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General problem

X = (Xy, X2, ..., Xn)-random vector.

f(x) € {f(x,0);0 € Q}

Hi:0e€Q;,Q cQ,i=1...,L
x(1),x(2),...,x(n) - sample of finite size.
Construct 0(x) : X — D,D = {d1,d>,...,dL}
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Network model

One way to analyze a complex system is to consider associated network
model.

e Complete weighted graph G = (V, E,~).
@ Nodes of the network model - elements of the system.

@ Weights of edges in the network model are given by some measure ~
of connection between elements of the system.

Examples: social networks, market networks, biological network.
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Network structures

Network structures - subgraphs of the network model.
G =(V,E):VVCV,E'CE
@ Network structures contain useful information on the network model.
@ Popular network structures for market network: minimum spanning
tree (MST), planar maximally filtered graph (PMFG), market graph
(MG), cliques and independent sets of MG.

@ Popular network structures for biological network: Gaussian Graphical
Model (concentration graph).
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History of market network analysis

Mantegna(1999) - MST for market network.
Pardalos (2003) - MG for market network.

Now there are around 3000 papers.

Main purpose - network structure construction by numerical
algorithms to real market data (stock returns) and interpretation of
obtained results. Examples of interpretation.
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Problem description

Mathematical point of view - stocks returns are random variables.
Problem - statictical uncertainty of obtained results.
Problem of network structures identification - statistical problem.

Problem: construct statistical procedure J(x) with appropriate
properties to identify network structure from observations.
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Random variable network

Random variable network is a pair (X, ~):
e X =(Xi,...,Xy)—random vector,
@ ~y—measure of association.

Example - market network (nodes correspond to the stocks, behaviour of
stocks is described by returns (portfolio theory))
E(Xi—E(X))(X;—E(X)))

oo}

@ Popular network:=Pearson network: fyz- =pij=
@ Alternative network:=Sign similarity network:
S ..
Vi =P = P((Xi — E(X))(X; — E(X)) > 0).
Any random variable network generate network model. Network model is
complete weighted graph G = (V, E,~)
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Problem statement

e (X,~)-random variable network, G = (V/, E, y)-generated network
model.

G' = (V',E'): V' C V,E' C E - network structure.
It is known that distribution of X from class K = {(f(x,0),0 € Q)}.
Let S = (sij), S € G - set of all adjacency matrices.

Hs : 6 € Qs-hypothesis that network structure has adjacency matrix
5.5€eg.
@ Observation X(t) = (Xi(t),..., Xn(t)),t=1,...,n

Problem: construct statistical procedure 6(x) with appropriate
properties to identify network structure from observations i.e. to
select one from disjoint hypotheses Hs, S € G.
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Quality of statistical procedures for network structure

identification

o Statistical procedure §(x) = { dq, x € Dg
Ugeg Do = X is the partition of sample space.

@ )(x) = dg - decision, that network structure has adjacency matrix
Q,Qeq.

e w(Hs;dg) = w(S, Q) - loss from the decision dg when the
hypothesis Hs is true, w(5,5) =0,S € G.

@ Risk function of statistical procedure d(x) is defined by

Risk(S,0;0) = Y w(S,Q)Py(5(x) =dg), 0€Qs,5€G
Qeg

Py(0(x) = dg) - the probability that decision dg is taken while the
true decision is ds.
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Problem statement

@ to investigate uncertainty of statistical procedures for network
structures identification

@ to construct optimal, in some sense, procedure

@ to construct distribution free, in some sense, procedure
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Distribution free statistical procedure.

Let IC - class of distributions of X, such that network models, generated by
(X, ) coincide 7(X,.(1),Xj(1)) = fy(X,-(2),Xj(2)). Then network structures
also coincide.

But properties of statistical procedures for network structures identification
may depend on distribution of X € K.

Problem: construct distribution free statistical procedure for network
structure identification.

Definition: statistical procedure ¢ is distribution free in class IC, if

risk function Risk(S,0,5) does not depend from distribution of
vector X from class I for any S.
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Example: class C of elliptical distributions

Most common models of stock market is the class of elliptical distributions.
1 _
F(x:0) = N "2g{(x — ) A"} (x — )} (1)

where 0 = (u, A, g), 1 € RV, A\ - symmetric positive definite matrix,

g(x) >0, and
/ / gly'y)dyr...dyy =1

In the following we assume that p is known.
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Example: class C of elliptical distributions

Let KC(A) be the subclass of class of elliptical distributions with fixed A. It
Ay

VA

Then network models, generated by (X,~P), X € KC(A), coincide.

Lemma 1: Probabilities fyisj'" = P(X;X; > 0) are defined by the matrix A

and does not depend from g.

Then network models, generated by (X,~v%¢), X € K(A), coincide.

is known *yfj =
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Multiple testing statistical procedures for market graph

(MG) identification

Individual edge hypotheses:

hij = vij < 70 vs kij : vij > Yo.

Individual tests: )
1, t;i(X) > ¢
(X)) = v b ij

#i(X) { 0. 5(X) <
Multiple testing statistical procedure: statistical procedure, based on
statistics of individual tests.

@ Single step procedures (Bonferroni and others)

@ Stepwise procedures (Holm, Hochberg and others)
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Example 1.Pearson network

Individual hypotheses (Pearson measure): hj; : pij < po vs ki : pij > po
fi,j—po St

2
VI=ri

P _
° 8IJ(Xi7)<j) = 0. P -~ St
1=, T
1
o P(X'X')— 1, Zij > Cij
P j\Xis Xj) = 0, <c
invariant tests
where z; j = \/n (% In (izj) —21In (ifﬁg))
e ¢;jis (1 — ajj)-quantile of standart normal distribution N(0, 1),
° c,.Sj is (1 — cjj)-quantile of Student distribution t,_1,
@ «; is the given significance level for individual edge i, test,
. > e (xi(t) —X)(x(t) — %)
ij = — —
V2t (xi(t) =302 220, ((t) — X5)2

UMP in the class of invariant tests

asymptotically optimal in the class of

Zjj < Cij
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Example 1.Pearson network. Multiple testing procedures

@ Single step rules

L
P
8P(X) _ a2,1(X)7
aII\DI,l(X)7
L
5P(X) _ @Zl(X),
‘PZJ(X)’
e Stepwise rules (Holm,
P. P
8i,jv Soi,j)

Petr Koldanov

(NRU HSE)

6{3,2()()? ’
1’ 9y
(9,’\3,72(x), R
<p’1::2(x), ol
1, ...
goﬁ,vz(x), .

Hochberg procedures with individual tests
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Example 2. Sign similarity network

@ Individual hypotheses: hj; : p'd < po vs kij : P > po

/uu):{ ézsgmmu)—u{;:gmﬁu)_uﬂ

Define 728 = S0 i (¢),

° Py
o % — 0, T,-zjg <cj
" 1, Tlf > Cij Y

where ¢;; is defined from
equation:ZZ:% Wik)!(po)k(l —po)" K <a
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Example 2. Sign similarity network

e Multiple decision single step (Bonferroni type) procedure

S, S,
51, er5(x), s w}j\,(X)
55g(x) — 902,g1(x)’ 17 ey @27gN(X)
5. .. S. . Ce
SONg’l(X)a SONg"Q(X)7 R 1

@ Holm, Hochberg procedures with the use of statistics Tisjg
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528 is distribution free

Theorem 1. Let random vector (Xi, ..., Xy) has elliptically contoured
distribution with density

F(x; 0) = N 2g((x — p) N(x — 1))
Then

@ the risk functions R(S,0; 05%), R(S,0;87F), R(S,0;0;%) are defined
by the matrix A and does not depend on the function g for any loss
function w, S— adjacency matrix of MG.

@ the risk function R(HpsT,6; 6%8) of Kruskal procedure for MST
construction are defined by the matrix A and does not depend on the
function g for any loss function.
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528 is distribution free

Lemma 2. Let random vector (Xi,...,Xy) has elliptically contoured
distribution. Then the probabilities

p(it, ... in) = Pa(i (X1 — p1) > 0,..., in(Xn — ) > 0)

are defined by the matrix A and does not depend on the function g for any
ik €{-1,1}, k=1,2,...,N.

Lemma 3. Let random vector (Xi,...,Xy) has elliptically contoured
distribution with density

Fxi 11, ) = [N 2g((x — 1) Nx — 1))

Then joint distribution of the statistics T.¢ (i,j = 1,2,...,N;i # j) are

defined by the matrix A and does not depend on the function g.
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Comparison

@ Statistical procedures, based on sample Pearson correlations, are not
robust in the class of elliptical distributions with fixed A.

@ Procedures, based on sample signs correlations, are distribution free in
the class of elliptical distributions with fixed A.

(] 02 04 06 08 1 o 500 1000 1500 2000 2500

Figure: 2: Risk function for MG, pg = 0.64. Left - n = 400, star line - 5P, line -
8%, right: circle - v =1, 67; diamond - v = 0,5, 67; square - v = 0, 6", line -
8°.The model is the mixture distribution consisting of multivariate normal
distribution and multivariate Student distribution with 3 degree of freedom.
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Advantages of sign similarity network

Sign similarity network:
@ easy to interpretation;
@ allow of generalization to any number of random variables;
@ statistical procedures in sign similarity network are distribution free;
°

distribution free statistical procedures in sign similarity network can be
applied for network structure identification in other network models.
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Comparison of these two networks

If X has elliptical distribution (1) then network structures in Pearson
correlation network are equivalent to network structures in sign similarity
network.

Theorem 2: Let vector X = (X, ..., Xy) has elliptical distribution (1).
Then:

se_ 1 1 in iy L 1P >
’y,d—2+7Tarcsmm_2+7rarcsmfyu (2)

Corollary 1: MST in network model generated by Pearson correlation
network coincide with MST in network model generated by sign similarity
network.

Corollary 2: MG with threshold pg in network model generated by Pearson
correlation network coincide with MG with threshold po =  + 1 arcsin(po)
in network model generated by sign similarity network.

7P =01 7% =053;9F; = 0.6 < 77 = 0.705
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Optimality. Additive loss function

For MG or GGM identification problem it is natural to consider loss
functions which are additive.

aj j - individual loss from false inclusion of edge (i, /) in MG or GGM.
b j- individual loss from false non inclusion of the edge (i, ).
Let

aij, if 55;=0,q;;=1,
lij(S,Q) =1 bij, if sij=1,qi;=0,
0, else

Loss function is additive:

N N
W(S,Q):ZZ/,'J: Z ajj+ Z b; j

i=1 j=1 {iJj:si j=0;q; j=1} {iJj:sij=1,q; ;=0}
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Problem statement. Individual hypotheses

Let 8 = (i,j) - edge of network model (8 € E,=1,...,C3).

Let w,-_f = wgl be the set of parameters 6, such that (i,j) € G', wg

be the set of parameters 6, such that (i,)) ¢ G'.

° Definehg:ﬂewglvskg:Oewg

~1
s = (ﬂi,j:s,-d-:l Wi )N (mi,j:Si,jZO wi,j)
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Two type of network structures

@ Network structures with arbitrary number of elements of network
model (MG, GGM):

Qo,0,...0 = ﬂﬁe{L...,C,?V} wg
Q —wiln N w
1,0,...,0 1 Be{(2,....CRy WB (3)
B
Qu1..1= 056{1,.._,c§,} Wg

@ Network structures with fixed number of elements of network model
(MST): Let E;—set of edges of MST;,Ey—set of edges of MST»,. ..,
E; —set of edges of MST,,|Ei/|=N—-1,Vi=1,...,L

He, = Npegey W§1 NNeq,...c2)— (B} w8
1
HEz = nﬁe{EZ} Wg N mﬁe{l,...,Cﬁl}f{Eg} wg (4)

' -1
Hg, = ﬂ/je{EL} wg™ N ﬂﬁe{l,...,cﬁ,}—{a} wg

Petr Koldanov (NRU HSE) Statistical procedures for network structures i - /72



Statistical procedures for network structure identification

with arbitrary number of elements

1 Al _
Let ;; = { 0’ i E A:j be the test of hypothesis h; j = hg.
Define 0(x) = d x€Dg = AfQii L -1, qij=1
e Q=i My P T 1, g =0

Theorem 1 Let loss function be additive and
ag=a,bg=>bV3=1,..., C,%,. Then for network structures with
arbitrary number of elements

R(S,0,0) = r(hs,0,¢05) = aEy(X1(6, S)) + bEs(Xa(5, S))
5

where Xi(X2)-number of incorrectly included (non included) elements of
network model in network structure.
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Statistical procedures for network structure identification

with given number of elements

1 Al
Let ¢;j = { 0’ i 2 A’J be the test of hypothesis hg.
; iy

Define 6(x) = { do, x€Dq=(;; A?fﬂ’j n Qi = { 1_1’ Z:j 2(1)

Theorem 2 Let loss function be additive, ag = a,bg = b,V5 =1,..., C,%,
and set of tests ¢; ; is compatible i.e

> POYAY) =1
B

(n,ﬂl 1KiBy ,...,n,—BK):n,-ﬁil =.. =i, :fl,.b:,ﬂl.M+1 = =Rig; =1

P(AS) =0 > kig#-M
B ﬁ:lﬂ],‘ﬁ:—l
Then for network structures with given number M of elements
R(S,0,6) =Y r(hs,0,95) = (a+ b)Ey(Xa(d, S))
B

or
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Quality of statistical procedures. Unbiasedness.

Decision function §(x) is said to be w-unbiased if for all 6,6’
Egw(0',6(X)) > Eaw(6,45(X))

"0 is unbiased if on the average 6(X) comes closer to the correct decision
than to any wrong one” In our case it can be written as

Y w(S,Q)P(5(x) = do/Hs) < Y w(S', Q)P(3(x) = do/Hs),

Qeg Qeg
vS,S'eg
@ for network structures with arbitrary number of elements
aEg(Xl((S, 5)) + bEg(X2(5, 5)) < aEg(X1(5, S,)) + bEg(X2(5, S’))
o for network structures with given number of elements

Ey(X1(0,5)) < Ey(X1(0,S"))
Does not depend on a, b.
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General theorem for network structure with arbitrary

number of elements

Individual edge hypotheses:

hij = vij < 70 vs kij : vij > Y-

Individual tests: ()
1, t,'j X) > Cij
(x) =
#i) { 0, tj(x) <cj

1, v12(x), .., pin(x)
¢(X) _ g021(X), 1, ey (pzN(X) . (5)
SON.l'(.X)a SON‘2‘(.X)’ 7 1

Define multiple statistical procedure for network structure identification

8(x) = dg, iff %t (x) = G (6)
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General theorem for network structure with arbitrary

number of elements

Theorem 3: Let loss function be additive and tests ¢jj(x) are UMP in the
class of unbiased. Then statistical procedure ®(x)(5) is optimal in the
class of unbiased statistical procedures.

Sketch of proof:

® jj(x) - unbiased = R(s;j, pij(x)) < R(s}, pij(x))-

Loss function is additive = R(Hs,d) = Z,"Yj:l R(sij, gij). VS, S

> w(S, Q)Py(5(x) = dg|Hs) <Z Py(3(x) = dg|Hs)

Q

Then §(x) is unbiased.
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General theorem for network structure with arbitrary

number of elements

o Let §'(x) is other unbiased procedure. Then ¢’(x) defines the
partition of sample space by L parts Dg = {x : §'(x) = G}. Let

Aij = Ue. 81 j=0 D¢, A = Ug. g,=1 D¢. Define
_ 0, xe A,d
iy = 1, x¢€ Ai_,j1
> w(S, Q)Py(8'(x) = dolHs) < > w(S', Q)Py(8'(x) = dg|Hs)
Q Q

Let Hs, Hs/ such that s;; # st,Sj,i # SJ{,,--
@i j(x)-UMP in the class of unbiased, then
R(sij» ¢ij(x)) < R(sij, ¢} ;(x)).

Then R(Hs,8) < R(Hs, ")
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Multiple testing procedures for GGM identification

Let vector (X1, Xz, ..., Xy) has multivariate normal distribution N(u, X).

Hg, 8,,....3,,- hypothesis, that GGM has edges (1, B2, ..., Bm.Bk = (ik,Jk)-
Individual edge hypotheses:

hs, : pk =0 vs kg, : pii £ 0.
Individual tests:

opt 0, |r]<1-2c

opt _ y /2 7
i { 1, |rf|>1-2c)), @

where cf/z is the a/2-quantile of Beta distribution Be("EN7 ”EN)
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Multiple testing procedures for GGM identification

0 G0 e )
DOPt(x) = @1 (%), 0, s oy () ) (8)
ot (), P (), 0

Define multiple statistical procedure for concentration graph identification
5P (x) = dg, iff P (x) =G (9)

Theorem 4: Multiple decision statistical procedure ®°P*(x) is optimal in
the class of unbiased statistical procedures under additive loss function.
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Multiple testing procedures for GGM identification

Lemma 1: Optimal in the class of w-unbiased statistical level « test for
individual edge hypotheses is:Hj; : p'Y = 0 against Kj; : p'Y # 0 is:

|as;— |
0, =—2<1- 2c°
opt __ \/£+ac /2 10
(’DU - 1 |asj— 2| ( )

\/m>l—2ca/2

where det(sy) = —as,-Jz- + bsjj + ¢, Cs/z is the a/2-quantile of Beta

distribution Be(”‘zN, ”_2N). (a=a({sw}), b= b({sk}),c =c({su)})
Lemma 2: Test (7) is equivalent to UMPU test (10) for testing p'v = 0
vs p'J £ 0.
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GGM selection. Statistical approach

Dempster(1972), Edwards(2000) Drton(2003,2005,2007)
Let X(t),t =1,2,...,n be a observations.

o Calculate r'J = \/%—sample partial correlation.
sh

e Apply multiple hypotheses testing procedures (Holm, Hochberg and
so on) for set of hypotheses h;j : p'Y = 0 vs alternative k;j : p'/ # 0.

@ Drawbacks - control FWER only, asymptotic results.
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Optimal statistical procedure for reduced graph

identification

Let vector (X1, Xz, ..., Xy) has multivariate normal distribution N(u, X).
Hi iy.....iy- hypothesis, that reduced graph has vertex i1, o, ..., iy.
Ind|V|dua| vertex hypotheses:

hi i < po vs ki i > po

B 1, U,'(X) > Cj
wilx) = { 0, Ui(x)<g

Individual tests:

Us(x) = /n &L= H0). (11)

Jii

Statistical procedure for reduced graph identification:

6(x) = (pa(x); ¥2(x), -, on(x)) - (12)
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Optimal statistical procedure for reduced graph

identification

Theorem 5: Let random vector (Xi,...,Xy) has a multivariate normal
distribution N(u,X) with unknown g and known diag(X) . If U;(x) is
defined by (11) then statistical procedure (12) for problem of reduced
graph identification is optimal in the class of W-unbiased multiple decision
statistical procedures (where W is additive loss function) and ¢; is

(1 — «j)-quantile of standard normal distribution.
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Optimal statistical procedure for reduced graph

identification

Lemma 3: Let random vector (X1, ..., Xy) has a multivariate normal
distribution N(u, %), where = (u1, ..., pun) is unknown vector,

Y = ||ojj|| is known matrix. For testing hypothesis hy : 11 < pig against
ki 1 p1 > po an optimal unbiased test has the form:

Soi(X) _ { 0, X; < Ci(Tl,.. - T,'_l, Ti+1,... s TN)

_ 13
L, Xi>c(Ty,...,Tic1, Tiga, -, Tw) (13)
where ¢; for a given «; is defined from
P(?,’ > C,'| Tl, RN T;_l, T;_|_1, RN TN) = ;.
Ti=cx7+ 0%+ ...+ o Nxy
T =oMxi 4+ 0F%5 + ...+ o"Nxy (14)

Ty = oMx7 + oN2xg + ...+ oMy

Petr Koldanov (NRU HSE) Statistical procedures for network structures i




Optimal statistical procedure for reduced graph

identification

Lemma 4: Let random vector (Xi, ..., Xy) has a multivariate normal
distribution N(u,X), where = (p1, ..., 1n) is unknown vector,

Y = ||ojj|| is known matrix. The random variables X; and

Ti,...,Ti—1, Tit1,..., Ty are independent.

Lemma 3 implies that the optimal test has a Neyman structure and lemma
4 implies that this test can be written as:

0, Ui(x)= Vn(Xi—po) <
pilx) ={ () =05 <

]., U,'(X) > Ci (15)

Therefore, (12) is optimal in the class of W-unbiased multiple decision
statistical procedures. Note that optimal multiple decision statistical
procedure (12) depends on diagonal elements of covariance matrix ¥

only. O
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Market network. Known results

Let X(t),t =1,2,...,n be a observations (daily returns) of stocks
X(t) = (Xu(t), ..., Xn(1))
Traditional approach to MG identification:

@ calculate r;

o if rjj > 60 (where 6 is a given threshold), add edge (i,j) in MG
Traditional approach to MST identification:

o calculate r;j

@ order r;

@ apply Kruscal algorithm to MST construction
Drawback:

@ statistical problem statement is absent.

@ statistical properties are unknown.
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Multiple testing statistical procedures for MG identification

Individual edge hypotheses:

h,-jzv,jgyovsk,j:%-j>70.

Individual tests:

B . 1, t','J'(X)>C,'J'
S‘)'J(X)—{o, 65(X) <

Multiple testing statistical procedure:

0, g012(X), ey (plN(X)
(x) = w21(x), 0, coey pan(x) (16)
on(x), ona() o O

Petr Koldanov (NRU HSE)
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Example 1.Pearson network

Individual hypotheses (Pearson measure): hjj : p;;j < po vs kij : pij > po

?
1-r?, "
° 8,-5-(x,-,xj) =910 u o0 < St UMP in the class of invariant tests
’ 1-r2 =
J
° c,.Sj is (1 — cjj)-quantile of Student distribution t,_1,

o Multiple testing procedures
0, 3fz(x), ce 8£N(X)
9P (x) = a;l(x), 0, ey 82,N(X)

aﬁyl(x), Gﬁ’z(x), e 0
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Example 2. Sign similarity network

@ Individual hypotheses: hj; : p'v < pg vs kij - p'Y > po
o ap,-sfz{ 0 ;,-zs@-,j |
o i > G
Ti?jg =2t lij(8),
() = { 1, sign(xi(t)) = sign(x;(t))
ij

0, else
. . . | —
cij is defined from equation:) Z:c,—,,— W(Po)k(l —po)" k< a

Petr Koldanov (NRU HSE) Statistical procedures for network structures i



Example 2. Sign similarity network

Multiple decision single step procedure

0, Y1 2(X) EER w%,N(X)
5Sg(X) _ gl( ) 0, ceey 902,gN(X)
@zg,l(x)v wi/%2(x)a sty 0
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Optimality of 0"

Theorem 6: Let loss function w be additive, individual test statistics tij
depends only on observations X;(t), Xj(t) and vector X = (Xi,..., Xy)
has a multivariate normal distribution. Then for single step statistical
procedure O for threshold graph identification (pg = 0) in Pearson
correlation network one has Risk(S,d") < Risk(S, d) for any adjacency
matrix S and any w—unbiased §.

Theorem 7: Let loss function w be additive, individual test statistics t; ;
depends only on observations X;(t), Xj(t) and vector X = (Xi,..., Xy)
has a multivariate normal distribution. Then for single step statistical
procedure 9 for threshold graph identification in Pearson correlation
network one has Risk(S,0") < Risk(S, ) for any adjacency matrix S and
any invariant 9.

Assumption of normality can not be removed.
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Optimality of §°8

Theorem 8: Let loss function w be additive, individual test statistics t; ;
depends only on /; j(t), E(X;) are known Vi =1,..., N and distribution of
vector X = (Xi,...,Xy) satisfy the symmetry condition below.

Then for single step statistical procedure §%¢ for threshold graph
identification in sign similarity network one has Risk(S,5°8) < Risk(S,0)
for any adjacency matrix S and any w—unbiased §.

Symmetry condition:

prh =P e =p,
pi = P(X; — E(X;) > 0, X — E(X)) > 0)
P 1 = P(Xi — E(X;) < 0,X — E(X;) <0)
Py = P(X; — E(X;) < 0,X — E(X;) > 0)
Py = P(X; — E(X) > 0, X — E(X;) < 0)
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Proof of lemma 2

Lemma 2. Probabilities

p(il, Iy, iN) = P/\(ile >0,iXo, ..., inXN > 0) are defined by the
matrix A and does not depend on the function g.
Proof

P(i1X1 > 0,0Xo,...,inXN > 0) = / ’/\|7%g(X//\X)dX1 ..odxy
i >0,k=1,2,...,N
(17)
Matrix A is positive definite, therefore there exists a matrix C such that
C'NC =1. Put y = C'x. Then x = Cy and

1
/ IN"2g(X'Ax)dxq . .. dxy = / g(y'y)dyr...dyny (18)
4 >0,k=1,2,...,N D

where D is given by

0 <ir(ckayr+ckoy2+ ... +anYn) <oo, k=1,2,....,N (19)
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Proof of lemma 2

Vector y can be written in polar coordinates as:

y1 = rsin(61)

y2 = rcos(f7) sin(62)

y3 = rcos(f1) cos(02) sin(63) (20)
;/'/\/'—1 = rcos(61) cos(62) . .. cos(On—2)sin(On—1)

yn = rcos(f1) cos(6y) . .. cos(Oy_2) cos(On—1)

where —5 <0; < 5,i=1... N-2,—m <0y 1 <7m0<r<ooThe
Jacobian of the transformation (20) is

rN=1cosN=2(01) cosN=3(6y) . . . cos(On—_2)

In polar coordinates region (19) is transformed to the region D’ x R}
where D' given by (k=1,2,..., N):

0 < ik(crrsin(b1) + ...+ ciy cos(61) cos(62) . .. cos(On—2) cos(On—1)) < o0
(21)
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Proof of lemma 2

Then p(i1, i, ..., in) can be written as

/,/ ~2(0;) cosV3(6) . . . cos(On_2)g(r?)drdfy ... dON_1 =

:/ cosMN=2(1) cos"3(6,) . . cos(HN_z)d01...dc9N_1/ rN=tg(r?)dr
' 0

It is known that

> N—-1 2 _L
/0 g (rf)dr = cN)

where

C(N) = /7r /ﬂ/ cos'72(61) cos"V3(65) . .. cos(On_2)dbs . .. dOn_1
™ z ) x

2

Region D’ is defined by the matrix A and does not depend on the function
g. Then p(i1,ia,...,iyn) are defined by the matrix A and does not depend
on the function g.
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Proof of lemma 3

Lemma 3. Joint distribution of the statistics 7% are defined by the

ij
matrix A and does not depend on the function g.
_Proof.

ng == —|— ngn t))sign(X;(t))

o from the Iemma 2 - joint distribution of the
sign(X) = (sign(X1),sign(Xz2),...,sign(Xyn)) is defined by the matrix
A and does not depend on the function g.

e random vectors sign(X(t)), t =1,2,...,n are independent and
identically distributed.

@ then the joint distribution sign(X;(t)), i=1,2,...,N, t=1,2,...,n
is defined by the matrix A and does not depend on the function g.

@ then joint distribution of statistics -,—isdg' i,j=1,2,...,N;i < j does
not depend on the function g.
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Data for stability

@ We consider the real-world data from USA stock market. We take
N = 83 largest by capitalization companies and consider the daily
returns of these companies for the period from 03.01.2011 up to
31.12.2013, total 751 observations.

@ We calculate correlation matrix ¥ by this data and consider the
matrix L as true matrix. Structures of the matrix are considered as
true structures.

© We simulate a certain number of observation (n) using the mixture
distribution. The mixture distribution is constructed as follow -
random vector X = (X1, ..., Xy) takes value from N(0, X) with
probability v and from t3(0, ) with probability 1 — .

@ We estimate the matrix ¥ using the chosen association measure
(Pearson p; ; or probability p'/).

© We construct the sample threshold graph basing on the estimation
and compare it to the true threshold graph.
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Appendix: Proof of the Theorem 2

Theorem 2: Let vector X = (Xi,..., Xy) has elliptical distribution (1).
Then:

Sg 1 1 . >\I,J _ 1 1 . P
7% = =+ —arcsin ———= = ~ + —arcsin"y; ; 22
’7111 2 T \/W 2 T Vi ( )
Prove: It is known E(X) = u. Without loss of generality let ;1 = 0. Define
matrix A = (a; ;) = A~1. Density of random vector (X;, X;) has the form:

1
F(xi,x) = |A"Y "2 g(a;ix? + 2 jxi(x) + ajjx?)

The prove is based on the following lemma:
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Proof of the Theorem 2

Lemma 1: Probability 'yisf = P(X;X; > 0) defined by the matrix A and
does not depend from g.

. aij ajj
Prove: Matrix A;j = ( LT

) is positive definite, then exists
3ij
= < i CiJ > such that C'AC — ( 10 >

G G 01
Define U = ¢; ;i Xi + ¢ jX;, V = ¢ Xi + ¢ jX;. Then random vector
(U, V) has distribution with density f(u,v) = g(v? + v2). Then

P(X;>0,%>0) =PV < U< ZV)+ P(ZV < U < V) =

i Cij Gjj Gjj
arctg(cjj/cjj)—arctg(cii/ cjj) Cij S Si
2T 7 G Cjj
arctg(cji/ cjj)—arctg(cij/ ¢jj) Cij < Sii
2m TG TG

Then P(X; > 0, X; > 0) does not depend from g. Similarly
P(X; < 0,X; < 0) does not depend from g. Then
P(XiX; > 0) = P(X; > 0,X; > 0) + P(X; <0, X; <0) does not depend

alas O
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Holm procedure

o Step 1: If max;j—1, ..n Tij < c{" then accept all hypotheses
hij,i,j=1,2,...,N, else if max; j—1 n Tij = Tjj then reject
hypothesis h;, ;, and go to step 2.

o Step K: Let | = {(ila_/.l), (ig,jg), RN (iK—lajK—l)} be the set of
indexes of previously rejected hypotheses. If max( ¢/ Tij < CE then
accept all hypotheses h;;, (i,j) & I, else if max; ¢ Tij = Ticj«
then reject hypothesis h;, j, and go to step (K+1).

o Step M: Let | = {(i,J1),---,(imM—1,jm—1)} be the set of indexes of
previously rejected hypotheses. Let (ip,jm) € 1. If Ty, < c,f/’, then
accept the hypothesis hj, j,,, else reject hypothesis hj,, j,, (reject all
hypotheses).

For a given significance level « the critical values c,’}’ for Holm procedure

«
-\ K=12,....M
M—K—i-].? P )
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Hochberg procedure

o Step 1: If T jy =min;j—y . nTij > c1 € then reject all individual
hypotheses h; ;, else accept hypothesis h;, j, and go to step 2.

Step K: Let I = {(i1,/1),.--,(ik—1,jk—1)} be the set of indexes of
previously accepted hypotheses. If

Tigdx = Min;j—1 niijygr Ti(x) > czg then reject all hypotheses
hij, (i,j) ¢ 1, else accept hypothesis hj, j, and go to step (K+1).

Step M: Let | = {(i1,/1),---,(imMm-1,jm—1)} be the set of indexes of
previously accepted hypotheses. Let (ip,jm) ¢ 1. If Tj,, > Hg
then reject the hypothesis hj,, ;,, else accept the hypothesis hiM,jM
(accept all hypothesis).

For a given significance level a the critical values ng for Hochberg
procedure are given by FVO(CK )=1-— R K=12....M
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Role of measure of association

Therefore the following statistical procedure for threshold graph
identification in Pearson correlation network will be distribution free:

o fix a threshold po.

@ Take ¢ a threshold graph identification statistical procedure in sign
similarity network distribution free in the class of elliptically contoured
distributions.

@ Apply statistical procedures § for threshold graph identification with
the threshold

1 1 .
Po = = -+ —arcsin pg
2 0w

o Consider obtained graph as the threshold graph in Pearson correlation
network.

In particular one can construct single step, Holm and Hochberg
distribution free statistical procedures for threshold graph identification in
Pearson correlation network.
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Symmetry conditions. Tests for individual hypotheses

Individual hypotheses
hl"’ P11—P1 1V5k P’J?épl =L NP £
Statistics T1 = T (1), TH = T (1),

iJ ]-a Xl(t) > O,X,(t) > 0
lejl(t) - { 0, else

i 1 X,'(t) <0 X;(t) <0
) — ) 9
T ()= { 0, else
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Symmetry conditions. Tests for individual hypotheses

Individual hypotheses: N
hy' oprly =Py vs kﬁ” : pi*’ A p’ﬂ =1 N A
Statistics T L =20 (1), T =210 THA(t)

1 Xi(8) 2 0,X(t) <0
0, else

Xi(t) < 0,X(t) > 0
else
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Optimal tests for individual hypotheses testing h,-1J

Exponential form for the joint distribution of statistics T j:
P(Tig =k, Ty 1=k, Ty, 1 =k3, T_11 = ka) =

= Cexplkiin P21 4 (kg + ko) In P17t 4 g in P21y
p—1,-1 pP-11 pP-11

where |
n!

C=—— " (1—- Y

k1!k2!k3!k4!( P11~ P-1,-1— P1,-1)

Then uniformly most powerful test for testing hypothesis h}J has Neymann
structure and can be written as:

1 { 0, Cl(k, k3) < ki < Cz(k, k3)

W1, else (23)

where k1, k2, k3, kg are the observed values of statistics Tl"J1 TL’Jl 1
i
Tl,fl' T 1,10 k = ki + ko.
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Optimal tests for individual hypotheses testing h,-1J

The constants C;, (; are defined from conditional distribution of statistic
T1,1 under conditions Ty + T_1 1 = k, T1,—1 = k3 and assumption that
the hypothesis h}d- is true. One has
P(Tii=ki|Tii+T-1-1=k, T1 1 =k3) =
P(Tii =k, T_1,—1=k—ki, T1—1 = ka)
P(Tig+ T_1, 1=k T1_1=k3)

k
P(Toa+T =k T a=k)=> P(Tia=iT 1 1=k-i,T1 1=k
i=0
= ik P y(pritp1 1) (1—pri—p1-1-p
k3!(n—k3—k)!k! 1,—1\P1,1 —1,—1 1,1 —1,—1 1,—1

)n—kg—k

P(Tii=hki, T_1,—1=k—ki, T1,—1 =k3) =
n! K ks k—k
= 1- —p_1_1—Pp1
kilks!(k — ko)!(n — ks — k)!P171P1,_1P_17_1( PL1—=p-1,-1—P1,—1

)n—k3—l
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Optimal tests for individual hypotheses testing h,-1J

P(Tii=k|Ti1+ T-1,—1=k Ti—1=k3) =

k1 k_kl
—Ch < P11 ) ( p—-1,-1 )
K P11+ p-1,-1 P11+ p-1,-1

Under h}J one has p11 = p—1,—1. Optimal test is

1 _ { O, Cl(k) < kl < Cz(k) (24)

1, else

where Ci(k) and Cy(k) are defined by

M\Q

Gi(k) = max{C : (5 ) Z

N\Q

Go(k) = min{C : ( Z Cj
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p-values

The p-value of the test can be calculated by

k1
- 2m|n{ Z ci ( %)k S cl) (25)
i=0

i=ki

On the same way one can construct the uniformly most powerful test for
the hypothesis h,?j. The test can be written as

2 _{ 0, Gi(m) < ks < Go(m)

N, else (26)

where m = k3 + ks The p-value of the test (26) can be calculated by

k3
_2m|n{ Z (;)mgc,;} (27)

i=k3

Note that by construction all individual tests are distribution free uniformly
most powerful tests of Neymann structure.
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Rejection graph

We select 100 stocks from US market with a highest trading volume
during the period of 8 years, from 01.01.2006 to 31.12.2013. We compare
results for different periods of observations: 8 periods of 1 year each, 4
periods of 2 years each, 2 periods of 4 years each and 1 period of 8 years.
Significance level of multiple tests are set to « = 0,1 and & = 0,5. To
describe the results of multiple testing we introduce a rejection graph.
Edge (i, /) is included in the rejection graph for hypotheses h! iff the
hypothesis h,-lJ is rejected by multiple testing procedure. Nodes of the
rejection graph are vertices adjacent to these edges.
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Rejection graph

The Figure illustrates the structure of the rejection graph for the year
2006, o = 0.5, US market.
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