(x))) ≤ (x− y)
2
η′

2
(y)ψ′(η(y)) .

The first inequality of the theorem follows from here in a similar way, but using
the last inequality of Lemma 14.4. 2

The case when η is non-increasing is handled by the following theorem.

Theorem 14.7 Let Φ ∈ C and let η be a nonnegative, non-increasing and dif-
ferentiable convex function on I. Let ψ(x) = (Φ(x)−Φ(0))/x. If Z̃ is a random

variable satisfying Z̃ ≤ min1≤i≤n Zi and if Φ′ ◦ η is convex, then

HΦ(η(Z)) ≤ 1

2
E
[
V η′

2
(
Z̃
)

Φ′′
(
η
(
Z̃
))]

,

while if ψ ◦ η is convex, we have

HΦ(η(Z)) ≤ E
[
V +η′

2
(
Z̃
)
ψ′
(
η
(
Z̃
))]

and

HΦ(η(Z)) ≤ E
[
V −η′

2
(Z)ψ′(η(Z))

]
.
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The proof of Theorem 14.7 parallels the proof of Theorem 14.6 and it is left
to the reader as an exercise (see Exercise 14.1).

Observe that by taking η(z) = exp (λz) and Φ(x) = x log x in Theorems 14.6
and 14.7, we obtain

Ent(eλZ) ≤ λ2E
[
V +eλZ

]

for λ ≥ 0, while if λ ≤ 0, one has

Ent(eλZ) ≤ λ2E
[
V −eλZ

]
.

We already derived these inequalities as consequences of the modified logarithmic
Sobolev inequalities of Theorem 6.15.

14.3 Φ-Sobolev inequalities for Bernoulli random variables

In this section we present Φ-Sobolev inequalities for functions of Bernoulli ran-
dom variables. In the first part of this section we consider symmetric Bernoulli
random variables and prove a Φ-Sobolev inequality that contains the Efron-Stein
(or Poincaré) inequality and the logarithmic Sobolev inequality (Theorem 5.1)
as special cases for such distributions. Also, we obtain a family of inequalities
that “interpolate” between these extremes.

In the second half of the section we extend these results to unbalanced
Bernoulli distributions. As a special case, we obtain the logarithmic Sobolev
inequality of Theorem 5.2 with the optimal constants.

Suppose first that the random vectorX is uniformly distributed over {−1, 1}n,
and let f : {−1, 1}n → [0,∞) be defined on the n-dimensional binary hypercube.

In Chapter 5 we introduced the functional

E(f) =
1

4
E

n∑

i=1

(
f(X)− f(X

(i)
)
)2

=
1

2
E

n∑

i=1

(
f(X)− f(X

(i)
)
)2

+
,

where the random binary vector X
(i)

= (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) is
obtained by flipping the i-th component of X while leaving the others unchanged.
In Chapter 5 we proved that V ar(f) ≤ E(f) and Ent(f2) ≤ 2E(f). Both of
these results may be regarded as Φ-Sobolev inequalities with Φ(x) = x2 and
Φ(x) = x log x, respectively.

The second inequality—the logarithmic Sobolev inequality for symmetric
Bernoulli distributions— allowed us to establish the Bonami-Beckner inequal-
ity (Theorem 5.18). Here we show that the Bonami-Beckner inequality may, in
turn, be used to deduce sharp Φ-Sobolev inequalities for Φ(z) = z2/r for all
r ∈ [1, 2). This collection of Φ-Sobolev inequalities “interpolate” between the
two cases mentioned above, in a sense that we explain below.

Theorem 14.8 (Φ-sobolev inequalities for balanced bernoulli ran-
dom variables.) Let f : {−1, 1}n → [0,∞) and assume that X is uniformly
distributed over {−1, 1}n. Then for all r ∈ [1, 2), letting Φ(z) = z2/r,

HΦ(fr) ≤ (2− r)E(f) .



Φ-Sobolev inequalities for Bernoulli random variables 409

Proof If r = 1, the result follows from the Efron-Stein inequality, so we may
assume 1 < r < 2. Recall the notation of Section 5.8: for any S ⊆ {1, . . . , n},
uS(x) =

∏
i∈S xi where x ∈ {−1, 1}n. For γ > 0, the operator Tγ maps a function

f =
∑
S⊂{1,...,n} αSuS to

Tγf =
∑

S⊂{1,...,n}
γ|S|αSuS .

If γ =
√
r − 1, then by Theorem 5.18,

‖Tγf‖2 ≤ ‖f‖r .
By the definition of Tγ and the orthogonality of (uS)S⊆{0,1}n ,

‖Tγf‖22 = E
[
((Tγf)(X))2

]
= E

[
f(X)(Tγ2f)(X))

]
.

Denoting by Id the identity operator (i.e., Idf = f), the statement of Theo-
rem 5.18 may be re-written as

E
[
f(X)2

]
−E [f(X)r]

2/r ≤ E
[
f(X)(Id− Tγ2)f(X)

]

=
∑

S⊆{1...,n}
α2
S(1− (r − 1)|S|) .

We may further bound the right-hand side by noticing that 1 − (r − 1)|S| ≤
(2 − r)|S| for all S ⊂ {1, . . . , n}. Indeed, it holds trivially for |S| = 0 and for
|S| ≥ 1 it follows by the fact that (2 − r)|S| + (r − 1)|S| − 1 is decreasing over
[1, 2] (it is convex over [1, 2] and has zero derivative at r = 2) and equals 0 for
r = 2.

Thus,

E
[
f(X)2

]
−E [f(X)r]

2/r ≤ (2− r)
∑

S⊆{1...,n}
α2
S |S| = (2− r)E(f)

where we used the fact that
∑
S⊆{1...,n} α

2
S |S| = E(f), as established in Section

9.4. 2

Observe that one may recover the logarithmic Sobolev inequality of Theorem
5.1 from Theorem 14.8. Indeed, letting r → 2,

lim
r→2−

E[f(X)2]− (E[f(X)r]2/r)

2− r =
Ent(f2)

2
.

Next we address the analog question for unbalanced Bernoulli distributions.
We derive directly a family of optimal Φ-Sobolev inequalities for this case. Thus,
let p ∈ (0, 1), p 6= 1/2. X = (X1, . . . , Xn) is a vector of independent random
variables with P {Xi = 1} = p = 1 − P {Xi = −1}. The functional E is defined
accordingly:

E(f) = p(1− p)E
n∑

i=1

(
f(X)− f(X

(i)
)
)2

.
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Theorem 14.9 (Φ-sobolev inequalities for unbalanced bernoulli ran-
dom variables.) Let f : {−1, 1}n → [0,∞) and let Φ(z) = z2/r. Then for all
r ∈ [1, 2),

HΦ(fr) ≤ Cp,rE(f) ,

where

Cp,r =
p1−2/r − (1− p)1−2/r

(1− p)p1−2/r − p(1− p)1−2/r
.

The constant Cp,r is optimal.

Proof Thanks to the sub-additivity of Φ-entropies and to the definition of E ,
it suffices to prove the inequality for n = 1.

First observe that for any κ > 0 and f : {−1, 1} → [0,∞), if HΦ(fr) ≤ κE(f),
then HΦ((λf)r) ≤ κE(λf) for all λ > 0. Thus, without loss of generality, we
may re-scale f so that (p1/rf(1) + (1 − p)1/rf(−1))/2 = 1. Then f is entirely
determined by the number y = ((1− p)1/rf(−1)− p1/rf(1))/2 ∈ (−1, 1).

Now consider the function f0 : {−1, 1} → [0,∞) determined by

y0 =
(1− p)1−1/r − p−1/r

(1− p)1/r + p1/r
.

Then f0(1) = p−1/r(1 − y0) = (1 − p)−1/r(1 + y0) = f0(−1) and therefore f0 is
constant, implying HΦ(fr0 ) = 0 = E(f0).

Both E(f) and H(fr) may be written as functions of y. As E(f) is a quadratic
polynomial of y, the first step is to bound H(fr) by a polynomial. Observe that

E [f(X)r]
2/r

= ((1− y)r + (1 + y)r)
2/r

.

Let ρ(z) = ((1−√z)r + (1 +
√
z)r)

2/r
for z ∈ [0, 1]. The function ρ is convex and

differentiable over (0, 1) (see Exercise 14.4). Hence ρ(y2) ≥ ρ(y2
0)+ρ′(y2

0)(y2−y2
0)

for all y ∈ (−1, 1). Noting that

ρ′(y2
0) = 2

(1− p)1−1/r − p1−1/r

(1− p)1/r − p1/r
,

we have
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H(fr) = H(fr)−H(fr0 )

≤ p1−2/r((1− y)2 − (1− y0)2) + (1− p)1−2/r((1 + y)2 − (1 + y0)2)

−ρ′(y2
0)(y2 − y2

0)

=
(
p1−2/r + (1− p)1−2/r

)
(y2 − y2

0)

−2
(
p1−2/r − (1− p)1−2/r

)
(y − y0)

−2
(1− p)1−1/r − p−1/r

(1− p)1/r − p1/r
(y2 − y2

0)

=
(
p1−2/r − (1− p)1−2/r

)( (1− p)1−1/r + p−1/r

(1− p)1/r − p1/r
(y2 − y2

0)− 2(y − y0)

)

=
(
p1−2/r − (1− p)1−2/r

) (y − y0)2

y0
.

On the other hand,

(f(1)− f(−1))2 = (f(1)− f0(1)− (f(−1)− f0(−1)))
2

= (y − y0)2(p−1/r + (1− p)−1/r)2 .

We choose κ to equate the two quadratic functions above, that is,

(
p1−2/r − (1− p)1−2/r

) (y − y0)2

y0

= κE(f) = κp(1− p)(y − y0)2(p−1/r + (1− p)−1/r)2 .

This yields κ = Cp,r.
The optimality of Cp,r can be verified by choosing f(−1) = p2/r and f(1) =

(1− p)2/r. 2

Just like in the case of balanced Bernoulli random variables, Theorem 14.9
may be used to derive the optimal logarithmic Sobolev inequalities for unbal-
anced Bernoulli random variables as announced in Theorem 5.2.

Corollary 14.10 (logarithmic sobolev inequalities for unbalanced
bernoulli random variables.) For any function f : {−1, 1}n → R,

Ent(f2) ≤ c(p)E(f)

with

c(p) =
1

1− 2p
log

1− p
p

.

Proof By the remark following the proof of Theorem 14.8, the proof reduces
to noting that

lim
r→2−

Cp,r
2− r =

c(p)

2
.

2
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14.4 Bibliographical remarks

Early results on Φ-entropies are due to (among others) Csiszár (1967, 1972)
who defined the related notion of φ-divergence, Brègman (1967), Hu (2000), and
Arnold, Markowich, Toscani and Unterreiter (2001).

The Φ-Sobolev inequalities explored in this chapter, when used with Φ(x) =
xa with a ∈ (1, 2], may be thought of as interpolation between Poincaré (when
Φ(x) = x2) and logarithmic Sobolev (with Φ(x) = x log x) inequalities. Such
interpolations go back to Beckner (1989).The duality formula of Lemma 14.2 is
due to Bobkov (see Ledoux 1997, Lata la and Oleszkiewicz 2000, Chafäı 2002,
and Boucheron, Bousquet, Lugosi and Massart 2005b). The treatment given in
Section 14.2 follows Boucheron, Bousquet, Lugosi and Massart (2005b). Chafäı
(2002) developed a related framework for Φ-entropies and Φ-Sobolev inequalities.

It is shown by Lata la and Oleszkiewicz (2000) (see also Ledoux 1997) that
there is a tight connection between the convexity of HΦ and the sub-additivity
property. Lata la and Oleszkiewicz (2000) show that Φ ∈ C implies the con-
vexity of HΦ. The Φ-Sobolev inequalities of Theorems 14.6 and 14.7 are from
Boucheron, Bousquet, Lugosi and Massart (2005b). Some methods used to derive
inequalities for Φ-entropies rely on auxiliary assumptions on concerning Φ, see
Chafäı (2006); see also Exercise 14.2.

Section 14.3 is based on Lata la and Oleszkiewicz (2000). Theorem 14.8 is a
special case of Theorem 2 in Lata la and Oleszkiewicz (2000), see also Kwapień,
Lata la and Oleszkiewicz (1996). Theorem 14.9 comes from Remark 2 in Lata la
and Oleszkiewicz (2000). Chafäı (2006) describes Φ-Sobolev inequalities for bi-
nomial and Poisson distributions.

14.5 Exercises

Exercise 14.1 Prove Theorem 14.7. (Boucheron, Bousquet, Lugosi and Massart, 2005b).

Exercise 14.2 Some inequalities for Φ-entropies rely on assumptions on Φ. Prove that
the following statements are equivalent:
i) convexity of (u, v) 7→ AΦ(u, v) = Φ(u+ v)−Φ(u)−Φ′(u)v (the Bregman divergence
defined by Φ);
ii) convexity of (u, v) 7→ BΦ(u, v) = (Φ′(u+ v)− Φ′(u))v;
iii) convexity of (u, v) 7→ CΦ(u, v) = Φ′′(u)v2;
iv) Φ is affine or Φ′′ > 0 and −1/Φ′′ is convex (the condition stated by Lata la and
Oleszkiewicz (2000) and used in the statement of 14.1);
v) Φ is affine or Φ′′ > 0 and Φ′′′′Φ′′ ≥ 2Φ′′′2;
vi) (a, b) 7→ tΦ(a) + (1− t)Φ(b)− Φ(ta+ (1− t)b) is convex for any 0 ≤ t ≤ 1;
See Chafäı (2006) for a discussion.

Exercise 14.3 (a family of Φ-entropies.) Let X be an X -valued random variable,
and f a nonnegative measurable function on X . Prove that

θ(r) = 2r
E[f2(X)]− (E[f(X)r])2/r

2− r

is non-decreasing in r ∈ [1, 2). (Lata la and Oleszkiewicz, 2000).
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Exercise 14.4 (calculus.) Let r ∈ [1, 2], and for z ∈ [0, 1], define ρ(z) = ((1+
√
z)r+

(1−
√
z)r)2/r. Prove that ρ is differentiable and convex over [0, 1].

Exercise 14.5 (Φ-sobolev inequalities for gaussian distributions.) Let f :
Rn → R be a nonnegative differentiable function. Assume that X is a standard Gaus-
sian vector. Then for all r ∈ [1, 2), letting Φ(z) = z2/r,

HΦ(fr) ≤ (2− r)E[‖∇f‖2] .

Hint: Start from Theorem 14.8 and proceed as in the proof of Theorem 5.5.

Exercise 14.6 (Φ-sobolev inequalities for poisson distribution.) Let Φ(x) =
x2/r for some r ∈ (1, 2). Let X be distributed according to a Poisson distribution. Prove
that for f : N→ [0,∞),

HΦ(f(X)) ≤ (EX)E
[
D(Φ ◦ f)(X)− 2/rf(X)2/r−1Df(X)

]
where Df(x) = f(x + 1) − f(x). See Chafäı (2003, 2006). See also Exercises 3.21 and
6.12.

Exercise 14.7 (khinchine’s inequalities for unbalanced bernoulli random
variables.) Let p ∈ (0, 1/2) and assume that X1, . . . , Xn are independent random
variables with P {Xi = −p} = 1− p and P {Xi = 1− p} = p. For r > 2, let

Cr,p =

{
(1/p)1/2−1/r if r ≤ log(1/p)√

1/p
log(1/p)

√
r if r ≥ log(1/p) .

Prove that there exists a universal constant κ such that for all r > 2, for all α1, . . . , αn ∈
Rn, letting Z =

∑n
i=1 αiXi, we have

E[|Z|r]1/r ≤ κCr,pE[Z2]1/2 .

Hint: Use Theorem 14.9. (Oleszkiewicz, 2003).
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MOMENT INEQUALITIES

This chapter is dedicated to upper bounds for higher centered moments of func-
tions of independent random variables. The bounds derived here may be regarded
as generalizations of the Efron-Stein inequality.

As before, X = (X1, . . . , Xn) denotes a vector of independent random vari-
ables taking values in a set X and f : Xn → R is a measurable function. We are
interested in bounds for the moments of the random variable Z = f(X).

Recall that in Section 6.9 we introduced the random variables V + and V −

as

V + =

n∑

i=1

E′
[
(Z − Z ′i)2

+

]

and

V − =

n∑

i=1

E′
[
(Z − Z ′i)2

−
]
,

where X ′1, . . . , X
′
n are independent copies of X1, . . . , Xn, and the random variable

Z ′i is obtained by replacing the variable Xi by an independent copy X ′i, that
is, Z ′i = f(X1, . . . , X

′
i, . . . , Xn). (Here E′[·] = E[·|X] denotes expectation with

respect to the variables X ′i only.)
Recall also that if fi : Xn−1 → R are measurable functions, we define Zi =

fi(X
(i)) = fi(X1, . . . , Xi−1, Xi+1, . . . , Xn) and

V =

n∑

i=1

(Z − Zi)2 .

According to the Efron-Stein inequality, the variance of Z may be bounded by
EV + = EV −, and by EV . At the same time, by Theorem 6.16, the moment
generating function of Z may be bounded in terms of the moment generating
function of V + and V −. In this chapter we show that, even when the moment
generating function of V + (or Z) does not exist, we may bound the moments of
Z in terms of moments of V +, V −, or V ).

Our approach is reminiscent to the entropy method that lead us to the “ex-
ponential Efron-Stein” inequalities of Theorem 6.16. However, instead of using
modified logarithmic Sobolev inequalities to obtain differential inequalities for
the moment generating function of Z, here we use the Φ-Sobolev inequalities of
Section 14.2 to obtain recursive inequalities for the moments of Z. Solving these
recursions leads us to the main results of this chapter.
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In Section 15.1 we start by deriving inequalities that relate higher moments
of Z to the sum of a lower moment and another term that involves V (or V +).
These bounds are then used, by inductive arguments, in Sections 15.2 and 15.3,
to establish the main results of this chapter. The use of results are then illustrated
in Sections 15.4, 15.5, and 15.6 by describing moment inequalities for sums of
independent random variables, empirical processes, and conditional Rademacher
averages.

15.1 Generalized Efron-Stein inequalities

We start with simple corollaries of the φ-Sobolev inequalities of Theorems 14.6
and 14.7. In a sense, these bounds may be regarded as generalized versions of
the Efron-Stein inequality as they bound moments of Z by moments of lower
order and functions of V +, V −, and V .

Lemma 15.1 Let q > 2 and let α satisfy q/2 ≤ α ≤ q − 1. Then

E
[
(Z −EZ)q+

]
≤ E

[
(Z −EZ)α+

]q/α
+
q(q − α)

2
E
[
V (Z −EZ)q−2

+

]
,

E
[
(Z −EZ)q+

]
≤ E

[
(Z −EZ)α+

]q/α
+ α (q − α)E

[
V +(Z −EZ)q−2

+

]
,

and

E
[
(Z −EZ)q−

]
≤ E

[
(Z −EZ)α−

]q/α
+ α (q − α)E

[
V −(Z −EZ)q−2

−
]
.

Proof Let q and α be such that 1 ≤ q/2 ≤ α ≤ q−1. Let φ(x) = xq/α. Applying
Theorem 14.6 with η(z) = (z−EZ)α+ leads to the first two inequalities. Finally,
we may apply the third inequality of Theorem 14.7 with η(z) = (z − EZ)α− to
obtain the third inequality of the lemma. 2

The next lemma is a variant of Lemma 15.1 that works for nonnegative
random variables.

Lemma 15.2 Let q ≥ 2 and q/2 ≤ α ≤ q − 1. If for all i = 1, . . . , n

0 ≤ Zi ≤ Z almost surely ,

then

E [Zq] ≤ E [Zα]
q/α

+
q(q − α)

2
E
[
V Zq−2

]
.

Proof The lemma follows by taking φ(x) = xq/α and applying Theorem 14.6
with f(z) = zα. 2

The third lemma bounds “left” moments in terms of V and V + and requires
an additional “bounded differences” condition:
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Lemma 15.3 If the increments Z−Zi are bounded by a random variable M ≥ 0
for all i = 1, . . . , n, then

E
[
(Z −EZ)q−

]
≤ E

[
(Z −EZ)α−

]q/α
+
q (q − α)

2
E
[
V (Z −EZ −M)

q−2
−

]

If Z − Z ′i ≤M for i = 1, . . . , n for a random variable M ≥ 0, then

E
[
(Z −EZ)q−

]
≤ E

[
(Z −EZ)α−

]q/α
+ α (q − α)E

[
V + (Z −EZ −M)

q−2
−

]

Proof The proof follows from Theorem 14.7. 2

The inequalities of the lemmas above may now be used by induction to obtain
the moment inequalities that are the principal results of this chapter.

15.2 Moments of functions of independent random variables

We present the main moment inequalities in this section. For a random variable
Y and q > 0, introduce the notation

‖Y ‖q = (E|Y |q)1/q
.

In Section 3.6, we used Efron-Stein inequality, the simplest Φ-Sobolev inequality
in order to show that if the Efron-Stein estimate V + of the variance of a function
of many independent random variables Z = f(X1, . . . , Xn) is upper bounded by
a constant c, then Z has sub-exponential tails. As a warm-up illustration of how
our inductive arguments work, we reprove this simple result, starting, once again,
from the Efron-Stein inequality.

Recall from Theorem 2.1 that the fact that the q-th moment is bounded by
a constant multiple of q for all q ≥ 1 is equivalent to sub-exponential tails.

We verify, by induction, that for all integers k ≥ 1 and for all q ∈ [k, k + 1),
‖(Z −EZ)+‖q ≤

√
cq.

For q ∈ [1, 2], by Hölder’s inequality, ‖(Z −EZ)+‖q ≤ ‖(Z −EZ)+‖2 while

‖(Z −EZ)+‖2 ≤
√
c by the Efron-Stein’s inequality. For q = 3, from the second

inequality of Lemma 15.1 with α = q/2, we obtain

‖(Z −EZ)+‖qq ≤ ‖(Z −EZ)+‖qq/2 +
cq2

4
‖(Z −EZ)+‖q−2

q−2

≤ 9c3/2

4
≤ (3/2)2

√
c
3
.

By Hölder’s inequality, for all q ∈ [2, 3], ‖(Z −EZ)+‖q ≤ ‖(Z −EZ)+‖3 ≤ q
√
c.

Assume now that the moment bound holds for all integers smaller than some
k ≥ 3. Then for q ∈ [k + 1, k + 2), from the second inequality of Lemma 15.1
with α = q/2, and the induction hypothesis, we obtain
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‖(Z −EZ)+‖qq ≤ ‖(Z −EZ)+‖qq/2 +
cq2

4
‖(Z −EZ)+‖q−2

q−2

≤ (q/2
√
c)q +

cq2

4
((q − 2)

√
c)q−2

≤ qq
√
c
q
((1

2

)q
+
(

1− 2

q

)q−2
)

≤ qq
√
c
q
.

Even though this is our third and simplest proof of a sub-optimal result, it
illustrates the pattern of several proofs in this section. However, in order to get
improved, sometimes tight, bounds, we choose values of α close to q in Lemma
15.1, rather than α = q/2.

Before stating the most general results, we start with the following simple
sub-Gaussian bound.

Theorem 15.4 If V + ≤ c for some constant c ≥ 0, then for all integers q ≥ 2,

‖(Z −EZ)+‖q ≤
√
Kqc ,

where K = 1/ (e−√e) < 0.935. If furthermore V − ≤ c then for all integers
q ≥ 2,

‖Z‖q ≤ EZ + 21/q
√
Kqc .

Recall from Theorem 2.1 that the fact that the q-th moment is bounded
by a constant multiple of

√
q for all q is equivalent to sub-Gaussian tails and

therefore Theorem 15.4 is essentially equivalent to Theorem 6.7. However, the
proof is quite different and it illustrates the essence of the techniques of the more
general results below in a transparent way.

Proof Define
mq = ‖(Z −EZ)+‖q .

From the second inequality of Lemma 15.1 with α = q− 1, we obtain, for q ≥ 3,

mq
q ≤ mq

q−1 + c (q − 1)mq−2
q−2 . (15.1)

We use this inequality to show by induction that, for all q ≥ 2,

mq
q ≤ (Kqc)

q/2
.

For q = 2 this holds since by the Efron-Stein inequality, m2
2 ≤ EV + ≤ c. The

case q = 3 follows from (15.1), since using m1 ≤ m2 ≤
√
c, we have

m3
3 ≤ 3c3/2 .

Consider now q ≥ 4 and assume that

mj ≤
√
Kjc
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for every j ≤ q − 1. Then, it follows from (15.1) and two applications of the
induction hypothesis that

mq
q ≤ Kq/2cq/2

√
q − 1

(√
q − 1

)q−1

+
Kq/2

K
cq/2 (q − 1)

(√
q − 2

)q−2

=
(
Kqc

)q/2
((

q − 1

q

)q/2
+
q − 1

Kq

(
q − 2

q

)(q−2)/2
)

=
(
Kqc

)q/2
(
q − 1

q

)q/2(
1 +

1

K

(
q − 2

q − 1

)(q−2)/2
)
.

The first part of the theorem then follows from the fact that the factor multi-
plying (Kqc)q/2 on the right-hand side is bounded by 1 for all q ≥ 4 (Exercise
15.1).

To prove the second part, observe that if, in addition, V − ≤ c, then we may
apply the first inequality to −Z to obtain

‖(Z −EZ)−‖q ≤ K
√
qc .

The statement follows since

E|Z −EZ|q = E(Z −EZ)q+ + E(Z −EZ)q− ≤ 2 (K
√
qc)

q
.

2

Now we are ready for the main results of this chapter. The next theorem shows
that the q-th moment of Z may be bounded in terms of the q/2-th moment of
V +, V −, and V , thus generalizing the Efron-Stein inequality which only treats
the case q = 2.

Let κ1 = 1 and for any integer q ≥ 2, define

κq =
1

2

(
1−

(
1− 1

q

)q/2)−1

.

Then κq ↗ κ as q →∞, where

κ =

√
e

2 (
√
e− 1)

< 1.271 .

Theorem 15.5 For any real q ≥ 2

∥∥(Z −EZ)+

∥∥
q
≤
√(

1− 1

q

)
2κqq ‖V +‖q/2

≤
√

2κq ‖V +‖q/2 =
√

2κq
∥∥∥
√
V +
∥∥∥
q
,
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and

∥∥(Z −EZ)−
∥∥
q
≤
√(

1− 1

q

)
2κqq ‖V −‖q/2

≤
√

2κq ‖V −‖q/2 =
√

2κq
∥∥∥
√
V −
∥∥∥
q
.

Proof It suffices to prove the first inequality as the second follows from the
first by replacing Z by −Z.

We prove by induction on k that for all integers k ≥ 1, and all q ∈ (k, k+ 1],

‖(Z −EZ)+‖q ≤
√
qκqcq ,

where cq = 2 ‖V +‖q/2∨1 (1− 1/q).
For k = 1 it follows from Hölder’s inequality and the Efron-Stein inequality

that
‖(Z −EZ)+‖q ≤

√
2 ‖V +‖1 ≤

√
2κq ‖V +‖1∨q/2 .

Assume now that the property holds for all integers smaller than some k > 1,
and consider q ∈ (k, k + 1]. By Hölder’s inequality,

E
[
V +(Z −EZ)q−2

+

]
≤
∥∥V +

∥∥
q/2
‖(Z −EZ)+‖q−2

q ,

so using Lemma 15.1 with α = q − 1, we get

‖(Z −EZ)+‖qq ≤ ‖(Z −EZ)+‖qq−1 +
q

2
cq ‖(Z −EZ)+‖q−2

q .

Defining

xq = ‖(Z −EZ)+‖qq (qκqcq)
−q/2

,

it suffices to prove that xq ≤ 1. With this notation, the previous inequality
becomes

xqq
q/2cq/2q κq/2q ≤ xq/(q−1)

q−1 (q − 1)
q/2

c
q/2
q−1κ

q/2
q−1 +

1

2
x1−2/q
q qq/2cq/2q κq/2−1

q ,

from which using cq−1 ≤ cq and κq−1 ≤ κq, we have

xq ≤ xq/q−1
q−1

(
1− 1

q

)q/2
+

1

2κq
x1−2/q
q .

Assuming, by induction, that xq−1 ≤ 1, this implies that

xq ≤
(

1− 1

q

)q/2
+

1

2κq
x1−2/q
q .

Since the function

fq(x) =

(
1− 1

q

)q/2
+

1

2κq
x1−2/q − x

is strictly concave on [0,∞) and positive at x = 0, fq(1) = 0 and fq(xq) ≥ 0
imply that xq ≤ 1 as desired. 2
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15.3 Some variants and corollaries

Next we present some variants of Theorem 15.5. The first result may be proved
by an argument essentially identical to the proof of Theorem 15.5. The details
are left to the reader.

Theorem 15.6 Assume that Zi ≤ Z for all 1 ≤ i ≤ n. Then for any real q ≥ 2,

∥∥(Z −EZ)+

∥∥
q
≤
√
κqq ‖V ‖q/2 ≤

√
κq ‖V ‖q/2 .

Even though Theorem 15.5 provides some information concerning the growth
of moments of (Z − E[Z])−, this information may be difficult to extract in
concrete cases. The following result relates the moments of (Z − E[Z])− with
‖V +‖q rather than with ‖V −‖q . This requires certain boundedness assumptions
on the increments of Z.

Theorem 15.7 Suppose that for every i = 1, . . . , n,

(Z − Z ′i)+ ≤M

for a random variable M . Then for every real number q ≥ 2,

∥∥(Z −EZ)−
∥∥
q
≤
√
Cq
(
‖V +‖q/2 ∨ q ‖M‖

2
q

)
,

where C < 4.16.

Proof We use the notation mq = ‖(Z −EZ)−‖q. Note that the continuous
function

e−1/2 +
1

x
e1/
√
x − 1

decreases from∞ to e−1/2−1 < 0 on (0,∞). Define C as the unique zero of this
function.

Since C > 1/2, it follows from Hölder’s inequality and the Efron-Stein in-
equality that for q ∈ [1, 2],

‖(Z −EZ)−‖q ≤
√

2 ‖V +‖1 ≤
√

2κq ‖V +‖1∨q/2 .

Define
cq =

∥∥V +
∥∥

1∨q/2 ∨ q ‖M‖
2
q .

For q ≥ 2, Lemma 15.3 (with α = q − 1) implies

mq
q ≤ mq

q−1 + qE
[
V +

(
(Z −EZ)− +M

)q−2
]
. (15.2)

We first deal with the case q ∈ [2, 3). By the subadditivity of xq−2 for q ∈
[2, 3], we have
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((Z −EZ)− +M)
q−2 ≤ Mq−2 + (Z −E [Z])

q−2
− .

Using Hölder’s inequality we obtain from (15.2) that

mq
q ≤ mq

q−1 + q ‖M‖q−2
q

∥∥V +
∥∥
q/2

+ q
∥∥V +

∥∥
q/2

mq−2
q

Using the fact that mq−1 ≤ √cq−1 ≤ √cq, this implies

mq
q ≤ cq/2q + q2−q/2cq/2q + qcqm

q−2
q .

Let xq =

(
mq√
Cqcq

)q
. Then the preceding inequality becomes

xq ≤
(

1

Ccq

)q/2
+

1

C

((√
Cq
)−q+2

+ x1−2/q
q

)

which in turn implies

xq ≤
1

2C
+

1

C

(
1 + x1−2/q

q

)

since q ≥ 2 and C ≥ 1. The function

gq(x) =
1

2C
+

1

C

(
1 + x1−2/q

)
− x

is strictly concave on [0,∞) and positive at 0. Furthermore, gq(1) = 5/(2c)−1 <
0, since C > 5/2. Hence gq(xq) ≥ 0 only if xq ≤ 1 which settles the case q ∈ [2, 3].

We now turn to the case q ≥ 3. We prove by induction on k ≥ 2, that for
all q ∈ [k, k + 1), mq ≤

√
qCκqcq. By the convexity of xq−2 we have, for every

θ ∈ (0, 1),

((Z −EZ)− +M)
q−2

=

(
θ

(Z −EZ)−
θ

+ (1− θ) M

1− θ

)q−2

≤ θ−q+3Mq−2 + (1− θ)−q+3
(Z −E [Z])

q−2
− .

Using Hölder’s inequality we obtain from (15.2) that

mq
q ≤ mq

q−1 + qθ−q+3 ‖M‖q−2
q

∥∥V +
∥∥
q/2

+ q (1− θ)−q+3 ∥∥V +
∥∥
q/2

mq−2
q

Now assume by induction that mq−1 ≤
√
C (q − 1) cq−1. Since cq−1 ≤ cq, we

have

mq
q ≤ Cq/2 (q − 1)

q/2
cq/2q + q−q+2θ−q+3qq/2cq/2q + q (1− θ)−q+3

cqm
q−2
q .

Let xq = C−q/2mq
q (qcq)

−q/2
. Then it suffices to show that xq ≤ 1 for all q > 2.

Observe that
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xq ≤
(

1− 1

q

)q/2
+

1

C

(
θ−q+3

(√
Cq
)−q+2

+ (1− θ)−q+3
x1−2/q
q

)
.

We choose θ minimizing

g(θ) = θ−q+3
(√

Cq
)−q+2

+ (1− θ)−q+3 ,

that is, θ = 1/
(√

Cq + 1
)

. Since for this value of θ,

g(θ) =

(
1 +

1√
Cq

)q−2

,

the bound on xq becomes

xq ≤
(

1− 1

q

)q/2
+

1

C

(
1 +

1√
Cq

)q−2
(

1 +

( √
Cq

1 +
√
Cq

)(
x1−2/q
q − 1

))
.

Hence, using the elementary inequalities

(
1− 1

q

)q/2
≤ e−1/2 and

(
1 +

1√
Cq

)q−2

≤ e1/
√
C ,

we get

xq ≤ e−1/2 +
e1/
√
C

C

( √
Cq

1 +
√
Cq

)(
x1−2/q
q − 1

)
.

Since the function

fq(x) = e−1/2 +
e1/
√
C

C

(
1 +

( √
Cq

1 +
√
Cq

)(
x1−2/q − 1

))
− x

is strictly concave on [0,∞) and positive at 0 and C is defined in such a way that
fq(1) = 0, fq can be nonnegative at xq only if xq ≤ 1 which proves the theorem
by induction. 2

The next corollary allows us to deal with “generalized” self-bounding func-
tions.

Corollary 15.8 Assume that Zi ≤ Z for all i = 1, . . . , n and V ≤ WZ for a
random variable W ≥ 0. Then for all real numbers q ≥ 2,

‖Z‖q ≤ 2EZ + κq ‖W‖q .

Also,

‖(Z −EZ)+‖q ≤
√

2κq ‖W‖qEZ + κq ‖W‖q .
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Proof Let q ≥ 2. Then

‖(Z −EZ)+‖q
≤
√
κq ‖WZ‖q/2 (by Theorem 15.6)

≤
√
κq ‖Z‖q ‖W‖q (by Hölder’s inequality)

≤ 1

2
‖Z‖q +

κq

2
‖W‖q since

√
ab ≤ (a+ b)/2 for a, b ≥ 0.

Now Z ≥ 0 implies that ‖(Z −EZ)−‖q ≤ EZ and we have ‖Z‖q ≤ EZ +
‖(Z −EZ)+‖q. Hence,

‖Z‖q ≤ 2EZ + κq ‖W‖q ,

concluding the proof of the first statement. To prove the second inequality, note
that

‖(Z −EZ)+‖q
≤
√
κq ‖WZ‖q/2 (by Theorem 15.6)

≤
√
κq ‖W‖q ‖Z‖q (by Hölder’s inequality)

≤
√
κq ‖W‖q

(
2EZ + κq ‖W‖q

)
(by the first inequality)

≤
√

2κq ‖W‖qEZ + κq ‖W‖q

as desired. 2

15.4 Sums of random variables

In this section we apply the results stated in Sections 15.2 and 15.3 for sums of
independent random variables. As a result, we recover versions of some classical
moment inequalities such as the Khinchine-Kahane, Marcinkiewicz, and Rosen-
thal inequalities. We emphasize that rather than offering an exhaustive account
of moment inequalities for sums of independent random variables, we illustrate
how the machinery developed in the previous sections may be used to obtain
such inequalities. In all cases, the proof does not require much further work.
Also, we obtain explicit constants which only depend on q. These constants are
not optimal, though in some cases their dependence on q is of the right order.

The simplest example is the case of the Khinchine’s inequality which states
that for all q ≥ 2, there exists a Bq such that for all a1, . . . , an > 0,

√√√√
n∑

i=1

a2
i ≤

(
E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣

q)1/q

≤ Bq

√√√√
n∑

i=1

a2
i ,
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where X1, . . . , Xn are independent Rademacher variables. The inequality on the
left-hand side is a simple application of Jensen’s inequality, while the upper
bound follows from Theorem 15.4 as follows.

Theorem 15.9 (khinchine’s inequality.) Let a1, . . . , an > 0 be constants
and let X1, . . . , Xn be independent Rademacher variables (i.e., with P {Xi =
−1} = P {Xi = 1} = 1/2). If Z =

∑n
i=1 aiXi then for any integer q ≥ 2,

‖(Z)+‖q = ‖(Z)−‖q ≤
√

2Kq

√√√√
n∑

i=1

a2
i

and

‖Z‖q ≤ 21/q
√

2Kq

√√√√
n∑

i=1

a2
i

where K = 1/ (e−√e) < 0.935

Proof We may use Theorem 15.4. Since

V + =

n∑

i=1

E
[
(ai(Xi −X ′i))2

+ | Xi

]
= 2

n∑

i=1

a2
i1aiXi>0 ≤ 2

n∑

i=1

a2
i ,

the result follows. 2

Note also that using a symmetrization argument (see, Exercise 15.5), Khin-
chine’s inequality above implies Marcinkiewicz’ inequality: if X1, . . . , Xn are in-
dependent centered random variables then for any q ≥ 2,

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
q

≤ 21+1/q
√

2Kq

√√√√
∥∥∥∥∥
n∑

i=1

X2
i

∥∥∥∥∥
q/2

.

Another classical moment inequality for sums of independent random variables
is Rosenthal’s inequality that bounds the q-th moment of the sum in terms of the
q-th moment of the individual variables. The case of nonnegative and centered
summands are usually dealt with separately. Next we prove two such results that
we obtain from our general moment inequalities.

Theorem 15.10 Define

Z =

n∑

i=1

Xi ,

where X1, . . . , Xn are independent and nonnegative random variables. Then for
all integers q ≥ 1,
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‖(Z −EZ)+‖q ≤
√

2κq

∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q

EZ + κq

∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q

,

‖(Z −EZ)−‖q ≤

√√√√Kq

n∑

i=1

EX2
i .

Also,

‖Z‖q ≤ 2EZ + κq

∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q

.

Proof To prove the first and the third inequalities, we may use Corollary 15.8.
Simply note that

V =

n∑

i=1

X2
i ≤WZ ,

where

W = max
i=1,...,n

Xi .

In order to get the second inequality, just observe that

V − ≤
n∑

i=1

E
[
X ′i

2
]
,

and apply Theorem 15.4 to −Z. 2

Note that Rosenthal’s inequality—and its variants—typically bound the mo-
ments of

∑n
i=1Xi in terms of

∑n
i=1 E|Xi|q and not in terms of ‖maxi=1,...,nXi‖q

as in the theorem above. However, by bounding E|maxi=1,...,nXi|q ≤
∑n
i=1 E|Xi|q

we recover inequalities of the usual form.
We may use the previous result to derive a Rosenthal-type inequality for

sums of centered variables.

Theorem 15.11 Let X1, . . . , Xn be independent real-valued random variables
with EXi = 0. Define

Z =

n∑

i=1

Xi , σ2 =

n∑

i=1

EX2
i , Y = max

i=1,...,n
|Xi| .

Then for any integer q ≥ 2,

‖Z+‖q ≤ σ
√

6κq + qκ
√

2 ‖Y ‖q .
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Proof We use Theorem 15.5. Note that V + (defined at the beginning of the
chapter) equals

V + =

n∑

i=1

X2
i +

n∑

i=1

EX2
i .

Thus,

‖(Z)+‖q ≤
√

2κq ‖V +‖q/2 (by Theorem 15.5),

≤
√

2κq

√√√√
(

n∑

i=1

EX2
i

)
+

∥∥∥∥∥
n∑

i=1

X2
i

∥∥∥∥∥
q/2

≤
√

2κq

√√√√
n∑

i=1

EX2
i + 2

n∑

i=1

EX2
i + 2κq ‖Y 2‖q/2

(by Theorem 15.10)

=
√

2κq

√√√√3

n∑

i=1

EX2
i + κq ‖Y 2‖q/2

≤ σ
√

6κq + qκ
√

2 ‖Y ‖q .
2

15.5 Suprema of empirical processes

Next we apply our general moment inequalities to derive bounds for the moments
of suprema of empirical processes. The arguments are not more difficult than
those of the previous section for sums of independent random variables. As a
first illustration, we point out that the proof of Khinchine’s inequality in the
previous section extends, in a straightforward way, to an analogous supremum.
The basic notation and conventions for empirical processes are introduced in
Chapter 11.

Theorem 15.12 Let T ⊂ Rn be a (countable) set of vectors t = (t1, . . . , tn) and
let X1, . . . , Xn be independent Rademacher variables. If Z = supt∈T

∑n
i=1 tiXi

then for any integer q ≥ 2,

‖(Z −EZ)+‖q ≤
√

2Kq sup
t∈T

√√√√
n∑

i=1

t2i

where K = 1/ (e−√e), and

‖(Z −EZ)−‖q ≤
√

2Cq sup
t∈T

√√√√
n∑

i=1

t2i ∨ 2
√
Cq sup

i,t
|ti| .

where C is defined as in Theorem 15.7.
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Before stating the main result of the section, we mention the following con-
sequence of Corollary 15.8.

Theorem 15.13 Let X1, . . . , Xn denote a collection of independent random
vectors with nonnegative coordinates indexed by the countable set T . Let Z =
sups∈T

∑n
i=1Xi,s and let

M = max
i=1,...,n

sup
s∈T

Xi,s .

Then, for all q ≥ 2,
‖Z‖q ≤ 2EZ + κq ‖M‖q .

Next we turn to the case of centered processes. Let T denote a countable
index set. Let X1, . . . , Xn denote independent random vectors indexed by T
such that for all s ∈ T and i = 1, . . . , n, EXi,s = 0. Let

Z = sup
s∈T

∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣ .

Recall from Chapter 11 the definition of the weak variance Σ2 and the wimpy
variance σ2:

Σ2 = E sup
s∈T

n∑

i=1

X2
i,s , σ2 = sup

s∈T
E

n∑

i=1

X2
i,s .

A third quantity appearing in the moment and tail bounds is

M = max
i=1,...,n

Yi

where Yi = sups∈T |Xi,s|. The random variable Yi is often called the envelope of
the collection of coordinates.

Before stating the main theorem, we recall the connection between the wimpy
and the weak variances established by Lemma 11.17:

Σ2 ≤ σ2 + 32
√
EM2EZ + 8EM2

The next theorem offers two upper bounds for the moments of suprema of cen-
tered empirical processes.

Theorem 15.14 Let X1, . . . , Xn denote independent random vectors indexed by
T such that for all s ∈ T and i = 1, . . . , n, EXi,s = 0. Let

Z = sup
s∈T

∣∣∣∣
n∑

i=1

Xi,s

∣∣∣∣ .

Then for all q ≥ 2,

‖(Z −EZ)+‖q ≤
√

2κq (Σ + σ) + 2κq
(
‖M‖q + sup

s∈T
i=1,...,n

‖Xi,s‖2
)
,

and furthermore

‖Z‖q ≤ 2EZ + 2σ
√

2κq + 20κq ‖M‖q + 4
√
κq ‖M‖2 .
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Proof The proof is based on the Theorem 15.5 which states that

‖(Z −EZ)+‖q ≤
√

2κq ‖V +‖q/2 .

We may bound V + as follows.

V + ≤ sup
s∈T

n∑

i=1

E
[
(Xi,s −X ′i,s)2 | Xn

1

]

≤ sup
s∈T

n∑

i=1

(
EX2

i,s +X2
i,s

)

≤ sup
s∈T

n∑

i=1

EX2
i,s + sup

s∈T

n∑

i=1

X2
i,s .

Thus, by Minkowski’s inequality and the Cauchy-Schwarz inequality,

√
‖V +‖q/2

≤

√√√√sup
s∈T

n∑

i=1

EX2
i,s +

∥∥∥∥∥sup
s∈T

n∑

i=1

X2
i,s

∥∥∥∥∥
q/2

≤ σ +

∥∥∥∥∥∥
sup
s∈T

√√√√
n∑

i=1

X2
i,s

∥∥∥∥∥∥
q

= σ +

∥∥∥∥∥sup
s∈T

sup
α:‖α‖2≤1

n∑

i=1

αiXi,s

∥∥∥∥∥
q

≤ σ + Σ +

∥∥∥∥∥

(
sup

s∈T ,α:‖α‖2≤1

n∑

i=1

αiXi,s −E sup
s∈T ,α:‖α‖2≤1

n∑

i=1

αiXi,s

)

+

∥∥∥∥∥
q

.

The last term may be upper bounded again by Theorem 15.5. Indeed, the cor-
responding V + is not more than

max
i=1,...,n

sup
s∈T

X2
i,s + max

i=1,...,n
sup
s∈T

E[X2
i,s] ,

and thus

∥∥∥∥∥

(
sup

s∈T ,α:‖α‖2≤1

n∑

i=1

αiXi,s −E sup
s∈T ,α:‖α‖2≤1

n∑

i=1

αiXi,s

)

+

∥∥∥∥∥
q

≤
√

2κq

(
‖M‖q + max

i=1,...,n
sup
s∈T
‖Xi,s‖2

)
.
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This completes the proof of the first inequality of the theorem. The second in-
equality follows because by nonnegativity of Z, ‖(Z −EZ)−‖q ≤ EZ and there-
fore ‖Z‖q ≤ EZ + ‖(Z −EZ)+‖q and since by the first inequality, combined
with Lemma 11.17, we have

‖(Z −EZ)+‖q ≤
√

2κq

(
σ +

√
32
√
EM2EZ +

√
8EM2 + σ

)

+2κq
(
‖M‖q + sup

i,s∈T
‖Xi,s‖2

)

≤ EZ + 2σ
√

2κq + 16κ
√
EM2 +

√
16κqEM2

+2κq
(
‖M‖q + sup

i,s∈T
‖Xi,s‖2

)

(using the inequality
√
ab ≤ a+ b/4) .

Using ‖M‖2 ≤ ‖M‖q and sups∈T ,i=1,...,n ‖Xi,s‖2 ≤ ‖M‖2, we obtain the desired
result. 2

15.6 Conditional Rademacher averages

As another easy application of the general moment bounds, we now study con-
ditional Rademacher averages. We already faced these functions in Section 3.3
but there we assumed that the class F only contains bounded functions. When
this is not the case, the result below may be useful.

Let F be a countable class of measurable real-valued functions. The condi-
tional Rademacher average is defined by

Z = E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ | X
n
1

]

where the εi are independent Rademacher random variables.

Theorem 15.15 Let Z denote a conditional Rademacher average and let M =
supi,f f(Xi). Then

‖(Z −EZ)+‖q ≤
√

2κq ‖M‖qEZ + κq ‖M‖q ,

and
‖(Z −EZ)−‖q ≤

√
2C2

(√
q ‖M‖qEZ + 2q ‖M‖q

)

where C2 is the constant of Exercise 15.3.

Proof Define

Zi = E


sup
f∈F

∣∣∣∣∣∣
∑

j 6=i
εjf(Xj)

∣∣∣∣∣∣
| Xn

1


 .
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Recall from Section 3.3 the self-bounding property of conditional Rademacher
averages. In particular, even without the boundedness assumption, we still have
that for all i, Z − Zi ≥ 0 and

n∑

i=1

(Z − Zi) ≤ Z .

Thus, we have
V ≤ ZM , and Z − Zi ≤M .

The result now follows by Corollary 15.8, noticing that M = W. 2

15.7 Bibliographical remarks

The material of this chapter is mostly based on Boucheron, Bousquet, Lugosi
and Massart (2005b).

Recall Burkholder’s inequalities from martingale theory. Burkholder’s in-
equalities may be regarded as extensions of Marcinkiewicz’ inequalities to sums
of martingale increments. They are natural candidates for deriving moment in-
equalities for a function Z = F (X1, . . . , Xn) of many independent random vari-
ables. The approach mimics the method of bounded differences (see Section 6.1)
classically used to derive Bernstein- or Hoeffding-like inequalities under similar
circumstances. The method works as follows: let Fi denote the σ-algebra gener-
ated by the sequence (Xi

1). Then the sequence Mi = E[Z|Fi] is an Fi-adapted
martingale (the Doob martingale associated with Z). Let 〈Z〉 denote the associ-
ated quadratic variation

〈Z〉 =

n∑

i=1

(Mi −Mi−1)2 ,

let [Z] denote the predictable quadratic variation

[Z] =

n∑

i=1

E

[
(Mi −Mi−1)2 | Fi−1

]
,

and let D be defined as D = maxi=1,...,n |Mi −Mi−1|. Burkholder’s inequalities
imply that for q ≥ 2,

‖Z −EZ‖q ≤ (q − 1)
√
‖〈Z〉‖q/2 = (q − 1)

∥∥∥
√
〈Z〉
∥∥∥
q
.

Note that the dependence on q in this inequality differs from the dependence
in Theorem 15.5. The Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994,
Theorem 4.1) implies that there exists a universal constant C such that

‖Z −EZ‖q ≤ C
(√

q ‖[Z]‖q/2 + q ‖D‖q
)
.

If one has some extra information on the sensitivity of Z with respect to its
arguments, such inequalities may be used to develop a strict analogue of the
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method of bounded differences for moment inequalities. In principle such an
approach should provide tight results, but finding good bounds on the moments
of the quadratic variation process often proves quite difficult.

The inequalities introduced in this chapter have a form similar to those ob-
tained by Doob’s martingale representation and Burkholder’s inequality. But, in-
stead of relying on the quadratic variation process, they rely on a more tractable
quantity. Indeed, in many cases V + and V − are easier to deal with than [Z] or
〈Z〉.

For more information on moment inequalities for sums of independent random
variables, we refer to the de la Peña and Giné (1999).

For some historical notes on Khinchine’s inequality, see the bibliographic
remarks of Chapter 5. For Marcinkiewicz’ inequalities see, for example, de la
Peña and Giné (1999, page 34).

There are numerous versions of Rosenthal’s inequality, the first dating back
to Rosenthal (1970).

Burkolder’s inequalities are described and surveyed in Burkholder (1988,
1989), see also Chow and Teicher (1978, page 384). It is known that for general
martingales, Burkholder’s inequality is essentially unimprovable (see Burkholder
1989, Theorem 3.3). However, for the special case of Doob martingale associated
with Z this bound is perhaps improvable.

Theorem 15.14, may be regarded as an analogue of Talagrand’s inequality
(Talagrand, 1996b) for moments. Indeed, Talagrand’s exponential inequality may
be easily deduced from Theorem 15.14 by bounding the moment generating
function by moments.

Theorem 15.10 is similar to inequality (Hr) in Giné, Lata la and Zinn (2000)
which follows from an improved Hoffmann-Jørgensen inequality of Kwapień and
Woyczyńsky (1992).

The first inequality in Theorem 15.14 improves inequality (3) of Pinelis
(1995). The second inequality is a version of Proposition 3.1 of Giné, Lata la
and Zinn (2000).

Pinelis (1995) extends Theorem 15.11 for martingales.
The paper Boucheron, Bousquet, Lugosi and Massart (2005b) of contains

applications to Rademacher chaos and Boolean polynomials. Clémençon, Lugosi
and Vayatis (2008) apply these inequalities to obtain moment inequalities for
U -statistics.

Conditional Rademacher averages appeared at the core of the early concen-
tration inequalities used in the theory of probability in Banach spaces, see Ledoux
and Talagrand (1991).

15.8 Exercises

Exercise 15.1 Prove that for all integers q ≥ 4,

xq =

(
q − 1

q

)q/2(
1 +

1

K

(
q − 2

q − 1

)(q−2)/2
)
≤ 1 .
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Also, limq→∞ xq = 1.

Exercise 15.2 Mimic the argument of Theorem 15.5 to prove Theorem 15.6.

Exercise 15.3 Prove the following variant of Theorem 15.7: Suppose that for every
i = 1 . . . , n, 0 ≤ Z − Zi ≤M . then

∥∥(Z −EZ)−
∥∥
q
≤
√
C2q

(
‖V ‖q/2 ∨ q ‖M‖

2
q

)
,

where C2 < 2.42.

Exercise 15.4 Combine the previous exercise with the proof of Corollary 15.8 to show
the following. Assume that Zi ≤ Z for all i = 1, . . . , n and V ≤ WZ for a random
variable W ≥ 0. Suppose also that for every 1 ≤ i ≤ n,

0 ≤ Z − Zi ≤M

for some random variable M . Then for all q ≥ 2,

‖(Z −EZ)−‖q ≤
√
C2q

(
‖M‖q

(
2EZ + 2q ‖W‖q

)
∨ q ‖M‖2q

)
.

where C2 < 2.42 is as in Exercise 15.3.

Exercise 15.5 Use symmetrization and Theorem 15.9 to derive the following version
of Marcinkiewicz’ inequality: if X1, . . . , Xn are independent centered random variables
then for any q ≥ 2, ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

≤ 21+1/q
√

2Kq

√√√√∥∥∥∥∥
n∑
i=1

X2
i

∥∥∥∥∥
q/2

.

Exercise 15.6 Let X1, . . . , Xn be independent standard Gaussian random variables.
Let µ = EX4

i = 3. Let a1, . . . , an be real numbers. Let Z =
∑n
i=1 ai(X

4
i − µ). Find

upper bounds for the variance of Z and ‖Z+‖q for q ≥ 2.

Exercise 15.7 Let X1, . . . , Xn be symmetric exponentially distributed independent
random variables such that P {|Xi| > x} = e−x for x ≥ 0. Let s ∈ [0,∞)n have non-
increasing coordinates s1 ≥ s2 ≥ · · · sn. Prove that there exists κ > 0 such that for all
p ≥ 2,

E

[∣∣∣∣∣
n∑
i=1

siXi

∣∣∣∣∣
p]1/p

≤ κ

p p∑
i=1

si +

√√√√p

n∑
i=p+1

s2
i

 .

Exercise 15.8 Let X1, . . . , Xn be independent standard Gaussian random variables.
Let T be a countable index set. Let a1, . . . , an be vectors indexed by T . Let Z =
sups∈T

∑n
i=1 ai,s(X

4
i − µ). Find upper bounds for the variance of Z and ‖Z+‖q for

q ≥ 2.
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Exercise 15.9 Let Z satisfy Bernstein’s inequality with variance factor σ2 +2EZ and
scale factor 1/3. Prove that for θ > 0 and λ ∈ [0, 1],

P {Z −EZ ≥ θEZ + t} ≤ exp

(
− λt

2

2σ2

)
∨ exp

(
− (1− λ)t

2(1/3 + 2/θ)

)
.

Hint: Verify that for all u, v > 0 and all 0 ≤ λ ≤ 1, exp (−1/(u+ v)) ≤ exp (−λ/u) ∨
exp (−(1− λ)/v) . See Adamczak (2008).

Exercise 15.10 Let X1, . . . , Xn be independent identically distributed random vec-
tors indexed by the countable set T . Assume that for all i = 1 . . . , n, s ∈ T , EXi,s = 0.
For i = 1, . . . , n, let Yi = sups∈T |Xi,s|. Assume that for some b > 0, EeYi/b ≤ 2. Let
Z = sups∈T

∣∣∑n
i=1 Xi,s

∣∣ and σ2 = sups∈T
∑n
i=1 EX

2
i,s. Prove that for all 0 < ε < 1

and δ > 0 there exists κ = κ(ε, δ) such that for all t > 0,

P {Z ≥ (1 + ε)EZ + t} ≤ exp

(
− t2

2(1 + δ)σ2

)
∨ 3 exp

(
− t

κb logn

)
See Adamczak (2008).
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of a random matrix. In Séminaire de Probabilités XXXVIII, Volume 1857 of
Lecture Notes in Math., pp. 320–337. Springer, Berlin.

Azuma, K. (1967). Weighted sums of certain dependent random variables.
Tohoku Mathematical Journal , 68, 357–367.

Bai, Z. and Silverstein, J.W. (2010). Spectral analysis of large dimensional
random matrices. Springer Verlag.

Baik, J., Deift, P., and Johansson, K. (1999). On the distribution of the length
of the longest increasing subsequence of random permutations. Journal of the
American Mathematical Society , 12, 1119–1178.

Baik, J., Deift, P., and Johansson, K. (2000). On the distribution of the length
of the second row of a Young diagram under Plancherel measure. Geometric
and Functional Analysis, 10, 702–731.
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Bobkov, S. and Houdré, C. (1997). Isoperimetric constants for product proba-
bility measures. The Annals of Probability , 25, 184–205.

Bobkov, S. and Ledoux, M. (1997). Poincaré’s inequalities and Talagrands’s
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Chafäı, D. (2002). On φ-entropies and φ-Sobolev inequalities. Technical report,
arXiv.math.PR/0211103.
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Fréchet, M. (1957). Sur la distance de deux lois de probabilité. Comptes Rendus
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Probabilités de St-Flour XXIV-1994.

Ledoux, M. (1997). On Talagrand’s deviation inequalities for product measures.
ESAIM Probability and Statistics, 1, 63–87. http://www.emath.fr/ps/.

Ledoux, M. (1999). Concentration of measure and logarithmic Sobolev inequal-
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Lévy, P. (1951). Problèmes conrets d’analyse fonctionelle. Gauthier-Villars.
Li, W.V. and Shao, Q.M. (2001). Gaussian processes: inequalities, small ball
probabilities and applications. Stochastic processes: theory and methods, 19,
533–597.

Lidskii, V.B. (1950). The proper values of the sum and product of symmetric
matrices. Doklady Akademiya Nauk SSSR, 75, 769–772.

Linial, N., London, E., and Rabinovich, Y. (1995). The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15, 215–245.

Linial, N. and Rozenman, E. (2002). An extremal problem on degree sequences
of graphs. Graphs and Combinatorics, 18, 573–582.
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de Probabilités de Saint-Flour 2003. Lecture Notes in Mathematics. Springer.

Massart, P. and Meynet, C. (2010). An `1 oracle inequality for the Lasso.
Electronic Journal of Statistics, 5, 669–687.
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Prékopa, A. (1973). On logarithmic concave measures and functions. Acta
Universitatis Szegediensis. Acta Scientiarum Mathematicarum, 34, 335–343.

Quenouille, M. (1949). Approximate test of correlation in time series. Journal
of the Royal Statistical Society, Series B , 11, 68–84.

Raab, M. and Steger, A. (1998). “Balls into bins”—a simple and tight analysis.
Randomization and Approximation Techniques in Computer Science, 159–170.

Rachev, S.T. (1991). Probability metrics and the stability of stochastic models.
Wiley Series in Probability and Mathematical Statistics. Wiley, New York.

Reynaud-Bouret, P. (2003). Adaptive estimation of the intensity of inhomoge-
neous poisson processes via concentration inequalities. Probability Theory and
Related Fields, 126, 103–153.

Rhee, W. (1993). A matching problem and subadditive Euclidean functionals.
The Annals of Applied Probability , 3, 794–801.

Rhee, W.T. and Talagrand, M. (1986). Martingale inequalities and the jackknife
estimate of variance. Statistics and Probability Letters, 4, 5–6.

Rhee, W.T. and Talagrand, M. (1987). Martingales, inequalities, and NP-
complete problems. Mathematics of Operations Research, 12, 177–181.



References 455

Richardson, T.J. and Urbanke, R.L. (2008). Modern coding theory. Cambridge
University Press.
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les processus empiriques. Comptes Rendus de l’Académie des Sciences de Paris
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Poisson Poincaré inequality, 80, 81,
395

Prékopa-Leindler inequality, 104–107,
109, 112

probabilistic method, 39, 40, 197, 202
product measures, 6
Prohorov distance, 251

quadratic risk, 130
quadratic transportation cost inequal-

ity, 99, 100, 108, 248, 251
quantile transform, 244, 246, 252

Rademacher averages, 59, 176, 264,
304–306, 314

conditional, 62, 415, 429–431
Rademacher processes, 8
Rademacher sum, 149
random allocations, 49
random graph, 16, 65, 78, 79, 195,

196, 200, 202, 206



SUBJECT INDEX 467

random matrix, 114, 144–148, 150,
151, 160, 161, 350, 357, 360,
383

eigenvalues, 346, 347
largest eigenvalue, 64, 79, 144–

148
largest singular value, 67
spectral measure, 146, 150, 168

random permutation, 150, 178
random projection, 40, 125, 128, 350,

366, 368, 370, 383
regular variation, 388, 389
relatively stable, 58, 60, 314
restricted isometry property, 370, 383
risk bound, 134, 135
Rosenthal’s inequality, 424, 425
Rudelson’s inequality, 350, 360, 363,

364, 382, 393
Russo’s lemma, 272, 273, 275, 277,

279, 280

self-bounding
function, 80, 88, 165, 175–177,

183, 184, 186–188, 196, 201,
205, 240, 264, 314, 319, 331,
332, 335, 345, 347, 388, 394,
422

property, 60–63, 78, 82, 88, 90,
108, 110, 183–189, 319, 320,
430

semi-circular distribution, 145, 150,
160–162

separant, 306, 326
separate convexity, 67, 189
sharp threshold, 272, 276
shatter coefficient, 62, 88
shifting technique, 268
Sion’s minmax theorem, 219, 220,

228
Slepian’s lemma, 353, 354, 357
slicing, 350, 374, 375, 385
social choice, 272
spanning tree, 64, 65, 79

spectral measure, 145, 146, 150, 161,
168, 203, 347

spherical cap, 4

statistical learning theory, 59, 62, 63,
128, 350, 379, 391, 392

sub-additivity

Φ-entropy, 397–404

entropy, 10–11, 82, 84, 92–94,
102, 103, 116, 122, 151, 163–
166, 170, 198, 206, 397

variance, 53–56, 73–75

sub-gamma distribution, 18, 27–32,
49, 50, 71, 153, 172, 176,
185, 196, 324, 329, 332, 345,
347, 348, 369, 371

sub-Gaussian distribution, 2, 7, 18,
24–28, 30, 32–34, 36, 39, 40,
42, 47, 48, 69–71, 123, 125,
153, 165, 169, 172–175, 185,
187, 190, 230, 231, 234, 235,
242, 261, 264, 333, 352, 354,
359, 361, 365, 371, 373, 383,
385, 417

Sudakov’s lower bound, 349, 353, 356,
357, 385

supremum of Gaussian processes, 81,
123–124, 132, 349, 382

surface area, 4

Sylvester matrix, 156

symmetrization inequalities, 312–314,
318, 326, 358, 365, 390, 393

symmetrization of tail probabilities,
333

symmetrized logarithmic Sobolev in-
equality, 178–179

Szarek’s inequality, 142, 154

Talagrand’s inequality, 9

convex distance, 277, 278

suprema of empirical processes,
343

threshold phenomena, 14, 88, 150,
253, 267, 270–277



468 References

total variation, 100, 110, 111, 168,
233, 235, 237

totally bounded, 124, 126, 350, 351
Tracy-Widom asymptotics, 150
transportation cost, 12, 82, 94, 99,

100, 231, 233, 235, 244, 248
transportation lemma, 94, 99, 230
transportation method, 12–13, 230–

252
triangles in random graphs, 16, 78,

195–197, 200, 202, 206
tribes, 259, 277
Tsirelson-Ibragimov-Sudakov inequal-

ity, 122–123, 243

U -processes, 16
U -statistics, 16
universal entropy, 388

Valiant-Brebner routing, 65
Vandermonde determinant, 146, 158–

160
Vapnik-Chervonenkis growth function,

62
Vapnik-Chervonenkis inequality, 343,

344
variance stabilization, 81
variational distance, 100, 110
vc-class, 357–360, 374, 379, 380, 382,

387, 390, 391, 395
vc-entropy, 88, 178, 202, 343, 344
vertex boundary, 269
vertex degree, 177, 178, 206

weak variance, 305, 317, 331, 364,
427

white noise model, 129, 130
Wigner’s theorem, 145
wimpy variance, 305, 326, 329, 331,

335, 342, 371, 427



AUTHOR INDEX 469

Author Index

Achlioptas, D., 46
Adamczak, R., 16, 348, 383, 433
Ahlswede, R., 12, 251, 382
Aida, S., 77, 149
Aldous, D., 76, 79
Alexander, K., 383
Alon, N., 77, 201, 202
Amsalu, S., 76
Anderson, G.W., 150, 157–161
Ané, C., 77, 108, 148–150, 202
Angluin, D., 47
Anthony, M., 344, 382
Apostol, T.M., 157
Arcones, M., 45
Arlot, S., 81
Arnold, A., 412
Aubrun, G., 151

Bai, Z., 203
Baik, J., 76, 150
Bakry, D., 299
Ball, K., 109
Baraniuk, R., 383
Barbour, A., 111
Barron, A.R., 149
Barthe, F., 109, 112, 299
Bartlett, P.L., 76, 149, 344, 382, 384,

392
Beckner, W., 108, 114, 150, 412
Ben-Or, M., 277
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Ruciński, A., 16, 202, 277
Rudelson, M., 382, 383
Russo, L, 277, 278

Safra, M., 277
Saloff-Coste, L., 148, 149
Samorodnitsky, A., 277
Samson, P.-M., 16, 251, 343
Sankoff, D., 75
Sauer, N., 388
Schapire, R.E., 382
Schechtman, G., 1, 15, 109, 201
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