# Intro to MS data processing for metabolomics and lipidomics

Ilya Kurochkin May 6, 2017

#### **Systems Biology**

#### -omics, environment and phenotype



Krumsiek 2016

#### **Systems Biology**

#### Technologies for different -omics layers



#### **Trends in Biotechnology**

Yugi, Katsuyuki et al. Trends in Biotechnology , Volume 34 , Issue 4 , 276 - 290



#### Lipidomics is a young, emerging field



#### Lipids Cellular Compartments of Common Biological Lipids



### Study designs



mass/charge

#### Mass spectrometry Workflow and variety



### The data

#### How does LC-MS data look like?

#### Chromatogram vs Spectrum



#### **Data representation**



#### How does LC-MS data look like? Zooming in.....

0

200

300

 $C_{51}H_{89}D_7O_6$ Neutral Mass: 811.76465 Intens. x10<sup>5</sup> LC 15.0 min 3 Chromatogram 2 1 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Time [min] Intens. Blank\_1-5\_MS1only\_1-B,1\_01\_36.d: +MS, 15.0min #2668 x105 MS1 1+ 4 829.7948 **Mass spectrum** 1+ 2 · 834.7501 850.7244 0

Fragment mass spectrum



500

400

600

700

800 m/z

TAG(15:0/18:1-d7/15:0)

#### How do you get from data to compound? Why tandem MS (MS/MS)?



- LC-MS allows for elucidation of molecular mass and most of the times brutto composition, but little structural information
- LC-MS/MS allows for the 1) detection of structurally informative fragment ions, and 2) the confirmation of ambiguous annotation of lipid species

Ekroos, K. (2013). Lipidomics - Technologies and Applications. (K. Ekroos, Ed.) (pp. 1–345). Wiley-VCH Verlag GmbH & Co. KGaA.

#### How do you get from data to compound? LC-MS strategies (MS1)



"Targeted" strategy

Untargeted strategy

#### Data Processing

#### **Data representation**



rt

#### LC/MS: Extracted Ion Chromatogram



#### Data types

#### Profile vs Centroid

**Profile data** (aka continuous) – intensity records for all the range of mz and retention time (RT).

*Centroided data* – only local maximums are detected and saved.

- Pros profile:
  - More options for peak detection, better detection
  - Less ambiguous => less false positive values



#### Two paradigms

1. Peak picking then alignment (Do peak picking for each sample separately)

2. Alignment and peak picking (Do peak picking on each sample simultaneously)



#### Peak Picking / Peak Detection

Methods

- In literature there are a lot of different peak picking algorithm. But no best solution, only better solutions.
- Know your data!
- Gaussian model peak width standard

Smoothing, baseline correction may be applied, not for all methods. Peak picking is a crucial step of analysis. The main question: how to choose method and parameters?

- Tryout => tradition
- Repeating for others
- Attempt to define objective metrics of peak-picking quality and build a parameter selection based on their maximization: Brodsky L. et al. (2010) Evaluation of Peak Picking Quality in LC–MS Metabolomics Data. *Anal. Chem.*

### Matched filter (gaussian model) – noisy example





### Matched filter (gaussian model) – good example

193 - 194



### **Peak Picking / Peak Detection**



### **Align different samples**

- Construct the data • matrix
- Combine the single
- Combine the single samples (Source the single source the single source the second seco • With the ultimate retention time shifts

| row.names           | 85.02867535 | 85.04812685 | 86.03200066 | 86.060363 | 86.09659861 | 86.99289159  | 87.04437142 | 87.05551116 | 87.063 |
|---------------------|-------------|-------------|-------------|-----------|-------------|--------------|-------------|-------------|--------|
| X20100920_11_AC30   | 15.506157   | 0.74182518  | 0.6921877   | 5.370489  | 1.2064942   | 5.491629462  | 9.674962    | 1.40180223  | 0.4158 |
| X20100920_47_AC54   | 15.157152   | 0.93265191  | 0.7593487   | 3.798822  | 0.9618451   | 6.503842372  | 6.366602    | 1.71769076  | 0.288  |
| X20100917_15_NOR_30 | 16.375372   | 0.58056653  | 0.7405717   | 7.138574  | 1.4357149   | 5.425450082  | 12.737057   | 0.95402230  | 0.4449 |
| X20100920_64_NOR_49 | 18.477925   | 0.80084012  | 0.8726300   | 4.741568  | 1.0756890   | 5.868078071  | 8.566578    | 1.68399379  | 0.480  |
| X20100917_57_NOR_49 | 15.762851   | 0.56200899  | 0.6930960   | 4.884333  | 0.5744624   | 2.503798996  | 8.690681    | 1.22498802  | 0.121  |
| X20100917_63_AC40   | 19.536413   | 0.64521509  | 0.8932008   | 7.651749  | 0.5174646   | 10.398189262 | 12.884521   | 1.39416892  | 0.545  |
| X20100920_06_CNR_25 | 18.593834   | 0.41586627  | 0.8442614   | 7.022921  | 0.3035749   | 8.819085138  | 12.114758   | 0.63710216  | 0.543  |
| X20100917_60_RIN_49 | 18.351163   | 0.64216709  | 0.8988681   | 5.866678  | 1.0310843   | 4.412544513  | 10.356847   | 1.18170686  | 0.355  |
| X20100921_11_AC20   | 13.240275   | 0.71741791  | 0.6292936   | 6.653956  | 2.6753299   | 7.835304659  | 12.302572   | 0.95315835  | 0.391  |
| X20100917_20_AC52   | 20.810549   | 0.52505407  | 1.0030810   | 3.292031  | 0.4360519   | 5.517507684  | 5.637380    | 1.18339989  | 0.322  |
| X20100921_60_CNR_40 | 19.361601   | 0.33245938  | 0.8999786   | 4.780526  | 0.4920936   | 7.832031350  | 8.593449    | 0.48339447  | 0.544  |
| X20100920_33_CNR_20 | 15.766320   | 0.48723240  | 0.7254843   | 7.788746  | 2.0423227   | 9.097518700  | 13.916318   | 0.45799541  | 0.490  |
| X20100917_04_AC53   | 17.228356   | 0.64617037  | 0.8350225   | 4.558736  | 0.7396387   | 7.094692825  | 7.982026    | 1.47121290  | 0.321  |
| X20100921_35_AC15   | 9.099162    | 0.63347865  | 0.3985374   | 7.603451  | 1.1537385   | 7.715451754  | 13.225294   | 0.49742452  | 0.405  |
| X20100917_05_RIN_53 | 19.110243   | 0.72510414  | 0.9771563   | 3.883035  | 1.2589184   | 5.789768841  | 6.878934    | 1.68578065  | 0.393  |
| X20100920_12_RIN_30 | 15.079683   | 0.66735232  | 0.7217023   | 7.878826  | 1.2114839   | 5.099457599  | 14.034617   | 1.10819566  | 0.483  |
| X20100917_26_CNR_54 | 17.370201   | 0.42872721  | 0.7851646   | 3.057463  | 0.5398271   | 7.240740668  | 5.355297    | 1.32541153  | 0.329  |
| X20100920 62 RIN 49 | 18.537254   | 0.65715251  | 0.9260807   | 5.270517  | 1.1963665   | 3.614631140  | 9.508761    | 1.30148389  | 0.402  |

### We HAVE to compare the right variable across the samples

#### Variables (m/z)



### **Peak alignment**



**Really Very Very Good Alignment** 



Retention time, seconds

### **Rt correction**

- Need "hook" groups.
- Ideally each sample is represented by one feature in a "hook" group.
- Correct the hooks and interpolate elsewhere
- Unfortunately You can have more or fewer features per group.



Retention time (seconds)

### **Rt correction**



Retention Time Deviation vs. Retention Time

- Can be performed before peak picking (chromatogram alignment)
- Linear or polynomial or whatever correction
- May afford to exclude any ambiguous peaks
- You could run it iteratively till RT deviation is less than your window for peak grouping

### **Feature Detection Evaluation**

- Compare mzMine, XCMS
- Gold standard via
  - Technical replicates
  - Democracy
- Evaluation via
  - Dilution series
  - Mix of complex samples
- F-Measure: sum of
  - Precision (TP/(TP+FP))
  - Recall or sensitivity (TP/P)



#### **Peak Filtering**

Remove peaks from data table based on:

- Number of missing values for a peak
- Max/mean/median intensity (total or within groups of replicates)
- Variability in intensity coefficient of variance, standard deviation, interquartile range, etc. (total or within groups of replicates)

• ...

#### **Missing values** Discrimination

#### NAs could be:

- real zero/low concentration
- mispicked/misaligned peaks (in general feature is detected correctly)
- incorrectly detected feature





#### **Considerations:**

- Total % of NAs for a feature
- presence in replication groups
- amplitude, variability





• ...

#### **Missing values**

#### Treatment

- Unreliable features:
  - Remove
- True zeros:
  - Look at raw specters data
  - Generate random baseline-level noise
- False zeros:
  - Replace by mean/median/etc. for this feature
  - Replace by mean/median/etc. for this feature & replication group
  - PCA-based (BPCA, PPCA, ...), KNN-based imputation methods

#### Normalization

#### Methods

- Not changing intensity distribution all intensities in one sample have the same normalization factor:
  - by biomass
  - by a single internal standard
  - by mean/median/sum intensity of features in this sample
  - probabilistic quotient normalization (PQN)
  - ...

...

- Changing intensity distribution each feature in each sample has it's own norm factor, i.e.:
  - by multiple internal standards (i.e. NOMIS)
  - quantile normalization "stretching" distributions of all samples to make them similar
- General assumption for normalization is that most of the compounds are not affected. Is that true? For different treatment? For different species? For different tissues? Does it matter if we have no choice? :/

#### Normalization

#### Probabilistic Quotient Normalization (PQN)



**Dieterle**, F. et al. (2006). **Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics**. *Anal Chem.* 

#### **Centering and Scaling**

#### Applied to features across the samples

#### Nature of MS data:

- Features are extremely different in amplitude
- Heteroscedasticity biological (induced and uninduced) and technical variance are higher for features with high intensity

#### Scaling:

- Equalizes contributions of features to separation in multivariate space
- Makes features comparable (i.e. for looking at time profile)

#### **Types of scaling:**

- Range scaling by [max min] sensitive to outliers; undesirable
- Auto-scaling by standard deviation (SD) data loose dimensionality
- Pareto-scaling by root of SD features with higher intensity decrease more

#### **Centering** is subtracting mean/median from all the values:

Necessary for some methods like PCA and makes no sense for others like fold change

#### Transformation

Certain function applies to all the values in a data table.

- Log-transformation
- General logarithmic transformation (glog) approximately log for high values and linear close to zero
- Cube-root transformation

#### Why?

- Transformation has a scaling-like effect making features more comparable.
- Log/glog-transformation helps to reveal multiplicative relations between features.

#### Annotation

Retention indexing / Retention projection

RT is extremely variable. Idea of *retention indexing:* save an exemplary LC as a "scale" for the future and then align all the times by this database.

#### Limitations:

- limited number of tested compounds extrapolate several compounds to a class?
- interactions between compounds => RT could depend on a sample composition – databases of complex mixtures?
- only certain LC system/conditions retention projection? (see the next slide)

All additional experiments => time, money

#### Annotation

Databases

Annotation could be manual or with more or less automatic tools coupled with databases:

- Commercial really?
- Open source
- In-house:
  - works for you, specified for your needs, possible to include retention indexing
  - but costs additional work, money, time

Fragment MS/MS (or GC/MS) databases:

- Experimental
  - specific: instrument, ionization parameters, etc.
- In-silico (e.g. LipidBlast)
  - theoretical, but wide coverage

### Problems

#### **Experimental**

- 1. Batch effect (48 per run)
- 2. Platform-based effect
- 3. Poor correspondence between experiments
- 4. Concentration estimation

#### **Data Analysis**

- Annotation (low percent of annotated compounds ~20-40%)
- 2. No golden software standard
- 3. Technical effects
- 4. Poor alignment of samples

### Acknowledgments

## **Skoltech**

Skolkovo Institute of Science and Technology

- Dr. Philipp Khaitovich
- Dr. Waltraud Mair
- Dr. Ekaterina Khrameeva
- Anna Tkachev
- Dmitry Zubkov
- Vita Stepanova

#### Questions?