Fermi Surface Evolution and Quantum Criticality in Mn$_{1-x}$Fe$_x$Si

V. V. Glushkov1,2,3, I. I. Lobanova1,2, V. Yu. Ivanov1, V. V. Voronov1, V. A. Dyadkin4, N. M. Chubova5, S. V. Grigoriev5, S. V. Demishev1,2,3

1Prokhorov General Physics Institute of RAS, Moscow, 119991, Russia; 2Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow region, Russia; 3National Research University Higher School of Economics, Moscow, 101000, Russia; 4Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility, Grenoble, 38000, France; 5Petersburg Nuclear Physics Institute, Gatchina, Saint-Petersburg, 188300, Russia

Corresponding Author’s Email: glushkov@lt.gpi.ru

Different scenarios of non-Fermi liquid behavior in strongly correlated electron systems may be resolved by a study of ordinary Hall effect in quantum critical (QC) regime [1-3]. For the system with localized magnetic moments a collapse of the Fermi surface should occur exactly at the QC point that can result in an abrupt change of the Hall constant at zero temperatures [2]. In contrast, the spin density wave model of quantum criticality in itinerant magnets provides no evidence of the Lifshitz transition at QC point [3].

Here we report the study of Hall effect in Mn$_{1-x}$Fe$_x$Si ($x<0.3$) single crystals carried out in magnetic fields below 8 T at temperatures 2-60 K. Separating between ordinary and anomalous contributions to Hall effect in the paramagnetic phase of Mn$_{1-x}$Fe$_x$Si allows to discover a sign inversion of normal Hall coefficient, which is definitely associated with the hidden QC point $x^* \sim 0.11$. We show that the increase of Fe content results in effective hole doping. This observation allows us to make some verifiable predictions in the field of fermiology, magnetic interactions, and QC phenomena in this QC system. The discovered redistribution between electron and hole regions of Fermi surface is considered as a main factor, which tunes the QC regime in Mn$_{1-x}$Fe$_x$Si by modulating the Ruderman-Kittel-Kasuya-Yosida exchange interaction between the localized magnetic moments of Mn ions.

This work was supported by the RAS Programmes “Electron spin resonance, spin-dependent electronic effects and spin technologies” and “Electron correlations in strongly interacting systems”.

References