[bookmark: _GoBack][image: File:Cdsan-Samples-CppParseTree-01-HiRes.jpg][footnoteRef:1] [1: Figure of the Parse tree is made by Code-Analysis (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons]

Automata, Grammars and Applications in
Software Engineering.

We will start with studying the automata and formal theory to the extent needed to develop your first translator/compiler. While automata theory possesses its own beauty, we will study it with a practical goal in mind. You will develop your own small programming language or select a part of an existing language (Java, Lisp, ML, SETL or suggested by you). Then you will implement your own interpreter/compiler for it.
You may ask why? Why do I need to implement yet another language? One answer is that in the software industry a need in small “in-house” languages appears quite often. It is very often needed to use textual representation of configurations, models, intermediate results in a big software system. CAD systems, servers of any kind (web, network, radio) are full of script, command, and markup languages. Network protocols are languages and contain other small sublanguages. Another answer is that it is just fun to create the interpreter of your own language (or a part of your favourite language), isn’t it?
Course Objective
The main practical goal of the course is to teach students the basics of formal language theory with application in the fields of translators. As the result, students will learn how to systematically design and implement translators, and they will develop their first compiler. Automata and formal language theories have many application in other fields of computer science. We have chosen translators as they were always intriguing and considered as the black art of programming. The students will see how beautiful theoretical constructions enable them to construct serious industrial software. The course will provide a basis for more advanced courses as:
· Model-driven development (the OMG MDA software development methodology);
· Formal methods in Software Engineering;
· Compiler construction;
The position of the course in the structure of the educational program
The course length is 40 academic hours of audience classes divided into 17 lecture hours and 23 seminar hours. Academic control forms are home assignments and a final project.

Prerequisites of the course:
The common undergraduate knowledge of programming, algorithms, and data structures.
CS101 – Programming Fundamentals
CS103 – Algorithms and Data structures

The course is mostly self-contained, but it requires acquaintance with some basic programming and mathematical notions. See the test in the last section for the very minimum knowledge.
Topic-Wise Curricula Plan

	№
	Topic name
	Course hours, total
	Audience hours

	
	
	
	Lectures
	Practical
studies

	
	Part 1 (20 hrs.)
	
	
	

	1.
	Motivation lecture.
Compiler dragons. Modelling languages (SDL/MSC, UML, IDEF). Model checking. Network protocols (TCP/IP, faster packets processing). Whole map of the underturing world. People and their influence: J. Ullman, Rabin, Buchi. Compilers, interpreters, translators.
Tools: JFLAP, ANTLR.
Only pictures – no formalisms/theorems.
	
	1
	0

	2.
	Finite automata (DFA/NFA): informal and formal definitions, basic terminology, operational semantics. Categories of FA. From FA to languages and back (,).
	
	2
	2

	3.
	Grammars (game introduction). . . Noam Chomsky: idea, failure, and success. Chomsky hierarchy. Generators vs. recognizers.
	
	2
	2

	4.
	Regular world: regular languages, regular grammars (right/left linear), regular expressions, Kleene algebra. Transformations: .
	
	2
	2

	5.
	Push down automata and context free languages. Informal/formal definitions. PDA/NPDA, stack, counters (2-counters machines). Context free grammars. . Normalization.
	
	2
	2

	6.
	Parsing and translation: Normal Chomsky form. CYK algorithm. LL, LR grammars. Attributed trees.
	
	2
	3

	7.
	Compiler-compilers: YACC, BISON, ANTLR.
Technological chain. Translator architecture. Syntax and grammar rules.
	
	4
	6

	8.
	Code generation. Attributed trees. T-blocks.
	
	2
	6

	
	TOTAL:
	40
	17
	23

Recommended literature
1. Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006). Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley. ISBN 81-7808-347-7
2. Elaine Rich (2008). Automata, Computability and Complexity: Theory and Applications. Pearson. ISBN 0-13-228806-0.
3. Jacques Sakarovitch, Elements of Automata Theory, Cambridge University Press, 758 pp. 2009, ISBN 0521844258, 9780521844253.
4. Aho, Alfred V., Lam, Monica S., Sethi, Ravi and Ullman, Jeffrey D.. Compilers : Principles, Techniques, & Tools, Second Edition. Second Edited by Michal Hirsch, Matt Goldstein, Katherine Harutunian and Jefferey Holocumb. : Addison-Wesley, 2007.
5. Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic Bookshelf.

Pretest
Here is a small test for you basic knowledge. The purpose of the test is to verify that you don’t have problems with basic technical and mathematical notions.

Assignment 0.1
 We have sets A={a,b,c}, B={b,c,d}, C={d,f,g}.
 What are the intersections of: a) A and B; b) A and C; c) B and the empty set.
Assignment 0.2.
 Write in your own words what is the difference between a function and a relation.

Assignment 0.3 (optional, but recommended).
The wonder system has 4 states. It starts in the state 0.
 In the state 0, it can switch to the state 1 or state 2 with 0.5/0.5 probabilities.
 In the state 1, it can write "A" to the console and stay in the state 1, or move to the state 3 with 0.5/0.5 probabilites.
 In the state 2, it can write "B" to the console and stay in the state 1, or move to the state 3 with 0.5/0.5 probabilites.
 In the state 3, it writes "X" to the console and stops.

The possible outcomes are:
 1) AAAX
 2) BBX
 3) X
Please, write a program that simulates the wonder system execution; i.e. if you launch it, it writes to the console:
 a) one of the possible wonder systems outputs.
 b) all possible wonder systems outputs up to the length 5 (i.e. AAX, AAAAX).

Assignment 0.4 (optional).
Please, describe your level of knowledge / experience with (if you have any):
 a) automata; b) parsing/compiler construction; c) system programming.
If you don't have any - just write "none".
image1.jpeg

