Adjusting sense representations for knowledge-based word sense disambiguation and automatic pun interpretation

Tristan Miller

Presented at:

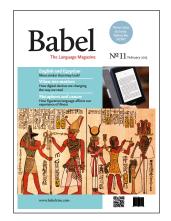
School of Data Analysis and Artificial Intelligence National Research University – Higher School of Economics 25 May 2017

Technische Universität Darmstadt

- argumentation mining
- language technology for the digital humanities
- lexical-semantic resources and algorithms
- text mining and analytics
- writing assistance and language learning

University of Regina

University of Toronto



Agenda

Introduction

Knowledge-based word sense disambiguation

Pun interpretation

Conclusion

Polysemy is a characteristic of all natural languages.

Polysemy is a characteristic of all natural languages.

Polysemy is a characteristic of all natural languages.

Polysemy is a characteristic of all natural languages.

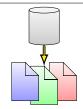
Polysemy is a characteristic of all natural languages.

"He hit the ball with the bat."

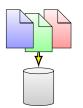
Word sense disambiguation (WSD) is the task of determining which of a word's senses is intended in a given context.

Applications of word sense disambiguation

Fledermaus
Schläger
Schlagstock
Brandschiefer
Brennbuch
schlagen
blinzeln



Machine translation

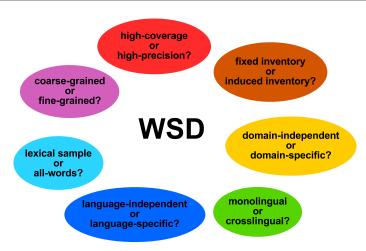


Information extraction

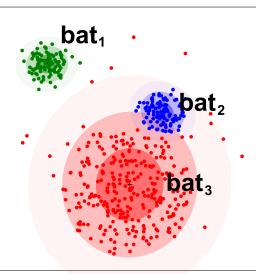
Information retrieval

Spelling correction

Why is WSD hard? Many different formulizations and parameterizations

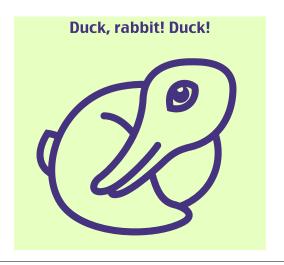


Why is WSD hard? Nature of word senses unclear



Why is WSD hard? Knowledge acquisition bottleneck

Why is WSD hard? Some usages are deliberately ambiguous



Approaches to word sense disambiguation

_	supervised	knowledge-based			
input	 manually annotated training examples 	machine readable dictionaries (MRDs)			
		lexical semantic resources (LSRs)			
		unannotated corpora			
pros	better performance	wider applicability			
cons	 knowledge acquisition bottleneck 	► informational gap problem			

Motivation and contributions

Problem: Low accuracy of knowledge-based WSD due to informational gap

Contribution 1: Bridge the gap through distributional semantics.

Contribution 2: Bridge the gap by aligning lexical-semantic resources.

Motivation and contributions

Problem: Low accuracy of knowledge-based WSD due to informational gap

Contribution 1: Bridge the gap through distributional semantics.

Contribution 2: Bridge the gap by aligning lexical-semantic resources.

Problem: Sense distinctions are too subtle for accurate WSD.

Contribution 3: Use the alignments to coarsen the original sense inventory.

Motivation and contributions

Problem: Low accuracy of knowledge-based WSD due to informational gap

Contribution 1: Bridge the gap through distributional semantics.

Contribution 2: Bridge the gap by aligning lexical-semantic resources.

Problem: Sense distinctions are too subtle for accurate WSD.

Contribution 3: Use the alignments to coarsen the original sense inventory.

Problem: Traditional WSD is incapable of processing intentional ambiguity.

Contribution 4: Adapt WSD to puns using the above three contributions.

Agenda

Introduction

Knowledge-based word sense disambiguation

Pun interpretation

Conclusion

Simplified Lesk: overlap between context and dictionary definitions

Simplified Lesk: overlap between context and dictionary definitions

- bat 1. A small, nocturnal flying mammal of order Chiroptera.
 - 2. A wooden club used to hit a ball in various sports.

Simplified Lesk: overlap between context and dictionary definitions

- bat 1. A small, nocturnal flying mammal of order *Chiroptera*.
 - 2. A wooden club used to **hit** a **ball** in various sports.

Simplified Lesk: overlap between context and dictionary definitions

"He hit the ball with the bat."

- bat 1. A small, nocturnal flying mammal of order *Chiroptera*.
 - 2. A wooden club used to **hit** a **ball** in various sports.

Lexical gap problem: Because the context and definitions are usually quite short, it is often the case that there are no overlapping words at all.

Simplified Lesk: overlap between context and dictionary definitions

"He hit the ball with the bat."

- 1. A small, nocturnal flying mammal of order *Chiroptera*. bat
 - 2. A wooden club used to **hit** a **ball** in various sports.

Lexical gap problem: Because the context and definitions are usually quite short, it is often the case that there are no overlapping words at all.

"The loan interest is paid monthly."

- interest 1. A fixed charge for borrowing money.
 - 2. A sense of concern with something.

Simplified Lesk: overlap between context and dictionary definitions

"He hit the ball with the bat."

1. A small, nocturnal flying mammal of order *Chiroptera*. bat

2. A wooden club used to **hit** a **ball** in various sports.

Lexical gap problem: Because the context and definitions are usually quite short, it is often the case that there are no overlapping words at all.

"The loan interest is paid monthly."

- interest 1. A fixed charge for borrowing money.
 - 2. A sense of concern with something.

How can we bridge the lexical gap?

Bridging the lexical gap, Solution 1: Lexical expansion

The loan interest is paid monthly.

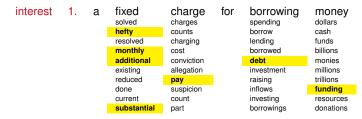
interest 1. a fixed charge for borrowing money

Bridging the lexical gap, Solution 1: Lexical expansion

「he	loan mortgage loans debt financing mortgages credit lease bond grant	interest	is	paid paying pay pays owed generated invested spent collected raised	monthly. annual weekly yearly quarterly hefty daily regular additional substantial
	funding			reimbursed	recent

interest	1.	а	fixed solved hefty resolved monthly additional existing reduced done current substantial	charge charges counts charging cost conviction allegation pay suspicion count part	for	borrowing spending borrow lending borrowed debt investment raising inflows investing borrowings	money dollars cash funds billions monies millions trillions funding resources donations
----------	----	---	--	--	-----	---	---

Bridging the lexical gap, Solution 1: Lexical expansion



Distributional similarity

 A distributional thesaurus (DT) provides a ranked list of similar words for every word in a lexicon

Distributional similarity

- A distributional thesaurus (DT) provides a ranked list of similar words for every word in a lexicon
- Distributional hypothesis: words that tend to appear in similar contexts have similar meanings (Firth, 1957)

Distributional similarity

- A distributional thesaurus (DT) provides a ranked list of similar words for every word in a lexicon
- Distributional hypothesis: words that tend to appear in similar contexts have similar meanings (Firth, 1957)
- Syntagmatic and paradigmatic relations between signs (de Saussure, 1916)

Distributional thesauri

Heretofore used in WSD only as a heuristic ("one sense per collocation", etc.)
 or to construct (dense) vector representations (LSA, LDA, etc.)

Distributional thesauri

- Heretofore used in WSD only as a heuristic ("one sense per collocation", etc.)
 or to construct (dense) vector representations (LSA, LDA, etc.)
- Advantages of DTs over dense vector representations:
 - Easy to retrieve the top n most similar terms
 - Sparse vectors too inefficient; dense vectors inherently lossy
 - Symbolic, interpretable representations
 - Similarity lists not polluted by infrequent terms
 - No sampling errors when representing rare topics

Construction of the distributional thesaurus

- 10-million-sentence, automatically parsed English news corpus
- Use collapsed dependencies to extract features for words
- Count frequency of each feature for each word
- Rank features by significance, prune to 300 per word
- Word similarity = count of common features
- Final DT contains ≥ 5 similar terms for a vocabulary of over 150 000.

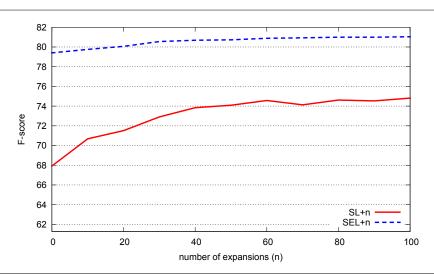
Excerpt of the DT entry for the noun paper

term	score	shared features
newspaper	45/300	told VBD -dobj column NN -prep in local JJ amod editor NN -poss edition NN -prep of
		editor NN -prep of hometown NN nn industry NN -nn clips NNS -nn shredded JJ amod pick VB -dobj
		news NNP appos daily JJ amod writes VBZ -nsubj write VB -prep for wrote VBD -prep for
		wrote VBD -prep in wrapped VBN -prep in reading VBG -prep in reading VBG -dobj read VBD -prep in
		read VBD -dobj read VBP -preplin read VB -dobj read VB -preplin record NN preplof
		article NN -prep in reports VBZ -nsubj reported VBD -nsubj printed VBN amod printed VBD -nsubj
		printed VBN -prep in published VBN -prep in published VBN partmod published VBD -nsubj
		sunday NNP nn section NN -prep of school NN nn saw VBD -prep in ad NN -prep in
		copy NN -prep of page NN -prep of pages NNS -prep of morning NN nn story NN -prep in
book	33/300	recent JJ amod read VB -dobj read VBD -dobj reading VBG -dobj edition NN -preplof
		printed VBN amod industry NN -nn described VBN -prep in writing VBG -dobj
		wrote VBD -prep in wrote VBD rcmod write VB -dobj written VBN rcmod written VBN -dobj
		wrote VBD -dobj pick VB -dobj photo NN nn co-author NN -prep of co-authored VBN -dobj
		section NN -prep of published VBN -dobj published VBN -nsubjpass published VBD -dobj
		published VBN partmod copy NN -prep of buying VBG -dobj buy VB -dobj author NN -prep of
		bag NN -nn bags NNS -nn page NN -preplof pages NNS -preplof titled VBN partmod

Experiments: Overlap and use of distributional information

- Remove occurrences of the disambiguation target
- For each content word in the context and sense definition, retrieve the n most similar terms from the DT and add them to the text
- Separate runs for n = 0, 10, 20, ..., 100
- No lemmatization or stop word filtering
- Expanded context and definitions treated as bags of words
- Overlap is the cardinality of the intersection between the two bags of words
- Ties between senses broken by choosing randomly

WSD accuracy (F_1) on SemEval-2007 by number of expansions



SemEval-2007 accuracy by part of speech, and comparison with state of the art and baselines

	part of speech				
system	adj.	noun	adv.	verb	all
MFS baseline random baseline	84.25 68.54	77.44 61.96	87.50 69.15	75.30 52.81	78.89 61.28
SL+0 SL+100 SEL+0 SEL+100	75.32 82.18 87.19 88.40	69.71 76.31 81.52 83.45	69.75 78.85 74.87 80.29	59.46 66.07 72.26 72.25	67.92 74.81 79.40 81.03
Anaya-Sánchez et al., 2007 Li et al., 2010 Ponzetto & Navigli, 2010 Chen et al., 2014	78.73 82.04 —	70.76 80.05 79.4 81.6	74.04 82.21 —	62.61 70.73 —	70.21 78.14 — 75.8

SemEval-2007 accuracy by part of speech, and comparison with state of the art and baselines

	part of speech				
system	adj.	noun	adv.	verb	all
MFS baseline	84.25	77.44	87.50	75.30	78.89
random baseline	68.54	61.96	69.15	52.81	61.28
SL+0	75.32	69.71	69.75	59.46	67.92
SL+100	82.18	76.31	78.85	66.07	74.81
SEL+0	87.19	81.52	74.87	72.26	79.40
SEL+100	88.40	83.45	80.29	72.25	81.03
Anaya-Sánchez et al., 2007	78.73	70.76	74.04	62.61	70.21
Li <i>et al.</i> , 2010	82.04	80.05	82.21	70.73	78.14
Ponzetto & Navigli, 2010	_	79.4	_	_	_
Chen et al., 2014	_	81.6		_	75.8

SemEval-2007 accuracy by part of speech, and comparison with state of the art and baselines

	part of speech				
system	adj.	noun	adv.	verb	all
MFS baseline	84.25	77.44	87.50	75.30	78.89
random baseline	68.54	61.96	69.15	52.81	61.28
SL+0	75.32	69.71	69.75	59.46	67.92
SL+100	82.18	76.31	78.85	66.07	74.81
SEL+0	87.19	81.52	74.87	72.26	79.40
SEL+100	88.40	83.45	80.29	72.25	81.03
Anaya-Sánchez et al., 2007	78.73	70.76	74.04	62.61	70.21
Li <i>et al.</i> , 2010	82.04	80.05	82.21	70.73	78.14
Ponzetto & Navigli, 2010	_	79.4	_	_	_
Chen <i>et al.</i> , 2014	_	81.6	_	_	75.8

Bridging the lexical gap, Solution 2: Enrich sense definitions by aligning complementary LSRs

a muitilingual free encyclopedia Wiktionary

['WIKJOHATY ['WIKJOHIT] n., a wiki-based Open Content dictionary Wileo ['wal kaza]

Full Definition of CHILD

plural chil-dren 40 \'chil-dren, -dern\

- 1 a: an unborn or recently born person
 b dial: a female infant
- a : a young person especially between infancy and youth
 b : a childlike or childish person
 - c: a person not yet of age
- 3 usually childe

 √ 'chī(-ə)ld\ archaic: a youth of noble birth
- **a**: a son or daughter of human parents

b : DESCENDANT

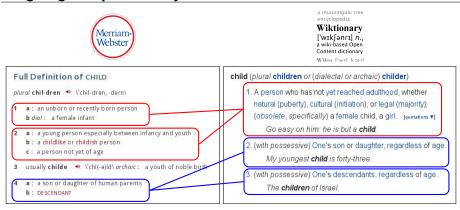
child (plural children or (dialectal or archaic) childer)

- A person who has not yet reached adulthood, whether natural (puberty), cultural (initiation), or legal (majority); (obsolete, specifically) a female child, a girl. [quotations *]
 - Go easy on him: he is but a child.
- (with possessive) One's son or daughter, regardless of age.
 My youngest child is forty-three.
- (with possessive) One's descendants, regardless of age.
 The children of Israel.

Bridging the lexical gap, Solution 2: Enrich sense definitions by aligning complementary LSRs

a multilingual free encyclopedia **Wiktionary** ['wik∫ənri] n., a wiki-based Open Content dictionary

Bridging the lexical gap, Solution 2: Enrich sense definitions by aligning complementary LSRs



Solution: Automatically merge existing pairwise alignments

Step A: Collect pairwise alignments

Wiktionary to WordNet

(Meyer & Gurevych, 2011)

3198:0:2←→09828216n 3198:0:3←→01322221n 3198:0:3←→09918554n 4487:0:1←→09918248n 4487:0:2←→09918762n

Wikipedia to WordNet

(Matuschek & Gurevych, 2013)

Child ← → 09918248n Child ← → 09918554n Child ← → 09918762n Infant ← → 09827363n Infant ← → 09827519n Infant ← → 09827683n Infant ← → 09828216n Infant ← → 10353016n

Step B: Build a graph of aligned senses

01322221n

09827363n

09827519n

3198:0:2 09827683n

09828216n

0002021011

09918248n

09918554n

09918762n

10353016n

Child

Orinio

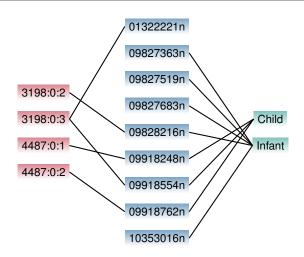
Infant

3198:0:3

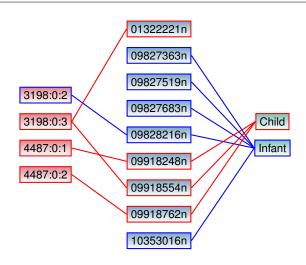
4487:0:1

4487:0:2

Step B: Build a graph of aligned senses



Step C: Find connected components to cluster word senses



Results on Senseval-3 all-words data set

glosses	coverage	precision	recall	F-score
SL+0 SL+0 with enriched glosses	26.85 29.17	69.23 67.26	18.59 19.62	29.30 30.38
SEL+30 SEL+30 with enriched glosses	98.61 98.76	53.46 51.07	52.71 50.44	53.08 50.75

- Improvement to simplified Lesk is modest but statistically significant (McNemar's $\chi^2 = 6.22$, df = 1, $\chi^2_{10.95} = 3.84$)
- Method is not compatible with the lexical expansion method, particularly for rarer and more polysemous words

Agenda

Introduction

Knowledge-based word sense disambiguation

Pun interpretation

Conclusion

- Traditional WSD assumes every word carries a single meaning
- In punning, words are used in a deliberately ambiguous manner:

- Traditional WSD assumes every word carries a single meaning
- In punning, words are used in a deliberately ambiguous manner:

The electric company to a customer:
"We would be delighted if you send in your bill.

However, if you don't, you will be."

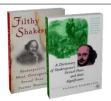
(Aarons, 2012)

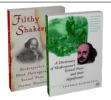
- Traditional WSD assumes every word carries a single meaning
- In punning, words are used in a deliberately ambiguous manner:

The electric company to a customer:
"We would be delighted if you send in your bill.

However, if you don't, you will be."

(Aarons, 2012)





Digital humanities

Machine(-assisted) translation

Sentiment analysis

Digital humanities

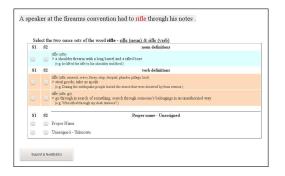
Machine(-assisted) translation

Sentiment analysis

Human-computer interaction

Data set

- ▶ 1607 short punning jokes, each with one homographic pun
- WordNet 3.1 annotations applied by three human judges



Data set

- ▶ 1607 short punning jokes, each with one homographic pun
- WordNet 3.1 annotations applied by three human judges
- Good interannotator agreement (Krippendorff's $\alpha = 0.777$)
- Pun senses often transcend part of speech

Algorithms

- Lack of training data rules out supervised approaches
- Naïve adaptations of SL, SEL, SL+100, and random/MFS baselines (select the top two senses returned by the algorithm)

Algorithms

- Lack of training data rules out supervised approaches
- Naïve adaptations of SL, SEL, SL+100, and random/MFS baselines (select the top two senses returned by the algorithm)
- Pun-specific adaptations of SEL:

POS: Favour senses that match the pun's putative POS

Algorithms

- Lack of training data rules out supervised approaches
- Naïve adaptations of SL, SEL, SL+100, and random/MFS baselines (select the top two senses returned by the algorithm)
- Pun-specific adaptations of SEL:

POS: Favour senses that match the pun's putative POS cluster: Also ensure the two senses are in different clusters

 We tested our 3-way WordNet-Wikipedia-Wiktionary clustering as well as a 2-way WordNet-OmegaWiki clustering (Matuschek et al., 2014)

Where do otters keep their money? At the bank!

Where do otters keep their money? At the **bank!**

Senses

09213565n sloping land (especially the slope beside...

09213434n a long ridge or pile

08462066n an arrangement of similar objects in a row...

08420278n a financial institution that accepts deposits...

02787772n a building in which the business of banking...

00169305n a flight maneuver; aircraft tips laterally...

Where do otters keep their money? At the bank!

Scores	Senses	
5	09213565n	sloping land (especially the slope beside
2	09213434n	a long ridge or pile
1	08462066n	an arrangement of similar objects in a row
7	08420278n	a financial institution that accepts deposits
5	02787772n	a building in which the business of banking
0	00169305n	a flight maneuver; aircraft tips laterally

Where do otters keep their money? At the bank!

Scores	Senses	
5	09213565n	sloping land (especially the slope beside
2	09213434n	a long ridge or pile
1	08462066n	an arrangement of similar objects in a row
7	08420278n	a financial institution that accepts deposits
5	02787772n	a building in which the business of banking
0	00169305n	a flight maneuver; aircraft tips laterally

Results

System	coverage	precision	recall	F-score
SL+0	35.52	19.74	7.01	10.35
SEL+0	42.45	19.96	8.47	11.90
SL+100	98.69	13.43	13.25	13.34
SEL+POS	59.94	21.21	12.71	15.90
SEL+cluster ₃	66.33	20.67	13.71	16.49
SEL+cluster ₂	68.10	20.70	14.10	16.77
random	100.00	9.31	9.31	9.31
MFS	100.00	13.25	13.25	13.25

Results

System	coverage	precision	recall	F-score
SL+0	35.52	19.74	7.01	10.35
SEL+0	42.45	19.96	8.47	11.90
SL+100	98.69	13.43	13.25	13.34
SEL+POS	59.94	21.21	12.71	15.90
SEL+cluster ₃	66.33	20.67	13.71	16.49
SEL+cluster ₂	68.10	20.70	14.10	16.77
random	100.00	9.31	9.31	9.31
MFS	100.00	13.25	13.25	13.25

▶ Pun "disambiguation" is much harder than traditional WSD

Results

System	coverage	precision	recall	F-score
SL+0	35.52	19.74	7.01	10.35
SEL+0	42.45	19.96	8.47	11.90
SL+100	98.69	13.43	13.25	13.34
SEL+POS	59.94	21.21	12.71	15.90
SEL+cluster ₃	66.33	20.67	13.71	16.49
SEL+cluster ₂	68.10	20.70	14.10	16.77
random	100.00	9.31	9.31	9.31
MFS	100.00	13.25	13.25	13.25

▶ Pun "disambiguation" is much harder than traditional WSD

Results

System	coverage	precision	recall	F-score
SL+0	35.52	19.74	7.01	10.35
SEL+0	42.45	19.96	8.47	11.90
SL+100	98.69	13.43	13.25	13.34
SEL+POS	59.94	21.21	12.71	15.90
SEL+cluster ₃	66.33	20.67	13.71	16.49
SEL+cluster ₂	68.10	20.70	14.10	16.77
random	100.00	9.31	9.31	9.31
MFS	100.00	13.25	13.25	13.25

- Pun "disambiguation" is much harder than traditional WSD
- Pun-adapted SEL as good as supervised baseline(!)

- Work so far assumes that:
 - Location of the pun is given
 - Pun is homographic ("perfect")

- Work so far assumes that:
 - Location of the pun is given
 - Pun is homographic ("perfect")
- Further research problems:

- Work so far assumes that:
 - Location of the pun is given
 - Pun is homographic ("perfect")
- Further research problems:
 - Pun detection

- Work so far assumes that:
 - Location of the pun is given
 - Pun is homographic ("perfect")
- Further research problems:
 - Pun detection
 - Processing of imperfect puns

Pun typology

	homophonic	heterophonic
homographic	A political prisoner is one who stands behind her <i>convictions</i> .	A lumberjack's world revolves on its <i>axes</i> .
heterographic	She fell through the window but felt no <i>pane</i> .	The sign at the nudist camp read, "Clothed until April."

Sound similarity

- Any pair of words can be characterized by their (perceived) similarity in terms of sound or pronunciation.
- Studying pairs with a phonologically constrained relationship can help us model that relationship.
- Conversely, a model that quantifies perceived sound differences between words can assess the probability of a given relationship.
- In particular, a model of sound similarity could help detect or generate puns.

- "Predicted phonetic distance" or "PPD" (Vitz & Winkler, 1973)
 - 1. Optimally align two phonemic sequences
 - Compute the relative Hamming distance (i.e., the proportion of non-matching phoneme positions)

- "Predicted phonetic distance" or "PPD" (Vitz & Winkler, 1973)
 - 1. Optimally align two phonemic sequences
 - Compute the relative Hamming distance (i.e., the proportion of non-matching phoneme positions)

#
$$\varnothing\varnothing\varnothing\varnothing\varnothing$$
ıəle \int n# relation
Λ n dəııı $\varnothing\varnothing$ t n# underwritten

$$PPD = 9 \div 11 \approx 0.818$$

- ► "Predicted phonetic distance" or "PPD" (Vitz & Winkler, 1973)
 - 1. Optimally align two phonemic sequences
 - Compute the relative Hamming distance (i.e., the proportion of non-matching phoneme positions)

#
$$\varnothing\varnothing\varnothing\varnothing\varnothing$$
ıəle \int n# relation
Λ ndəııı $\varnothing\varnothing$ t n# underwritten

$$PPD = 9 \div 11 \approx 0.818$$

 Method works better when it is applied separately to the syllable onset, nucleus, and coda.

- ► "Predicted phonetic distance" or "PPD" (Vitz & Winkler, 1973)
 - 1. Optimally align two phonemic sequences
 - Compute the relative Hamming distance (i.e., the proportion of non-matching phoneme positions)

#
$$\varnothing\varnothing\varnothing\varnothing\varnothing$$
ıəle \int n# relation
Λ ndəııı $\varnothing\varnothing$ t n# underwritten

$$PPD = 9 \div 11 \approx 0.818$$

- Method works better when it is applied separately to the syllable onset, nucleus, and coda.
- Aligning the sequences is a nontrivial task.

Many models compute similarity in terms of the classic feature matrix (Chomsky & Halle, 1968).

- Many models compute similarity in terms of the classic feature matrix (Chomsky & Halle, 1968).
- These models often fail to account for many common cases.

- Many models compute similarity in terms of the classic feature matrix (Chomsky & Halle, 1968).
- These models often fail to account for many common cases.

Trying to preserve his savoir faire in a new restaurant, the guest looked down at the eggs the waiter had spilled in his lap and said brightly, "Well, I guess the yolk's on me!"

- Many models compute similarity in terms of the classic feature matrix (Chomsky & Halle, 1968).
- These models often fail to account for many common cases.

Trying to preserve his savoir faire in a new restaurant, the guest looked down at the eggs the waiter had spilled in his lap and said brightly, "Well, I guess the yolk's on me!"

 Variously mitigated by the use of multivalued features (Ladefoged, 1995), feature salience coefficients (Kondrak, 2002), and Optimality Theory (Lutz & Greene, 2003).

 Hausmann (1974) observed an absolute phonemic distance of no more than four

- Hausmann (1974) observed an absolute phonemic distance of no more than four
- Lagerquist (1980): puns tend not to insert or delete syllables, nor to change syllable stress; sound changes tend to occur on the stressed syllable

- Hausmann (1974) observed an absolute phonemic distance of no more than four
- Lagerquist (1980): puns tend not to insert or delete syllables, nor to change syllable stress; sound changes tend to occur on the stressed syllable
- Zwicky & Zwicky (1986): certain segments do not appear equally often in puns and targets: Y "ousts" X when Y appears as a pun substitute for the latent target X significantly more often than the reverse.

- Hausmann (1974) observed an absolute phonemic distance of no more than four
- Lagerquist (1980): puns tend not to insert or delete syllables, nor to change syllable stress; sound changes tend to occur on the stressed syllable
- Zwicky & Zwicky (1986): certain segments do not appear equally often in puns and targets: Y "ousts" X when Y appears as a pun substitute for the latent target X significantly more often than the reverse.
- Sobkowiak (1991): pun understandability is maximized when the consonantal skeleton is kept largely intact

Past phonological analyses tend to agree

- Past phonological analyses tend to agree
- How to consolidate and implement them computationally?

- Past phonological analyses tend to agree
- How to consolidate and implement them computationally?
- Hempelmann, 2003 modelled Sobkowiak's data into a cost function that could conceivably be used in a pun generator or detector, but this has not yet been done

- Past phonological analyses tend to agree
- How to consolidate and implement them computationally?
- Hempelmann, 2003 modelled Sobkowiak's data into a cost function that could conceivably be used in a pun generator or detector, but this has not yet been done
- Shared task on pun detection and interpretation

Agenda

Introduction

Knowledge-based word sense disambiguation

Pun interpretation

Conclusion

This talk has presented...

 ... a method for applying lexical expansions to knowledge-based WSD, resulting in state-of-the-art performance

This talk has presented...

- ... a method for applying lexical expansions to knowledge-based WSD, resulting in state-of-the-art performance
- ... a method for combining arbitrary pairwise alignments of lexical-semantic resources, useful for:
 - (slightly) improving the accuracy of knowledge-based WSD
 - inducing a clustering of senses in LSRs

This talk has presented...

- ... a method for applying lexical expansions to knowledge-based WSD, resulting in state-of-the-art performance
- ... a method for combining arbitrary pairwise alignments of lexical-semantic resources, useful for:
 - (slightly) improving the accuracy of knowledge-based WSD
 - inducing a clustering of senses in LSRs
- ... a sense-annotated data set for puns, and pioneering algorithms for "disambiguating" them
- ... some background on the phonology of imperfect puns and ideas for implementing them computationally.

This talk has presented...

- ... a method for applying lexical expansions to knowledge-based WSD, resulting in state-of-the-art performance
- ... a method for combining arbitrary pairwise alignments of lexical-semantic resources, useful for:
 - (slightly) improving the accuracy of knowledge-based WSD
 - inducing a clustering of senses in LSRs
- ... a sense-annotated data set for puns, and pioneering algorithms for "disambiguating" them
- ... some background on the phonology of imperfect puns and ideas for implementing them computationally.

References I

- Aarons, D. (2012). Jokes and the Linguistic Mind. Routledge.
- Aarons, D. (2017). Puns and Tacit Linguistic Knowledge. In S. Attardo, ed., Handbook of Language and Humor. Routledge, pp. 80–94.
- Anaya-Sánchez, H., A. Pons-Porrata, and R. Berlanga-Llavori (2007). TKB-UO: Using Sense Clustering for WSD. In: SemEval 2007: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 322–325.
- Biemann, C. and M. Riedl (2013). Text: Now in 2D! A Framework for Lexical Expansion with Contextual Similarity. *Journal of Language Modelling* 1(1), pp. 55–95.
- Chen, X., Z. Liu, and M. Sun (2014). A Unified Model for Word Sense Representation and Disambiguation. In: The 2014 Conference on Empirical Methods in Natural Language Processing: Proceedings of the Conference, pp. 1025–1035.
- Cholakov, K., C. Biemann, J. Eckle-Kohler, and I. Gurevych (2014). Lexical Substitution Dataset for German. In LREC 2014, Ninth International Conference on Language Resources and Evaluation, pp. 2524–2531.

References II

- Firth, J. R. (1957). A Synopsis of Linguistic Theory, 1930–1955. In: Studies in Linguistic Analysis.
 Basil Blackwell, pp. 1–32.
- Hempelmann, C. and T. Miller (2017). Puns: Taxonomy and Phonology. In S. Attardo, ed., Handbook of Language and Humor. Routledge, pp. 95–108.
- Li, L., B. Roth, and C. Sporleder (2010). Topic Models for Word Sense Disambiguation and Token-based Idiom Detection. In: 48th Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference, pp. 1138–1147.
- Matuschek, M. and I. Gurevych (2013). Dijkstra-WSA: A Graph-based Approach to Word Sense Alignment. In: Transactions of the Association for Computational Linguistics 1, pp. 151–164.
- Matuschek, M., T. Miller, and I. Gurevych (2014). A Language-independent Sense Clustering Approach for Enhanced WSD. In: *Proceedings of the 12th Edition of the KONVENS Conference*, pp. 11–21.
- Meyer, C. M. and I. Gurevych (2011). What Psycholinguists Know About Chemistry: Aligning Wiktionary and WordNet for Increased Domain Coverage. In: *Proceedings of the Fifth International Joint Conference on Natural Language Processing*, pp. 883–892.

References III

- Ponzetto, S. P. and R. Navigli (2010). Knowledge-rich Word Sense Disambiguation Rivaling Supervised Systems. In: 48th Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference, pp. 1522–1531.
- Raskin, V. (1985). Semantic Mechanisms of Humor. Springer.

Credits

- ► TU Darmstadt S103 ErhoehtVonS208 © 2007 ThomasGP. CC BY-SA 4.0.
- Robert-Piloty-Gebäude, TU Darmstadt © 2006 S. Kasten. CC BY-SA 4.0.
- Darmstadt 2006 121 © 2006 derbrauni. CC BY-SA 4.0.
- Darmstadt TU 1 © 2011 Andreas Pfaefcke. CC BY 3.0.
- University College Front Facade © 2004 Nuthingoldstays. CC BY-SA 3.0.
- First Nations University 3 © 2013 . CC BY-SA 3.0.
- Woman and laptop © 2012 Shopware. CC BY-SA 3.0.
- Firefox OS Emjois © 2015 Mozilla Foundation. CC BY 4.0.
- Duck, Rabbit! Duck! © 2015 Taro Istok. CC BY-SA 4.0.

Thank you!

Questions?