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1. Introduction 

The graph is one of the most convenient and widespread  models of 
many real and formal systems. Therefore, it is not surprising that the 
problem of graph decomposition is one of the very important and com-
prehensively studied problems in graph theory, computer science, data 
mining and other fields of discrete applied mathematics. There are hund-
reds of decomposition problem statements, concerning decomposition in-
to subgraphs of a prespecified type, into paths, cycles, into product of 
other graphs, and so on. Yet we refer the subject to the most naïve and 
simple form: divide an initial undirected graph into two or more sub-
graphs, so that the number of edges inside these subgraps significally ex-
ceeds the number of edges, connecting different subgraps. Of course, this 
statement is not a formal one. Some formal refinements of this informal 
statement will be considered below, in subsection 2.2.  

The desirable decomposition of a graph into a small number of clearly 
distinct (i.e. loosely connected) subgraphs can, in its turn, lead to impor-
tant conclusions concerning the initial system, modeling by the graph. It 
allows formulating reasonable hypotheses about the system behavior, se-
lecting a few important parameters, and so on − in brief, allows under-
standing «what is the world in this location». 

However, in some cases, such a decomposition does not exist or there 
are several different decompositions of such type. These cases are not ve-
xatious mistakes. Moreover, it is possible to assert that numerous decom-
positions naturally arise in the study of many complex systems, including 
systems, whose functioning is determined by human activity. Hence, it 
seems expedient to consider − as an important generalization of the conven-
tional decomposition problem – construction of a family of decompositions 
instead of a single one. 

As in the conventional case, the constructed family of decompositions 
characterizes the initial system. Moreover, in such situations decompose-
tions themselves, forming the above-mentioned family, are of little inte-
rest. It turned out that it is much more expedient to focus our attention on 
calculation of special numerical indices based on these families. The sug-
gested indices describe such properties of the initial system that cannot be 
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revealed by the conventional decomposition approach. They have differ-
rent meaningful interpretations in different situations, but generally they 
describe complexity, entanglement, intricacy and other similar hardly de-
fined, though important, properties of various real systems. Therefore, 
these indices are referred to as decomposition complexity indices. It 
should be mentioned that decomposition complexity concept introduced 
here is slightly akin to various concepts of system’s complexity (see, for 
instance, [Pincus, 1991; McCabe, 1976; Raychev, 2016]), although it 
concerns much deeper levels of the structural organization.  

The suggested approach to graph decompositions turns out to be help-
ful in data analysis, especially in order to extract some hidden facts from 
raw data. Three different applications of the approach are considered 
below.  

The presented material is structured as follows.    
1. Introduction.  
2. Family of decompositions construction.  
3. Formal definition of decomposition complexity indices of a given 

graph. 
4. Applications for automatic classification. 
5. Applications for analysis of voting political bodies. 
6. Applications for analysis of crises in stock markets. 
7. Conclusion. 
Materials, related to sections 2 – 5, were partly presented in the recent 

working papers [Rubchinsky, 2015, 2010]. Material from section 6 is 
completely the new one. It concerns very important, difficult and unsol-
ved problem of short-term prediction of crises in stock markets, based on 
share prices at some period (several days) prior to the crisis. In spite of li-
mited and incomplete character of obtained results, it seems that they pre-
sent the first step in the right direction. 

  
2. Construction of Family of Graph Decompositions  

The graph decomposition algorithm, presented below, firstly was sug-
gested in [Rubchinsky, 2010] as an automatic classification algorithm. It 
was aimed at constructing of a single classification, like other classifica-
tion algorithms, which had been elaborated by this moment. However, 
just the same algorithm can be successfully used for solution of impor-
tant and difficult real-life problems, whose statements in themselves do 
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not concern any classification. The matter is that the above-mentioned 
algorithm produces a family of classifications at every run. As a conven-
tional classification algorithm, it selects a single classification – namely, 
the classification with the maximum number of classes, such that at every 
algorithm run belongs to the family, produced at this run. Such a classifi-
cation in many cases does not exist, but this algorithm can be used in 
framework of the suggested new approach – as the algorithm, producing 
a family of graph decompositions. 

Current Section 2 is devoted to formal description of the algorithm of 
construction of a family of decompositions. The input of the algorithm is 
an undirected graph. The algorithm is determined as a three-level proce-
dure. Several examples, illustrating the introduced notions, are presented 
in this Section 2. 

The Algorithm of Graph Dichotomy, which was firstly described in 
[Rubchinsky, 2010] presents the internal level of the general three-level 
procedure (see subsection 2.1). 

The Divisive-Agglomerative Algorithm (DAA for brevity), which also 
was firstly described in [Rubchinsky, 2010], is based on the above-menti-
oned algorithm of graph dichotomy. This algorithm forms the intermedi-
ate level of the general procedure. It produces one family of decompose-
tions (see subsection 2.2). Note that some decomposition of the construc-
ted family can coincide with one another. 

At the external level several runs of DAA are accomplished. Every 
such a run determines a family of decompositions. The union (over all 
these runs) of all the constructed families forms a family of decompose-
tions (see subsection 2.3). Unlike internal and intermediate levels, the 
new version of operations at this level is firstly described here. 

Let us consider the above-mentioned levels in more detail. 

2.1. Internal level − Algorithm of the Graph Dichotomy 

Let us start with an historical journey. In the article “Community 
structure in social and biological networks” [Girvan, Newman, 2002] a 
new approach to graphs decomposition was suggested. Let us describe 
the essence of the matter, citing the article. 

 “We define the edge betweenness of an edge as the number of 
shortest paths between pairs of vertices that run along it. If there is more 
than one shortest path between a pair of vertices, each path is given equal 
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weight such that the total weight of all the paths is unity. If a network 
contains communities or groups that are only loosely connected by a few 
inter-group edges, then all shortest paths between different communities 
must go along one of these few edges. Thus, the edges connecting com-
munities will have high edge betweenness. By removing these edges, we 
separate groups from one another and so reveal the underlying 
community structure of the graph.”  

Instead of edge betweenness, it is better to name the analogous notion 
as edge frequency. In slightly differing form, the Girvan-Newton 
algorithm is stated in [Rubchinsky, 2010] as follows.  

Modified Girvan-Newman Algorithm 

1. Initial Setting. Set the current frequency at every edge equal to zero. 
2. Vertices Choice. Randomly choose two different vertices of the 

graph. 
3. Path Construction and Stop Checking. Find a path between the two 

vertices. If such a path does not exist, go to step 7. 
4. Frequencies Update. Add one to frequencies in all the edges on the 

path found at step 3. 
5. Continuation Checking. If the number of consecutive runs of steps 

2 – 4 does not exceed a pre-specified number M, go to step 2. Otherwise, 
go to the next step 6. 

6. Edge Removing. Remove an edge with the maximum frequency and 
return to step 1. 

7. Stop. Graph G is divided into two or more connected components, 
which are output as the final classes.  

It is clear that during the execution of the algorithm every increment 
(by 1) of the number of connected components means division of one of 
groups into two parts, that is an hierarchical structure of groups (or 
communities) determined only by the initial graph, is obtained as a result.  

In the above-described version of Girvan-Newman algorithm, there 
are some new features: 

• use of random paths (instead of shortest ones) for calculation of 
edges betweenness; 

• use of relatively small part of the set of all pairs of vertices (instead 
of all of them) for estimation of edge betweenness; 

• edge removal based on this estimation. 
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The obvious drawback of Girvan-Newman algorithm (outlined by its 
authors) is that after removal of an edge with the highest frequency at 
step 6 all the accumulated statistics about edge frequency are deleted, 
and, hence, the statistics are not used subsequently. If it was possible to 
save these data for consecutive steps, it could essentially accelerate the 
algorithm. About this issue in the already cited article [Girvan, Newman, 
2002] the authors wrote the following. “To try to reduce the running time 
of the algorithm further, one might be tempted to calculate the bet-
weennesses of all edges only once and then remove them in order of de-
creesing betweenness. We find however that this strategy does not work 
well, because if two communities are connected by more than one edge, 
then there is no guarantee that all of those edges will have high between-
ness – we only know that at least one of them will. By recalculating bet-
weennesses after the removal of each edge we ensure that at least one of 
the remaining edges between two communities will always have a high 
value.”  

However, the dichotomy algorithm, described further on in the current 
subsection 2.1, avoids this trap. The essence of the matter is as follows. 

In the previously considered frequency algorithms, paths, connecting a 
next pair of vertices, were traced independently of all the already traced 
paths. Yet, taking into account all the already traced paths can obtain cuts 
between two sets of vertices whose all the edges have the same maxi-
mum frequency. Then concurrent removal of all the edges with the maxi-
mum frequency defines the desired dichotomy of the graph. 

Frequency algorithm of the graph dichotomy. The input of the al-
gorithm is an undirected graph G. There are two integer parameters of the 
algorithm: 

– the maximum initial value f of edge frequency;  
– the number of repetitions T for statistical estimation of edges fre-

quency. 
1. Initial setting.  
1.1. Finding connected components of the given graph G (by any 

standard algorithm).  
1.2. If the number of components is greater than 1 (i.e. graph G is dis-

connected), then the component with the maximum number of vertices is 
declared as the first part of the constructed dichotomy of the initial graph; 
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all the other components form its second part; thus, the dichotomy is con-
structed and the algorithm stops. Otherwise, go to the next step 1.3. 

1.3. Integer numbers uniformly distributed on the segment [0, f – 1]  
initialize frequencies in all the edges. This operation accelerates conver-
gence of frequencies. 

2. Cumulative stage. All the operations of this stage are repeated Т times: 
2.1. Random choice of a pair of different vertices of graph G. 
2.2. Construction of a minimal path (connecting the two chosen verti-

ces so that its longest edge is the shortest one among all such paths) by 
Dijkstra algorithm (see, for instance, [Goodman, Hedetniemi, 1977]). The 
length of an edge is its current frequency. 

2.3. Frequencies modification. The value 1 is added to the frequencies 
in all the edges on the path found at the previous step 2.2. 

3. Final stage.  
3.1. The maximum value of frequency fmax over all the edges is stored. 
3.2. The operations of steps 2.1 – 2.3 from cumulative stage are exe-

cuted once. 
3.3. The maximum value of frequency fmod in edges is found. 
3.4. If fmod = fmax, go to step 3.2; otherwise, go to the next step 3.5. 
3.5. Deduct the value 1 from the frequencies in all the edges forming 

the last found path. 
3.6. Remove all the edges, in which frequency is equal to fmax. 
3.7. Find connected components of the modified graph. The compo-

nent with the maximum number of vertices is declared as the first part of 
the constructed dichotomy of the initial graph; all the other components 
form its second part. After that all the edges, removed at step 3.6, except 
the edges, connecting vertices from different parts of the dichotomy (if 
they exist) are returned into both subgraphs.   

Let us give some comments to the described algorithm. 
Comment 1. No action is taking if the initial graph is not the connec-

ted one (it has at least two connected components).  
Comment 2. In order to construct no less than two subgraphs at step 

3.7, we must be sure that the modified graph, constructed at step 3.6, is 
not the connected one (it has at least two connected components). The an-
swer is given by the following simple reasoning.  

Let us consider frequencies of all the edges just before the construc-
tion of a last path. Assume that at this moment all the edges with the ma-
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ximum value of frequency fmax do not contain any cut of the graph (re-
member that graph G is the connected graph). Therefore, for any two ver-
tices there are paths (at least one), so that frequencies in all the edges of 
this path are less than fmax. Dijkstra algorithm will find one such a path, 
whose every edge has a frequency less than fmax. Hence, after adding 1 to 
frequencies in all these edges, the modified value fmod cannot be greater 
than fmax. Following the comparison at step 3.4, we must go to step 3.2 
and find another path. But we supposed that the already considered path 
was the last one. Therefore, edges with maximum frequency contain 
some cut and their elimination makes the graph disconnected.  

Comment 3. Another important question concerns the same step 3.7. 
The result of operations at this step is a dichotomy, i.e. a division of the 
initial graph into two parts. Because the algorithm uses a random genera-
tor as well as two external parameters, how can we be sure that the const-
ructed dichotomy is the same, independently of the parameters choice 
and random generator initialization? This question turns out to be the 
crucial in the framework of the suggested approach. It will be 
comprehensively discussed below in the material.  

Example 1. Consider graph, shown in Fig. 1a. Let us apply to this 
graph the above algorithm. The accomplishment of the algorithm 
includes the consecutive random choice of 50 pairs of vertices (plus a 
few random pairs at the final stage). For every pair a shortest path is 
constructed in correspondence to step 2.2. Remember that the length of 
a path is the length of its longest edge and the length of an edge is its 
current frequency.  

 

 
Fig. 1a. The initial graph 
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Fig. 1b shows the accumulated frequencies under parameters f = 5,  
T = 50. Fig. 1c and 1d show the accumulated frequencies under parameters 
f =5, T = 500. The last two cases differ only in initialization of random 
generator. 

 

 
Fig. 1b. The accumulated frequencies under f = 5, T = 50  

 
Fig. 1c. The accumulated frequencies under f = 5, T = 500 (case 1) 

 
Fig. 1d. The accumulated frequencies under f = 5, T = 500 (case 2) 
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The sets of edges with a maximum value of frequency are the same in 
all the three cases. Bold lines in Fig. 1b, 1c and 1d show them. Thus, the 
dichotomies coincide in all the three cases (see Fig. 1e).  

 

 
Fig. 1e. The single dichotomy  

2.2. Intermediate Level – Divisive-Agglomerative Algorithm 

This subsection is devoted to description of this algorithm. It consists 
of k consecutive steps, where k is the single parameter of the algorithm. 
The single input of the algorithm is the initial undirected graph G. Its 
output is a family of decompositions of the initial graph.  

Divisive-Agglomerative Algorithm (DAA) 

1. Initial setting. Assume 𝐿!!  = G, p = 1. 
2. Main step. It includes two parts.  
Part A. Construction of decomposition 𝐿!!!

!!!  into p+1 subgraphs, star-
ting with decomposition 𝐿!

!  into p subgraphs (divisive stage). 
Part B. Construction of family of decomposition 𝐿!

!!!, …, 𝐿!
!!! star-

ting with one decomposition 𝐿!!!
!!! , found in part A (agglomerative stage). 

Description of Part A. Among all the p subgraphs of decomposition 
𝐿!
!  select the subgraph with the maximum number of vertices. Divide it 

into two subgraphs by the above-described graph dichotomy algorithm 
(see subsection 2.1). Other p−1 subgraphs of 𝐿!

! , together with just found  
two new subgraphs form new decomposition 𝐿!!!

!!!  into p+1 subgraphs.  
Description of Part B. Among all the pairs of subgraphs, forming the 

decomposition 𝐿!!!
!!! , find the pair, connected by the maximum number of 
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edges, and pool them together. The obtained decomposition into p sub-
graphs is denoted by 𝐿!

!!!. Analogously, by pooling together pairs of 
sub-graphs, connected by the maximum number of edges, we determine 
de-composition 𝐿!!!

!!!  from 𝐿!
!!!, ..., and so on, till to the last 

decomposition 𝐿!
!!! into two subgraphs. 

3. Stop condition checking. If p < k, assume p = p+1 and go to Step 2. 
4. Output. The family of found decompositions  

𝐿!! ; 𝐿!! , 𝐿!! ; 𝐿!! ,  𝐿!! ,  𝐿!! ; …; 𝐿!!!!,  𝐿!!!!, …, 𝐿!!!!!! .                                (1) 

is the output of DAA.  
It is easy to see that the number of decomposition in list (1) is equal to 

!!! !
!

. Some of them can coincide, yet the minimum number of different 
decompositions is equal to k, because in the list (1) there are at least k dif-
ferrent decompositions 𝐿!! , 𝐿!! , ..., 𝐿!! , 𝐿!!!!!!  into 2, 3, …, k, k+1 sub-
graphs. These decompositions are referred to as the essential ones, whe-
reas all the other decompositions are referred to as the adjoined ones. By 
the construction, every subgraph in every decomposition in the list (1) co-
incides with one of subgraphs from 𝐿!!!!!!  or is the union of some of them.  

Denote the family of decompositions, presented by list (1), as L(k). It 
is evident that for any p (1 ≤ p < k the family of the first !!! !

!
  decompo-

sitions from list (1) can be considered as L(p).    
The examples of accomplishment of DAA are presented below, in 

Section 4. 

2.3. External Level – Repetitive Divisive-Agglomerative Algorithm Runs 

At the external level, DAA is applied many times to the same initial 
graph. However, its output (list L(k) of found decompositions) can differ 
in different runs. The matter is that at every step of the accumulating 
stage of the graph dichotomy algorithm (see subsection 2.1) a pair of ver-
tices that must be connected by a path is selected randomly. It implies 
that output of DAA depends upon the initialization of random generator. 
More precisely, some decompositions at its different runs differ one to 
another, whereas some decompositions coincide at all the runs. There-
fore, it is necessary to complete several runs of the same algorithm with 
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the same initial data − otherwise, it is simply impossible to find out in 
one or another actual situation.  

There are two parameters of the external level – counting numbers r 
and s. There are two loops of the runs – inner and outer. At the inner 
loop, DAA runs r times. It produces r families L(k), consisting of !!! !

!
 

decompositions each. The outer loop consists of s runs of the above inner 
loop. Therefore, it produces a family, consisting of s×r× !!! !

!
 decompo-

sitions. Denote family of decompositions, constructed on ith iteration of 
the outer loop and on jth iteration of the inner loop as F(k, i, j) (i = 1, …, 
s; j = 1, …, r). Assume 

F(k, i, r) = 𝐹(𝑘, 𝑖, 𝑗)!
!!!  (i = 1, …, s),                                              (2) 

F(k, r, s) = 𝐹(𝑘, 𝑖, 𝑟)!
!!! .                                                                  (3) 

The latest big family F(k, r, s) of decompositions is the output of the 
external level. It depends on parameters r and s. This family is declared 
as the output of the entire process. Necessary explanations about the 
described two-dimensional structure of the constructed family and its 
dependence on parameters k, r, s are presented in the next Section 3.  

 
3. Indices of Decomposition Complexity of Graph 

At the previous subsection 2.3, the two-dimensional family F(k, r, s) 
of decompositions was constructed. This family was presented as unions 
of families F(k, i, j). Every family F(k, i, j) consists of k decompositions 
into 2 classes, k−1 decompositions into 3 classes, and so on – till to one 
decomposition into k classes (see subsection 2.2). Some of them can 
coin-cide and some of them can be different.  

DAA includes multiple random operations at every run of graph di-
chotomy algorithm (see subsection 2.1). Therefore, its output – a family 
of !!! !

!
 decompositions – also is of random character. Numbers, deter-

mined by these families, can be considered as random values. The ave-
rage values of these random numbers are determined as the above-men-
tioned indices, expressing important properties of considered systems.   
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3.1. Formal Definition of Indices of Decomposition Complexity 

Let us introduce the necessary formal constructions and definitions.  
Index 1. Denote  

Q(k, i, r) = d ⁄ M (i = 1, …, s),                                                            (4) 

where M is equal to r× !!! !
!

 (general number of decompositions in fami-
ly F(k, i, r)), d is equal to the number of different decompositions among 
all the decompositions in the family F(k, i, r).  

In the most important cases numbers Q(k, i, r) do not have a limit as 
functions of r when r tends to infinity, while k and i are arbitrary fixed 
values. Therefore, in order to find some stable answer it is suggested to 
average the numbers Q(k, i, r) over parameter s – the length of the outer 
loop – as follows: 

Q(k, r, s) = !
!
× 𝑄(𝑘, 𝑖, 𝑟)!

!!! .                                                             (5) 

In opposite to values Q(k, i, r), values Q(k, r, s) converge than s tends 
to infinity (for arbitrary fixed k and r). Thus, Q(k, r, s) is the average of 
values Q(k, i, r) (over s) that are calculated separately for each family 
F(k, i, r)) (i = 1, …, s). By the construction (see formula (4)),  

0 < Q(k, i, r) ≤ 1 (i = 1, …, s) 

that implies the analogous inequality for value Q(k, r, s). This value is de-
fined as index 1 of decomposition complexity of the initial graph. Index 
Q(k, r, s) depends on parameters k, r, s; however, the experiments con-
firm that it tends to a finite limit when s tends to infinity. Really, values 
Q(k, r, s) are very close to the limit then s exceeds 10.  

Index 2. It is defined similarly index 1. Consider family F(k, i, r) (i = 
1, …, s). Assume that in this family a classification cp encounters mp 
times (p = 1, …, t), where 𝑚!

!
!!!  = M (remember that M  = r× !!! !

!
 ). 

Let us denote 

E(k, i, r) = − µ!
!
!!! ln µ! , where µp = mp ⁄ M (i = 1, …, s).          (6) 

E(k, i, r) is the conventional entropy of division of finite family F(k, i, r) 
into subsets, consisting of coinciding classifications.  



15	  

In the most important cases numbers E(k, i, r) do not have a limit as 
functions of r when r tends to infinity, while k and i are arbitrary fixed 
values. Therefore, in order to find some stable answer it is suggested to 
average the numbers E(k, i, r) over parameter s – the length of the outer 
loop – as follows: 

E(k, r, s)  = !
!
× 𝐸(𝑘, 𝑖, 𝑟)!

!!! .                                                             (7) 

In opposite to values E(k, i, r), values E(k, r, s) converge than s tends 
to infinity (for arbitrary fixed k and r). Thus, E(k, r, s) is the average of 
values E(k, i, r) (over s) that are calculated separately for each family F(k, 
i, r) (i = 1, …, s). By the construction (see formula (6)), 

0 ≤ E(k, i, r) < ln(M) (i = 1, …, s), 

that implies the analogous inequality for value E(k, r, s). This value is de-
fined as index 2 of decomposition complexity of the initial graph. Index 
E(k, r, s) depends on parameters k, r, s; however, the experiments 
confirm that it tends to a finite limit when s tends to infinity. Really, 
values E(k, r, s) are very close to the limit then s exceeds 10.  

Remember that values Q(k, i, r) and E(k, i, r) do not have a limit when 
r tends to infinity and k, i are fixed numbers. 

Both indices describe complexity, intricacy, entanglement, and other 
hardly defined but important properties of an initial graph. It is intuitively 
clear that small (close to 0) values Q(k, r, s) and E(k, r, s) correspond to 
relatively simple situations. In these situations only k decompositions, ob-
tained by successive divisions of the initial sets into 2, 3, …, k+1 sub-
graphs are different. Unions in agglomerative stages do not add new de-
compositions. Larger (close to the maximum possible) values Q(k, r, s) 
and E(k, r, s)  correspond to relatively complex situations, in which found 
decompositions essentially depend upon random generator initialization, 
and adjoined decompositions differ from essential ones (see subsection 
2.2). 

Another time pay attention to formulae (5) and (7), determining consi-
dered decomposition complexity indices. The members of sum in the 
right-hand parts in both formulae do not converge, while both sums in the 
left-hand parts in these formulae do converge. These circumstances justi-
fy the suggested approach to decomposition complexity definition. 
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In this connection it is possible to remember (as an analog) example of 
random walk, thoroughly considered in chapter III of the famous book 
[Feller, 1969]. There the following game was studied. If an unbiased coin 
falls (after tossing) heads up, player B pays to player A $1; otherwise, 
player A pays to player B $1.  

Denote the gain of player A for first k such games as Zk. Of course, Zk 
can be positive, negative or 0 (only for even numbers k). Denote by 𝑔!! 
the number of values k between 0 and n, such that Zk ≥ 0, by 𝑔!! − the 
number of values k between 0 and n, such that Zk ≤ 0. Intuitively it seems 
that lim!→! 𝑔!! ∕ 𝑔!! = 1. Yet in this book, it is proved that, in this case, 
intuition is wrong, and the above mentioned limit simply does not exist. It 
seems that it contradicts to the symmetry of the game. Nevertheless, the 
symmetry (existence of the limit equal to 1) is rebuilt if one considers 
simultaneous accomplishing of a large enough number of such games. It 
is possible to say that one arbitrary long sequence of single games does 
not converge, while the set of a large enough number of such sequences 
demonstrates convergence. 

Of course, in the considered in the present work case mathematical 
essence of the absence of convergence in separate sequence is more com-
plicated. The original cause consists in the suggested algorithm of graph 
dichotomy. It can produce significantly different divisions into two sub-
graphs under arbitrary number of random paths. It is not a mistake but the 
kernel of the suggested approach that constructed families of subgraphs 
generally differing one to another. 

Even the existing limits of Q(k, r, s) and E(k, r, s) (when s tends to in-
finity) still depend on k and r. Theoretically important question about 
exact definitions of indices that do not depend upon all the parameters but 
only on the initial graph remains open.  

3.2. Indices of Decomposition Complexity of Some Graphs 

Because the considered indices are calculated basing only on the 
initial graph, they can be related to the arbitrary undirected graphs 
themselves, out of any meaningful connections to decompositions. Let us 
give some explanati-ons, concerning the introduced in current Section 3 
both decomposition indices for some graphs.  
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Let us try to answer the following question – which graphs have low 
or high level of indices of decomposition complexity? For simplicity 
assume k = 1. It means that we will consider only dichotomies of graphs.   

Assume G(V, E) be any undirected graph with set of vertices V and set 
of edges E. It is supposed that G(V, E) is a connected graph. For any sub-
set A ⊂ V denote 𝐴 = V ∖ A. Denote the number of edges, connecting sets 
A and 𝐴 as d(A, 𝐴), the number of elements in any finite set X as |X|. The 
expression   

D(A) = |!|×|!|
!(!,!)

                                                                                      (8) 

was named in [Rubchinsky, 2015] as decomposition function of graph. 
This function is determined for all proper subsets A of V.   

Let us consider the maximization problem  

D(A) → max                                                                                       (9) 

over the finite set of all the proper subsets of V. It was shown in [Rub-
chinsky, 2015] that the suggested algorithm of graph dichotomy construct 
a cut (A*, 𝐴*), such that set A* gives an approximate solution of the abo-
ve-mentioned maximization problem. 

It is easy to see that problem (9) is equivalent to the minimization 
problem 

R(A) = d(A,  𝐴  )×( !
|!|

 + !
|!|

) → min,                                                   (10)  

well known as “Ratio Cut Problem” (see, for instance, [Luxburg, 2007]).  
Let us introduce the necessary notions. Sets P and Q are close one to 

another if their symmetrical difference consists of few elements relatively 
to the lesser of these sets P and Q. All the sets, close to the same set X, 
form the neighborhood of X. The solution A* of problem (9) is called the 
isolated one, if it is the only global maximum in the problem and for any 
sets A out of some neighborhood of A* the value D(A) is essentially less 
than D(A*).  

Of course, the above definition is not the exact one. It simply gives 
some meaningful description of the considered situation. It is possible to 
complete this description with the following remark. Let us consider a 
graph with the following structure. This graph can be divided into two 
subgraphs, so that: 
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– the number of edges, connecting these subgraphs, is significant less 
than numbers of edges inside each of the two subgraphs,  

– the ratio between the number of vertices in the greater subgraph and 
the number of vertices in the lesser subgraph does not exceed 5-6. 

The computational experiments demonstrate that in such cases the al-
gorithm of graph dichotomy finds only one division independently of any 
initialization of the random generator. Therefore, values Q(1, r, s) and 
E(1, r, s) are close to 0 for arbitrary r and s. We do not discuss here, how 
to establish the existence of such a structure. 

Let us consider simple examples of graph with special (large and 
small) values of the both decomposition complexity indices. 

Example 2. Let us consider the complete graph with any number of 
vertices. If a subset of vertices maximizes the decomposition function D, 
then any other subset, containing the same number of vertices, will maxi-
mizes this function, too, because of the symmetrical situation. Therefore, 
every run of the graph dichotomy algorithm produces a random dichoto-
my, typically consisting of two subgraphs with almost equal numbers of 
vertices. In such cases both indices are close to the maximum possible 
values (1 for index Q and ln(M) for index E).  

Example 3. Let us consider the simple graph, consisting of one cycle 
with N vertices. This graph will be divided into two parts, containing ap-
proximately N ⁄ 2 vertices each. Any such halve is a chain of adjoined 
vertices. From the symmetry, all such chains are equiprobable. Therefore, 
both indices are close to the maximum possible values (1 for index Q  
and ln(M) for index E), like in the previously considered graph from 
Example 2.  

Example 4. Let us consider the graph from Example 1, shown in Fig. 
1a. Both indices have the minimum values 0 and 1, because all the 
decompositions into 2 classes coincide.  

Comment 4. From any intuitively reasonable and even from the most 
formal points of view the complexity of the first of three just mentioned 
graphs is the maximum one, the complexity of the second of three just 
mentioned graphs is the minimum one, and the complexity of the third of 
three just mentioned graphs is intermediate one. However, the suggested 
here measures of complexity (indices of decomposition complexity) are 
of another kind. The exact analysis of these indices allows us reaching to 
non-evident but important conclusions in some real situations.  
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4. Applications in Automatic Classification 

The well-known automatic classification problem (further referred for 
brevity as AC) consists in the division of a given set of objects into seve-
ral non-intersecting subsets (usually called classes, aggregates, clusters, 
etc.). It is required that objects belonging to a same class are in some 
sense closely connected, similar in appearance, while objects belonging 
to different classes are distinct, as unlike as possible. Informal character 
of AC problem, its various statements and applications, numerous appro-
aches and methods of its solution are comprehensively described in seve-
ral monographs and reviews (see, for instance, [Mirkin, 2012 and 2011]). 

The suggested here approach to AC problem consists of three main 
stages. 

1. The initial data about the AC problem is presented by an undirected 
graph, so that any class consists of vertices, closely connected by many 
edges, while different classes are loosely connected by edges. 

2. The family of the graph decompositions is constructed by the algo-
rithm, described in Section 2. 

3. The solution of the initial AC problem defined as the decompo- 
sition 
with the maximum number of classes, which belongs to the constructed 
families at every DAA run. Such a classification in some cases does not 
exist and in some other cases it is not the unique one; however, these 
situations are not studied here. 

Let us consider these stages separately, accompanying them by exam-
ples. 

4.1. Reduction of AC Problem 

Initial data in AC problems are mostly presented in one of the 
following form: a raw entity-to-feature data table, a dissimilarity matrix, 
and an undirected graph. The first one can be reduced to the second one; 
the second one can be reduced to the third one. Let us dwell on these 
reductions in more detail. 

1. Reduction from raw entity-to-feature data table to dissimilarity 
matrix consists of two simple steps (see, for instance, [Mirkin, 2011]): 

a) reduction from raw entity-to-feature data table to the standardized 
data table by the formula 
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yij = 
!!"!!!

!

!!
!!!!

! (i = 1, ..., N; j = 1, ..., m), 

where N is the number of entities, m is the number of features,  

𝑥!! = min! 𝑥!", 𝑥!! = max! 𝑥!" (j = 1, ..., m); 

b) reducing from standardized data table to dissimilarity matrix by the 
formula 

dst = (𝑦!" − 𝑦!")!!
!!!   (s = 1, ..., N−1; t = s+1, ..., N), 

dst = dts (s > t), dss = 0 (s = 1, ..., N), 

where ypq are elements of standardized data table determined at step a). 
2. Reduction from dissimilarity matrix to neighborhood graph. The 

notion of such a graph is well known (see, for instance, [Luxburg, 2007]). 
Graph vertices are in the one-to-one correspondence to the considered en-
tities. For every entity (say, a) all the other vertices are ordered as fol-
lows: the distance between ith object in the list and object a is a non-dec-
reasing function of index i. The first four vertices in this list (i.e. the first 
four closest vertices) as well as all the other vertices (if they exist), whose 
distances from a are equal to the distance from a to the fourth vertex in 
the list, are connected by an edge to the vertex, corresponding to entity a. 
It is easy to see that the constructed graph does not depend on a specific 
numeration, satisfying the above conditions. The number of closest verti-
ces is a parameter of the general algorithm of decompositions family 
construction. Here this parameter is assumed be equal to four. 

3. Sometimes the initial system has been already presented as undirec-
ted graph. In such cases, we do not require any reduction. 

Thus, we can present initial data of most AC problem in form of an 
undirected graph.  

Example 5. Consider the set of points on the plane, shown in Fig. 2a. 
Element dij of the correspondent dissimilarity matrix D is equal to Eucli-
dean distance between points i and j (i, j = 1, ..., N). 

The neighborhood graph, corresponding to the set, shown in Fig. 2a, is 
presented in Fig. 2b. Despite the definition, prescribing to connect every 
vertex to four closest ones, degree of some vertices exceeds four. The 
explanation of this apparent contradiction is evident.  
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Fig. 2a. The initial set of points 

4.2. Examples of AC Problems and Their Solutions 

In this subsec-tion several examples of the work of the algorithm from 
Section 2 are considered. 

Example 6. Consider the set of points on the plane, shown in Fig. 3a. 
The corresponding neighborhood graph is not shown, because the number 
of vertices is too large for reasonable graphic presentation.  

Let us apply the algorithm of family of graph decomposition construc-
tion from Section 2 to the corresponding neighborhood graph. Assume k = 
2 (see subsection 2.2), r = 3 and s = 1 (see subsection 2.3). After the three 
runs of the graph dichotomy algorithm we obtain three different essential 
decompositions 𝐿!! , shown in Fig. 3b – 3d. Only edges, forming the found 
cut, are shown in the next figures.  

Following DAA, the graph dichotomy algorithm is applied to the 
greater subgraphs in every case. The different essential decompositions 
𝐿!!  are shown in Fig. 3e – 3g. In the correspondence to the agglomerative 
stage of DAA, consider the found essential decompositions 𝐿!!  and pool 
together two subgraphs, connected by the maximum number of edges. In 
all the cases the resulting decomposition 𝐿!!   is the same. It is shown in 
Fig. 3h. Thus, only this decomposition is defined as the solution of the 
initial classification problem. Even is this simple situation practically all 
the classification methods fail (including popular spectral methods and 
balanced cut approach; see [Rubchinsky, 2010]).  
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Fig. 2b. Neighborhood graph for the set in Fig. 2a 

 
Fig. 3a. The initial set 

 
Fig. 3b. Dichotomy 1 
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Fig.3c. Dichotomy 2 

 
Fig. 3d. Dichotomy 3 

 
Fig. 3e. Decomposition 𝐿!!−1  
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Fig. 3f. Decomposition 𝐿!!−2 

 
Fig. 3g. Decomposition 𝐿!!−3 

 
Fig. 3h. Decomposition 𝐿!!  − reasonable classification into two classes  

Example 7. Let us demonstrate the application of the elaborated ap-
proach to AC problem in a more complicated case – the set of points, 
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shown in Fig. 2a. Let us start with only one run of DAA. Consider conse-
cutive dichotomies and construct essential and adjoined decompositions, 
using notations from subsection 2.2. Assume k = 3, i.e. restrict our consi-
deration to 3 consecutive dichotomies. Essential decompositions 𝐿!! , 𝐿!!  
and 𝐿!!  are shown in Fig. 4a – 4с. The edges forming cuts between different 
subgraphs are shown, too. Pooling in accordance to the algorithm subgraphs 
0 and 2 from decomposition 𝐿!!  (connected by the maximum number of ed-
ges) results in adjoined decomposition 𝐿!! , coinciding with the essential 
decomposition 𝐿!! .  

 

 
Fig. 4a. Essential decomposition 𝐿!!  

After, pooling subgraphs 0 and 2 from decomposition 𝐿!!  shown in Fig. 
4c, results in adjoined decomposition 𝐿!! , shown in Fig. 4d. It is clear that 
this classification is the only “correct” decomposition. However, DAA 
goal does not consists in finding one “correct” decomposition. It consists 
in the construction of family of decompositions for a given parameter k 
(number of consecutive dichotomies). Therefore, pooling subgraphs 0 and 
1 from decomposition 𝐿!!  (that are connected by 2 edges), we obtain the 
adjoined decomposition 𝐿!! , which also coincides with essential decom-
position 𝐿!! . 
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Fig. 4b. Essential decomposition 𝐿!!  

 
Fig. 4c. Essential decomposition 𝐿!!  

At this point, one run of DAA is over. In every decomposition, found 
by this algorithm, every class is a union of classes, forming the last essen-
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tial decomposition 𝐿!!  or coincides with one of them. Therefore, the 
scheme, shown in Fig. 5, naturally presents the process of its implementa-
tion in the considered case. 

Finally, among all the possible 6 decompositions: 𝐿!! ; 𝐿!! , 𝐿!! ; 𝐿!! , 𝐿!! , 
𝐿!!  from L(3) there are 4 different decompositions: essential decomposi-
tions 𝐿!! , 𝐿!!  and 𝐿!!   and adjoined decomposition 𝐿!!  (see Fig 4a – 4d).  

 

 
Fig. 4d. Adjoined decomposition 𝐿!!  

 
Fig. 5. DAA diagram 
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Assume (for visibility of illustration) the number r of DAA runs in the 
inner loop is equal to 4 and the number s of repetitions of the outer loop is 
equal to 1. In Fig. 6a – 6d, results of 4 runs for essential decomposition 𝐿!!  
are shown (see also Fig. 4b). All the 4 found decompositions differ one from 
another. 

 

 
Fig. 6a. Decomposition 𝐿!!  found at run 1 

 
Fig. 6b. Decomposition 𝐿!!  found at run 2 
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Fig. 6c. Decomposition 𝐿!!  found at run 3 

 
Fig. 6d. Decomposition 𝐿!!  found at run 4 

It is easy to understand that in the same run essential decompositions 
𝐿!!  are differing of the decompositions shown in Fig. 6 only in presence 
of another class in the center (compare also Fig. 4b and 4c). This implies 
that all these four decomposition also are different ones. At the same time 
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essential decomposition 𝐿!!  and adjoined decomposition 𝐿!!  found at all 
the runs coincide with decompositions shown in Fig. 4a and 4d, i.e. they 
remain unchanged.  

Thus, in the considered case the found family of decompositions F(3, 
4, 1) consists of 10 different decompositions. Among them, there are 8 va-
rying with every run, and 2 permanent decompositions.  

Example 8. Consider even more complicated case – the set of points, 
presented in Fig. 7a. The essential decompositions 𝐿!! , 𝐿!! , 𝐿!! , 𝐿!! , 𝐿!! , 𝐿!! , 
𝐿!! , 𝐿!!  are shown in Fig. 7b – 7h. The numbers in these figures are the 
temporary names of the consecutively separated subgraphs. The greater 
peninsula is singled out after the 1st dichotomy, while the lesser is singled 
out only after the 7st dichotomy. The binary tree of the 11 consecutive 
dichotomies is shown in Fig. 8.  

Computational experiments demonstrate that in different runs the 
greater peninsula is singled out always after the 1st dichotomy. At the 
same time the lesser peninsula is singled out at different steps of DAA, 
but always between 6th and 11th steps. Therefore, if we assume k = 12, 
then at every DAA run the lesser peninsula is singled out compulsory at 
some mth step. Taking into account the agglomerative stage just after the 
construction of essential decomposition 𝐿!!  (see subsection 2.2), we 
obtain the adjoined decomposition 𝐿!! into three subgraphs: two peninsu-
las and the remaining ring. This decomposition is shown in Fig. 9. The 
previous reasoning means that such decomposition is encountered at eve-
ry DAA run. By the construction it means that the decomposition in Fig. 
9 is the solution of the initial classification problem for the set, shown in 
Fig. 7a.  

We can add that in three AC problems, considered in this Section 4, 
all the parameters of the algorithm were the same (including parameters 
of the graph dichotomy algorithm), except the number k of consecutive 
dichotomies. Pay attention that the notion of decomposition complexity is 
not used in the reasoning of the current Section 4. However, it seems in-
tuitively that the AC problem of Example 6 is simpler than the AC prob-
lem of Example 7,  and the AC problem of Example 7 is simpler  than the 
AC problem of Example 8. It is true. Let us introduce the necessary 
notions and definitions. 
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Fig. 7a. The initial set 

 
Fig. 7b. Essential decomposition 𝐿!!  
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Fig. 7c. Essential decomposition 𝐿!!  

 
Fig. 7d. Essential decomposition 𝐿!!  
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Fig. 7e. Essential decomposition 𝐿!!  

 
Fig. 7f. Essential decomposition 𝐿!!  
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Fig. 7g. Essential decomposition 𝐿!!  

 
Fig. 7h. Essential decomposition 𝐿!!  
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Fig. 8. Diagram of essential decompositions 

 
Fig. 9. Solution of initial classification problem in Fig. 7a 

Remember that in the considered cases we need to do some number of 
consecutive dichotomies in DAA in order to find the correct classifica-
tion. Denote by k* the minimum value of parameter k, which guarantees 
construction of such a classification. This number can be considered as  
a complexity or difficulty of the initial AC problem. The corresponding 
values for the considered problems are presented in Table 1.  



36	  

Complexity of Classification Problems 
Table 1 

 Example 6 Example 7 Example 8 

k* 2 3 12 

The numbers in Table 1 do not contradict to intuition. Of course, the 
definition in cases, there different numbers of consecutive dichotomies 
are required in different DAA runs, must be more accurate. It seems that 
it is possible to define k* as an average value over different DAA runs. 

 
5. Analysis of Voting in RF Duma (Parliament) 

The suggested approach to calculation of decomposition complexity 
of graph is applied here to analysis of voting in 2nd, 3rd and 4th RF Duma 
(1996 – 2007). First, the distance between every two deputies is defined, 
based on their votes. Second, analogously the construction in subsection 
4.1, the distances between every two deputies determine a distance matrix 
and the corresponding neighborhood graph. Finally, the decomposition 
complexity index 1 for the constructed graph is related to a considered 
period of Duma activity. In more detail: 

For every separate month of the considered period all the votes are 
considered. To every ith deputy (i = 1, 2, …, m) a vector vi  = (𝑣!! , 𝑣!! , …, 
𝑣!! ) is related, where n is the number of votes in a given month. Assume  

𝑣!! = 
1, if 𝑖th deputy voted for jth proposition;                    

−1, if 𝑖th deputy voted against jth proposition;                
    0, otherwise (abstained or not participated).                   

 

Note, that the number m of deputies, though slightly, changed from 
period to period. Of course, at every moment the number of deputies is 
always equal to 450. Yet during 4 years some deputies dropped out while 
the other ones came instead. The number of deputies participated in Du-
ma voting activity in 1996-1997 was equal to 465, in 1998-1999 – to 485, 
in 2000-2003 – to 479 and in 2004-2007 – to 477. 

Dissimilarity dst between sth and tth deputies is defined as usual 
Euclidean distance between vectors vs and vt. The dissimilarity matrix D 
= (dst) allows constructing an undirected graph G. For this graph G the 
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corresponding family of decompositions were constructed and index 1 
was calculated – just by the method, comprehensively described in 
Sections 2 and 3. 

The following Table 2 presents the index 1 of complexity for every 
month of the voting activity of 2nd, 3rd and 4th RF Duma. The numbers in 
the 1st column are the dates (year and month). The numbers in the 2th 
column are equal to the number of votes in the corresponding months. 
Numbers in the 3rd column are equal to decomposition complexity 1 of 
the graph, calculated following the definition of this notion in Section 3. 
Here the number k of consecutive dichotomies is equal to 10, the number r 
of DAA runs also is equal to 10, parameter s = 1, so that the maximum 
number !!! ∗!

!
∗ 𝑟 ∗ 𝑠 of decompositions is equal to 550. Empty rows 

correspond to months without any voting activity.  
The numbers in the 3rd column in Table 2a – 2c, i.e. complexity of the 

graph, determined by voting results, demonstrate noticeable variability, 
though some trend are seen at once, by “unaided eye”. Smoothed data, 
i.e. average value for half years, thereafter for years, and, finally, for 
whole period of every Duma activity, are presented in Table 3. 

 
Complexity of Voting in 2nd Duma (1996–1999)  

Тable 2a 

1 2 3  1 2 3 

9601 174 0.610909  9801 248 0.421818 
9602 321 0.625455  9802 366 0.330909 
9603 295 0.581818  9803 347 0.469091 
9604 470 0.683636  9804 334 0.436364 
9605 263 0.938182  9805 292 0.398182 
9606 269 0.827273  9806 489 0.534545 
9607 450 0.263636  9807 493 0.352727 
9608    9808   
9609    9809 405 0.390909 
9610 432 0.494545  9810 326 0.507273 
9611 226 0.567273  9811 338 0.327273 
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9612 566 0.465455  9812 534 0.392727 
9701 234 0.456364  9901 416 0.207273 
9702 427 0.445455  9902 354 0.250909 
9703 334 0.381818  9903 482 0.369091 
9704 437 0.316364  9904 384 0.372727 
9705 169 0.485455  9905 228 0.449091 
9706 762 0.238182  9906 768 0.392727 
9707    9907   
9708    9908   
9709 337 0.201818  9909 292 0.241818 
9710 354 0.247273  9910 338 0.270909 
9711 253 0.289091  9911 696 0.218182 
9712 530 0.265455  9912 243 0.430909 

 
 

Complexity of Voting in 3rd Duma (2000–2003) 
Тable 2b 

1 2 3  1 2 3 

0001 71 0.547273  0201 279 0.183636 
0002 228 0.112727  0202 380 0.063636 
0003 177 0.387273  0203 311 0.081818 
0004 368 0.112727  0204 640 0.114545 
0005 279 0.141818  0205 353 0.138182 
0006 454 0.149091  0206 956 0.072727 
0007 301 0.078182  0207   
0008    0208   
0009 144 0.154545  0209 329 0.120000 
0010 371 0.169091  0210 541 0.067273 
0011 240 0.103636  0211 448 0.065454 
0012 483 0.138182  0212 531 0.058182 
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0101 141 0.109091  0301 144 0.203636 
0102 254 0.245455  0302 350 0.136364 
0103 268 0.085454  0303 382 0.160000 
0104 409 0.187273  0304 519 0.136364 
0105 248 0.296364  0305 248 0.141818 
0106 683 0.069091  0306 677 0.083636 
0107 825 0.132727  0307   
0108    0308   
0109 200 0.140000  0309 208 0.221818 
0110 360 0.069091  0310 428 0.072727 
0111 668 0.160000  0311 400 0.203636 
0112 600 0.101818  0312   

 
Complexity of Voting in 4th Duma (2004-07) 

Table 2c 

1 2 3  1 2 3 

0401 101 0.360000  0601 168 0.216364 
0402 220 0.101818  0602 204 0.289091 
0403 270 0.141818  0603 256 0.265455 
0404 295 0.101818  0604 255 0.147273 
0405 249 0.325455  0605 179 0.194545 
0406 385 0.143636  0606 365 0.085454 
0407 378 0.372727  0607 260 0.221818 
0408 268 0.303636  0608   
0409 101 0.274545  0609 230 0.114545 
0410 252 0.261818  0610 305 0.278182 
0411 355 0.349091  0611 528 0.320000 
0412 535 0.250909  0612 463 0.260000 
0501 130 0.283636  0701 243 0.214545 
0502 209 0.421818  0702 189 0.356364 
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0503 237 0.225455  0703 262 0.123636 
0504 355 0.090909  0704 368 0.187273 
0505 255 0.123636  0705 190 0.118182 
0506 300 0.338182  0706 448 0.169091 
0507 240 0.141818  0707 320 0.310909 
0508    0708   
0509 174 0.325455  0709 141 0.167273 
0510 266 0.360000  0710 350 0.298182 
0511 359 0.232727  0711 337 0.227273 
0512 426 0.225455  0712   

 
It seems that low value of complexity in 2002 was due to creation of 

the party “United Russia” and connected with attempts of straightening 
out the activity of Duma. It is surprising – at first sight – that in the 4th 
Duma in the condition of constitutional majority of this party the level of 
complexity is noticeably higher than in the 3rd Duma (0,235 opposite to 
0,147), in which no party had majority. It is possible to say that for voting 
political bodies high complexity of corresponding graphs means inconsis-
tence, maladjustment, irrationality of the whole body rather than indivi-
dual fractions and deputies. 

Smoothed complexity data  

 Half 1 Half 2 Half 3 Half 4 Half 5 Half 6 Half 7 Half 8 
Duma 2 0.711 0.448 0.387 0.251 0.432 0.394 0.340 0.290 
Duma 3 0.242 0.129 0.165 0.121 0.109 0.078 0.144 0.166 
Duma 4 0.196 0.302 0.247 0.257 0.199 0.239 0.195 0.251 

 
 1st year 2nd year 3rd year 4th year 

Duma 2 0.606 0.332 0.415 0.320 
Duma 3 0.190 0.145 0.096 0.151 
Duma 4 0.249 0.252 0.217 0.217 

 
 
 

Duma 2 Duma 3 Duma 4 
0.418 0.147 0.235 
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It is of interest to compare the data presented in Table 3b with the 

averaged for every year stability index for the 3rd Duma [Aleskerov et al, 
2007]. These data, calculated using materials from the above-cited book, 
are presented in Table 4.  

Stability index in the 3-rd Duma 
Table 4 

Year 2000 2001 2002 2003 
Average stability index for one year 0,5597 0,5627 0,5339 0,5090 

Maximum possible value of stability index is equal to 1, minimum 
possible value is equal to 0. In contrast to the complexity data, which has 
a clear-cut minimum in 2002, stability index does not reach the maximum 
in this year. 

Note that most results in the book [Aleskerov et al, 2007] were 
obtained, basing on votes concerning only politically important issues, 
while in the present work all the votes are used. Every approach has its 
advantages and disadvantages, whose detailed analysis is far beyond the 
framework of the present article. However, it is possible to suppose that 
the votes on politically important issues are much more controlled, than 
the votes on lesser important ones. It is one of cause of noticeable 
difference in some results. Of course, difference in the used formal 
methods of analysis also contributes in the above-mentioned difference in 
some conclusions. Particularly, the suggested approach gives highest le-
vel of complexity indices for voting bodies in two opposite cases – when 
all deputies vote unanimously and all the deputies vote at random. If the 
deputies are divided into two or more groups, which always vote corres-
pondingly to their fixed political opinions, then the level of complexity 
indices is very low. It cannot be surprising after Examples 2 and 3.  

Example 9. Let us consider families of decompositions of the graph 
constructed on voting of Duma deputies in May, 2001. The number r of 
runs is equal to 10. There are 10 essential decompositions 𝐿!!  (remember 
that every decomposition from 𝐿!!  consists by construction of 4 clas-
ses). Among these 10 decompositions there are only 3 different ones 
(the number before classes are equal to their cardinalities). These 3 
decompositions are as follows. 
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Three different classifications 
Classification 1  

Class 1: 253 elements 
1   3   4   5  21  22  23  24  25  26  27  28  30  34  39  40  43  44  45  47  48  
53  55 56  57  58  61  62  64  66  67  69  70  74  76  77  78  79  81  82  83  
84  85  89  90  91  92  93  94  96  97 100 102 103 108 109 110 111 113 114 
115 119 121 122 124 126 128 129 134 137 139 143 147 148 155 157 159 
162 165 167 168 170 174 175 179 180 181 182 183 186 188 193 195 197 
199 200 202 203 205 208 209 210 214 216 217 218 220 221 222 225 227 
229 230 231 232 236 238 239 240 245 246 248 251 252 253 254 255 256 
257 258 259 262 266 268 271 272 273 274 275 278 281 282 285 286 287 
288 292 296 298 299 300 301 303 305 307 311 316 317 318 319 320 321 
322 324 326 331 335 336 337 338 339 340 343 344 346 347 352 355 358 
361 363 364 365 366 367 369 370 373 375 376 377 378 379 380 381 386 
388 393 394 397 398 400 404 405 407 410 411 414 415 417 420 421 422 
424 425 429 431 432 433 437 440 441 444 445 446 448 449 450 451 454 
455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 471 472 
473 474 475 476 477 478 

Class 2: 79 elements 
 2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 
104 117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 
187 198 212 219 226 233 250 267 269 283 289 297 304 310 314 315 329 
330 345 349 353 354 356 357 359 360 362 368 374 384 387 390 391 399 
412 419 435 436 439 442 459 

 Class 3: 125 elements 
 0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  
73  80  86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 
141 144 146 149 150 151 152 158 160 161 166 176 177 184 189 190 191 
192 194 196 201 204 207 211 215 224 228 234 235 237 242 243 260 261 
263 264 265 270 277 279 280 284 290 291 293 295 302 306 308 309 312 
313 323 325 327 328 332 333 334 341 342 348 350 351 371 382 383 385 
389 392 395 396 401 402 403 406 408 409 416 423 426 427 430 443 447 
453 

Class 4: 22 elements 
14 17 116 123 136 145 206 213 223 241 244 247 249 276 294 372 413 418 
428 434 438 452 
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Classification 2 
Class 1: 221 elements 

 1   3   4   5  21  22  23  24  26  27  28  30  34  40  44  45  47  48  53  55  56  
57  58  61  64  67  69  70  74  77  78  79  82  84  85  89  90  91  92  93  94  
96  97 100 102 103 108 109 110 111 113 114 115 119 121 122 124 126 128 
129 134 137 139 143 147 148 155 157 159 162 165 167 168 174 175 179 
180 181 182 183 186 188 195 197 199 200 202 203 208 209 210 214 216 
217 218 220 221 222 225 227 229 230 231 232 236 238 239 240 246 248 
251 252 253 257 259 262 266 268 271 272 273 274 275 278 281 282 285 
286 287 288 292 298 299 300 301 303 307 311 316 319 320 321 324 326 
331 335 337 338 339 340 343 344 346 347 352 355 358 361 364 365 366 
367 370 373 376 377 380 381 386 388 393 394 397 398 400 404 405 407 
410 411 415 417 420 421 422 424 431 432 437 440 441 444 445 446 448 
449 450 454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 
470 471 472 473 474 475 476 477 478 

Class 2: 79 elements 
 2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 
104 117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 
187 198 212 219 226 233 250 267 269 283 289 297 304 310 314 315 329 
330 345 349 353 354 356 357 359 360 362 368 374 384 387 390 391 399 
412 419 435 436 439 442 459 

Class 3: 125 elements 
0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  
73  80  86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 
141 144 146 149 150 151 152 158 160 161 166 176 177 184 189 190 191 
192 194 196 201 204 207 211 215 224 228 234 235 237 242 243 260 261 
263 264 265 270 277 279 280 284 290 291 293 295 302 306 308 309 312 
313 323 325 327 328 332 333 334 341 342 348 350 351 371 382 383 385 
389 392 395 396 401 402 403 406 408 409 416 423 426 427 430 443 
447 453 
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Class 4: 54 elements 
    14  17  25  39  43  62  66  76  81  83 116 123 136 145 170 193 205 206 
213 223 241 244 245 247 249 254 255 256 258 276 294 296 305 317 318 
322 336 363 369 372 375 378 379 413 414 418 425 428 429 433 434 438 
451 452 

Classification 3 
Class 1: 243 elements 

 1   3   4   5  14  17  21  22  23  24  26  27  28  30  34  40  44  45  47  48  53  
55  56  57  58  61  64  67  69  70  74  77  78  79  82  84  85  89  90  91  92  
93  94  96  97 100 102 103 108 109 110 111 113 114 115 116 119 121 122 
123 124 126 128 129 134 136 137 139 143 145 147 148 155 157 159 162 
165 167 168 174 175 179 180 181 182 183 186 188 195 197 199 200 202 
203 206 208 209 210 213 214 216 217 218 220 221 222 223 225 227 229 
230 231 232 236 238 239 240 241 244 246 247 248 249 251 252 253 257 
259 262 266 268 271 272 273 274 275 276 278 281 282 285 286 287 288 
292 294 298 299 300 301 303 307 311 316 319 320 321 324 326 331 335 
337 338 339 340 343 344 346 347 352 355 358 361 364 365 366 367 370 
372 373 376 377 380 381 386 388 393 394 397 398 400 404 405 407 410 
411 413 415 417 418 420 421 422 424 428 431 432 434 437 438 440 441 
444 445 446 448 449 450 452 454 455 456 457 458 460 461 462 463 464 
465 466 467 468 469 470 471 472 473 474 475 476 477 478 

 
Class 2: 79 elements 

 2   6   8  10  13  29  31  32  35  37  41  42  49  54  60  65  68  75  88  99 101 
104 117 120 125 133 142 153 154 156 163 164 169 171 172 173 178 185 
187 198 212 219 226 233 250 267 269 283 289 297 304 310 314 315 329 
330 345 349 353 354 356 357 359 360 362 368 374 384 387 390 391 399 
412 419 435 436 439 442 459 

Class 3: 125 elements 
 0   7   9  11  12  15  16  18  19  20  33  36  38  46  50  51  52  59  63  71  72  
73  80  86  87  95  98 105 106 107 112 118 127 130 131 132 135 138 140 
141 144 146 149 150 151 152 158 160 161 166 176 177 184 189 190 191 
192 194 196 201 204 207 211 215 224 228 234 235 237 242 243 260 261 
263 264 265 270 277 279 280 284 290 291 293 295 302 306 308 309 312 
313 323 325 327 328 332 333 334 341 342 348 350 351 371 382 383 385 
389 392 395 396 401 402 403 406 408 409 416 423 426 427 430 443 447 
453 
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Class 4: 32 elements 
 25  39  43  62  66  76  81  83 170 193 205 245 254 255 256 258 296 305 
317 318 322 336 363 369 375 378 379 414 425 429 433 451 

Classifications 1 и 2 are encountered 4 times from 10, classification 3 – 
2 times. The other classifications do not arise for any number r of repe-
titions.  

 
6. Stock Market Analysis 

The stock market S&P-500 (500 greatest companies in USA) is con-
sidered. First of all let us describe the graph model of this stock market 
(for other stock  markets it can be done analogously; see [Boginski, Bu-
tenko, Pardalos, 2005]). The objects correspond to considered (during 
some period) shares. The distance between two shares is determined as 
follows.  

1. Let us define the basic minimal period, consisting of l consecutive 
days. All the data found for the period x, x−1, … , x−l +1 are related to 
day x. Assume the length l of a considered period  is equal to 16. This 
choice is determined by the following meaningful reasons: for short 
period data are too variable, for long period – too smooth. The choice of 
parameters in general is discussed in the Conclusion. 

2. Prices of all the shares at closure time are considered for days x, 
x−1, … , x−l+1. The matrix R of pairwise correlation coefficients is 
calculated basing on these prices.  

3. Distance dij between two shares (say, i and j) is defined by the 
formula dij = 1–rij, where rij is the correspondent element of matrix R. The 
determined distance d is close to 0 for «very similar» shares and is close 
to 2 for «very dissimilar» shares. Therefore matrix D = (dij) is considered 
as the dissimilarity matrix. Following the material of the subsection 4.1, 
reduce the dissimilarity matrix to the undirected graph G, whose vertices 
correspond to the shares in the stock market S&P-500. Pay attention that 
these sets of shares can be different for different last days x of a conside-
red period. 

As before in Sections 4 and 5, we can find family of the graph decom-
positions by the way, described in Section 2, and after that calculate the 
complexity index 2 as it is described in Section 3. In order to do it we 
must determine all the necessary parameters. Let the number k of suc-
cessive dichotomies is equal to 2 (see subsection 2.2). It means that the 
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initial set of vertices is divided into 2 subgraphs, thereafter the larger of 
these subgraphs also is divided into 2 subgraphs and finally 2 subgraphs 
of the 3 ones, connected by the maximum number of edges, are pooled to 
one subgraph (see Example 6). Thus, three classifications – one into 3 
classes and two into 2 classes – are constructed. The two latest can co-
incide or can be different.   

Number r of runs in inner loop is equal to 150, number s of repetitions 
of the corresponding inner loop cycle (see subsection 2.3) is equal to 10. 
It means that family F(2,150,10) consists of 4500 = 3×150×10 classifica-
tions, some of which can coincide. It is possible to calculate the comp-
lexity index 2 of family F(2,150,10) (see formulae (6) and (7)). This 
number (entropy of family F(2,150,10)) is related to day x (the last day of 
a 16-days period. Therefore, E(x) can be determined in the evening of day 
x – practically in several minutes after closure time. 

The results of two independent calculation of E(x) for one day 
(specifically, 01.01.2001) are presented in Table 5. The found values are 
very close (they differ approximately in 0.002), despite the significantly 
larger differences of values over 150 runs, presented in both rows of the 
table. This demonstrates stability of the application of two-dimensional 
averaging scheme, discussed in Section 3. 

Two-Dimensional Averaging Scheme 
                                                             Таble 5 

Number 
of outer 
loop i 

1  2 3 4 5 6 7 8 9 10 Average 
 value  

Entropy 
E(3,i,150) 5.335   5.396 5.328 5.323 5.367 5.345 5.358 5.323 5.353 5.392 5.352 

Entropy 
E(3,i,150)  5.300  5.385 5.357 5.321 5.383 5.356 5.375 5.354 5.360 5.306 5.350 

Let us consider the period since 01.01.2001 until 31.12.2010. This 
period includes two big crises: dotcom crisis in 2001 and hypothec crisis 
(become world crisis) in 2008. The entropy E(x) is calculated for every 
day x from the considered 3652-days period. The ave-rage values of 
entropy at every day are stable enough, as well as in the 1st day of the 
period (see table 3).  
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Entropy E(x) at every day x is presented in Table  6. For commodity, 
results for every year are given separately. Some groups of seven 
consecutive days are marked by gray background. It will be explained in 
the next subsection 6.1.  

Entropy at every day in 2001 – 2010  
Table 6 

2001 
 5.353  5.229  6.023  5.020  4.904  5.115  4.991  5.348  5.682  4.638  4.622 4.968 
 4.879  4.680  4.623  5.977  5.446  6.077  5.227  6.061  6.041  5.949  5.371 5.386 
 5.929  5.894  5.317  5.611  5.656  5.047  6.091  5.531  4.711  4.613  5.223  5.438 
 5.330  5.483  5.216  5.366  5.382  5.658  4.922  5.203  5.524  5.556  5.725  5.428 
 5.477  5.253  5.786  5.045  5.580  5.566  5.694  4.979  4.887  5.854  5.981  5.757 
 6.028  5.351  5.175  5.362  5.877  4.662  4.835  5.750  5.387  5.687  5.442  5.500 
 5.780  5.481  5.356  5.431  4.633  4.457  4.506  4.742  4.935  4.726  5.119  4.543 
 4.448  5.537  5.640  5.265  6.091  6.011  4.552  4.765  4.626  5.439  5.064  5.102 
 5.527  5.892  5.999  5.863  6.091  5.935  5.809  5.875  4.745  5.211  5.655  5.186 
 4.702  5.949  5.772  5.668  5.289  4.950  5.421  5.290  4.602  4.757  5.000  5.053 
 6.074  5.828  5.452  5.984  5.424  5.219  5.196  4.992  5.218  5.495  5.865  5.933 
 5.795  5.600  5.443  5.593  5.524  5.780  5.528  5.841  5.014  4.978  4.736  4.813 
 4.807  4.966  5.395  5.289  4.975  5.755  5.903  5.964  5.146  5.137  5.593  5.612 
 5.408  5.594  5.122  5.383  5.559  5.098  5.829  5.938  5.713  5.569  5.786  5.369 
 5.214  4.650  4.700  6.028  4.868  4.943  5.520  5.391  4.805  5.846  5.705  6.057 
 5.733  5.424  4.800  5.189  5.974  5.798  5.153  5.505  4.917  5.492  5.481  4.830 
 5.604  5.855  5.924  5.216  5.702  5.613  5.597  5.278  5.838  5.222  4.593  5.062 
 5.551  5.642  5.834  4.735  5.546  5.777  6.060  5.870  5.667  5.096  5.002  5.137 
 5.956  5.876  5.926  4.885  6.075  5.724  6.069  5.872  5.133  5.818  5.486  4.663 
 5.204  5.134  5.106  4.845  5.512  5.565  5.079  5.479  4.861  5.775  6.003  5.901 
 5.523  5.942  5.393  5.226  4.667  4.863  4.688  5.216  4.667  5.601  4.994  4.623 
 4.439  4.530  4.960  4.541  5.180  5.172  4.710  5.312  5.860  4.492  4.500  4.497 
 4.468  4.460  4.457  4.528  4.472  5.677  4.920  5.502  5.972  5.482  5.377  5.737 
 5.729  5.674  5.973  6.077  4.677  5.263  5.594  5.130  4.936  4.823  4.978  4.513 
 5.485  5.619  5.172  5.422  5.839  6.000  5.838  5.971  5.230  5.204  6.087  5.956 
 5.641  5.132  5.323  5.213  5.339  4.894  5.525  5.408  4.539  5.551  5.003  5.288 
 4.891  5.046  4.710  5.126  5.455  5.542  4.496  5.172  5.672  5.141  4.650  4.610 
 5.889  4.831  5.228  4.822  5.162  4.630  5.326  5.619  6.090  5.926  5.985  6.001 
 5.640  6.080  5.452  5.457  5.643  5.629  4.918  4.874  4.836  5.407  4.726  5.674 
 5.649  6.046  4.883  5.745  5.846  6.038  5.915  5.066  5.625  5.659  4.936  5.058 
 5.013  5.213  5.069  4.986  4.760   

2002 
 5.279  6.029  5.993  5.652  5.739  5.745  5.696  5.604  5.208  5.217  5.842  4.981 
 5.676  4.975  5.437  5.218  4.882  5.126  5.694  4.942  5.030  4.902  5.167 4.732 
 5.120  4.869  5.944  6.067  5.064  4.705  5.469  5.104  5.569  5.357  5.450 5.161 
 5.834  5.760  5.128  5.037  5.127  5.984  5.492  6.025  5.709  6.052  5.915  5.702 
 5.793  5.192  5.696  5.253  5.831  5.138  5.705  5.606  5.589  5.605  5.110  5.876 



48	  

 5.310  5.584  5.446  4.916  4.549  5.049  4.567  4.577  4.518  4.581  5.603  4.984 
 5.939  5.232  4.951  4.825  6.043  5.113  5.175  5.432  5.532  5.018  5.996  5.476 
 5.517  5.841  5.711  5.765  5.838  4.736  5.906  5.728  5.209  5.923  6.073  5.923 
 5.641  5.025  4.832  5.564  5.518  5.082  4.594  4.616  4.967  5.681  5.057  5.890 
 5.417  5.623  5.592  5.728  5.993  5.864  5.418  5.135  5.165  4.758  4.614  5.050 
 4.763  5.296  5.929  5.273  5.109  5.100  4.905  6.017  5.756  5.977  6.029  5.913 
 5.237  5.636  5.599  6.078  5.333  5.718  5.795  5.600  5.672  5.594  4.698  5.411 
 5.909  5.973  5.844  5.773  4.712  5.126  5.232  5.290  6.093  5.641  4.599  5.178 
 4.650  4.587  4.554  4.559  4.734  4.917  4.712  5.481  5.143  5.307  5.330  5.388 
 6.057  5.815  4.857  5.207  5.021  5.099  5.768  5.689  4.930  5.504  5.101  4.979 
 5.359  5.238  5.101  4.562  4.973  4.707  5.080  4.835  4.744  5.337  4.596  5.950 
 4.829  6.078  5.910  5.017  5.452  4.984  4.439  4.499  4.694  4.736  4.465  4.450 
 4.524  4.486  5.063  5.390  5.513  4.735  5.218  4.644  4.877  4.608  4.684  4.791 
 5.388  5.113  5.638  5.270  5.108  4.959  5.057  5.474  5.452  4.443  5.494  4.439 
 5.036  4.499  4.443  4.762  5.257  4.855  5.598  5.210  4.821  4.676  5.000  6.053 
 5.024  5.918  4.920  5.189  4.827  5.261  5.525  4.837  4.746  5.833  6.079  4.846 
 5.697  5.525  5.912  5.464  5.632  5.787  5.758  5.952  5.964  5.807  5.964  5.984 
 5.364  4.507  5.025  4.480  4.541  5.136  5.624  5.707  4.654  5.112  5.334  6.008 
 5.941  4.569  4.776  4.866  5.306  5.845  5.160  5.030  5.155  5.373  6.047  5.814 
 5.572  5.423  5.055  4.575  4.605  4.517  4.899  5.060  4.902  4.985  5.835  5.327 
 4.790  5.658  6.081  5.962  6.013  6.019  6.052  5.860  5.484  5.279  5.808  5.913 
 5.057  4.982  5.476  5.315  5.310  6.067  4.883  6.070  6.092  6.084  5.992  6.063 
 4.925  5.410  4.679  5.037  5.595  4.786  4.745  4.511  4.852  5.259  5.724  5.104 
 5.012  5.653  6.073  6.093  5.932  5.950  4.787  4.838  4.996  5.322  4.744  5.090 
 4.981  5.683  5.152  5.261  5.753  5.734  5.628  5.571  5.874  4.439  5.475  5.675 
 6.085  5.500  5.845  5.382  5.472   

2003 
 5.771  5.762  5.489  5.763  4.733  5.613  4.633  5.169  4.744  4.801  4.758  4.842 
 4.816  5.629  5.186  6.031  5.945  5.524  5.706  5.863  5.413  4.604  5.118  5.297 
 4.904  4.566  5.295  4.520  4.564  4.628  4.891  5.564  4.946  5.137  5.834  5.564 
 4.810  5.165  5.748  5.445  5.231  5.858  4.802  4.542  5.126  5.262  4.728  4.744 
 5.005  5.661  5.978  5.205  6.019  4.668  6.067  5.578  5.725  4.985  5.461  5.682 
 5.576  5.467  5.829  4.911  5.971  5.835  5.841  5.808  5.349  4.859  4.981  5.345 
 4.550  4.532  4.639  6.077  5.752  5.728  4.866  4.772  5.579  4.667  4.439  4.520 
 4.503  5.907  5.453  5.324  5.416  5.511  5.711  4.596  5.169  5.348  4.698  5.712 
 5.898  5.616  5.258  5.567  5.764  4.911  5.348  5.668  5.316  4.452  4.817  5.035 
 5.387  5.760  5.360  4.903  5.626  4.882  5.270  4.996  4.895  5.788  5.989  5.111 
 5.945  5.400  5.377  5.393  5.446  4.994  5.174  4.871  5.749  5.686  5.177  4.439 
 5.191  5.302  5.494  4.826  5.511  5.416  5.136  5.029  4.830  5.256  6.053  5.885 
 5.924  5.903  5.725  5.554  5.811  5.065  5.538  4.597  4.642  4.798  4.452  4.949 
 5.984  5.243  5.238  5.622  4.777  4.493  4.699  4.722  5.079  5.770  5.716  5.840 
 5.683  5.853  5.824  5.765  5.353  5.637  5.598  5.976  5.485  5.237  5.395  5.902 
 5.711  5.058  5.169  5.206  5.150  5.508  5.285  5.319  4.952  5.587  5.324  4.993 
 4.532  4.593  4.635  4.739  4.935  5.699  4.498  5.406  5.789  4.842  5.817  5.658 
 5.239  5.496  5.236  6.034  6.053  5.927  6.039  6.027  5.199  5.286  5.983  5.973 
 5.487  4.994  5.743  6.106  6.046  5.360  5.773  6.039  5.692  5.478  5.651  5.519 
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 5.689  5.846  5.938  5.993  5.267  4.762  4.854  4.617  5.204  5.150  5.412  5.970 
 5.790  5.423  5.661  4.746  6.087  5.346  4.643  4.678  5.365  5.173  5.434  5.611 
 5.014  5.267  5.372  5.791  5.380  5.613  4.977  5.032  5.515  5.858  6.058  5.511 
 6.029  5.514  5.170  5.502  4.589  5.567  5.340  5.288  5.957  5.508  5.761  5.449 
 4.705  4.661  5.782  5.578  4.693  5.232  4.856  4.612  4.593  5.121  4.492  4.508 
 4.706  4.821  5.227  5.732  5.136  5.440  5.595  5.276  5.896  6.053  6.016  5.252 
 5.263  5.323  6.066  5.351  5.592  6.013  4.990  4.722  5.671  4.716  5.402  4.930 
 5.978  4.910  5.470  5.540  5.193  5.756  5.289  5.003  5.089  5.632  5.496  5.181 
 4.439  5.202  5.681  5.010  4.819  5.549  5.077  5.763  5.180  4.463  4.511  5.508 
 5.560  4.528  5.465  5.111  4.963  5.054  5.443  5.318  4.680  5.492  5.337  4.820 
 4.862  5.030  5.731  5.814  5.861  6.063  4.954  5.664  5.915  5.619  5.347  4.687 
 5.326  5.602  5.829  4.612  5.156   

2004 
                                       4.799  5.942  5.072  4.886  5.578  6.076  5.349  5.209  5.015  5.145  5.433  5.210 

 5.985  5.768  5.244  5.960  5.457  5.308  5.580  5.304  5.297  5.314  5.788  4.694 
 4.831  4.685  5.240  5.348  5.501  5.954  5.282  5.071  5.213  5.801  5.160  5.237 
 5.439  5.085  4.919  5.864  5.477  5.844  5.397  6.036  4.556  5.592  5.635  5.280 
 5.397  6.080  5.779  5.352  5.583  5.370  5.799  5.396  5.143  5.893  5.694  5.120 
 5.799  5.882  5.330  4.733  4.946  5.519  4.922  5.192  4.863  5.882  5.499  5.992 
 5.611  5.577  4.753  5.313  5.659  5.538  5.520  5.408  4.840  5.021  4.825  4.635 
 5.704  5.411  5.181  5.395  5.733  5.988  5.440  5.537  5.432  5.291  5.084  4.730 
 4.751  4.871  4.554  4.463  4.659  4.572  4.439  5.169  5.507  5.811  4.736  5.180 
 4.809  5.329  5.634  5.406  5.820  5.407  5.205  4.853  5.780  6.038  5.969  5.336 
 5.571  5.981  5.935  5.568  5.955  5.400  5.555  5.016  5.562  4.955  5.068  5.188 
 4.439  4.789  4.650  4.573  5.114  4.863  4.959  5.275  6.052  4.899  5.594  5.821 
 5.141  5.925  5.745  5.683  5.605  5.420  4.986  5.052  5.130  5.047  4.965  6.001 
 6.043  5.236  5.803  5.575  5.418  6.031  5.795  5.114  5.666  6.036  6.091  4.821 
 5.905  5.541  5.108  5.070  5.368  4.971  4.839  5.332  5.220  4.606  4.970  5.284 
 4.955  5.842  5.841  5.584  5.814  5.640  5.492  5.978  5.894  4.728  5.241  5.391 
 4.658  5.192  5.474  4.605  5.893  5.583  5.172  4.578  4.602  5.461  5.376  5.993 
 5.181  5.802  5.791  5.485  5.730  4.671  5.167  4.818  4.855  5.390  5.912  5.662 
 6.024  5.787  5.653  4.905  4.665  4.789  4.927  4.535  4.618  4.452  5.048  4.600 
 5.076  4.956  5.083  5.126  5.521  5.261  5.636  4.981  4.643  4.439  4.637  4.784 
 4.876  5.033  4.881  5.229  5.923  4.791  4.600  5.318  4.823  4.798  4.930  4.744 
 5.583  4.887  4.850  4.515  5.647  4.988  5.188  5.603  5.761  5.670  5.900  5.266 
 5.130  5.907  5.452  5.501  5.841  5.308  4.818  5.350  5.602  5.417  5.184  5.286 
 4.898  5.431  5.133  5.125  5.532  4.588  4.712  4.463  4.650  5.448  5.045  5.158 
 5.783  5.193  5.016  4.896  4.861  5.397  4.717  5.821  4.809  5.546  5.440  5.613 
 5.425  5.050  5.693  5.458  5.017  4.629  5.202  4.498  4.640  4.472  4.439  4.502 
 4.439  4.650  4.527  4.967  5.211  4.830  5.699  5.139  5.358  5.527  5.717  4.941 
 5.512  5.171  4.439  4.770  5.954  5.087  4.899  5.507  5.658  5.500  5.630  5.399 
 5.376  5.283  4.884  4.602  4.763  5.543  5.641  4.999  5.020  5.497  5.586  4.967 
 6.006  5.104  5.484  5.807  6.042  6.036  6.059  5.233  5.092  5.995  5.890  5.630 
 5.644  5.359  5.519  4.863  5.573  5.029   
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2005 
 5.275  4.650  5.819  5.255  5.675  5.857  4.739  4.862  4.463  4.563  4.576  4.763 
 5.303  5.023  5.279  5.823  5.995  4.777  5.754  4.775  5.139  5.495  5.568  5.856 
 5.877  5.690  5.763  5.473  5.287  4.777  4.439  5.469  5.645  5.279  5.052  4.675 
 5.352  4.901  4.930  5.388  4.815  4.576  5.019  4.587  5.028  4.545  4.685  5.124 
 5.584  5.111  5.118  5.485  5.715  5.408  5.166  5.986  5.171  5.680  4.815  5.828 
 5.546  5.288  5.719  4.601  4.636  4.519  4.748  4.919  5.391  5.163  6.031  5.913 
 5.534  4.615  5.523  5.678  5.349  5.618  5.505  5.594  5.774  5.015  5.056  5.024 
 5.115  5.018  5.121  5.125  5.778  4.845  6.007  5.131  4.904  4.439  6.038  5.573 
 5.552  4.672  4.870  5.685  5.735  5.616  5.886  5.386  5.273  4.610  4.665  5.078 
 4.439  4.439  4.617  4.439  4.711  5.618  5.446  5.976  5.387  5.952  6.093  5.335 
 5.102  5.913  5.824  5.064  5.962  5.257  5.079  5.119  5.233  5.474  5.828  4.917 
 5.881  5.759  4.680  5.168  6.066  5.116  5.674  5.747  5.511  5.364  5.227  5.059 
 5.273  4.864  4.472  4.929  5.201  5.063  5.423  5.934  5.204  5.537  5.748  5.825 
 5.249  4.880  5.459  5.655  5.235  5.568  5.292  5.198  5.894  5.807  5.981  5.291 
 5.003  5.427  5.614  5.606  4.643  5.143  5.815  5.616  5.578  4.629  4.695  5.275 
 5.046  4.702  5.419  5.113  4.863  5.756  5.101  5.908  5.648  4.876  4.439  4.610 
 4.914  4.983  5.639  5.105  4.452  4.765  5.186  5.081  5.161  5.148  5.422  5.429 
 5.512  5.298  5.711  5.809  5.812  4.609  5.297  5.380  5.547  5.049  5.335  5.297 
 5.874  5.831  5.261  4.968  5.049  4.754  5.616  5.952  4.637  5.328  5.262  5.250 
 5.297  5.592  4.814  5.856  4.545  4.439  5.621  5.651  5.208  5.522  4.861  4.962 
 4.975  5.551  5.372  5.854  5.413  5.928  5.346  5.404  5.017  5.295  4.870  5.622 
 4.439  5.415  5.136  5.019  4.701  4.994  4.710  5.918  5.493  5.257  5.384  5.307 
 5.295  5.372  4.984  5.414  4.687  5.114  5.276  5.686  5.589  5.263  5.421  4.492 
 5.254  5.786  5.941  5.886  5.422  5.297  5.716  4.802  4.622  4.622  4.604  4.520 
 4.895  5.616  5.093  4.947  5.918  4.770  5.211  5.095  5.025  5.214  5.507  5.910 
 5.926  5.773  5.397  5.651  5.055  5.248  5.649  4.693  5.063  4.587  4.971  5.707 
 5.007  5.454  5.385  4.930  5.058  5.324  5.486  5.800  4.867  5.692  4.852  4.931 
 5.238  4.658  4.705  5.173  4.963  4.515  4.439  5.214  4.914  5.025  5.210  4.690 
 4.972  5.555  4.739  6.041  5.576  5.540  5.542  5.165  6.082  5.982  5.486  5.345 
 5.844  5.854  5.399  4.930  5.948  5.351  6.054  5.374  5.129  5.922  5.878  5.973 
 5.224  5.720  5.544  5.127  5.091  

2006 
                                       5.438  5.264  4.909  5.984  5.672  5.492  5.288  5.560  6.057  4.480  4.797  5.914 

 5.255  4.839  4.929  4.717  5.031  5.578  5.175  4.780  5.404  5.597  5.543  5.311 
 5.778  5.778  5.777  4.899  4.691  5.548  4.439  4.545  6.017  5.787  5.979  5.652 
 5.625  5.411  5.383  6.066  5.804  5.261  5.287  6.071  5.069  5.935  5.255  5.503 
 5.854  5.577  5.181  5.612  5.181  5.785  5.082  4.875  5.227  5.156  5.415  5.410 
 5.265  5.694  4.687  4.439  5.880  5.373  5.415  5.447  6.073  5.537  5.537  5.093 
 4.973  4.919  5.644  5.400  6.011  5.826  5.303  5.065  4.616  5.464  4.913  5.091 
 5.140  5.325  5.534  5.209  5.786  6.040  5.554  5.942  5.168  5.896  5.703  5.746 
 5.412  5.655  4.892  4.898  5.290  5.528  5.553  4.875  5.089  4.823  5.882  5.835 
 5.941  5.988  6.038  5.238  5.014  4.916  5.425  4.643  4.795  4.919  5.812  5.747 
 5.714  5.630  4.900  5.515  6.060  5.951  5.763  4.744  5.312  5.502  5.964  5.815 
 5.362  5.520  4.970  5.196  4.727  5.043  4.661  4.898  5.172  5.321  4.705  4.452 
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 5.423  5.074  5.878  6.009  5.777  5.578  5.310  6.000  4.812  4.848  5.244  5.846 
 4.674  5.541  6.018  4.666  5.047  4.774  4.957  4.833  5.868  4.862  5.417  4.851 
 5.091  4.958  6.056  6.073  5.876  6.093  6.022  6.064  5.870  5.634  5.561  6.102 
 5.685  4.579  5.117  4.909  5.214  4.687  4.963  4.759  5.760  5.731  5.751  5.420 
 5.461  4.715  5.102  5.162  4.480  4.928  4.439  5.573  5.013  4.903  5.127  4.770 
 4.761  4.649  4.974  5.893  4.901  5.336  4.439  4.761  4.993  4.949  4.898  4.729 
 5.165  5.027  5.438  5.875  5.678  6.106  5.211  5.270  6.044  4.920  5.572  5.165 
 5.952  5.036  5.256  4.972  5.347  4.775  4.439  4.862  5.302  6.025  5.885  5.570 
 5.883  5.049  5.194  5.995  5.704  5.813  5.754  4.559  5.215  4.740  5.461  5.065 
 5.886  5.502  5.996  5.847  5.520  5.847  5.182  4.797  4.917  5.057  5.173  4.951 
 4.980  5.559  5.576  5.993  5.835  6.037  5.965  6.031  6.013  5.419  5.298  5.605 
 5.066  5.548  5.977  5.360  5.330  5.475  5.022  4.895  5.402  5.250  4.734  5.022 
 5.535  5.419  4.904  4.855  5.453  5.344  5.905  5.896  5.372  5.371  5.282  5.701 
 4.654  5.103  5.714  4.858  5.878  5.900  6.085  5.293  5.956  6.065  5.799  5.093 
 5.391  4.986  5.203  5.912  6.013  5.422  5.094  5.793  5.711  6.096  5.974  6.005 
 5.369  5.331  5.761  5.633  5.580  5.299  5.535  5.875  5.519  5.074  5.088  4.853 
 4.937  4.836  4.889  4.912  5.766  6.036  4.927  5.474  4.972  5.649  5.516  5.077 
 4.899  5.663  5.338  5.928  5.638  5.816  5.474  5.341  5.332  4.993  5.785  5.031 
 4.961  5.571  5.018  4.488  4.439   

2007 
 5.061  5.778  5.382  5.905  5.993  6.019  6.018  5.173  4.838  5.689  4.855  4.782 
 5.148  5.197  5.387  4.962  4.896  4.679  4.925  5.319  4.835  5.551  4.921  4.602 
 5.191  4.954  5.854  5.572  5.093  5.989  5.050  5.268  5.320  5.016  4.909  4.887 
 4.660  4.853  4.680  4.835  5.017  4.614  4.777  5.335  5.938  6.009  5.804  4.965 
 5.046  5.646  5.150  5.038  5.725  5.907  4.970  5.913  5.757  5.314  5.088  5.419 
 5.125  4.670  4.952  5.500  5.432  4.452  4.439  4.575  4.488  4.968  5.170  5.892 
 5.683  6.056  4.842  5.697  5.834  5.818  4.742  5.803  4.839  4.906  5.863  5.505 
 5.766  5.080  5.125  4.439  5.006  5.547  4.942  5.348  5.170  5.477  5.536  5.337 
 5.716  5.880  5.418  4.836  5.094  5.612  5.337  5.698  5.456  5.251  5.602  5.980 
 5.012  5.347  5.220  4.959  4.927  4.730  5.385  5.433  5.950  5.588  5.492  5.285 
 5.819  5.650  5.389  6.025  5.607  5.882  5.749  5.699  5.507  5.914  5.102  5.224 
 5.505  5.680  6.097  6.088  6.007  6.021  5.487  5.107  5.015  5.422  4.956  5.836 
 5.904  5.287  5.472  5.419  6.003  5.021  5.678  5.532  4.687  4.666  6.026  5.509 
 4.574  6.046  5.694  5.650  5.683  5.961  5.823  5.719  4.948  4.840  5.128  5.322 
 5.578  4.830  5.955  5.595  5.133  5.714  5.254  5.227  5.006  4.955  4.931  5.250 
 5.715  5.424  5.606  5.870  6.029  5.842  5.801  5.011  5.300  4.909  5.343  5.767 
 5.092  5.543  5.202  6.062  5.637  5.365  5.429  5.304  5.333  5.154  4.950  6.002 
 4.867  5.155  5.084  4.996  5.433  5.808  4.669  5.294  4.908  4.748  4.602  4.495 
 4.439  4.839  5.916  5.971  5.696  5.810  5.073  4.863  5.438  5.784  5.679  6.059 
 5.944  6.081  5.997  5.902  5.223  5.671  5.732  5.765  5.568  5.367  5.848  6.017 
 5.171  5.842  5.950  4.954  5.494  5.459  5.243  5.946  6.064  5.442  4.980  4.547 
 5.126  5.361  5.400  5.459  5.202  5.195  5.079  5.173  5.828  5.779  5.886  5.353 
 4.729  5.104  4.485  4.979  5.229  4.778  5.861  5.835  5.700  5.205  5.567  5.822 
 5.955  5.914  4.752  5.401  4.860  5.701  5.432  5.610  5.566  5.334  4.976  5.902 
 5.496  5.189  5.808  4.851  4.793  5.154  5.449  5.054  5.176  5.226  5.610  5.278 
 6.004  5.294  5.727  5.128  4.989  5.151  5.397  5.770  5.134  6.065  5.340  5.730 
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 4.894  5.112  4.439  4.439  4.900  4.803  5.888  4.923  5.049  4.822  4.989  6.053 
 4.805  5.232  5.164  5.855  5.512  5.941  5.727  5.612  6.090  5.766  5.245  4.975 
 4.825  4.786  5.245  5.205  4.513  5.252  4.806  4.547  5.226  5.029  5.950  5.515 
 5.624  5.278  5.223  5.844  4.625  4.750  4.795  4.936  5.725  5.596  6.007  6.035 
 5.090  5.992  6.030  6.048  5.269   

2008 
 5.641  5.613  4.750  5.428  4.917  4.578  4.522  4.502  4.677  4.508  4.502  5.012 
 4.511  4.689  5.233  5.072  4.632  5.302  4.810  4.798  4.603  4.702  5.134  5.334 
 5.152  5.139  4.966  5.356  5.257  5.330  5.744  4.618  5.225  5.765  5.284  6.001 
 6.099  5.425  4.720  5.791  6.023  4.932  5.116  4.899  4.951  5.190  5.358  5.427 
 5.197  5.563  4.925  5.980  6.088  6.022  5.982  6.103  5.471  5.133  6.042  5.186 
 4.695  5.953  5.371  5.443  5.273  5.226  5.880  4.578  4.637  5.106  4.789  5.311 
 5.988  5.727  5.321  5.823  5.013  6.050  6.073  6.093  5.420  5.687  5.431  5.145 
 4.711  4.855  4.720  4.654  4.617  5.257  5.720  5.925  5.908  5.355  4.794  4.631 
 5.244  5.220  5.943  4.540  4.537  5.796  5.355  5.256  5.685  5.564  4.824  5.622 
 5.963  5.013  5.434  5.379  5.307  5.397  4.942  5.513  4.485  4.614  4.604  4.668 
 5.993  5.341  4.959  4.834  5.028  4.997  5.065  5.153  5.721  5.440  5.848  5.185 
 5.207  5.115  5.438  5.381  4.743  5.745  4.924  4.993  4.439  5.646  5.130  5.094 
 5.000  4.718  5.232  4.928  4.833  4.646  4.878  4.754  5.035  4.439  5.574  5.189 
 5.183  5.640  5.390  5.593  4.978  5.881  5.620  5.383  4.765  5.372  5.561  6.097 
 6.040  5.504  5.131  5.131  5.300  5.708  5.877  4.783  4.783  4.579  5.176  4.744 
 4.744  4.781  4.814  4.630  4.439  4.710  5.443  5.068  4.568  5.158  4.476  4.651 
 4.810  4.804  5.234  5.219  6.074  5.734  5.312  5.176  4.736  4.589  4.887  5.464 
 5.065  4.713  4.528  4.614  4.985  4.568  4.452  6.007  5.680  6.100  6.059  6.094 
 5.956  5.735  5.713  5.080  4.742  4.804  5.266  4.570  4.550  4.833  4.961  5.585 
 4.495  4.992  5.210  5.652  4.603  4.880  4.752  5.174  5.271  4.827  5.030  4.879 
 4.924  4.886  5.263  5.484  5.992  5.748  4.899  5.534  5.049  5.655  5.520  5.564 
 4.720  5.177  5.544  4.953  5.555  5.632  5.350  5.090  4.958  6.006  5.592  6.086 
 5.611  4.860  5.378  6.083  4.881  6.042  5.799  5.986  6.028  6.009  5.919  6.096 
 6.100  5.346  4.439  4.439  4.795  5.689  5.973  6.051  5.184  5.072  5.845  5.935 
 5.623  5.626  5.469  5.672  5.787  5.376  5.092  5.178  4.936  5.840  4.784  5.354 
 4.895  5.104  4.776  5.118  4.949  5.861  5.409  4.959  4.463  4.463  4.509  4.873 
 5.683  4.915  4.715  5.954  5.965  5.989  5.444  5.577  4.776  5.606  5.175  4.539 
 5.316  4.884  6.076  6.064  5.898  4.439  5.643  5.904  5.624  5.188  5.068  4.553 
 4.439  5.456  6.072  5.420  4.971  4.839  4.870  4.809  5.096  5.620  5.406  4.929 
 5.340  5.996  5.368  5.377  5.515  5.764  5.252  6.080  6.090  5.072  5.962  4.914 
 5.500  4.928  4.923  5.250  6.075  5.193   

2009 
 6.051  5.594  4.795  4.439  4.439  5.282  4.796  4.736  5.891  5.291  4.966  5.453 
 5.632  5.505  5.913  6.033  5.948  5.475  4.661  5.169  4.439  4.896  4.939  4.911 
 5.285  5.803  5.773  5.766  5.048  5.957  5.922  5.569  5.912  6.054  6.055  5.148 
 5.119  4.819  5.768  5.908  5.550  5.193  5.908  5.606  5.962  4.975  4.729  5.855 
 6.075  4.439  5.436  4.729  4.993  4.439  4.485  4.465  5.479  4.792  5.574  5.065 
 4.439  4.439  4.609  4.783  4.864  5.242  5.681  4.883  4.486  5.843  5.821  5.546 
 4.835  4.494  4.544  5.445  5.556  5.645  4.683  4.492  5.567  5.469  4.824  4.962 
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 4.442  4.724  4.862  5.223  4.972  4.589  6.084  5.847  5.291  5.955  5.867  4.745 
 5.815  4.565  4.727  4.535  4.847  4.559  4.625  5.012  4.764  5.499  4.920  5.430 
 5.226  4.821  4.690  4.569  5.212  6.045  5.794  5.725  5.493  5.429  5.573  5.916 
 5.881  5.609  6.011  5.582  5.884  5.338  5.782  4.994  4.708  5.239  5.919  4.993 
 5.961  5.931  5.545  4.814  4.650  5.062  5.385  4.823  4.439  5.030  5.651  5.248 
 4.634  6.027  5.974  5.088  5.818  5.284  4.727  5.624  5.493  6.080  5.887  5.253 
 5.330  5.730  5.736  5.993  4.594  5.009  5.533  5.140  5.415  5.526  4.894  4.630 
 5.849  5.167  4.901  4.889  4.906  4.726  5.124  5.006  5.338  5.969  5.573  5.936 
 5.578  5.850  5.231  6.071  5.293  5.243  5.570  6.052  5.523  5.087  4.501  5.418 
 5.593  5.456  4.738  4.703  5.991  5.923  4.486  5.385  6.082  5.040  5.477  4.733 
 5.785  5.956  6.013  4.716  4.496  4.681  5.231  5.493  4.937  5.207  4.734  5.366 
 5.160  5.182  4.865  5.033  5.019  5.291  5.556  5.008  5.637  5.738  4.681  5.741 
 5.351  5.175  5.082  6.057  6.103  6.017  5.379  5.413  5.671  4.496  4.698  4.857 
 4.611  5.903  4.444  5.551  5.644  5.856  5.465  5.708  4.511  4.597  5.053  6.072 
 4.609  4.741  4.896  4.455  4.548  4.801  4.696  4.571  4.716  4.439  4.439  4.439 
 4.554  4.574  4.627  5.180  5.739  5.417  5.987  5.444  5.945  5.692  5.875  5.194 
 6.066  5.280  5.243  5.556  6.057  5.524  5.089  4.489  5.395  5.602  5.471  4.721 
 4.680  6.016  5.927  4.474  5.454  6.084  5.036  5.506  4.719  5.797  5.928  6.012 
 4.703  4.501  4.674  5.243  5.493  4.902  5.209  4.746  5.334  5.162  5.185  4.856 
 5.045  5.039  5.247  5.507  5.026  5.566  5.724  4.693  5.751  5.332  5.153  5.103 
 6.044  6.101  5.999  5.350  5.443  5.607  4.489  4.681  4.833  4.643  5.920  4.451 
 5.541  5.675  5.837  5.479  5.708  4.527  4.589  5.015  6.068  4.599  4.757  4.917 
 4.461  4.551  4.790  4.700  4.570  4.710  4.439  4.439  4.439  4.561  4.568  4.614 
 5.173  5.720  5.458  5.986  5.481   

2010 
 4.444  4.607  4.560  5.686  6.055  5.973  5.520  5.716  5.514  5.621  5.194  5.364 
 5.345  4.832  5.387  5.763  5.318  5.503  5.636  5.972  6.082  5.781  5.664  4.948 
 4.694  4.810  4.731  4.653  4.554  4.585  4.587  4.933  5.079  4.655  5.968  5.997 
 4.464  5.473  5.725  4.695  4.496  5.853  4.966  5.021  5.108  5.190  5.205  5.917 
 5.379  4.583  4.475  4.825  4.860  4.662  5.081  5.290  5.071  4.855  5.188  5.035 
 5.314  5.619  5.208  5.311  5.663  5.631  5.621  5.162  4.529  4.711  4.618  5.532 
 4.868  5.169  5.142  5.220  5.684  4.928  5.628  5.738  5.210  5.087  6.022  5.586 
 5.567  6.004  5.162  5.371  5.956  5.816  5.961  5.550  4.907  4.677  4.585  5.034 
 4.763  4.647  5.590  4.720  4.819  5.488  5.643  6.061  5.917  5.561  5.533  5.256 
 5.497  5.902  5.334  4.928  5.014  5.063  4.889  5.121  4.600  5.959  5.436  4.880 
 5.592  5.129  5.677  5.854  5.465  5.193  5.033  5.229  4.609  5.475  5.142  5.896 
 5.649  5.036  4.638  4.958  5.066  5.557  5.529  5.173  5.694  5.319  5.615  5.433 
 5.341  5.426  4.842  4.803  5.180  5.127  5.314  5.635  5.559  4.912  4.666  5.252 
 5.066  5.412  5.769  5.359  4.627  4.639  4.439  4.816  4.656  4.657  5.320  5.211 
 4.803  5.272  5.073  4.624  5.199  4.953  4.648  4.573  4.988  4.770  5.411  5.073 
 5.030  4.465  5.830  6.073  6.046  6.091  5.384  4.866  5.275  4.610  4.643  4.586 
 5.074  5.819  4.715  4.462  4.685  4.942  5.901  5.768  5.474  5.359  5.560  4.530 
 4.616  4.641  4.553  5.005  4.471  4.652  4.833  4.943  4.940  4.984  5.368  5.138 
 4.644  5.160  5.489  4.535  4.802  5.361  5.816  5.769  5.105  5.467  4.963  5.716 
 4.535  4.511  4.946  5.887  5.618  5.429  5.418  4.641  4.992  4.983  4.478  5.936 
 5.832  5.860  5.166  5.604  5.494  5.172  5.928  4.451  4.558  4.631  4.526  5.906 
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 5.767  5.949  5.075  5.703  5.370  4.439  5.042  4.540  4.950  4.923  4.439  4.660 
 4.749  5.641  5.143  5.324  5.343  4.803  4.567  4.915  5.060  5.150  4.967  5.637 
 5.871  5.253  5.399  5.939  5.798  5.365  5.467  4.700  4.712  4.830  4.439  4.439 
 4.521  4.990  5.396  4.569  5.273  5.785  5.834  5.330  5.905  6.035  5.674  6.022 
 5.526  6.062  6.025  5.674  5.731  5.934  5.216  5.134  4.699  4.645  4.594  4.729 
 4.792  5.087  4.532  4.902  4.743  5.078  5.327  5.745  5.083  4.622  4.744  4.820 
 4.439  4.696  5.795  5.572  5.641  5.548  5.458  5.051  5.183  5.984  5.885  5.000 
 5.841  4.957  5.023  5.591  4.664  4.709  4.782  5.639  5.033  4.565  5.155  5.004 
 4.951  5.932  5.954  5.444  5.293  5.134  5.013  5.661  5.660  5.066  5.106  5.122 
 5.129  5.426  5.991  5.189  5.034   

6.1. Crises Pattern 

Let us begin with the following observations. The values of entropy 
for 7 days, prior to 04.03.2001 and 22.09.2008, i.e. 5 and 7 days before 
big crises, are presented in Table 6. Values in the same columns of table 
7 are significantly different. Both sequences are marked by gray 
background in Table 6 in the places, corresponding to these dates. 

Entropy values prior crises  
Таble 7   

Day 26.02.01 27.02.01 28.02.01 01.03.01 02.03.01 03.03.01 04.03.01 
Entropy 4.887 5.854 5.981 5.757 6.028 5.351 5.175 

Day 16.09.08 17.09.08 18.09.08 19.09.08 20.09.08 21.09.08 22.09.08 
Entropy 5.090 4.958 6.006 5.592 6.086 5.611 4.860 

Denote values in the 1st column as x1 and y1, in the 2nd column as x2 и 
y2, and so on, till to values in the 7th column, denoted as x7 и y7. The va-
lues x1, x2, …, x7 and values y1, y2, …, y7 satisfy the following system of 
inequalities: 

𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!,
𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!, 𝑧! > 𝑧!,                                
𝑧! > 𝑧!, 𝑧! > 6, 𝑧! > 5.7, 𝑧! < 6.                                                                  

                     (11) 

Inequalities from the 1st row mean that value z5 is greater than all the 
other values; inequalities from the 2nd row mean that value z3 is greater 
than all the other values, except z5; next inequality z6 > z7 (together with 
inequality z5 > z6) means that three last values monotonously decrease. 
The three last inequalities express one-sided constraints of values z5, z3 
and z4.  



55	  

Consecutive 7 values of entropy whose 7th value correspond to arbitra-
ry day x can satisfy or not satisfy to system of linear inequalities (11). We 
see that 7-tuples that correspond to 04.03.2001 and to 22.09.2008 satisfy 
to system (11). These 7-tuples are marked be gray background in Table 6. 
Moreover, there are only three days during all the 10-year period, whose 
7-tuple satisfy system (8) – except the two above-mentioned cases. These 
cases are also marked in Table 6. Therefore, it is possible to consider 
system (11) as a pattern, which corresponds to beginning of big crises.  

Only three times for 3652 days (10 years) the found pattern became a 
phantom – its prediction of crisis was wrong, and no crisis happened. 
Two times, it gave the correct prediction of the big crises. At the same 
time, the absence of the pattern gives 100% guaranty of the absence of 
crisis in the next several days. It is possible to suppose that this know-
ledge can help to stock market specialists in elaboration of reasonable tra-
ding strategy (see, for instance, the article [Aleskerov and Egorova, 
2012]). However, these topics require a special attention; they will be 
considered in future investigations. 

Very appreciable book [Reinhart and Rogoff, 2010] states that all the 
crises at stock markets have many common prior markers. It is possible 
to say that the result of Section 6 is one of the formal expressions of this 
general assertion. 

I would like to add that the literature, devoted to attempts of crises 
prediction, is very abundant and diversified. Any reasonable review goes 
far beyond the framework of the presented material, whose main goal 
consists in presentation of the new decomposition approach to data  ana-
lysis. The material from three last sections 4 – 6  demonstrates only the 
possibility of application of the suggested approach in various real situa-
tions. 

 
7. Conclusion 

Let us give some final remarks and comments to the above presented 
material. 

1. There are a few parameters in the essential algorithm of family of 
graph decompositions construction: two parameters in the algorithm of 
graph dichotomy, one parameter of consecutive dichotomies and two 
parameters of DAA repetitions.  The choice of these parameters has not 
accompanied by any explanations. It is possible to say that the suggested 
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algorithm is the algorithm of data analysis and it is not the algorithm of a 
system behavior imitation. The only requirement to the algorithm itself 
and to its parameters consists in usefulness of this algorithm. 

2. The applied results from Sections 4, 5 and 6 required different ver-
sions of the suggested general scheme of the essential algorithm applica-
tion. Another time it must be pointed to the necessity of manual parame-
ters selection. Unfortunately, this is done by trials and errors method. It is 
supposed to improve it in future investigations.  

3. It seems that additional use of some other parameters can get rid out 
of very few superfluous non-crisis days with crisis pattern (phantoms). It 
will be done in future investigations.  

4. Some elements of the general scheme can be improved. Particular-
ly, in formulae (5) and (7) it is possible to define value of parameter s in 
dependence of convergence of the corresponding averages of index va-
lues (adaptively). This version can significantly reduce calculation time. 

5. All the experimental results concern only one parliament and only 
one stock market. Of course, in the further investigation it is supposed to 
consider essentially wider data sets. It will be done as the required infor-
mation becomes available. 

6. The last remark is as follows. Several times in Section 6 the expres-
sion “big crisis” is mentioned without any formal definition. It seems that 
to give a formal definition of this notion is practically impossible. Howe-
ver, such a definition is unessential. We can simply suppose that a big 
cri-sis is a state of the stock market, which the most of participants 
perceive as a big crisis. And this assumption leads to their behavior, 
characterized by the found pattern. 

The author is grateful to F.T. Aleskerov for his support and attention 
to the work, B.G. Mirkin and G.I. Penikas for helpful discussions, V.I. 
Jakuba for help in mastering various computing shells, and E.V. 
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