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Case	7
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1) Only a small subset of experimentally determined binding events 
represents TP53 responsive elements

2) TP53 binds the DNA strictly as a tetramer, to a duplicate of the 
consensus palindromic responsive element

3) Strength of binding site predicts quantitative TP53 binding

4) TP53 acts on its own, without co-regulatory transcription factors 
that bind to the same enhancer

5) TP53 is activator but not a repressor

Conclusions


