

Targeting interhemispheric balance to modulate language processing: A tDCS study in healthy volunteers

Svetlana Malyutina (s.malyutina@gmail.com), Elise J. Oosterhuis, Valeriya Zelenkova, Olga Buivolova, Nikita Zmanovsky, Matteo Feurra

Introduction

- . tDCS is a safe and tolerable method.
- . There is a high potential for clinical use to treat patients with aphasia.

Which stimulation settings and targets provide the greatest therapeutic effect?

- . Interhemispheric competition hypothesis:
 In post-stroke aphasia, involvement of the right hemisphere may be
 maladaptive and hinder recovery via perilesional left-hemispheric activity².
- . Many brain stimulation studies have inhibited the right hemisphere³.
- . Marangolo et al. (2016)⁴ combined this with excitation of the left hemisphere but did not test whether the effect was superior to excitation of the left hemisphere only.

Aim

To investigate the effects of bilateral tDCS in healthy participants, with left excitatory and right inhibitory stimulation as control conditions.

Method

- . 49 healthy participants (mean age 22.9, range 18-30), right-handed, native speakers of Russian, no history of neurological or psychiatric disorders, and speech or language disorders.
- . Each participant was assigned to one condition:
 - A) **Bilateral condition**: anodal stimulation to Broca's area and cathodal to the right hemisphere homologue of Broca's area (N=15).
 - B) Anodal stimulation of Broca's area (F7) (N=19).
 - C) Cathodal stimulation of right-hemisphere homologue of Broca's area (F8) (N=15).
- Two sessions; one with **real** stimulation (1.5 mA for 20 min.) and one with **sham** stimulation.

Tasks:

- 1) Lexical decision task (120 items).
- 2) Sentence comprehension task (60 items); self-paced reading with complex sentences; each followed by a comprehension question with two response options.

- 2 stimuli list for each task.
- Lists where balanced on important psycholing variables.
- . The lists were counterbalanced across stimulation conditions.

Statistics:

- Linear Mixed-Effect Models: Ime4 package in R; p-values obtained via the likelihood ratio test.
- . **Fixed factors**: Stimulation (real vs. sham), Stimulation site (left anodal vs. right cathodal vs. bihemispheric), Linguistic condition (word/non-word or sentence type), Session (day 1 or 2).
- . Random factors: Subject (random intercept and slope), Item (random intercept).

Results

Sentence Comprehension Task

Reading speed:

	Df	Sum Sq	Mean Sq	F value	p-value
Stimulation	I	1182286	1182286	1.39	0.43
Session		12841677	12841677	15.11	0.00
Stimulation site	2	2550198	1275099	1.50	0.23
Sentence Type	4	114398308	28599577	33.66	<0.001
Stimulation*Site	2	21893	10947	0.013	0.99

Question accuracy:

	Df	Sum Sq	Mean Sq	F value	p-value
Stimulation	1	3.142	3.1416	3.14	0.05
Session		8.124	8.1239	8.12	0.00
Stimulation site	2	1.105	0.5523	0.55	0.57
SentenceType	4	53.897	13.4742	13.47	<0.001
Stimulation*Site	2	1.491	0.7456	0.75	0.15

Question response time:

	Df	Sum Sq	Mean Sq	F value	p-value	
Stimulation	I	508529	508529	0.34	0.75	
Session		10086634	10086634	6.75	0.016	
Stimulation site	2	1179193	589597	0.39	0.68	
SentenceType	4	156428925	39107231	26.17	<0.001	
Stimulation*Site	2	4972618	2486309	1.66	0.20	

Lexical Decision

Response time:

17-3-4	Df	Sum Sq	Mean Sq	F value	p-value
Stimulation	I	1182286	1182286	1.39	0.43
Session	1	12841677	12841677	15.11	0.00
Stimulation site	2	2550198	1275099	1.50	0.23
SentenceType	4	114398308	28599577	33.66	<0.001
Stimulation*Site	2	21893	10947	0.013	0.99

Lexical decision accuracy:
At ceiling; 97-98% across all conditions.

Discussion

- . What are the effects of **bilateral tDCS** in healthy participants compared to the two **control conditions**; left anodal stimulation and right cathodal stimulation?
- . **No improvement** in reading time on the sentence comprehension task and in response time and accuracy on the sentence comprehension task and lexical decision task.
- No support for the interhemispheric competition hypothesis or for beneficial effects of tDCS overall.
- . Stimulation parameters; sensitivity of tasks.
- . Underlying neuronal mechanisms not yet fully understood.
- . tDCS effects overrated due to publication bias?
- Is tDCS effective in patients with aphasia who have a disturbed language network?

References

- Galletta E. E., Conner P., Vogel-Eyny A., Marangolo P. (2016). Use of tDCS in Aphasia Rehabilitation: A Systematic Review of the Behavioral Interventions Implemented With Noninvasive Brain Stimulation for Language Recovery. American Journal of Speech-Language Pathology, 25, S854–S867.

 Cocquest F. M. De Lev L. Santens P. Van Borsel I. De Letter M. (2017). The role of the right hemisphere in the recovery of stroke-related aphasia: A systematic review Journal of Neurolinguistics 44, 68-90.
- . Cocquyt E.-M., De Ley L., Santens P., Van Borsel J., De Letter M. (2017). The role of the right hemisphere in the recovery of stroke-related aphasia: A systematic review. Journal of Neurolinguistics, 44, 68-90.
- 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412051/
 4. Marangolo P., Fiori V., Sabatini U., De Pasquale G., Razzano C., Caltagirone C., Gili T. (2016). Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data From Aphasia. Journal of Cognitive Neuroscience, 28(5), 724-738.