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General problem

X = (X1,X2, . . . ,XN)-random vector.

f (x) ∈ {f (x , θ); θ ∈ Ω}
Hi : θ ∈ Ωi ,Ωi ⊂ Ω, i = 1, . . . , L

x(1), x(2), . . . , x(n) - sample of finite size from sample space
X = RN×n.

Construct δ(x) : X → D,D = {d1, d2, . . . , dL}
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Random variable network

Random variable network is a pair (X , γ):

X = (X1, . . . ,XN)−random vector,

γ−measure of association.

Applications:

Example 1 - market network (nodes correspond to the stocks,
behaviour of stocks is described by returns (portfolio theory). Popular
network in stock market:=Pearson network: γPi ,j = ρi ,j =

σi,j√
σi,iσj,j

Example 2 - biological (gene experssion) network. Popular network in

biology:=Partial correlation network: γparti ,j = ρi ,j = −σi,j
√
σi,iσj,j
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Network model

Any random variable network generate network model.

Complete weighted graph G = (V ,E , γ).

Nodes of the network model - elements of the system.

Weights of edges in the network model are given by some measure γ
of connection between elements of the system.

Network structures - subgraphs of the network model.
G ′ = (V ′,E ′) : V ′ ⊆ V ,E ′ ⊆ E

Network structures contain useful information on the network model.

Popular network structures for market network: maximum spanning
tree (MST), market graph (MG), cliques and independent sets of MG.

Popular network structures for gene expression network: Gaussian
Graphical Model (concentration graph).
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References

Market network

Mantegna(1999) - MST for market network.

Pardalos (2003) - MG for market network.

Now there are around thousand papers.

Main purpose - network structure calculation by numerical algorithms
to real data and interpretation of obtained results. Examples of
interpretation.

No uncertainty analysis of obtained results.

Gene-expression network.

Lauritzen(1996), Drton & Perlman(2007)

Thousands of publications.

Numerical algorothms. Only FWER under control.

No results for finite sample size.
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Our approach. Multiple decision approach

(X , γ)-random variable network, G = (V ,E , γ)-generated network
model.

G ′ = (V ′,E ′) : V ′ ⊆ V ,E ′ ⊆ E - network structure.

X has a distribution from class K = {(f (x , θ), θ ∈ Ω)}.
Let S = (si ,j), S ∈ G - set of all adjacency matrices.

HS : θ ∈ ΩS -hypothesis that network structure has adjacency matrix
S , S ∈ G1 ⊆ G.

Observation X (t) = (X1(t), . . . ,XN(t)), t = 1, . . . , n

Problem: construct statistical procedure δ(x) with appropriate
properties to identify network structure from observations i.e. to

select one from disjoint hypotheses HS .
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Quality of statistical procedures for network structure
identification

Statistical procedure δ(x) =
{

dQ , x ∈ DQ⋃
Q∈G DQ = X is the partition of sample space.

δ(x) = dQ - decision, that network structure has adjacency matrix
Q,Q ∈ G.

w(HS ; dQ) = w(S ,Q) - loss from the decision dQ when the
hypothesis HS is true, w(S , S) = 0,S ∈ G.

Risk function (uncertainty) of statistical procedure δ(x) is defined by

Risk(S , θ; δ) =
∑
Q∈G

w(S ,Q)Pθ(δ(x) = dQ), θ ∈ ΩS , S ∈ G

Pθ(δ(x) = dQ) - the probability that decision dQ is taken while the
true decision is dS .
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Main results

optimal procedures for network structures identification.

statistical procedures for network structures identification with
invariant risk function.
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Procedures with invariant risk function.

Part 1. Procedures with invariant risk function.

Petr Koldanov (NRU HSE) Statistical procedures for network structures identification
Moscow, Russia, April 26, 2017 9 /

70



Procedure with invariant risk function.

In practical applications it can be supposed that distribution of X from
K = {f (x ; θ), θ ∈ Ω}
Properties of statistical procedures for network structures identification
may depend on distribution of X ∈ K.
Problem: construct statistical procedure with invariant risk function for
network structure identification.

Definition: statistical procedure δ has invariant risk function in class
K, if risk function Risk(S , θ, δ) does not depend from distribution of

vector X from class K for any S .
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Class K of elliptical distributions

Most common models of stock market is the class of elliptical distributions.

f (x ; θ) = |Λ|−
1
2 g{(x − µ)′Λ−1(x − µ)} (1)

where θ = (µ,Λ, g), µ ∈ RN , Λ - symmetric positive definite matrix,
g(x) ≥ 0, and ∫ ∞

−∞
. . .

∫ ∞
−∞

g(y ′y)dy1 . . . dyN = 1

In the following we assume that µ is known.
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Pearson correlation network, sign similarity network

Let K(Λ) be the subclass of class of elliptical distributions with fixed Λ.

Pearson correlation network (X , γp) γPi ,j =
λi,j√
λi,iλj,j

. Then network

models, generated by (X , γp),X ∈ K(Λ), coincide.

Sign similarity network (X , γSg )

γSgi ,j = pi ,j = P((Xi − E (Xi ))(Xj − E (Xj) > 0).

Lemma 1.1: Probabilities γSgi ,j = P((Xi − E (Xi ))(Xj − E (Xj) > 0) are
defined by the matrix Λ and does not depend from g .
Then network models, generated by (X , γSg ),X ∈ K(Λ), coincide.
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Threshold graph (TG) identification

We are looking for statistical procedures with invariant risk function
in the class K(Λ) i.e. the risk function (for any S) does not depend

from g .

Individual edge hypotheses:

hij : γij ≤ γ0 vs kij : γij > γ0.

Individual tests:

ϕij(X ) =

{
1, tij(X ) > cij
0, tij(X ) ≤ cij

Multiple testing statistical procedure: statistical procedure, based on
statistics of individual tests.

Single step procedures (Bonferroni and others)

Stepwise procedures (Holm, Hochberg and others)
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Pearson correlation network

Individual hypotheses (Pearson measure): hij : ρi ,j ≤ ρ0 vs kij : ρi ,j > ρ0

ϕP
i ,j(xi , xj) =


1,

ri,j−ρ0√
1−r2

i,j

> cSti ,j

0,
ri,j−ρ0√

1−r2
i,j

≤ cSti ,j
UMP in the class of invariant

tests

cSti ,j is (1− αij)-quantile of Student distribution tn−1,

αi ,j is the given significance level for individual edge i , j test,

ri ,j -sample correlation.
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Pearson correlation network. Multiple testing procedures

Single step rules

∂P(x) =


0, ϕP

1,2(x), . . . , ϕP
1,N(x)

ϕP
2,1(x), 0, . . . , ϕP

2,N(x)

. . . . . . . . . . . .
ϕP
N,1(x), ϕP

N,2(x), . . . , 0

 .

Stepwise rules (Holm, Hochberg procedures with individual tests ϕP
i ,j)

with p-values of individual tests.
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Sign similarity network

γSgi ,j = pi ,j = P((Xi − E (Xi ))(Xj − E (Xj) > 0)

Individual hypotheses: hij : pi ,j ≤ p0 vs kij : pi ,j > p0

Ii ,j(t) =

{
1, sign(xi (t)− µi ) = sign(xj(t)− µj)
0, else

Define T Sg
i ,j =

∑n
t=1 Ii ,j(t),

ϕSg
i ,j =

{
0, T Sg

i ,j ≤ ci ,j

1, T Sg
i ,j > ci ,j

,

where ci ,j is defined from
equation:

∑n
k=ci,j

n!
k!(n−k)! (p0)k(1− p0)n−k ≤ α
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Sign similarity network

Multiple decision single step (Bonferroni type) procedure

δSg (x) =


0, ϕSg

1,2(x), . . . , ϕSg
1,N(x)

ϕSg
2,1(x), 0, . . . , ϕSg

2,N(x)

. . . . . . . . . . . .

ϕSg
N,1(x), ϕSg

N,2(x), . . . , 0

 .

Holm, Hochberg procedures with the use of statistics T Sg
i ,j
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Statistical procedure with invariant risk function

Theorem 1.1 Let random vector X −K(Λ).Then

1 single step statistical procedure δSg for TG identification

2 Holm statistical procedure δSgH for TG identification

3 Hochberg statistical procedure δSgHg for TG identification

4 Kruskal procedure δSg for MST identification

have invariant risk function i.e. risk of these procedures does not depend
from g .

Proof.
a

aKalyagin V. A., Koldanov A. P., Petr A. Koldanov. Robust identification in
random variables networks // Journal of Statistical Planning and Inference.
2017. Vol. 181, P. 30-40.
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Statistical procedure with invariant risk function

Lemma 1.2 Let random vector (X1, . . . ,XN)− EC (µ,Λ, g). Then the
probabilities

p(i1, . . . , iN) := PΛ(i1(X1 − µ1) > 0, . . . , iN(XN − µN) > 0)

are defined by the matrix Λ and does not depend on the function g for any
ik ∈ {−1, 1}, k = 1, 2, . . . ,N.
Lemma 1.3 Let random vector (X1, . . . ,XN)− EC (µ,Λ, g).Then joint

distribution of the statistics T Sg
i ,j (i , j = 1, 2, . . . ,N; i 6= j) are defined by

the matrix Λ and does not depend on the function g .
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Comparison

1 Statistical procedures, based on sample Pearson correlations, have not
invariant risk function in the class EC (µ,Λ, g) with fixed Λ.

2 Procedures, based on sample signs correlations, have invariant risk
function in the class EC (µ,Λ, g) with fixed Λ.
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Figure: 2: Risk function for MG, ρ0 = 0.64. Left - n = 400, star line - δP , line -
δS , right: circle - γ = 1, δP ; diamond - γ = 0, 5, δP ; square - γ = 0, δP , line -
δS .The model is the mixture distribution consisting of multivariate normal
distribution and multivariate Student distribution with 3 degree of freedom.
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Advantages of sign similarity network

Sign similarity network:

easy to interpretation;

statistical procedures in sign similarity network have invariant risk
function;

statistical procedures in sign similarity network can be applied for
network structure identification in other network models.
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Comparison of Pearson correlations and sign similarity
networks

If X − EC (µ,Λ, g) then network structures in Pearson correlation network
are connected to network structures in sign similarity network.
Theorem 1.2 Let vector X = (X1, . . . ,XN)− EC (µ,Λ, g). Then:

γSgi ,j =
1

2
+

1

π
arcsin

λi ,j√
λi ,iλj ,j

=
1

2
+

1

π
arcsin γPi ,j (2)

Corollary 1: MST in network model generated by Pearson correlation
network coincide with MST in network model generated by sign similarity
network.
Corollary 2: TG with threshold ρ0 in network model generated by Pearson
correlation network coincide with TG with threshold p0 = 1

2 + 1
π arcsin(ρ0)

in network model generated by sign similarity network.
γPi ,j = 0.1⇔ γSgi ,j = 0.53; γPi ,j = 0.6⇔ γSgi ,j = 0.705
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Optimal statistical procedure.

Part 2. Optimal statistical procedure.
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Optimal statistical procedure.

Definition: Statistical procedure δ is optimal if
R(S , θ, δ) ≤ R(S , θ, δ′), ∀S , ∀θ ∈ ΩS , ∀δ′ ∈ D.

Restrict attention to W-unbiased statistical procedures

Eθw(θ, δ) ≤ Eθw(θ′, δ),∀θ, θ′ ∈ Ω

R(S , θ, δ) ≤ R(S ′, θ, δ), ∀S ,S ′, θ ∈ ΩS
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Gaussian Graphical Model selection

Gaussian Graphical Model identification problem. Identify the
concentration graph. The method can be applied to other problem.

Concentration graph - edge (i , j) is included in the concentration
graph if random variables Xi and Xj are conditionally dependent.

Model selection: identify concentration graph by observations.
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Random variables network

Random variables network settings.

(X , γ).

X = (X1, . . . ,XN)− N(µ,Σ)

Measure of association - partial correlation γi ,j = ρi ,j

Petr Koldanov (NRU HSE) Statistical procedures for network structures identification
Moscow, Russia, April 26, 2017 26 /

70



Multiple decision approach

Let xi (t), i = 1, . . . ,N, t = 1, . . . , n be a sample from multivariate normal
distribution.
Let G ∈ G-adjacency matrix, G-set of all adjacency matrices.

HG : ρij = 0 if gi ,j = 0, ρij 6= 0 if gi ,j = 1

Problem: construct optimal in the class of unbiased multiple
decision statistical procedure to select one from disjoint hypothesis

HG
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Individual hypotheses

Individual hypotheses

hi ,j : ρi ,j = 0 vs ki ,j : ρi ,j 6= 0

According to Lauritzen S.L.1

ρi ,j =
−σi ,j√
σi ,iσj ,j

Then
hi ,j : σi ,j = 0 vs ki ,j : σi ,j 6= 0

1Lauritzen S.L.(1996) Graphical model. Oxford university press.
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Statistical procedure

Let ϕi ,j(x) tests of individual hypotheses.
Define

Φ(x) =


0, ϕ1,2 . . . ϕ1,N

ϕ1,2 0, . . . ϕ2,N

. . . . . . . . . . . .
ϕ1,N ϕ2,N . . . 0


Define δ(x) = dG if Φ(x) = G

Petr Koldanov (NRU HSE) Statistical procedures for network structures identification
Moscow, Russia, April 26, 2017 29 /

70



Existing statistical procedures. Single step procedure.3

Test of individual edge inclusion is

ϕij(x) =

{
1, |z ij | > cij
0, |z ij | ≤ cij

where z ij = 1
2 ln

(
1+r ij

1−r ij

)
, r ij = −s ij√

s ii s jj
-sample partial correlation,

s ij -elements of matrix S−1.
cij from 2 Pρij=0(|z ij | > cij) = α
Properties of the associated multiple decision statistical procedure were
not investigated.

2Anderson T.W.(2003) An introduction to multivariate statistical analysis.3-d
edition. Wiley-Interscience, New York

3Edwards, D.M.(2000) Introduction to Graphical Modeling. New York, Springer.
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Stepdown procedure.4

Let pk are p-values of tests ϕij(x) k = 1, . . . , N(N−1)
2 . Order

p(1) ≤ p(2) ≤ . . . ≤ p(M−1) ≤ p(M) and let h(1), h(2), . . . , h(M) be the
corresponding hypotheses.

Step 1: If p(1) ≥ α
M then the decision is : accept all hypotheses h(i),

i = 1, 2, . . . ,M and stop, else reject hypothesis h(1) and go to the
step 2.

Step 2: If p(2) ≥ α
M−1 then the decision is : accept all hypotheses

h(i), i = 2, . . . ,M and stop, else reject hypothesis h(2) and go to the
step 3.

. . .

Step M: If |pM | ≥ α then the decision is: accept hypothesis h(M) else
reject all hypotheses.

Properties - control of FWER.
Type II error are not under control.

4M. Drton, M.D. Perlman.(2007) Multiple testing and error control in Gaussian
graphical model selection. Statistical Science, 22,3, 430-449.
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Our approach. Additive loss function

l ′i ,j -loss from false inclusion of edge (i , j)
l ′′i ,j -loss from false non inclusion of the edge (i , j) i , j = 1, 2, . . . ,N; i 6= j .

Loss function w(S ,Q) is additive5 if:

w(S ,Q) =
∑

(i ,j):si,j=0,qi,j=1

l ′i ,j +
∑

(i ,j):si,j=1,qi,j=0

l ′′i ,j (3)

Theorem 2.16 Let the loss function w be defined by (3), and l ′i ,j = l ′,
l ′′i ,j = l ′′, i 6= j , i , j = 1, 2, . . . ,N. Then

Risk(S , θ; δ) =
∑
i ,j

r(si ,j , ϕi ,j) = l ′Eθ[YI (S , δ)] + l ′′Eθ[YII (S , δ)], θ ∈ ΩS

where YI (S , δ), YII (S , δ) are the numbers of Type I and Type II errors by δ
when the true decision is dS .

5E.L.Lehmann (1957) A theory of some multiple decision problems.I
Ann.Math.Stat.,28,1-25, 547-572.

6V.A. Kalyagin, A.P. Koldanov,P.A. Koldanov, P.M. Pardalos. Optimal statistical
decision for Gaussian graphical model selection.arXiv:1701.02071v1
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UMPU test for individual hypotheses

Theorem 2.2 Optimal in the class of unbiased statistical level α test for
individual edge inclusion hij : ρi ,j = 0 against kij : ρi ,j 6= 0 is:

ϕopt
ij =


0,

|asij− b
2
|√

b2

4
+ac

< 1− 2cbetaα

1,
|asij− b

2
|√

b2

4
+ac

> 1− 2cbetaα

(4)

where det(skl) = −as2
ij + bsij + c , cbetaα is the α-quantile of Beta

distribution. (a = a({skl}), b = b({skl}), c = c({skl)}).
7

7Koldanov P., Koldanov A. P., Kalyagin V. A., Pardalos P. M. Uniformly most
powerful unbiased test for conditional independence in Gaussian graphical model //
Statistics & Probability Letters, 2017, Vol. 122, P. 90-95.
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Wishart distribution

S =


s11 s12 . . . s1N

s21 s22 . . . s2N

. . . . . . . . . . . .
sN1 sN2 . . . sNN

 (5)

f ({sk,l}) =
[det(σkl)]n/2 × [det(skl)](n−N−2)/2 × exp[−(1/2)

∑
k

∑
l sk,lσ

kl ]

2(Nn/2) × πN(N−1)/4 × Γ(n/2)Γ((n − 1)/2) · · · Γ((n − N + 1)/2)

if the matrix (skl) is positive definite, and f ({skl}) = 0 otherwise. Let I be
the interval of positive definiteness of the matrix. One has for a fixed i < j :

f ({skl}) = C ({σkl})× exp[−σijsij −
1

2

∑
(k,l) 6=(i ,j);(k,l)6=(j ,i)

sklσ
kl ]× h({skl})
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UMPU test

UMPU test for testing hypothesis

hij : ρi ,j = 0 vs kij : ρi ,j 6= 0

has the Neyman structure and can be written as

δi ,j({skl}) =

{
∂i ,j , if c1({skl}) ≤ sij ≤ c2({skl}), (k , l) 6= (i , j)

∂−1
i ,j , if sij < c1({skl}) sij > c2({skl}), (k , l) 6= (i , j)

(6)
where constants are defined from∫

I∩[c1;c2] exp[−σij0 sij ][det(skl)](n−N−2)/2dsij∫
I exp[−σij0 sij ][det(skl)](n−N−2)/2dsij

= 1− αi ,j , (7)∫
I∩[−∞;c1]

sij exp[−σij0 sij ][det(skl)](n−N−2)/2dsij+

+

∫
I∩[c2;+∞]

sij exp[−σij0 sij ][det(skl)](n−N−2)/2dsij =

= αi ,j

∫
I sij exp[−σij0 sij ][det(skl)](n−N−2)/2dsij ,

(8)
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UMPU test.

Under σi ,j0 = 0 equation (7) is∫
I∩[c1;c2][det(skl)](n−N−2)/2dsij∫

I [det(skl)](n−N−2)/2dsij
= 1− αi ,j (9)

Let K = n−N−2
2 , x = sij . Then∫ d

f (ax2 − bx − c)Kdx = (−1)KaK (x2 − x1)2K+1
∫ d−x1

x2−x1
f−x1
x2−x1

uK (1− u)Kdu

Equation (9) can be written as∫ c2−x1
x2−x1

c1−x1
x2−x1

uK (1−u)Kdu = (1−α)

∫ 1

0
uK (1−u)Kdu = (1−α)

Γ(K + 1)Γ(K + 1)

Γ(2K + 2)

(10)
Acceptance region is: cbetaα ≤ si,j−x1

x2−x1
≤ 1− cbetaα or

2cbetaα − 1 ≤ asi,j−b/2√
b2/4+ac

≤ 1− 2cbetaα
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UMPU test is equivalent to partial correlation test

Sample partial correlation test for testing hypothesis ρi ,j = 0:

ϕi ,j =

{
0, |r i ,j | ≤ ci ,j
1, |r i ,j | > ci ,j

(11)

where ci ,j is (1− α/2)-quantile of the distribution with density function

f (x) =
1√
π

Γ(n − N + 1)/2)

Γ((n − N)/2)
(1− x2)(n−N−2)/2, −1 ≤ x ≤ 1

Theorem 2.3 Sample partial correlation test (11) is equivalent to UMPU
test (4) for testing hypothesis ρi ,j = 0 vs ρi ,j 6= 0.
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Equivalence of partial correlation and UMPU tests.

It is sufficient to prove that

S i ,j

√
S i ,iS j ,j

=
asi ,j − b

2√
b2

4 + ac
(12)

Let A = (ak,l) be an (N × N) symmetric matrix. Fix i < j ,
i , j = 1, 2, . . . ,N. Denote by A(x) the matrix obtained from A by
replacing the elements ai ,j and aj ,i by x . Denote by Ai ,j(x) the cofactor of
the element (i , j) in the matrix A(x). Then the following statement is true
Lemma 2.1 One has [detA(x)]′ = −2Ai ,j(x).
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Equivalence of partial correlation and UMPU tests.

det(S(x)) = −ax2 + bx + c → [det S(x)]′ = −2ax + b = −2S i ,j(x)

i.e. S i ,j(x) = ax − b/2.

x = si ,j → asi ,j −
b

2
= S i ,j

It is sufficient to prove that
√
S i ,iS j ,j =

√
b2

4 + ac.

Let x2 = b+
√
b2+4ac
2a be the maximum root of equation ax2 − bx − c = 0.

Then ax2 − b
2 =

√
b2

4 + ac.
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Equivalence of partial correlation and UMPU tests.

Consider

r i ,j(x) =
−S i ,j(x)√
S i ,iS j ,j

According to Silvester determinant identity:

S{i ,j},{i ,j} det S(x) = S i ,iS j ,j − [S i ,j(x)]2

Therefore for x = x1 and x = x2 one has

S i ,iS j ,j − [S i ,j(x)]2 = 0

For x = x1 and x = x2 one has r i ,j(x) = ±1. The equation
S i ,j(x) = ax − b

2 implies that when x is increasing from x1 to x2 then
r i ,j(x) is decreasing from 1 to −1. That is r i ,j(x2) = −1, i.e.
ax2 − b

2 =
√
S i ,iS j ,j . Therefore

√
S i ,iS j ,j =

√
b2

4
+ ac
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Multiple decision statistical procedure

Φopt(x) =


0, ϕopt

12 (x), . . . , ϕopt
1N (x)

ϕopt
21 (x), 0, . . . , ϕopt

2N (x)
. . . . . . . . . . . .

ϕopt
N1 (x), ϕopt

N2 (x), . . . , 0

 . (13)

Define multiple statistical procedure for concentration graph identification

δopt(x) = dG , iff Φopt(x) = G (14)

Theorem 2.4 Let the loss function w be defined by (3) and

αi ,j =
l ′′i ,j

l ′i ,j + l ′′i ,j
, i 6= j , i , j = 1, 2, . . . , p. (15)

Then the procedure δopt is optimal multiple decision statistical procedure
for Gaussian graphical model selection in the class of w -unbiased
procedures. 8

8V.A. Kalyagin, A.P. Koldanov, P.A. Koldanov, P.M.Pardalos Optimal statistical
decision for Gaussian graphical model selection.
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Conclusions of part 2

UMPU test for testing hypothesis hi ,j : ρi ,j = 0 vs ki ,j : ρi ,j 6= 0 is
constructed.

Statistical procedure Φopt(x) is optimal unbiased under additive loss
function.

Existing multiple single step procedure is asymptotically optimal for
additive loss function.

Multiple stepdown procedure is not unbiased for additive loss function
but control probability of at least one incorrectly included edge and
designed to another loss function.
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Resume

1. The general approach to network structures identification in the
framework of random variable network is proposed:

concept of random variable network;
problems of network structures identification as multiple decision
problems;
statistical uncertainty - risk function;
linear combination of expectations of type I and type II errors .

2. Statistical procedures for network structures identification with
invariant risk function in the class of elliptically contoured
distributions are constructed:

the probability of sign coincidence;
concept of sign similarity network;
sign identification statistical procedures;
network structures (TG, MST) identification statistical procedures have
invariant risk function;
pearson correlation network;
conditions of optimality.
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Resume

3. Optimal statistical procedure for GGM identification is
constructed.

UMPU Neyman structure test.
UMPU test and ML test.
Additive loss function.
Unbiased multiple decision procedure.
Optimal unbiased multiple decision procedure for GGM.

4. Properties of standard procedures are investigated:

Threshold graph identification problem
Pearson sample correlation
Invariant procedures
Additive loss
Restricted class of procedures
Optimality
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Resume

5. Properties of statistical procedure for nodes selection are
investigated.

UMPU Neyman structure test for expectations of components of
random vector with multivariate normal distribution.
Additive loss function.
Unbiased multiple procedure.
Optimal unbiased multiple decision procedure.
Risk function does not depend from correlation matrix.

6. Application to market network analysis

Network structures comparison.
Three-steps procedure for portfolio selection.
Testing of the symmetry conditions.
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Optimality of ∂P

Theorem

Let loss function w be additive, individual test statistics ti ,j depends only
on observations Xi (t),Xj(t) and vector X = (X1, . . . ,XN) has a
multivariate normal distribution. Then for single step statistical procedure
∂P for threshold graph identification (ρ0 = 0) in Pearson correlation
network one has Risk(S , ∂P) ≤ Risk(S , ∂) for any adjacency matrix S and
any w−unbiased δ.

Theorem

Let loss function w be additive, individual test statistics ti ,j depends only
on observations Xi (t),Xj(t) and vector X = (X1, . . . ,XN) has a
multivariate normal distribution. Then for single step statistical procedure
∂P for threshold graph identification in Pearson correlation network one
has Risk(S , ∂P) ≤ Risk(S , δ) for any adjacency matrix S and any invariant
δ.

Assumption of normality can not be removed.
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Optimality of δSg

Theorem

Let loss function w be additive, individual test statistics ti ,j depends only
on Ii ,j(t), E (Xi ) are known ∀i = 1, . . . ,N and distribution of vector
X = (X1, . . . ,XN) satisfy the symmetry condition below.
Then for single step statistical procedure δSg for threshold graph
identification in sign similarity network one has Risk(S , δSg ) ≤ Risk(S , δ)
for any adjacency matrix S and any w−unbiased δ.

Symmetry condition:

pi ,j1,1 = pi ,j−1,−1; pi ,j1,−1 = pi ,j−1,1

pi ,j1,1 = P(Xi − E (Xi ) > 0,Xj − E (Xj) > 0)

pi ,j−1,−1 = P(Xi − E (Xi ) ≤ 0,Xj − E (Xj) ≤ 0)

pi ,j−1,1 = P(Xi − E (Xi ) ≤ 0,Xj − E (Xj) > 0)

pi ,j1,−1 = P(Xi − E (Xi ) > 0,Xj − E (Xj) ≤ 0)
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Proof of lemma 2

Lemma 2. Probabilities
p(i1, i2, . . . , iN) := PΛ(i1X1 > 0, i2X2, . . . , iNXN > 0) are defined by the
matrix Λ and does not depend on the function g .
Proof

P(i1X1 > 0, i2X2, . . . , iNXN > 0) =

∫
ikxk>0,k=1,2,...,N

|Λ|−
1
2 g(x ′Λx)dx1 . . . dxN

(16)
Matrix Λ is positive definite, therefore there exists a matrix C such that
C ′ΛC = I . Put y = C−1x . Then x = Cy and∫

ikxk>0,k=1,2,...,N
|Λ|−

1
2 g(x ′Λx)dx1 . . . dxN =

∫
D
g(y ′y)dy1 . . . dyN (17)

where D is given by

0 < ik(ck,1y1 + ck,2y2 + . . .+ ck,NYN) <∞, k = 1, 2, . . . ,N (18)
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Proof of lemma 2

Vector y can be written in polar coordinates as:

y1 = r sin(θ1)
y2 = r cos(θ1) sin(θ2)
y3 = r cos(θ1) cos(θ2) sin(θ3)
. . .
yN−1 = r cos(θ1) cos(θ2) . . . cos(θN−2) sin(θN−1)
yN = r cos(θ1) cos(θ2) . . . cos(θN−2) cos(θN−1)

(19)

where −π
2 ≤ θi ≤

π
2 , i = 1 . . . ,N − 2;−π ≤ θN−1 ≤ π, 0 ≤ r ≤ ∞ The

Jacobian of the transformation (19) is

rN−1 cosN−2(θ1) cosN−3(θ2) . . . cos(θN−2)

In polar coordinates region (18) is transformed to the region D ′ × R1
+

where D ′ given by (k = 1, 2, . . . ,N):

0 < ik(c11 sin(θ1) + . . .+ c1N cos(θ1) cos(θ2) . . . cos(θN−2) cos(θN−1)) <∞
(20)
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Proof of lemma 2

Then p(i1, i2, . . . , iN) can be written as∫
D′

∫ ∞
0

rN−1 cosN−2(θ1) cosN−3(θ2) . . . cos(θN−2)g(r2)drdθ1 . . . dθN−1 =

=

∫
D′

cosN−2(θ1) cosN−3(θ2) . . . cos(θN−2)dθ1 . . . dθN−1

∫ ∞
0

rN−1g(r2)dr

It is known that ∫ ∞
0

rN−1g(r2)dr =
1

C (N)

where

C (N) =

∫ π
2

−π
2

. . .

∫ π
2

−π
2

∫ π

−π
cosN−2(θ1) cosN−3(θ2) . . . cos(θN−2)dθ1 . . . dθN−1

Region D ′ is defined by the matrix Λ and does not depend on the function
g . Then p(i1, i2, . . . , iN) are defined by the matrix Λ and does not depend
on the function g .
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Proof of lemma 3

Lemma 3. Joint distribution of the statistics T Sg
i ,j are defined by the

matrix Λ and does not depend on the function g .
Proof.

T Sg
i ,j =

n

2
+

1

2

n∑
t=1

sign(Xi (t))sign(Xj(t))

from the lemma 2 - joint distribution of the
sign(X ) = (sign(X1), sign(X2), . . . , sign(XN)) is defined by the matrix
Λ and does not depend on the function g .

random vectors sign(X (t)), t = 1, 2, . . . , n are independent and
identically distributed.

then the joint distribution sign(Xi (t)), i = 1, 2, . . . ,N, t = 1, 2, . . . , n
is defined by the matrix Λ and does not depend on the function g .

then joint distribution of statistics T Sg
i ,j , i , j = 1, 2, . . . ,N; i < j does

not depend on the function g .
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Data for stability

1 We consider the real-world data from USA stock market. We take
N = 83 largest by capitalization companies and consider the daily
returns of these companies for the period from 03.01.2011 up to
31.12.2013, total 751 observations.

2 We calculate correlation matrix Σ by this data and consider the
matrix Σ as true matrix. Structures of the matrix are considered as
true structures.

3 We simulate a certain number of observation (n) using the mixture
distribution. The mixture distribution is constructed as follow -
random vector X = (X1, . . . ,XN) takes value from N(0,Σ) with
probability γ and from t3(0,Σ) with probability 1− γ.

4 We estimate the matrix Σ using the chosen association measure
(Pearson ρi ,j or probability pi ,j).

5 We construct the sample threshold graph basing on the estimation
and compare it to the true threshold graph.
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Appendix: Proof of the Theorem 2

Theorem 2: Let vector X = (X1, . . . ,XN) has elliptical distribution (1).
Then:

γSgi ,j =
1

2
+

1

π
arcsin

λi ,j√
λi ,iλj ,j

=
1

2
+

1

π
arcsin γPi ,j (21)

Prove: It is known E (X ) = µ. Without loss of generality let µ = 0. Define
matrix A = (ai ,j) = Λ−1. Density of random vector (Xi ,Xj) has the form:

f (xi , xj) = |A−1|−
1
2 g(ai ,ix

2
i + 2ai ,jxi (xj + aj ,jx

2
j )

The prove is based on the following lemma:
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Proof of the Theorem 2

Lemma 1: Probability γSgi ,j = P(XiXj > 0) defined by the matrix Λ and
does not depend from g .

Prove: Matrix Ai ,j =

(
ai ,i ai ,j
ai ,j aj ,j

)
is positive definite, then exists

C =

(
ci ,i ci ,j
cj ,i cj ,j

)
such that C ′AC =

(
1 0
0 1

)
.

Define U = ci ,iXi + ci ,jXj , V = cj ,iXi + cj ,jXj . Then random vector
(U,V ) has distribution with density f (u, v) = g(u2 + v2). Then

P(Xi > 0,Xj > 0) = P(
cii
cjj

V < U <
cij
cjj

V ) + P(
cij
cjj

V < U <
cii
cjj

V ) =

=

{ arctg(cij/cjj )−arctg(cii/cjj )
2π ,

cij
cjj
> cii

cjj
arctg(cii/cjj )−arctg(cij/cjj )

2π ,
cij
cjj
< cii

cjj

Then P(Xi > 0,Xj > 0) does not depend from g . Similarly
P(Xi < 0,Xj < 0) does not depend from g . Then
P(XiXj > 0) = P(Xi > 0,Xj > 0) + P(Xi < 0,Xj < 0) does not depend
from g .
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Holm procedure

Step 1: If maxi ,j=1,...,N Ti ,j ≤ cH1 then accept all hypotheses
hi ,j , i , j = 1, 2, . . . ,N, else if maxi ,j=1,...,N Ti ,j = Ti1,j1 then reject
hypothesis hi1,j1 and go to step 2.

. . .

Step K: Let I = {(i1, j1), (i2, j2), . . . , (iK−1, jK−1)} be the set of
indexes of previously rejected hypotheses. If max(i ,j)/∈I Ti ,j ≤ cHK then
accept all hypotheses hi ,j , (i , j) /∈ I , else if max(i ,j)/∈I Ti ,j = TiK ,jK

then reject hypothesis hiK ,jK and go to step (K+1).

. . .

Step M: Let I = {(i1, j1), . . . , (iM−1, jM−1)} be the set of indexes of
previously rejected hypotheses. Let (iM , jM) /∈ I . If TiM ,jM ≤ cHM then
accept the hypothesis hiM ,jM , else reject hypothesis hiM ,jM (reject all
hypotheses).

For a given significance level α the critical values cHK for Holm procedure

are given by Fγ0(cHK ) = 1− α

M − K + 1
, K = 1, 2, . . . ,M
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Hochberg procedure

Step 1: If Ti1,j1 = mini ,j=1,...,N Ti ,j > cHg1 then reject all individual
hypotheses hi ,j , else accept hypothesis hi1,j1 and go to step 2.

. . .

Step K: Let I = {(i1, j1), . . . , (iK−1, jK−1)} be the set of indexes of
previously accepted hypotheses. If
TiK ,jK = mini ,j=1,...,N;(i ,j)/∈I Ti (x) > cHgK then reject all hypotheses
hi ,j , (i , j) /∈ I , else accept hypothesis hiK ,jK and go to step (K+1).

. . .

Step M: Let I = {(i1, j1), . . . , (iM−1, jM−1)} be the set of indexes of

previously accepted hypotheses. Let (iM , jM) /∈ I . If TiM ,jM > cHgM
then reject the hypothesis hiM ,jM else accept the hypothesis hiM ,jM
(accept all hypothesis).

For a given significance level α the critical values cHgK for Hochberg

procedure are given by Fγ0(cHgK ) = 1− α

K
, K = 1, 2, . . . ,M
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Role of measure of association

Therefore the following statistical procedure for threshold graph
identification in Pearson correlation network will be distribution free:

fix a threshold ρ0.

Take δ a threshold graph identification statistical procedure in sign
similarity network distribution free in the class of elliptically contoured
distributions.

Apply statistical procedures δ for threshold graph identification with
the threshold

p0 =
1

2
+

1

π
arcsin ρ0

.

Consider obtained graph as the threshold graph in Pearson correlation
network.

In particular one can construct single step, Holm and Hochberg
distribution free statistical procedures for threshold graph identification in
Pearson correlation network.
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Symmetry conditions. Tests for individual hypotheses

Individual hypotheses:
hi ,j1 : pi ,j1,1 = pi ,j−1,−1 vs k i ,j1 : pi ,j1,1 6= pi ,j−1,−1; i , j = 1, . . . ,N; i 6= j

Statistics T i ,j
1,1 =

∑n
t=0 T

i ,j
1,1(t), T i ,j

−1,−1 =
∑n

t=0 T
i ,j
−1,−1(t),

T i ,j
1,1(t) =

{
1, Xi (t) ≥ 0,Xi (t) ≥ 0
0, else

T i ,j
−1,−1(t) =

{
1, Xi (t) < 0,Xi (t) < 0
0, else
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Symmetry conditions. Tests for individual hypotheses

Individual hypotheses:
hi ,j2 : pi ,j1,−1 = pi ,j−1,1 vs k i ,j2 : pi ,j1,−1 6= pi ,j−1,1; i , j = 1, . . . ,N; i 6= j

Statistics T i ,j
1,−1 =

∑n
t=0 T

i ,j
1,−1(t), T i ,j

−1,1 =
∑n

t=0 T
i ,j
−1,1(t)

T i ,j
1,−1(t) =

{
1, Xi (t) ≥ 0,Xi (t) < 0
0, else

T ij
−1,1(t) =

{
1, Xi (t) < 0,Xi (t) ≥ 0
0, else
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Optimal tests for individual hypotheses testing h1
i ,j

Exponential form for the joint distribution of statistics Tk,l :

P(T1,1 = k1,T−1,−1 = k2,T1,−1 = k3,T−1,1 = k4) =

= C exp{k1 ln
p1,1

p−1,−1
+ (k1 + k2) ln

p−1,−1

p−1,1
+ k3 ln

p1,−1

p−1,1
}

where

C =
n!

k1!k2!k3!k4!
(1− p1,1 − p−1,−1 − p1,−1)n

Then UMPU test for testing hypothesis h1
i ,j has Neymann structure and

can be written as:

ϕ1
i ,j =

{
0, C1(k , k3) < k1 < C2(k , k3)
1, else

(22)

where k1, k2, k3, k4 are the observed values of statistics T i ,j
1,1, T i ,j

−1,−1,

T i ,j
1,−1, T i ,j

−1,1, k = k1 + k2.
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Optimal tests for individual hypotheses testing h1
i ,j

The constants C1, C2 are defined from conditional distribution of statistic
T1,1 under conditions T1,1 + T−1,−1 = k , T1,−1 = k3 and assumption that
the hypothesis h1

i ,j is true. One has

P(T1,1 = k1|T1,1 + T−1,−1 = k ,T1,−1 = k3) =

=
P(T1,1 = k1,T−1,−1 = k − k1,T1,−1 = k3)

P(T1,1 + T−1,−1 = k ,T1,−1 = k3)

P(T1,1+T−1,−1 = k ,T1,−1 = k3) =
k∑

i=0

P(T1,1 = i ,T−1,−1 = k−i ,T1,−1 = k3) =

=
n!

k3!(n − k3 − k)!k!
pk3

1,−1(p1,1 +p−1,−1)k(1−p1,1−p−1,−1−p1,−1)n−k3−k

P(T1,1 = k1,T−1,−1 = k − k1,T1,−1 = k3) =

=
n!

k1!k3!(k − k1)!(n − k3 − k)!
pk1

1,1p
k3
1,−1p

k−k1
−1,−1(1−p1,1−p−1,−1−p1,−1)n−k3−k
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Optimal tests for individual hypotheses testing h1
i ,j

P(T1,1 = k1|T1,1 + T−1,−1 = k ,T1,−1 = k3) =

= C k1
k

(
p1,1

p1,1 + p−1,−1

)k1
(

p−1,−1

p1,1 + p−1,−1

)k−k1

Under h1
i ,j one has p1,1 = p−1,−1. Optimal test is

ϕ1
i ,j =

{
0, C1(k) < k1 < C2(k)
1, else

(23)

where C1(k) and C2(k) are defined by

C1(k) = max{C : (
1

2
)k

C∑
i=0

C i
k ≤

α

2
}

C2(k) = min{C : (
1

2
)k

k∑
i=C

C i
k ≤

α

2
}
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p-values

The p-value of the test can be calculated by

p1
i ,j = 2 min{(1

2
)k

k∑
i=k1

C i
k , (

1

2
)k

k1∑
i=0

C i
k} (24)

On the same way one can construct the uniformly most powerful test for
the hypothesis h2

i ,j . The test can be written as

ϕ2
i ,j =

{
0, C1(m) < k3 < C2(m)
1, else

(25)

where m = k3 + k4 The p-value of the test (25) can be calculated by

p2
i ,j = 2 min{(1

2
)m

m∑
i=k3

C i
m, (

1

2
)m

k3∑
i=0

C i
m} (26)

Note that by construction all individual tests are distribution free uniformly
most powerful tests of Neymann structure.
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Rejection graph

We select 100 stocks from US market with a highest trading volume
during the period of 8 years, from 01.01.2006 to 31.12.2013. We compare
results for different periods of observations: 8 periods of 1 year each, 4
periods of 2 years each, 2 periods of 4 years each and 1 period of 8 years.
Significance level of multiple tests are set to α = 0, 1 and α = 0, 5. To
describe the results of multiple testing we introduce a rejection graph.
Edge (i , j) is included in the rejection graph for hypotheses h1 iff the
hypothesis h1

i ,j is rejected by multiple testing procedure. Nodes of the
rejection graph are vertices adjacent to these edges.
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Rejection graph

The Figure illustrates the structure of the rejection graph for the year
2006, α = 0.5, US market.

Figure: Rejection graph for the hypotheses h2
i,j , α = 0.5, US stock market for the

year of observation 2006.
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