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Introduction to immunology



Immune system

• Recognizes foreign / dangerous substances from the
environment (mainly microbes).

• Is envolved in elimintation of old and damaged cells
of the body.

• Attacks tumor and virus-infected celss.
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Two branches of immune system

• Innate, nonspecific – very quickly recognizes most
foreign substances and eliminates them. No memory
or learning.

• Adaptive, specific – high degree of specificity in
distinction between self and non-self. The reaction
takes several days to be effectively triggered. It learns
and memorizes the pathogen landscape.
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Adaptive immune system
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TCR chains

αβ chain - ”classic” adaptive immunity (virus detection)

γδ chain - terra incognita (phagocytosis, invariant cells)

Different generation processes!
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V(D)J recombination
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TCR selection
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TCR:peptide:MHC interaction
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TCR data example
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Introduction to deep learning



Deep network architecture ideas

Fully connected / dense networks (DNN)

Convolutional neural networks (CNN)

Recurrent neural networks (RNN)
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Fully connected networks 1
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Fully connected networks 2
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Convolutions
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Convolutional neural networks
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Recurrent neural networks
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MHC:peptide binding affinity
prediction



Problem

Prediction of strong / weak binders (immunotherapy, etc.)
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Data

140,000 pairs of MHC-peptide for training

30,000 pairs of MHC-peptide for testing
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NetMHCpan

Paper: just google ”netMHCpan paper”

Features:

• Onehot encoding
• Blosum encoding
• Lengths
• Indels

Pseudo-sequences – pan-allele approach

Model: DNN with 60 hidden neurons

F1 score - 0.8

F1 = 2 ∗ precision ∗ recall/(precision+ recall)

precision = TP/(TP+ FP)
recall = TP/(TP+ FN) 18



word2vec
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word2vec vectors
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Imputation

MICE: average multiple imputations generated using
Gibbs sampling from the joint distribution of columns.
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mhcflurry

Paper: http://biorxiv.org/content/biorxiv/early/2016/05/22/054775.full.pdf

Features:

• Embeddings (per-pseudo-sequence!)

Model: DNN with 60 neurons

F1 score - 0.79
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ResNet - old networks
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ResNet - old networks’ problems

• Gradient vanishing
• Large number of parameters
• Shallowness
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ResNet - proposed model
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ResNet - results
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ResNet - old networks
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ResNet - current deep networks
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ResNet - current deep networks
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CNN for NLP
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Our approach
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Our approach - results

• F1 0.81 (on a subset of the dataset)
• Global models – prediction of binding affinities for
unseen MHCs (mean F1 0.72)

• Better models for the per-pseudo-sequence
approach.
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TCR-peptide binding prediction



Problem

Paper:
http://biorxiv.org/content/early/2017/03/20/118539.full.pdf+html

Immunogenicity prediction.
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Decision tree (Titanic survival prediction
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Random forest
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Methods and results

Features:

• One-hot encoding of V/J
• The average CDR3 basicity, hydrophobicity, helicity,
isoelectric point

• The asolute count of each individual amino acid in
the CDR3 sequence

• The total mass of the 258 amino acids in the CDR3
sequence

• Numerical features encoding individual amino acid
basicity, hydrophobicity, helicity, 269 isoelectric point,
and mutation stability were also created for each
position

Accuracy: 75.90%

Analysis of feature importances
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TCR CD4/CD8 classification



Problem

Paper: http://www.jleukbio.org/content/99/3/505.short

In-silico detection of CD4 / CD8 TCRs. Exploratory
pre-analysis.
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PCA 2D
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PCA 3D
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Kidera / Atchley factors

PCA on biophysical properties, explains ~80% variability
in the data
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Methods and results

• CDR3 to kmers, kmers to Atchley factors
• Support Vector Machines classifier (different lengths?
accuracy?)
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TCR repertoire comparison using
high-dimensional features



Problem

Paper:
http://biorxiv.org/content/early/2017/04/20/128025

Comparison of repertoires of TCRs and detection the
subrepertoires with the most contribution to the
inter-sample differences in-silico.
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Data

• 8 repertoires
• Repertoire - table with CDR nuc/aa sequence, V gene,
J gene, abundance columns.
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t-SNE

1. Construct a probability distribution over the dataset
in such a way that similar objects have a high
probability of being ”picked”.

2. Define a similar probability distribution over the
points in the low-dimensional map (2-dimensional),
and minimize the Kullback–Leibler divergence
between the two distributions with respect to the
locations of the points in the map.
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t-SNE on peptides
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t-SNE on MNIST
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Methods and results

• Smith-Waterman on all pairs of sequences
• Transformation of pairwise similarity matrix into a dissimilarity
matrix using:

Si,j = 1− 2 ∗ Di,j/(Di,i + Dj,j)

• Apply t-SNE
• Extract subrepertoires and motifs
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Methods and results: t-SNE
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Methods and results: similarities
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Conclusion
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