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Abstract
This paper introduces a model that addresses the key worldwide features of mod-

ern monetary policy making: the discreteness of policy interest rates both in mag-
nitude and in timing, the preponderance of status quo decisions, policy inertia and
regime switching. We capture them by developing a new dynamic discrete-choice
model with switching among three latent policy regimes (dovish, neutral and hawk-
ish), estimated via the Gibbs sampler with data augmentation. The simulations and
an application to federal funds rate target demonstrate that ignoring these features
leads to biased estimates, worse in- and out-of-sample fit, and qualitatively different
inference. Using all Federal Open Market Committee’s (FOMC) decisions made both
at scheduled and unscheduled meetings as sample observations, we model the Federal
Reserve’s response to real-time data available right before each meeting, and control
for the endogeneity of monetary policy shocks. The new model, fitted for Greenspan’s
tenure, correctly predicts the directions of about 90% of the next decisions on the
target rate (hike, no change, or cut) out of sample during Bernanke’s term including
the status quo decisions after reaching the zero lower bound, while the conventional
linear model fails to adequately tackle the zero bound and wrongly predicts further
cuts.

Keywords. Federal funds rate target, FOMC, discrete ordered choice, regime
switching, endogeneity, MCMC, Gibbs sampler, data augmentation, autoregressive
ordered probit, real-time data.

JEL classification. C11, C34, C35, E52.

∗Corresponding author. E-mail address: andrei.sirchenko@gmail.com.
†A. Sirchenko gratefully acknowledges financial support from the German Academic Exchange Service

(DAAD) and research support from the Basic Research Program of the Higher School of Economics.

1



1 Introduction

We develop a dynamic model of discrete ordered choice with lagged latent dependent vari-
ables among regressors and with time-varying transition probabilities of switching among
three latent regimes interpreted in the interest-rate-setting context as dovish, neutral and
hawkish monetary policy stances. The new methodology synthesizes and extends the ex-
isting models of ordered choice and avoids important common misspecifications and dis-
tortions of the data-generating process (DGP) in the empirical identification of monetary
policy rules. The new model assumes three implicit decisions: the policy regime decision
and two decisions (conditional on the dovish or hawkish regime) on the amount of rate
change. All three decisions are modeled jointly by the autoregressive ordered probit (AOP)
models of Müller and Czado (2005).
The policy interest rates are currently a critical instrument and a principal measure

of monetary policy in many countries. They are an anchor for other short-term market
interest rates, and are closely watched and anticipated by many economic agents. If we can
quantitatively formalize how monetary authorities set the policy rates, and “if practitioners
in financial markets gain a better understanding of how policy is likely to respond to
incoming information, asset prices and bond yields will tend to respond to economic data
in ways that further the central bank’s policy objectives” (Bernanke 2007). To forecast
the state of the economy, or to evaluate the effects of economic shocks, monetary and
fiscal policy actions, we need to understand central bank’s systematic response to economic
data. To improve the monetary policy, we also need a clear empirical description of what
is going to be improved. It is really diffi cult to describe monetary policy without using
an econometric model. Since the policy rates are set administratively by the monetary
authorities, and are neither the outcomes of market interaction of supply and demand nor
subject to technical fluctuations or extraneous sources of noise, it makes them of special
interest for econometric modeling (Hamilton and Jorda, 2002).
We implement an econometric framework that addresses the main worldwide features

of modern monetary policy making: the discreteness of policy interest rates, both in mag-
nitude and in timing; the preponderance and heterogeneity of status quo (no change to
the rate) decisions; interest rate smoothing and policy inertia; and policy regime switching
and different nature of positive and negative interest rate movements. None of the existing
models is able to adequately capture all these stylized facts. More specifically, we address
the following issues.
The discreteness of policy rates. Monetary policy modeling has been historically imple-

mented in a continuous framework, either by estimating a ‘simple’linear policy rule such
as the Taylor rule (Taylor 1993) or by estimating a monetary policy reaction function as
a linear equation of a vector autoregressive model.1 Nowadays, many central banks (and
all the major ones) change policy rates by discrete amounts, typically by multiples of 25
basis points (bp), at special meetings of monetary policy committees, which are held 6—12
times a year. The notable examples are the Federal Open Market Committee of the U.S.
Federal Reserve System (Fed), the Governing Council of the European Central Bank, the
Monetary Policy Committee of the Bank of England, and the Policy Board of the Bank of

1See Rudebusch (1998a,b) for a critique of monetary policy identification in the context of vector
autoregressive models.
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Japan.
Despite the extensive literature on monetary policy modeling, most studies use monthly

or longer-period data averages and employ regression techniques for a continuous dependent
variable, and thus do not address the discreteness of interest rates. Ignoring the limited
(discrete) nature of the dependent variable may lead to serious biases. While using regres-
sions for continuous outcomes is appropriate with aggregated data, it raises the problems
of distortions caused by the use of an incorrect information set and of simultaneity caused
by disregarding possible interactions between the policy rates and the other variables that
can happen during a period of aggregation. In recent years, discrete-choice approaches such
as the ordered probit models (e.g., Vanderhart 2000; Gerlach 2007; Hayo and Neuenkirch
2010) have been employed. There have been also attempts to use the discrete-choice mod-
els with FOMC-meeting data frequency (Piazzesi 2005; Hu and Phillips 2004; Kim et al.
2009; Kauppi 2012); they, however, restricted their attention to the decisions made at the
scheduled FOMC meetings only, thereby not reflecting the entire policy-making process.
In fact, from 1983 to 1993 only about 15% of non-zero changes to the U.S. federal funds
rate target (target henceforth) have been made at the scheduled FOMC meetings.
We address the discrete nature of policy rates by an ordered choice approach. The

empirical results show that discreteness does matter in the estimation of monetary policy
rules. We compare the in-sample (under Greenspan’s tenure) and out-of-sample (under
Bernanke’s term) performance of the linear, the AOP and new model estimated using the
same set of regressors. The performance of the linear model, especially out of sample,
is remarkably inferior to that of the discrete-choice competitors: for example, the mean
absolute error is twice as large as in the discrete-choice models, and the percentage of correct
predictions is only 49% versus 90%. The new model fitted for Greenspan’s tenure correctly
predicts status quo decisions after reaching the zero lower bound during Bernanke’s term,
while the linear model fails to adequately deal with the zero lower bound and incorrectly
predicts further cuts.
We carefully mimic the policy-making process by using all interest rate decisions (made

both at the scheduled and unscheduled FOMC meetings) as sample observations. We
match the FOMC decisions with the latest real-time vintages of macroeconomic and non-
aggregated daily financial data truly available immediately before each meeting and not
revised later on. Information about the exact timing of FOMC meetings together with the
use of daily financial data (such as spreads between the long- and short-term market interest
rates) allows us to substantially improve the identification of the Fed policy rule, which
would not be possible to do using monthly aggregates of financial data. In addition, the
market interest rates encapsulate the huge volume of data available to market participants,
and can help avoid the omitted variables and time-varying parameter problems.
The preponderance of status quo decisions. The central banks often prefer to wait and

see. Many of them leave the rates unchanged at more than a half of policy meetings in
different macroeconomic circumstances: between rate hikes, between cuts and also between
rate reversals. We address the heterogeneity of status quo decisions by a three-part mod-
elling approach that allows status quo outcomes to be generated by three different latent
regimes interpreted as dovish, neutral and hawkish policy stances. We extend the zero-
inflated model of Harris and Zhao (2007) and the middle-inflated model of Brooks et al.
(2012) by making them suitable for ordinal outcomes that take on negative, zero and pos-
itive values, and are past-dependent and autocorrelated. The Monte Carlo experiments
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suggest that the single-equation AOP model, ignoring the heterogeneity of status quo out-
comes, delivers asymptotically biased estimates of the probabilities, whereas the proposed
Bayesian estimator of the new model is consistent and performs well in small samples.
The empirical results suggest that less than one third of status quo decisions are gen-

erated by the neutral policy stance. During the Greenspan era, the average probabilities
of dovish, neutral and hawkish regimes are 0.58, 0.15 and 0.27, respectively, whereas the
frequencies of observed cuts, no changes and hikes are 0.24, 0.54 and 0.22, respectively.
Regime switching. The central banks may have asymmetric responses to incoming data,

so the rate increases and decreases may be generated by different decision-making processes
as well as the numerous status quo decisions may be also driven by distinct mechanisms.
In other words, the policy actions may be generated in different regimes. We model this
possibility by a regime-switching approach with time-varying transition probabilities of
switching among three latent regimes. It allows the probabilities of positive, negative and
no changes to be treated differently and to be asymmetrically affected by the economic data.
The structure of the new model shares some similar features with the Markov switching
model with constant probabilities of a transition from one regime to another introduced by
Hamilton (1989) in the framework of linear regressions, and later extended by Diebold et al.
(1994) and Filardo (1994) to the case where the transition probabilities may change over
time. The existing applications of regime switching to monetary policy employ exclusively
models for a continuous dependent variable, usually in the context of vector autoregressions
(Sims and Zha 2006; Bikbov and Chernov 2013).
Interest rate smoothing. The policy interest rates are persistent. This stylized fact is

usually referred to as interest rate smoothing. If central banks decide to change the rate
they will most likely move it again in the same direction several times at the next meetings,
avoiding frequent rate reversals. This feature is referred to as monetary policy inertia. We
address these two stylized facts by the lagged latent dependent variable introduced to the
covariates. It allows for a partial adjustment of interest rates and together with the lagged
covariates can capture the autocorrelation of latent monetary shocks.
The estimated autoregressive (AR) coeffi cients on the lagged dependent variable in both

the linear and AOP models are, however, small and not significant. By contrast, the es-
timated AR coeffi cients in the new model are large and significant. Moreover, they have
the opposite signs in the regime and amount equations. It implies different dynamics of
the regime and amount-of-change decisions. Positive autocorrelation in the regime equa-
tion leads to the persistency of regime decisions, whereas negative autocorrelations in the
amount equations implies that the larger the desired change (a cut or a hike) at the previ-
ous meeting, the more likely is no change at the next meeting. Such inference is impossible
if we estimate a linear or an AOP model.
The dynamic single-equation ordered probit models have been developed and applied

to policy interest rates, among others, by Eichengreen et al. (1985), Davutyan and Parke
(1995), Dueker (1999b), Hu and Phillips (2004), Kim et al. (2009), Monokroussos (2011),
and Van den Hauwe et al. (2013). Hamilton and Jorda (2002) developed the dynamic
two-equation ordered probit model, in which the first-stage binary decision (change or no
change) is determined by the autoregressive conditional hazard model, and the magnitude of
rate changes is determined by the ordered probit model conditional on a change at the first
stage. Grammig and Kehrle (2008) modified this model by implementing the autoregressive
conditional multinomial model of Russell and Engle (2005) at the second stage. Each stage
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in these models is estimated separately, and status quo observations are not included in the
estimation of the second stage. We further extend these two-part models by implementing
at the first stage a trichotomous decision on the latent policy regime (dovish, neutral or
hawkish) that seems to be more realistic than a binary decision (change or no change):
the policymakers, who are determined to change the rate, have already decided in which
direction they are going to do it. Furthermore, we estimate both stages simultaneously
and do not exclude no-change outcomes from the second stage. It allows us to discriminate
among different types of the status quo decisions.
Endogeneity. The forward-looking behavior of central banks and financial markets as

well as the autocorrelation of monetary shocks can lead to the endogeneity problem in
the estimation of monetary policy rules due to correlation among shocks and explanatory
variables (de Vries and Li 2014). We control for the endogeneity of policy shocks and
explanatory variables by introducing bias correction terms as additional regressors. Fol-
lowing Kuttner (2001) and Bernanke and Kuttner (2005), we compute the market-based
proxies for unknown monetary shocks as one-day surprises unanticipated by the federal
funds futures. The null of exogeneity of monetary policy shocks is rejected.
In the next section we describe the proposed Cross-nested Autoregressive Ordered

Probit (CronAOP) model. We discuss the estimation and inference in Section 3. The esti-
mation of such a dynamic three-equation ordered probit model is a daunting computational
challenge – it requires the evaluation of multiple integrals with no closed form solution.
We opt for a Bayesian approach using Markov chain Monte Carlo (MCMC) methods and a
Gibbs sampler with data augmentation, which makes estimation computationally feasible
and requires no numerical optimization and no high-dimensional integration. We study
the finite sample performance of the CronAOP estimator under both its own DGP and
the AOP one. In Section 4 we present the design and main results of the Monte Carlo
experiments, which demonstrate a good performance of the proposed estimator. In Section
5 we discuss the empirical application to the FOMC decisions on the target. Supporting
material is provided in the Online Appendix. Section 6 concludes.

2 Model

We introduce the CronAOP model in the context of monetary authority decisions on the
policy interest rate. The observed dependent variable is a change to the policy rate ∆yt =
yt − yt−1, where yt is the level of the rate set at the meeting t = 1, 2, .., T ; ∆yt takes on
a finite number of discrete ordered values j coded as J−, ...,−1, 0, 1, ..., J+. The model
assumes three latent regimes and three implicit decisions.
The regimes are determined by the continuous latent variable r0∗

t representing the degree
of central bank policy stance according to a latent regime decision

r0∗
t = φ0r0∗

t−1 + β0x0
t + ε0

t , (1)

where β0 is a vector of k0 unknown slope parameters, x0
t is the t

th column of the observed
k0×T data matrixX0, φ0 is an unknown AR parameter, and ε0

t is an error term that is in-
dependently and identically distributed (IID) according to the standard normal cumulative
distribution function (CDF) Φ.
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The observed discrete change ∆yt is conditional on a latent discrete variable s∗t (coded
as −1, 0, or 1 if the central bank policy regime is dovish, neutral or hawkish, respectively).
Both ∆yt and s∗t are determined in an ordered probit fashion as

∆yt|(s∗t = −1) = j if c−j−1 < r−∗t ≤ c−j for j ≤ 0,
∆yt|(s∗t = 0) = 0,
∆yt|(s∗t = 1) = j if c+

j < r+∗
t ≤ c+

j+1 for j ≥ 0,
s∗t =


−1 if r0∗

t ≤ c0
1,

0 if c0
1 < r0∗

t ≤ c0
2,

1 if c0
2 < r0∗

t ,

where −∞ < c0
1 ≤ c0

2 <∞, −∞ ≡ c−J−−1 ≤ c−J− ≤ ... ≤ c−0 ≡ ∞ and −∞ ≡ c+
0 ≤ c+

1 ≤ ... ≤
c+
J++1 ≡ ∞ are the unobserved cutpoint parameters; and r−∗t and r+∗

t are the continuous
latent variables, representing the desired amount of the rate change in the dovish and
hawkish regimes, respectively. They are driven by the latent amount decisions

r−∗t = φ−r−∗t−1 + β−x−t + ε−t and r+∗
t = φ+r+∗

t−1 + β+x+
t + ε+

t , (2)

where β−and β+ are the vectors of k− and k+ unknown slope parameters, x−t and x+
t are

the tth columns of the observed k−×T and k+×T data matrices X− and X+, φ− and φ+

are the unknown AR parameters, and ε−t and ε
+
t are the IID error terms with the standard

normal CDF Φ. The errors ε0
t , ε

−
t and ε

+
t are mutually independent.

Henceforth, the superscript indexes ‘0’, ‘−’and ‘+’refer to the regime decision (1) and
two amount decisions (2) conditional on the dovish and hawkish regimes, respectively.
The CronAOP model can be summarized as

∆yt =


j (j < 0) if r0∗

t ≤ c0
1 and c

−
j−1 < r−∗t ≤ c−j ,

0 if


c0

1 < r0∗
t ≤ c0

2,
or (r0∗

t ≤ c0
1 and c

−
−1 < r−∗t ),

or (c0
2 < r0∗

t and r+∗
t ≤ c+

1 ) ,
j (0 < j) if c0

2 < r0∗
t and c+

j < r+∗
t ≤ c+

j+1.

To simplify the notation we let eit,m := cim − φiri∗t−1 − βixit for i ∈ {0,−,+}. The
probabilities to observe the outcome j are then given by

Pr(∆yt = j) = Ij≤0Φ(e0
t,1)[Φ(e−t,j)− Φ(e−t,j−1)] (3)

+ Ij=0

[
Φ(e0

t,2)− Φ(e0
t,1)
]

+ Ij≥0

[
1− Φ(e0

t,2)
]

[Φ(e+
t,j+1)− Φ(e+

t,j)],

where Ij≤0, Ij=0 and Ij≥0 are the indicator functions such that: Ij≤0 = 1 if j ≤ 0 and
Ij≤0 = 0 otherwise; Ij=0 = 1 if j = 0 and Ij=0 = 0 otherwise; and Ij≥0 = 1 if j ≥ 0 and
Ij≥0 = 0 otherwise.
To identify the model parameters we fix the variances of ε0

t , ε
−
t and ε

+
t to one, and the

intercept components of β0, β−and β+ to zero. These identifying assumptions are arbi-
trary and standard in the discrete-choice modeling. The probabilities in (3) are absolutely
identifiable and invariant to the choice of parameter-identifying assumptions.
The marginal effect (ME) of the covariates on the probabilities is the partial derivative

of the probabilities with respect to one of the covariates xm, MEm,j,t := ∂xt,m Pr(∆yt = j)

6



keeping all other parameters and covariates constant:

MEm,j,t = Ij=0

[
f(e0

t,2)− f(e0
t,1)
]
β0,all
m

+ Ij≤0

{
f(e0

t,1)
[
Φ(e−t,j)− Φ(e−t,j−1)

]
β0,all
m + Φ(e0

t,1)
[
f(e−t,j)− f(e−t,j−1)

]
β−,allm

}
+ Ij≥0

{
f(e0

t,2)
[
Φ(e+

t,j+1)− Φ(e+
t,j)
]
β0,all
m + Φ(−e0

t,2)
[
f(e+

t,j+1)− f(e+
t,j)
]
β+,all
m

}
,

where f is the normal probability density function (PDF), and βi,all is a vector of the slope
coeffi cients in the latent equation i on all covariates in the model (in X0, X− and X+):
βi,allm = 0 if the covariate m does not appear in the equation i. We compute the MEs and
probabilities at the empirical medians of the covariates and the theoretical medians of the
lagged dependent latent variables.
Joint Distribution
For parameter estimation through a Gibbs sampler we need to derive the joint dis-

tribution of our model. Let R∗ denote the (T + 1) × 3 matrix, the tth row of which is
r∗t = (r0∗

t , r
−∗
t , r+∗

t ), t = 0, 1, ., T and the three columns of which are r0∗, r−∗ and r+∗; ∆y
denote the vector of dependent variables (∆y1, ...,∆yT ); θ denote the vector of model para-
meters (β,φ, c), where β = (β0,β0,β+), φ = (φ0, φ−, φ+), c = (c0,c−,c+), c0= (c0

1, c
0
2),

c−= (c−J− , ..., c
−
−1), and c+= (c+

1 , ..., c
+
J+). The joint density for R∗, ∆y and θ can be fac-

torized as

f(∆y,R∗,θ) =

[
T∏
t=1

f(∆yt, r
∗
t |∆y1, ...,∆yt−1, r

∗
0, ..., r

∗
t−1,θ)

]
π(r∗0,θ),

where π is the prior distribution. By the Markov property it reduces to

f(∆y,R∗,θ) =

[
T∏
t=1

f(∆yt, r
∗
t |∆yt−1, r

∗
t−1,θ)

]
π(r∗0,θ).

∆yt is fully determined by the latent variables r∗t and cutpoints c; and r
∗
t in turn is

determined by r∗t−1,β and φ. Hence, the joint density factorizes further into

f(∆y,R∗,θ) =

[
T∏
t=1

f(∆yt|r∗t , c)f(r∗t |r∗t−1,β,φ)

]
π(r∗0,θ).

So we have to determine the factors f(∆yt|r∗t , c) and f(r∗t |r∗t−1,β,φ). The first one is
a sum of indicators of whether r∗t lie between the corresponding cutpoints:

f(∆yt|r∗t , c) = Ir0∗
t <c01,r

−∗
t ∈[c−∆yt−1,c

−
∆yt

] + Ir0∗
t ∈[c01,c

0
2],∆yt=0 + Ir0∗

t >c02,r
+∗
t ∈[c+∆yt

,c+∆yt+1]. (4)

The probability density of r∗t is given by

f(r∗t |r∗t−1,β,φ) ∝
∏

i=0,+,−
exp

[
−1

2

(
ri∗t − xi′t βi − φiri∗t−1

)2
]
.

Finally, we have to specify a prior π. We choose a uniform prior on the real numbers R,
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i.e. an improper prior, for almost all parameters. The only restriction we have to consider
is φi ∈ (−1, 1) to ensure stationarity of the latent AR equations (1) and (2). Besides, we
choose the initial latent variables to be distributed as ri∗0 ∼ N (0, (τ)2 = 102) for numerical
reasons that will be apparent later. Finally, each pair of cutpoints is uniformly distributed
only on the subset of R2, where the ordering cim < cim+1 is satisfied.

3 Estimation and inference

While the classical statistical approaches, such as maximum likelihood or method of mo-
ments, will not work for this model we can estimate the parameters and choice probabilities
using a Gibbs sampler based on the MCMC algorithm for the AOP model with a grouped
move step that drastically accelerates the convergence of the Gibbs sampler (Müller and
Czado 2005). The structure of the Gibbs sampler is as follows:

• Update for the latent variables: Sample the latent dependent variables R∗ from the
corresponding truncated normal distributions.

• Update for the cutpoint parameters: Sample the cutpoint parameters c from the
uniform distributions.

• Update for the slope parameters: Sample the slope parameters β and the AR para-
meters φ from the multivariate normal distributions.

• Grouped move step: Sample a scale parameter from a Gamma distribution to rescale
the parameters c, β and φ and the latent variables R∗.

We use no assumption on the signs of the slope or AR parameters. Without loss of
generality and to match the data on the changes to the target in our empirical application,
we restrict our inference to the case of five outcome categories j ∈ {−2,−1, 0, 1, 2} of the
dependent variable ∆yt with two unknown cutpoints in each latent decision: c

0 = (c0
1, c

0
2),

c− = (c−−2, c
−
−1) and c+ = (c+

1 , c
+
2 ). The initial values for the Gibbs sampler for all three

latent decisions i ∈ {0,−,+} are φiini = 0, βiini = 0 and (cil, ini, c
i
u, ini) = (−0.5, 0.5).

We will now derive all full conditional densities from the joint distribution exploiting
the fact that each full conditional density is proportional to the joint distribution.

3.1 Update for the latent variables

For convenience we use the abbreviation rem for all other remaining parameters and latent
variables. For instance, the full conditional for the latent variable r0∗

t will be written as

f(r0∗
t |rem) := f(r0∗

t |∆y, r+∗, r−∗, r0∗
0 , ..., r

0∗
t−1, r

0∗
t+1, ..., r

0∗
T ,θ).
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The full conditional of the latent variable ri∗t , t ∈ {1, 2, ..., T − 1}, i ∈ {0,−,+} is

f(ri∗t |rem) ∝ f(∆yt|r∗t , c)f(r∗t |r∗t−1,β,φ)f(r∗t+1|r∗t ,β,φ)

∝ f(∆yt|r∗t , c) exp

[
−1

2

(
ri∗t − βixit − φiri∗t−1

)2 − 1

2

(
ri∗t+1 − βixit+1 − φiri∗t

)2
]

∝ f(∆yt|r∗t , c) exp

[
−1

2

(
ri∗t − µit
σi

)2
]
,

where variance (σi)2 :=
[
1 + (φi)2

]−1
, mean µit := (σi)2

[
βixit + φi(ri∗t−1 + ri∗t+1 − βixit+1)

]
.

Thus, ri∗t must be sampled from a normal distribution ri∗t |rem ∼ Ntruncit
(
µit, (σ

i)
2
)
, which

is truncated by f(∆yt|r∗t , c) if the observation is influenced by ri∗t (this is not always the
case: e.g., if ∆yt = 1 or 2, r−∗t can be arbitrary).
The truncation intervals for the regime decision r0∗

t are trunc0
t = (a0

t , b
0
t ) with

a0
t =


c0

2, if ∆yt > 0,

c0
1 if ∆yt = 0, r−∗t < c−−1

−∞ else,

, b0
t =


c0

1 if ∆yt < 0,

c0
2 if ∆yt = 0, r+∗

t > c+
1 ,

∞ else.

The truncations for the amount decisions in the dovish and hawkish regimes are

trunc−t =

{
(c−∆yt−1, c

−
∆yt

) if r0∗
t < c0∗

1 ,

(−∞,∞) else,
trunc+

t =

{
(c+

∆yt
, c+

∆yt+1) if r0∗
t > c0∗

2 ,

(−∞,∞) else.

The updates for ri∗0 and ri∗T slightly differ due to a missing predecessor or a successor.
In addition, the density of ri∗0 is never truncated since there are no observations for it, and
is given by

f(ri∗0 |rem) ∝ f(r∗1|r∗0,β,φ)π(r∗0)

∝ exp

[
−1

2

(
ri∗1 − βixi1 − φiri∗0

)2
]

exp

[
−1

2

(
ri∗0
τ

)2
]

∝ exp

[
−1

2

(
ri∗0 − µi0
σi0

)2
]
,

where mean µi0 := φi(ri∗1 − βixi1)(σi0)2, variance (σi0)2 :=
[
(φi)2 + (τ)−2

]−1
, and the prior

hyperparameter τ = 10 is chosen to avoid a big variance (σi0)2 for parameters φi close to
zero. In other words, ri∗0 must be sampled from ri∗0 |rem ∼ N (µi0, (σ

i
0)2).

Finally, ri∗T has the following full conditional density:

f(ri∗T |rem) ∝ f(∆yT |r∗T , c)f(r∗T |r∗T−1,β,φ)

∝ (∆yT |r∗T , c) exp

[
−1

2

(
ri∗T − βixiT − φiri∗T−1

)2
]

= (∆yT |r∗T , c) exp

[
−1

2

(
ri∗T − µiT

)2
]
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with mean µiT := βixiT +φiri∗T−1; hence, r
i∗
T must be sampled from ri∗T |rem ∼ NtrunciT (µiT , 1).

The interval trunciT is the same as trunc
i
t,, t ∈ {1, 2, ..., T − 1}.

The sampling of the 3(T+1) latent variablesR∗ in this section constitutes the bottleneck
of the whole Gibbs sampler. To speed up the sampler, every second step can be sampled
simultaneously since r∗t depends only on r

∗
t−1 and r

∗
t+1.

3.2 Update for the slope parameters

We denote the parameters on all regressors in each latent decision i ∈ {0,−,+} by Bi :=
(βi, φi) and all regressors in each latent equation by a T × (ki+1) matrix Zi := (X i′, ri∗−T ),
the tth row of which is zit := (xi′t , r

i∗
t−1), t ∈ {1, 2, ..., T}, where ri∗−T := (ri∗0 , r

i∗
1 , ..., r

i∗
T−1)′.

The full conditional density for Bi is

f(Bi|rem) ∝
[∏T

t=1 f(ri∗t |ri∗t−1,B
i)
]
× π(Bi)

∝ exp
{
−1

2

[∑T
t=1

(
ri∗t − βixit − φiri∗t−1

)2
]}
× I|φi|<1

∝ exp
{

2
[∑T

t=1 r
i∗
t z

i′
t

]
Bi − 1

2
Bi′
[∑T

t=1 z
i
tz
i′
t

]
Bi
}
× I|φi|<1.

Note that zitz
i′
t is not a scalar but a dyadic product. So all Bi must be sampled

independently from multivariate normal distributions

Bi|rem ∼ Nki+1[(Zi′Zi)−1Zi′ri∗−0, (Z
i′Zi)−1]× I|φi|<1,

which is truncated by |φi| < 1 in one dimension, and where ri∗−0 := (ri∗1 , r
i∗
2 , ..., r

i∗
T )′.

3.3 Update for the cutpoint parameters

The full conditional density f(cim|rem) ∝
∏T

t=1 f(∆yt|r∗t , c)π(c) for each cutpoint parame-
ter in each latent decision i is uniform over an interval (lim, u

i
m), i.e. cim|rem ∼ U(lim, u

i
m),

where the lower lim and upper u
i
m bounds are determined by:

c0
1 : l01 = max {r0∗

t |∆yt = −1,−2} , u0
1 = min

{
c0

2, r
0∗
t |∆yt = 0, r−∗t < c−−1

}
,

c0
2 : l02 = max

{
c0

1, r
0∗
t |∆yt = 0, r+∗

t > c+
1

}
, u0

2 = min {r0∗
t |∆yt = 1, 2} ,

c−−2 : l−−2 = max
{
r−∗t |∆yt = −2

}
, u−−2 = min

{
c−−1, r

−∗
t |∆yt = −1

}
,

c−−1 : l−−1 = max
{
c−−2, r

−∗
t |∆yt = −1

}
, u−−1 = min

{
r−∗t |∆yt = 0, r0∗

t < c0
1

}
,

c+
1 : l+1 = max

{
r+∗
t |∆yt = 0, r0∗

t > c0
2

}
, u+

1 = min
{
c+

2 , r
+∗
t |∆yt = 1

}
,

c+
2 : l+2 = max

{
c+

1 , r
+∗
t |∆yt = 1

}
, u+

2 = min
{
r+∗
t |∆yt = 2

}
.

These restrictions do not allow the cutpoint parameters to move substantially within
each Gibbs step and slow down the convergence of the sampler.

3.4 Grouped move step

The problem with the slowly moving cutpoints was solved for the AOP model by using
grouped move steps (Müller and Czado 2005). As it turns out, it is also possible to develop
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a suitable grouped move step for the CronAOP model, employing a theorem from Liu and
Sabatti (2000) that states:
If Γ is a locally compact group of transformations defined on the sample space S, L its

left Haar measure with density l, ω ∈ S follows a distribution with density f , and γ ∈ Γ is
drawn from the density fω(γ) = f(γ(ω))|Jγ(ω)|l(γ), where |J | is the Jacobian determinant
of this transformation. Then ω∗ := γ(ω) has the density f too.2

To apply the theorem to our case (where the invariant density in the theorem f is the
posterior) we write all latent variables and parameters into one vectorω = (r0∗′, r−∗′, r+∗′,θ)
and exploit the fact that the joint density is a product of normal densities f(r∗t |r∗t−1,β,φ) ∝∏

i=0,+,− exp
[
−1

2
(εit)

2
]
× I, where I is the product of the indicator functions in (4), which

is I = 1 if R∗, c and ∆y match each other and I = 0 otherwise, and the error terms are
εit = ri∗t − βixit − φiri∗t−1. If we rescale the latent variables and the cutpoint parameters
with the same value g > 0, the value of the indicator function I is unaffected (e.g., if
r0∗
t < c0

1 ⇔ gr0∗
t < gc0

1). To get a simple distribution for the sampling of g we must also
rescale the slope parameters to gβ. Therefore, we use the transformation

γg(ω) = (gr0∗′, gr−∗′, gr+∗′, gβ, gc,φ),

in which we rescale everything except for the AR parameters φ. The group Γ is, hence,
the group of positive real numbers with the multiplication {R>0, ·}.
The left Haar measure of this group has the density l(γg) = 1/g and Jacobian deter-

minant |Jγ(ω)| = |∂γ(ω)/∂ω| = gp, where p = 3T + k0 + k− + k+ + C is the number of
scaled parameters (C = 6 is the number of cutpoint parameters). Then the density for the
scaling parameter g > 0 is

fg(g) = gp−1π(γg(ω)) ∝ gp−1 exp

[
−1

2
g2
∑
i

∑
t

(
εit
)2

]
.

We abbreviate q := 1
2

∑
i

∑
t (εit)

2 and compute the density of g2 as

fg2(g2) = fg(g)
∂g

∂g2
∝ (g2)

p
2
−1 exp

[
−qg2

]
,

which is the density of a Gamma distribution Γ(a, q) for g2 with a shape parameter a =
p
2
and a rate parameter q. The accelerating grouped move step consists of drawing a

number g2 from this distribution and multiplying the corresponding parameters with g.
In fact, because the joint distribution factorizes into three parts from the three decisions
i ∈ {0,−,+}, it is even possible to perform three independent grouped moves for the
parameters of each decision separately. This will lead to an even higher variation and a
faster convergence of the Gibbs sampler.
The effi ciency of the grouped move can be explained as follows. Since the expecta-

tion and variance of the Gamma distribution are EΓ(a,q)[g
2] = a

q
and VarΓ(a,q)[g

2] = a
q2 ,

both Gamma distribution parameters are huge numbers in our case. The summands

2A measure L on a group Γ is called a left Haar measure, if for all elements γ and all measureable
subsets A of this group the measure is invariant under application of γ, i.e. L(A) = L(γA).
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of q are the squares of the error terms εit. Assuming both our model and the current
Gibbs parameters are true, these increments are standard normally distributed and their
square is χ2 distributed with expectation value 1. Thus, close to the true parameters,
we have a ≈ 3T/2 ≈ E[q]. The expectation value for g is then EΓ(a,q)[g

2] ≈ 1 and
the variance VarΓ(a,q)[g

2] = a
q2 ≈ 2

3T
is small. This means that almost no rescaling

happens (all sampled values for g will be close to 1) if the algorithm has almost con-
verged. Far from convergence, e.g. ω ≈ (λr0∗′, λr−∗′, λr+∗′, λβ, λc,φ) = γλ(ωlikely), we
have E [q] ≈ 3λ2T/2 ⇒ EΓ(a,q)[g

2] ≈ 1
λ2 . Thus, the variance is still small and g close to

E [g] ≈ 1/λ will be sampled, so the next (scaled) parameters will be closer to the true
parameters γ(ω) = gω ≈ ωlikely.

4 Finite sample performance

4.1 Monte Carlo design

The goal of the experiments is to assess the finite sample bias and uncertainty of the
estimates of the parameters, choice probabilities and MEs of covariates on choice proba-
bilities (and their asymptotic standard errors) in the proposed CronAOP estimator, and
to compare the performance of the AOP and CronAOP estimators under each of the true
DGPs.
The dependent variable is generated with five ordered choices. The values of parameters

are calibrated to yield on average the following frequencies of the observed choices: 7%, 14%,
58%, 14% and 7%. The number of replications is 10,000 in each experiment. Three vectors
of covariates v1, v2 and v3 are drawn at each replication as v1,t ∼ 0.41v1,t−1 +N (0, 0.32),
v2,t ∼ 0.17v2,t−1 +N (0, 0.42) and v3,t ∼ 0.01 + 0.87v3,t−1 +N (0, 0.82). Since the dependent
variable represents changes to policy interest rates, the simulated artificial covariates v1, v2

and v3 mimic macroeconomic variables that are of interest to central banks such as changes
to the inflation rate (personal consumption expenditures: chain-type price index, percent
change from year ago), changes to the output gap, and the interest rate spread (one-year
treasury constant maturity minus federal funds rate), respectively. The vectors of error
terms in the latent equations (1) and (2) are repeatedly generated as IID standard normal
random variables.
Two competing models are simulated: the AOP and the CronAOP. For each true

DGP, the repeated samples with 200, 500, and 1,000 observations are generated as fol-
lows: (i) for the AOP DGP – with the covariates v1,v2 and v3, the vector of slope pa-
rameters (0.6, 0.8, 1), the vector of cut-point parameters (−4.61,−2.45, 2.77, 4.95), and an
AR coeffi cient 0.5; (ii) and for the CronAOP DGP – with X= (v1,v2)′, X−=X+=v3, β
= (0.6, 0.8), β− = 1.5, β+ = 2.4, c0 = (−0.31, 0.31), c− = (−2.8, 0.31), c+ = (−0.02, 4.79),
φ0 = 0.5, φ− = 0.2, and φ+ = 0.2.
Under each true DGP, the competing models are estimated using the same set of covari-

ates: (i) under the AOP DGP – the AOP model is estimated with the covariates v1,v2

and v3, and CronAOP model is estimated with X = X− = X+ = (v1,v2,v3)′; (ii) and
under the CronAOP DGP – the AOP model is estimated with v1,v2 and v3, and the
CronAOP model is estimated with X = (v1,v2)′ and X− = X+ = v3. The simulations in
(ii) are expected to provide some evidence that the AOP estimator deliver asymptotically
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biased estimates under the CronAOP DGP, whereas the simulations in (i) are expected to
show that the CronAOP estimator provides asymptotically unbiased estimates under its
own DGP and also even if the true DGP is the AOP model.
For each repeated estimation, we initialize the parameters at the starting point described

in Section 3. We run the Gibbs sampler for a burn-in period with 80,000 iterations. We
found that the Gibbs sampler converges much faster in most runs, but sometimes takes
this long. Subsequently we produce 30,000 more iterations to approximate the posterior
distribution. From this estimation period we compute the posterior means and all other
estimates.

4.2 Monte Carlo results

First, we study the finite sample performance of the CronAOP estimator, when the data
are generated by its own DGP with 200, 500 and 1,000 observations. As Table 1 shows,
the accuracy of the estimates improves with the number of observations. The small true
values of φ− and φ+ imply a small positive AR effect, which, however, is detected even
for only 200 observations. The root mean square errors (RMSE) of the parameters shrinks
roughly with the root of the sample size. The biases do so as well, with an exception for a
few cutpoint parameters. The results support the asymptotic consistency of the employed
Gibbs sampler.

Table 1. Monte Carlo results: the accuracy of parameter estimates in the CronAOP model

Sample size: 200 500 1000 200 500 1000
c 1

0 ­0.31 0.005 0.016 0.019 0.226 0.148 0.108
c 2

0 0.31 ­0.022 ­0.015 ­0.014 0.212 0.141 0.101
c ­2

­ ­2.80 ­0.774 ­0.264 ­0.106 1.193 0.578 0.324
c ­1

­ 0.31 0.274 0.090 0.029 0.647 0.344 0.214
c 1

+ ­0.02 0.024 ­0.032 ­0.022 0.549 0.327 0.227
c 2

+ 4.79 0.914 0.564 0.311 1.321 0.974 0.699
φ

?

0.50 ­0.012 ­0.005 ­0.002 0.097 0.059 0.042
φ­ 0.20 ­0.027 ­0.010 ­0.005 0.136 0.083 0.058

φ+ 0.20 ­0.022 ­0.008 ­0.003 0.110 0.067 0.046
β 1

0 0.60 0.046 0.015 0.009 0.323 0.190 0.133
β 2

0 0.80 0.062 0.020 0.011 0.287 0.167 0.116
β 3

­ 1.50 0.563 0.198 0.087 0.836 0.377 0.208

β 3
+ 2.40 0.624 0.342 0.186 0.897 0.565 0.388

True
value

Para­
meter

Bias RMSE

Next, we compare the performance of the AOP and CronAOP models under each DGP.
The parameter estimates are not compatible due to the different structure of the two models.
To compare them we also estimate the choice probabilities, the MEs of each covariate on
each choice probability (the matrix of the MEs has 3 × 5 = 15 elements; their values,
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which depend on the values of the covariates, are computed at the population medians
of the covariates and lagged latent dependent variables), and the standard errors of ME
estimates.
Table 2 shows the measures of accuracy of the ME estimates in both models under

two alternative DGPs. If the simulated and estimated models are identical, the empirical
coverage probabilities are quite close to 95% nominal level even for 200 observations and
are getting even closer as sample size increases. The bias and RMSE are larger for the
CronAOP model since it has more parameters than the AOP model. The biases and RMSE
of both estimators seem to converge to zero. The biases of the standard deviation estimates
also shrink with growing number of observations, which means the standard deviation of all
posterior means is close to the average posterior standard deviation, fostering the reliability
of the posterior.

Table 2. Monte Carlo results: the accuracy of ME estimates in the AOP and CronAOP
models under each DGP

Simulated model:
Estimated model: AOP CronAOP AOP CronAOP

200 0.03 0.12 5.41 0.47
500 0.01 0.06 6.07 0.22
1000 0.00 0.04 6.37 0.17

200 3.19 4.09 6.74 7.76
500 1.59 2.18 6.71 5.31
1000 0.92 1.39 6.73 3.79

200 90.1 68.6 34.4 92.4
500 93.0 73.0 18.1 93.5
1000 93.9 75.7 10.5 94.1

200 2.02 1.79 0.61 2.28
500 1.04 1.01 0.44 1.88
1000 0.59 0.62 0.31 1.41

Sample
size

AOP CronAOP

Bias (the absolute difference between the
estimated and true values of MEs)

RMSE (the root mean square error of ME
estimates relative to their true values)

Coverage probability (the percentage of times the
estimated 95% credibility intervals cover the true
values of MEs)

Standard deviation bias (the difference between
the average of standard deviation estimates and
the standard deviation of ME estimates)

Notes. All reported measures of accuracy are averaged across all five choices and all three covariates. Bias,
RMSE and standard deviation bias are multiplied by 100.

The CronAOP estimator behaves much better under the AOP true DGP than the AOP
estimator under the data generated using the CronAOP model (although the AOP model
is not nested in the CronAOP model). When the CronAOP model is fitted to data from
the AOP model, as sample size grows, the biases and RMSE decrease sharply, the coverage
probability slowly approaches the nominal level and reaches 75% with 1,000 observations.
However, when the AOP model is fitted to data from the CronAOP model, as sample size
grows, the bias increases, the RMSE remains almost the same, and the coverage probability
deteriorates further from an already very bad value of 34% with 200 observations toward
about 10% with 1,000 observations.
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5 Empirical application

We apply the CronAOP model to explain the FOMC decisions on the target during the
7/1987 —1/2006 period under Greenspan’s chairmanship, and to predict the target decisions
out-of-sample for the 3/2006 —12/2011 period under Bernanke’s chairmanship. We contrast
the in- and out-of-sample performance of the CronAOP model with that of the AOP model
and linear model estimated by ordinary least squares (OLS). We also address the problem
of endogeneity in the estimation of the policy rule.

5.1 Data and model specification

The target, a principal measure of U.S. monetary policy during the entire sample (de facto
since the fall of 1982; see Thornton 2005), is set by the FOMC either at eight prescheduled
meetings per year or sometimes at the extra (unscheduled) meetings. To model the target,
instead of using the quarterly or monthly averages of the federal funds rate and economic
variables as is common practice in the literature, we employ the data at the frequency
of FOMC decisions. We use the historical dates of all FOMC decisions (made either at
scheduled or unscheduled meetings, or occasionally at the discretion of the chairman during
intermeeting periods) as sample observations with the following advantages.
First, we avoid the problem of reverse causation typical for time-aggregated data. Sec-

ond, we avoid noise from periods with no movements in the target, when the observed
policy inactions may not reflect the actual Fed response to economic developments, but
rather the Fed reluctance to change the target between scheduled meetings, especially in
the weeks prior to them. Third, information about the exact timing of FOMC meetings
together with the use of daily financial data allows us to substantially improve the iden-
tification of the Fed policy rule. We match the FOMC decisions with the latest real-time
vintages of monthly macroeconomic and non-aggregated daily financial data truly available
before each meeting and not revised later on.
The dates of FOMC decisions and the original (unconsolidated) target changes are

reported in Table A1 in the Online Appendix, and are based on information available at
ALFRED.3 We classify the target decisions into five categories of the dependent variable
∆yt: ‘large cut’—a decrease more than 25 basis points (bp), ‘small cut’—a decrease 25 bp
or less but more than 6.25 bp, ‘no change’—either no change or a change no more than
6.25 bp, ‘small hike’—an increase 25 bp or less but more than 6.25 bp, and ‘large hike’—
an increase more than 25 bp. The sample consists of 190 observations with 14, 32, 102, 32
and 10 observations in the above categories, respectively.
The relationship between economic developments and the Fed response to them is often

modeled using a simple policy rule such as the Taylor rule (Taylor 1993), which establishes a
simple linear relation between the policy interest rate, inflation and the output gap. Recent
studies, using discrete-choice models for the target, document that financial indicators,
such as the spread between the long- and short-term interest rates, explain the Fed policy
decisions better than the Taylor-rule variables (Hamilton and Jorda 2002; Piazzesi 2005;
Kauppi 2012; Van den Hauwe et al. 2013). The FOMC always starts its meetings with a
review of the ‘financial outlook’. The spread can be interpreted as a market-based proxy of

3ALFRED (ArchivaL Federal Reserve Economic Data) is available at https://alfred.stlouisfed.org/.
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future inflation and real activity (Mishkin 1990; Estrella and Hardouvelis 1991; Frankel and
Lown 1994; Estrella and Mishkin 1998). In addition to the spread, we employ two forward-
looking indicators of the economic situation computed by Fed staff in the Greenbook for
each FOMC meeting: the projection of housing starts (one of the leading indicators of
economic activity, frequently mentioned in the FOMC documents) and the projection of
growth in the gross domestic product (the economic growth is one of the four goals of the
Fed’s monetary policy). Finally, we construct a Fed-based proxy of future inflation and
real activity, derived from the FOMC documents. Together with its decision on the target,
the FOMC issued (before 2000) a statement about its expectations of the future stance
of monetary policy and (since 2000) a statement on the balance of risks for inflation and
economic growth. These post-meeting statements have been widely seen as the indicators
of the next FOMC actions, and are shown to contain predictive content for forecasting
target even after controlling for macroeconomic variables (Lapp and Pearce 2000; Pakko
2005; Hayo and Neuenkirch 2010). FOMC statements and interest rate spreads summarize
the vast amount of forward-looking information available both to the Fed in setting the
policy rate and to Fed watchers in anticipating the Fed decisions, and can help surmounting
the omitted variables and time-varying parameter problems (Cochrane and Piazzesi 2002).
Thus, our explanatory variables include: (i) spreadt – the difference between the one-

year treasury constant maturity rate and the effective federal funds rate, five-business-day
moving average (data source: ALFRED); (ii) houstartt – the Greenbook projection for
the current quarter of the total number of new privately owned housing units started (data
source: RTDSM4); the projection for the current quarter provides a better fit than for one,
two, three and four quarters ahead; (iii) ∆gdpt —the Greenbook projection for the current
quarter of quarter-over-quarter growth in nominal gross domestic product (before 1992:
nominal gross national product), annualized percentage points (data source: RTDSM); the
projection for the current quarter provides a better fit than for one, two, three and four
quarters ahead; and (iv) tbiast−1 and (v) ebiast−1 – the two binary indicators that we
constructed from the ‘policy bias’or ‘balance-of-risks’statements at the previous FOMC
decision announcement: tbiast−1 is equal to one if the statement at the previous FOMC
meeting was tightening, and zero otherwise; and ebiast−1 is equal to one if the statement
was easing, and zero otherwise (data source: FOMC statements and minutes5).
The values of dependent and explanatory variables are reported in Table A1 in the

Online Appendix. Sample descriptive statistics are shown in Table A2 in the Online Ap-
pendix. The covariate first-order autocorrelation coeffi cients are between 0.63 and 0.98;
the observed dependent variable autocorrelation coeffi cient is only 0.50. According to the
augmented Dickey-Fuller unit root test, the null hypothesis of a unit root is rejected for
all employed variables but one at the 0.0001 significance level (see Table A3 in the Online
Appendix); only houstartt seems to be nonstationary in our sample with 241 observations.
However, if we test the actual housing starts series houstart_actt, which is highly corre-
lated with the Greenbook projections (the correlation coeffi cient is 0.98), but available for
a far longer period (we used a sample with 680 monthly observations), we reject the null
of a unit root at the 0.01 level.

4RTDSM (Real-Time Data Set for Macroeconomists) is available at https://www.philadelphiafed.org.
5https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm.
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5.2 Estimation results

The parameter estimates in the CronAOP model are reported in Table 3 (see the right
three columns).

Table 3. Parameter estimates in the linear OLS, AOP and CronAOP models

Linear model AOP model
(OLS)

Dovish
regime

Hawkish
regime

spread t 0.20 (0.02) 1.38 (0.21) 2.48 (0.58) 1.25 (0.34)
houstart t 0.17 (0.04) 1.46 (0.37) 5.08 (1.29)
Δgdp t 0.04 (0.01) 0.30 (0.07) 0.31 (0.13) 0.36 (0.11) 1.41 (0.48)
tbias t­1 0.13 (0.03) 0.65 (0.24) 0.95 (0.41)
ebias t­1 ­0.07 (0.03) ­0.53 (0.24) ­7.50 (3.41)

­0.12 (0.06) 0.04 (0.08) 0.30 (0.09) ­0.26 (0.16) ­0.89 (0.08)

Intercept parameter
­0.47 (0.08) 1.27 (0.66) 12.44 (3.42) ­0.35 (0.31) 0.98 (1.17)

2.56 (0.66) 15.52 (3.56) 1.02 (0.33) 6.61 (1.94)
5.39 (0.77)
6.71 (0.81)

Slope parameters

Cutpoint parameters

Autoregressive parameters

Variables

CronAOP model
Amount equationsRegime

equation

Notes. Sample period: 7/1987—1/2006 (190 observations). Standard deviations of parameters are in
parentheses. Each FOMC decision in the sample is matched by the real-time values of covariates (described
in Section 5.1) as they were known at the end of the previous day.

The coeffi cients on the covariates have the expected signs and all but one are statisti-
cally different from zero at the 0.05 significance level (the coeffi cient on r−∗t−1 is significant at
the 0.1 level) according to the empirical confidence intervals from the Gibbs sampling and
assuming the asymptotic normality of the posterior distribution. The latent continuous
dependent variable r0∗

t , representing the degree of the Fed policy stance and determining
the regime decision, is driven by spreadt, houstartt, ∆gdpt (the larger the covariate val-
ues, the larger the probability of a hawkish regime, and the smaller the probability of a
dovish regime), tbiast−1 (if the ‘policy bias’was tightening at the previous meeting, the
probability of a hawkish regime at the next meeting is larger), ebiast−1 (if the ‘policy bias’
was easing, the probability of a hawkish regime is smaller), and its lagged value r0∗

t−1 (the
higher the degree of the policy stance at the previous meeting, the larger the probability
of a hawkish regime at the next meting). The continuous latent dependent variables r−∗t
and r+∗

t , representing the desired amount of the target change in the dovish and hawkish
regimes, respectively, are driven by spreadt (only in the dovish regime), ∆gdpt (the larger
the covariate values, the larger the probability of a higher target level), and their lagged
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values r−∗t−1 and r
+∗
t−1, respectively (the larger their values, the smaller the probability of a

higher target level). The coeffi cient on spreadt is not significant in the hawkish regime.
The coeffi cients on houstartt, tbiast−1 and ebiast−1 are not significant in both amount
equations.
The responses to the easing and tightening ’policy biases’are asymmetrical: the Fed

seems to be much more eager to cut the target rate under the easing policy directive rather
than to hike it under the tightening directive. The most striking finding is the opposite
sign of the coeffi cients on the lagged dependent variables: the sign is positive in the regime
equation (the value of the coeffi cient is significant at the 0.001 level), but negative in the
amount equations (the value of the coeffi cient is significant at the 0.001 level in the hawkish
regime and at the 0.1 level in the dovish regime). It implies that the regime and amount
decisions have different dynamics. The positive autocorrelation in the regime equation
leads to the persistency of regime decisions, whereas the negative autocorrelations in the
amount equations mean that the larger the desired change (a cut or a hike) at the previous
meeting, the more likely a status quo decision at the next meeting. The Fed seems to
deliberately smooth the path of its target – it prefers to wait and see and to avoid making
consecutive changes. Such inference is impossible if we estimate a single-equation AOP or
a linear model with the same set of covariates as in the CronAOP model (see the left two
columns in Table 3). The AR coeffi cients on the lagged dependent variable in the linear
and the AOP models are small and not significant (at the 0.05 level in the linear model,
and at the 0.63 level in the AOP model).

5.3 Comparison of competing models

Three competing models, estimated with the same set of covariates, are contrasted in Table
4 (see the left three columns). We compare the in-sample fit for the Greenspan era and the
out-of-sample one-step-ahead forecasting performance with recursive re-estimation with an
increasing window for the next 51 observations during Bernanke’s term6, using hit rates
(the percentage of correct predictions), mean absolute errors (MAE) and two strictly proper
scoring rules: the probability, or Brier, score (Brier 1950) and ranked probability score
(Epstein 1969). Both scores measure the accuracy of the probabilistic forecast (contrary
to the hit rates that do not distinguish between cases in which the estimated probability
of a particular choice is, for example, 0.51 or 0.99). Both scores have a minimum value of
zero when all the observed choices are forecasted with a unit probability. In contrast to
the Brier score, the ranked probability score punishes forecasts more severely for non-zero
predicted probabilities of choices that are further from the observed choice.
To estimate the probabilities of discrete choices in the linear OLS model we assume

that the errors are distributed according to normal CDF Φ with mean β̂olsX and variance
(∆y − β̂olsX)′(∆y − β̂olsX)/(T − k − 1), where X is a data matrix and β̂ols is an OLS
estimate of k slope parameters. We use the midpoints between the nearest unconsolidated
target changes on the border between two adjacent consolidated categories as thresholds; for
example, 0.09375 is a midpoint between the 0.0625 hike (which is classified as ’no change’)
and the nearest 0.125 hike (which is classified as a ’small hike’):

6The Greenbook projections are currently not available after 2011.
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Prols(∆yt = ’large cut’) = Φ(−0.28125− β̂olsxt),
Prols(∆yt = ’small cut’) = Φ(−0.09375− β̂olsxt)− Φ(−0.28125− β̂olsxt),
Prols(∆yt = ’no change’) = Φ(0.09375− β̂olsxt)− Φ(−0.09375− β̂olsxt),
Prols(∆yt = ’small hike’) = Φ(0.28125− β̂olsxt)− Φ(0.09375− β̂olsxt),
Prols(∆yt = ’large hike’) = 1− Φ(0.28125− β̂olsxt).

Table 4. Performance of competing models: the FOMC decisions on federal funds rate
target favor the CronAOP model

Linear
OLS CronAOP

Hit rate (among five choices) 0.65 0.63 0.73 0.70 0.82
Hit rate (cut, no change or hike) 0.75 0.73 0.78 0.79 0.89
Mean absolute error, bp 10.6 10.3 7.2 9.0 4.7
Brier probability score 0.55 0.49 0.37 0.46 0.28
Ranked probability score 0.30 0.29 0.21 0.23 0.15

Hit rate (among five choices) 0.39 0.78 0.82 0.65 0.90
Hit rate (cut, no change or hike) 0.49 0.90 0.90 0.76 0.94
Mean absolute error, bp 15.6 9.3 7.8 12.0 4.9
Brier probability score 1.19 0.39 0.35 0.64 0.21
Ranked probability score 0.68 0.28 0.25 0.37 0.14

In­sample fit (in 7/1987 ­ 1/2006 period, 190 observations)

Out­of­sample forecast (for 3/2006 ­ 12/2011 period, 51 observations)

Linear
OLS AOP CronAOP

With ex­post controls
for endogeneity

Model:

Notes. Specifications in the first three columns are those reported in Table 3. Each FOMC decision is
matched by the real-time covariates as they were known at the end of the previous day. The out-of-
sample forecast of the next FOMC decision is performed using a recursive re-estimation with an increasing
window. Specifications in the two last columns are those reported in Table 5 with the ex-post controls for
endogeneity using the difference in the federal funds futures rate at the end of the day of Fed action and
at the end of the previous day (see Section 5.4).

Hit rate is the percentage of correct predictions. Predicted choice is that with the highest predicted
probability. Probabilities for the linear OLS model are constructed assuming normally distributed er-
ror terms as explained in Section 5.2. Probabilities for the AOP and CronAOP models are evaluated
numerically as Pr(∆yt = j|Ω) =

∫
Pr(∆yt = j|Ω,R∗,θ)dPr(R∗,θ|Ω), where Ω is the available data.

Brier probability score is computed as 1
T

∑T
t=1

∑5
j=1[Pr(∆yt = j) − djt]

2, where indicator djt = 1 if

∆yt = j and djt = 0 otherwise. Ranked probability score is computed as 1
T

∑T
t=1

∑5
j=1[Pjt − Djt]

2,

where Pjt =
∑j

i=1 Pr(∆yt = i) and Djt =
∑j

i=1 dit. The better the prediction, the smaller both score
values. Mean absolute error is the average absolute difference between the observed and predicted discrete
choice (for the AOP and CronAOP models), or between the observed outcome and continuous value of the
dependent variable predicted using the OLS estimation (for the linear model).

The CronAOP model overwhelmingly outperforms the competitors both in and out of
sample according to all the employed criteria. The MAE in the CronAOP model is lower by
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more than 40% in sample and by more than 30% out of sample, and both probability scores
are lower by more than 30% in sample and by more than 10% out of sample compared to
that in the AOP model. The performance of the linear OLS model in sample is similar
but slightly worse than that of the AOP model. The out-of-sample forecast of the linear
model is remarkably inferior to that of the discrete-choice competitors: the MAE is bigger
by 67% and 99%, both probabilities scores are bigger by 148% and 177%, and the hit rate
is half, or less, of those in the AOP and CronAOP models, respectively. In terms of the
direction of the target change (hike, no change, cut), the CronAOP model out of sample
misses only one hike and incorrectly predicts the timing (with three-meeting lags) of two
cuts, correctly predicting 22 out of 24 status quo decisions after reaching the zero lower
bound (see Figure 1). By contrast, the linear OLS model after reaching the zero lower
bound correctly predicts only two no-change decisions, wrongly predicting 22 cuts.

Figure 1. Out-of-sample forecast of the CronAOP model: it correctly predicts 82 percent
of FOMC decisions while the linear OLS model correctly predicts only 39 percent

Notes. Forecasting period: 3/2006—12/2011 (51 observations). The estimates are obtained from the
CronAOP model (see Table 3). Forecasts of the next FOMC decisions are performed using recursive
re-estimation with an increasing window and the values of covariates as they were known at the end of the
preceding day.

The hit rates of the CronAOP model (in terms of three choices: hike, no change,
cut), which are 0.78 in sample and 0.90 out of sample, exceed the hit rates of the existing
single-equation dynamic discrete-choice models for the FOMC decisions during Greenspan’s
tenure such as Hu and Phillips (2004), Piazzesi (2005) and Kim et al. (2009). They model
target changes in the 2/1994—12/2001, 2/1994—12/1998 and 2/1994—12/2006 periods, and
respectively, with 64, 40 and 96 FOMC decisions made at the scheduled meetings only.
The scheduled meetings are easier to predict, and their samples are much smaller. They
do not report the MAE and the probability scores.

5.4 Controlling for endogeneity

Although we predict the next FOMC decision using the predetermined values of the ex-
planatory variables observed before each FOMC meeting and thus avoid the reverse causal
effects from the error terms to the covariates, we should be concerned with the possible
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correlation between the error terms and the covariates (see de Vries and Li (2014) for a
discussion of the endogeneity problem and the bias in the conventional estimates of central
bank reaction functions). The covariates houstartt, ∆gdpt, tbiast−1 and ebiast−1, which are
forward-looking by construction, may contain internal FOMC anticipations of a monetary
policy shock at the next policy meeting. Besides, the covariate spreadt may contain finan-
cial market anticipations of the next FOMC decision. Thus, all our explanatory variables
may be endogenous to the monetary shocks.

Table 5. Parameter estimates in the linear OLS and CronAOP models with bias correction
terms: endogeneity does matter

Linear model

(OLS)
Dovish
regime

Hawkish
regime

spread t 0.17 (0.02) 4.10 (1.53) 1.50 (0.34)
houstart t 0.10 (0.04) 7.34 (2.66)
Δgdp t 0.03 (0.01) 0.60 (0.30) 0.28 (0.10) 1.11 (0.48)
tbias t­1 0.10 (0.02) 1.75 (0.73)
ebias t­1 ­0.02 (0.02) ­8.35 (3.34)
surprise t 0.10 (0.01) 1.78 (0.86) 1.06 (0.17) 2.69 (0.72)

0.01 (0.05) 0.32 (0.11) 0.02 (0.10) ­0.67 (0.13)

Intercept parameter
­0.30 (0.07) 22.63 (10.65) ­1.79 (0.50) 1.95 (1.35)

25.26 (10.21) 0.31 (0.47) 6.50 (2.21)

Cutpoint parameters

Amount equations

CronAOP model
Regime
equationVariables

Slope parameters

Autoregressive parameters

Notes. Sample period: 7/1987—1/2006 (190 observations). Standard deviations of parameters are in
parentheses. Each FOMC decision in the sample is matched by the real-time values of covariates (described
in Section 5.1) as they were known at the end of the previous day. The endogeneity is controlled by the
bias correction terms as explained in Section 5.4.

To control for endogeneity we introduce bias correction terms as additional regressors
into all three latent equations. The bias correction terms are, hopefully, those parts of the
endogenous covariates that are correlated with any unknown shocks. Cochrane and Piazzesi
(2002) conclude that monetary shocks computed from daily financial data are almost the
perfect measures of unanticipated FOMC decisions on the target. Following Kuttner (2001)
and Bernanke and Kuttner (2005), we compute the market-based proxies for unknown
monetary shocks as one-day surprises unanticipated by the federal funds futures using the
difference in the current-month futures rate at the end of the day of Fed action and at
the end of the previous day in order to use them as controls for endogeneity. Krueger
and Kuttner (1996) and Gürkaynak et al. (2007) report that the federal funds futures
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outperform the other securities in predicting Fed monetary policy. The 30-day federal
funds futures are traded on the Chicago Mercantile Exchange. The raw data are obtained
from Quandl.7 The calculated monetary policy surprises are shown in Table A1 in the
Online Appendix.
We first test for the exogeneity of the constructed policy surprises by running an OLS

regression of them on all covariates. We reject the null hypothesis of exogeneity (F -statistic
is 7.12, the p-value of F -test is 0.0000). Table 5 reports the CronAOP estimates with policy
surprises introduced as controls for endogeneity into each latent equation. The coeffi cient
on surpriset is significant at the 0.05 level in the regime decision, and at the 0.001 level in
both amount decisions. Conditional on the correct model specification, we again reject the
null of exogeneity. Endogeneity does matter.

Figure 2. Estimated probabilities of latent regimes and announced policy bias at each
FOMC meeting during the Greenspan tenure

Notes. Sample period: 7/1987—1/2006 (190 observations). The estimates are obtained from the CronAOP
model with controls for endogeneity (see Table 5).

The policy surprises, of course, may not be used to forecast the FOMC decisions since
the surprises are constructed using information available after an FOMC decision, at the end
of the day when this decision was implemented. Therefore, the out-of-sample estimations
with surprises, reported in the last two columns of Table 4, can be seen only as an ex-post
bias-correction exercise. The addition of policy surprises makes the model fit considerably
better both in and out of sample (see the fourth column of Table 4): the MAEs decrease by

7https://www.quandl.com

22



at least 34%, the probabilities scores decrease by at least 25% in sample and at least 39%
out of sample, the hit rate reaches 0.82 in sample and 0.90 out of sample (after reaching
the zero lower bound the predicted probability of a dovish regime is equal to one, and the
model correctly predicts 23 out of 24 status quo decisions). The CronAOP model with bias
correction terms overwhelmingly outperforms the linear OLS model (see the fifth column
of Table 4): for example, the out-of-sample hit rate is by 39% higher and the MAE is 59%
lower than in the linear model (the linear model correctly predicts only 13 out of 24 status
quo decisions after reaching the zero lower bound, wrongly predicting eleven cuts).
The estimated probabilities of the three policy regimes are shown in Figure 2 for each

FOMC decision during the Greenspan era. The average probabilities of dovish, neutral and
hawkish regimes are 0.58, 0.15 and 0.27, respectively, though the frequencies of observed
cuts, status quo decisions and hikes are 0.24, 0.54 and 0.22, respectively. Apparently,
less than one third of the predicted status quo decisions are generated by the neutral
policy stance. The average estimated probability of the neutral policy regime during the
observed status quo decisions is only 0.23. The decomposition of the probability of no
change Pr(∆yt = 0) into three components Pr(∆yt = 0|st = −1), Pr(∆yt = 0|st = 0) and
Pr(∆yt = 0|st = 1) conditional on the dovish, neutral and hawkish regimes is on average
0.62, 0.28 and 0.10, respectively. The amount decisions tend to smooth the target and
moderate or offset the vast majority of the dovish and hawkish policy stances.

6 Concluding remarks

We develop a new dynamic discrete-choice model for monetary policy interest rates. Central
banks typically adjust policy rates by discrete increments and often leave them unchanged
in different economic circumstances; if central banks make a change, it is usually followed
by further changes in the same direction. To address these stylized facts the new cross-
nested autoregressive ordered probit allows (i) the status quo outcomes to be heterogeneous
and generated in three latent regimes, which can be interpreted as monetary policy stances
(dovish, neutral and hawkish); (ii) the probabilities of positive and negative changes to
the rate to be driven by different processes; and (iii) the persistency of policy rates and
monetary policy inertia to be captured by the lagged dependent latent variables among the
regressors.
The simulations demonstrate that the proposed Bayesian estimator performs well in

small samples. The application to the FOMC decisions on the federal funds rate target
shows that the discrete-choice approach, regime switching and endogeneity do matter in the
empirical estimation of monetary policy rules. The proposed model overwhelmingly out-
performs the linear OLS model, the existing discrete-choice models and the single-equation
AOPmodel both in sample and out of sample. The new model fitted for Greenspan’s tenure
correctly predicts the direction of 90% of the next decisions on the target rate out of sample
including status quo decisions after reaching the zero lower bound during Bernanke’s term.
The new methodology can be employed to model the policy rate decisions of many

central banks, changes to rankings, tick-by-tick stock price changes, and other ordinal
data.
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Online Appendix
for

“A model for policy interest rates”
By Armin Seibert, Andrei Sirchenko and Gernot Müller

Table A1. Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

7­Jul­87 0 no change 0.164 1.61 5.9 0 0 ­0.040
18­Aug­87 0 no change 0.228 1.61 6.4 0 0 ­0.020
27­Aug­87 0.125 small hike 0.260 1.61 6.4 1 0 0.040

3­Sep­87 0.5 large hike 0.426 1.61 6.4 1 0 0.090

22­Sep­87 0.0625 no change 0.426 1.60 6.8 1 0 0.010
3­Nov­87 ­0.5 large cut 0.008 1.55 5.0 0 0 ­0.130

16­Dec­87 0 no change 0.534 1.54 5.4 0 1 ­0.140
5­Jan­88 0 no change 0.130 1.54 5.4 0 0 ­0.050

28­Jan­88 ­0.1875 small cut 0.134 1.55 5.1 0 0 ­0.060
10­Feb­88 ­0.125 small cut 0.146 1.55 4.9 0 0 0.030
29­Mar­88 0.25 small hike 0.144 1.46 6.1 0 0 0.010
9­May­88 0.25 small hike 0.540 1.53 5.7 0 0 0.050

17­May­88 0 no change 0.110 1.51 7.1 0 0 ­0.040
25­May­88 0.25 small hike 0.482 1.51 7.1 1 0 ­0.020
22­Jun­88 0.1875 small hike ­0.108 1.51 7.1 1 0 ­0.010
30­Jun­88 0.0625 no change ­0.136 1.49 8.2 1 0 ­0.070
19­Jul­88 0.1875 small hike 0.028 1.47 6.3 1 0 0.000

8­Aug­88 0.4375 large hike 0.100 1.47 6.3 1 0 0.090

16­Aug­88 0 no change 0.166 1.47 7.3 1 0 ­0.040
20­Sep­88 0 no change ­0.110 1.47 6.5 1 0 0.020
1­Nov­88 0 no change ­0.192 1.46 6.7 1 0 0.032

17­Nov­88 0.25 small hike 0.208 1.46 6.7 1 0 ­0.078

14­Dec­88 0.3125 large hike 0.450 1.51 7.0 1 0 0.018
5­Jan­89 0.3125 large hike ­0.270 1.48 8.8 1 0 ­0.024
8­Feb­89 0.125 small hike 0.058 1.50 8.9 1 0 0.000

14­Feb­89 0.1875 small hike ­0.070 1.50 8.9 1 0 0.020
24­Feb­89 0.4375 large hike ­0.158 1.50 8.9 1 0 0.070
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

28­Mar­89 0 no change ­0.194 1.56 9.4 1 0 ­0.070
16­May­89 0.0625 no change ­0.744 1.44 7.3 1 0 ­0.022

5­Jun­89 ­0.25 small cut ­1.086 1.44 7.3 0 0 ­0.036
6­Jul­89 ­0.25 small cut ­1.446 1.40 5.1 0 0 ­0.026

26­Jul­89 ­0.25 small cut ­1.224 1.40 5.1 0 0 ­0.062
22­Aug­89 0 no change ­0.708 1.43 5.8 0 0 0.000

3­Oct­89 0 no change ­0.720 1.43 5.3 0 1 0.034
16­Oct­89 ­0.3125 large cut ­0.854 1.43 5.3 0 1 ­0.207
6­Nov­89 ­0.25 small cut ­0.940 1.43 5.3 0 1 ­0.104

14­Nov­89 0 no change ­0.652 1.38 4.9 0 1 ­0.020
19­Dec­89 ­0.25 small cut ­0.828 1.39 4.5 0 1 ­0.169

7­Feb­90 0 no change ­0.110 1.37 5.2 0 0 ­0.014
27­Mar­90 0 no change 0.034 1.47 7.6 0 0 0.000
15­May­90 0 no change 0.084 1.30 6.8 0 0 0.000

3­Jul­90 0 no change ­0.248 1.21 5.7 0 0 0.000
13­Jul­90 ­0.25 small cut ­0.118 1.21 5.7 0 1 ­0.138

21­Aug­90 0 no change ­0.464 1.19 5.7 0 1 0.000
7­Sep­90 0 no change ­0.594 1.19 5.7 0 1 0.039

17­Sep­90 0 no change ­0.286 1.19 5.7 0 1 ­0.023
2­Oct­90 0 no change ­0.480 1.09 2.6 0 1 0.021

29­Oct­90 ­0.25 small cut ­0.472 1.09 2.6 0 1 ­0.020
13­Nov­90 ­0.25 small cut ­0.484 1.10 1.3 0 1 0.000

7­Dec­90 ­0.25 small cut ­0.274 1.10 1.3 0 1 ­0.271
18­Dec­90 ­0.25 small cut ­0.206 1.02 0.9 0 1 ­0.233

8­Jan­91 ­0.25 small cut 0.122 1.04 4.3 0 1 ­0.175
1­Feb­91 ­0.5 large cut ­0.918 1.00 3.3 0 1 ­0.259
6­Feb­91 0 no change ­0.244 1.00 3.3 0 1 0.000
8­Mar­91 ­0.25 small cut 0.096 1.00 3.3 0 1 ­0.162

26­Mar­91 0 no change 0.170 0.95 2.1 0 1 0.000
12­Apr­91 0 no change 0.452 1.04 5.7 0 0 ­0.100
30­Apr­91 ­0.25 small cut 0.310 1.04 5.7 0 0 ­0.170

14­May­91 0 no change 0.374 1.01 3.0 0 0 0.019
3­Jul­91 0 no change 0.198 1.05 8.1 0 0 0.000

5­Aug­91 ­0.25 small cut 0.384 1.05 8.1 0 0 ­0.149
20­Aug­91 0 no change 0.052 1.05 4.9 0 0 0.124
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

13­Sep­91 ­0.25 small cut 0.070 1.05 4.9 0 1 ­0.053
1­Oct­91 0 no change 0.102 1.06 4.5 0 1 ­0.011

30­Oct­91 ­0.25 small cut 0.104 1.08 5.8 0 1 ­0.060
5­Nov­91 ­0.25 small cut 0.114 1.02 3.5 0 1 ­0.125
6­Dec­91 ­0.25 small cut ­0.190 1.02 3.5 0 1 ­0.087

17­Dec­91 ­0.5 large cut ­0.086 1.08 2.7 0 1 ­0.238
5­Feb­92 0 no change 0.190 1.14 4.3 0 0 ­0.013

31­Mar­92 0 no change 0.674 1.25 4.7 0 1 0.010
9­Apr­92 ­0.25 small cut 0.418 1.27 5.6 0 1 ­0.243

19­May­92 0 no change 0.120 1.21 4.9 0 1 0.000
1­Jul­92 ­0.5 large cut 0.144 1.17 4.8 0 0 ­0.363

18­Aug­92 0 no change 0.122 1.23 3.4 0 1 0.026
4­Sep­92 ­0.25 small cut 0.106 1.23 3.4 0 1 ­0.219
6­Oct­92 0 no change ­0.528 1.24 3.4 0 1 0.052

17­Nov­92 0 no change 0.648 1.23 4.5 0 1 ­0.100
22­Dec­92 0 no change 0.732 1.24 6.2 0 1 0.039

3­Feb­93 0 no change 0.330 1.30 6.2 0 0 ­0.012
23­Mar­93 0 no change 0.290 1.22 6.7 0 0 ­0.044
18­May­93 0 no change 0.270 1.26 4.2 0 0 ­0.026

7­Jul­93 0 no change 0.146 1.28 4.4 1 0 0.027
17­Aug­93 0 no change 0.428 1.28 4.8 1 0 0.000
21­Sep­93 0 no change 0.228 1.28 3.5 0 0 0.000
16­Nov­93 0 no change 0.546 1.36 6.6 0 0 0.023
21­Dec­93 0 no change 0.604 1.40 7.4 0 0 0.000

4­Feb­94 0.25 small hike 0.324 1.44 7.2 0 0 0.117
28­Feb­94 0 no change 0.736 1.44 7.2 0 0 ­0.050
22­Mar­94 0.25 small hike 1.104 1.37 5.7 0 0 ­0.034
18­Apr­94 0.25 small hike 1.282 1.52 5.0 0 0 0.100

17­May­94 0.5 large hike 1.678 1.41 6.2 0 0 0.133
6­Jul­94 0 no change 0.986 1.38 5.2 0 0 ­0.050

16­Aug­94 0.5 large hike 1.340 1.33 4.4 1 0 0.145
27­Sep­94 0 no change 1.112 1.41 4.8 0 0 ­0.200
15­Nov­94 0.75 large hike 1.444 1.41 6.1 1 0 0.140
20­Dec­94 0 no change 1.758 1.42 6.9 0 0 ­0.169

1­Feb­95 0.5 large hike 1.208 1.49 6.4 1 0 0.052
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

28­Mar­95 0 no change 0.326 1.34 5.8 0 0 0.103
23­May­95 0 no change 0.012 1.27 3.5 1 0 0.000

6­Jul­95 ­0.25 small cut ­0.610 1.33 3.9 0 0 ­0.012
22­Aug­95 0 no change 0.080 1.37 4.6 0 1 0.000
26­Sep­95 0 no change ­0.122 1.40 5.1 0 0 0.000
15­Nov­95 0 no change ­0.324 1.45 4.8 0 0 0.060
19­Dec­95 ­0.25 small cut ­0.394 1.38 3.9 0 0 ­0.103
31­Jan­96 ­0.25 small cut ­0.466 1.39 4.3 0 0 ­0.070

26­Mar­96 0 no change 0.198 1.47 4.5 0 0 ­0.031
21­May­96 0 no change 0.316 1.48 5.6 0 0 0.000

3­Jul­96 0 no change 0.060 1.39 4.5 0 0 ­0.050
20­Aug­96 0 no change 0.448 1.43 4.5 1 0 ­0.042
24­Sep­96 0 no change 0.666 1.43 4.2 1 0 ­0.125
13­Nov­96 0 no change 0.128 1.45 4.0 1 0 0.000
17­Dec­96 0 no change 0.182 1.41 4.5 1 0 0.011

5­Feb­97 0 no change 0.328 1.41 4.6 1 0 ­0.030
25­Mar­97 0.25 small hike 0.458 1.45 6.4 1 0 0.026
20­May­97 0 no change 0.354 1.43 3.9 0 0 ­0.113

2­Jul­97 0 no change ­0.272 1.44 4.8 1 0 ­0.016
19­Aug­97 0 no change 0.008 1.44 3.9 1 0 ­0.013
30­Sep­97 0 no change ­0.070 1.43 4.5 1 0 0.000
12­Nov­97 0 no change ­0.126 1.43 5.4 1 0 ­0.042
16­Dec­97 0 no change ­0.058 1.47 6.1 1 0 ­0.010

4­Feb­98 0 no change ­0.310 1.48 4.4 0 0 0.000
31­Mar­98 0 no change ­0.150 1.56 4.5 0 0 0.000
19­May­98 0 no change ­0.150 1.60 4.2 1 0 ­0.026

1­Jul­98 0 no change ­0.480 1.55 3.7 1 0 ­0.005
18­Aug­98 0 no change ­0.370 1.58 3.6 1 0 0.012
29­Sep­98 ­0.25 small cut ­0.896 1.63 4.2 0 0 0.060
15­Oct­98 ­0.25 small cut ­0.906 1.57 3.6 0 1 ­0.262
17­Nov­98 ­0.25 small cut ­0.542 1.57 3.2 0 1 ­0.058
22­Dec­98 0 no change ­0.362 1.69 4.2 0 0 ­0.017

3­Feb­99 0 no change ­0.182 1.68 4.4 0 0 0.000
30­Mar­99 0 no change ­0.116 1.75 5.1 0 0 0.000
18­May­99 0 no change 0.018 1.66 4.8 0 0 ­0.036
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

30­Jun­99 0.25 small hike 0.284 1.64 4.7 1 0 ­0.040
24­Aug­99 0.25 small hike 0.232 1.64 5.0 1 0 0.022

5­Oct­99 0 no change ­0.064 1.61 6.1 0 0 ­0.042
16­Nov­99 0.25 small hike 0.138 1.64 5.9 1 0 0.086
21­Dec­99 0 no change 0.426 1.62 6.4 0 0 0.016

2­Feb­00 0.25 small hike 0.564 1.64 6.1 0 0 ­0.054
21­Mar­00 0.25 small hike 0.398 1.74 7.3 1 0 ­0.031
16­May­00 0.5 large hike 0.322 1.65 7.9 1 0 0.052
28­Jun­00 0 no change ­0.372 1.61 6.8 1 0 ­0.020
22­Aug­00 0 no change ­0.294 1.53 4.8 1 0 ­0.017

3­Oct­00 0 no change ­0.500 1.57 5.7 1 0 0.000
15­Nov­00 0 no change ­0.394 1.56 5.9 1 0 0.000
19­Dec­00 0 no change ­0.810 1.52 4.7 1 0 0.052

3­Jan­01 ­0.5 large cut ­1.052 1.55 4.9 0 1 ­0.382
31­Jan­01 ­0.5 large cut ­1.208 1.59 2.4 0 1 0.005

20­Mar­01 ­0.5 large cut ­1.186 1.65 4.2 0 1 0.056
11­Apr­01 0 no change ­1.014 1.64 2.7 0 1 0.016
18­Apr­01 ­0.5 large cut ­0.852 1.64 2.7 0 1 ­0.425

15­May­01 ­0.5 large cut ­0.680 1.62 3.8 0 1 ­0.078
27­Jun­01 ­0.25 small cut ­0.472 1.62 3.5 0 1 0.050
21­Aug­01 ­0.25 small cut ­0.290 1.64 2.5 0 1 0.016
17­Sep­01 ­0.5 large cut ­0.306 1.64 2.5 0 1 ­0.323

2­Oct­01 ­0.5 large cut ­0.508 1.56 ­0.5 0 1 ­0.069
6­Nov­01 ­0.5 large cut ­0.460 1.51 ­2.0 0 1 ­0.100

11­Dec­01 ­0.25 small cut 0.322 1.54 ­1.8 0 1 0.000
30­Jan­02 0 no change 0.434 1.57 3.3 0 1 0.015

19­Mar­02 0 no change 0.846 1.65 5.4 0 1 ­0.026
7­May­02 0 no change 0.528 1.65 4.1 0 0 0.000
26­Jun­02 0 no change 0.378 1.65 3.2 0 0 0.000
13­Aug­02 0 no change ­0.032 1.65 3.5 0 0 0.034
24­Sep­02 0 no change 0.006 1.67 4.3 0 1 0.025
6­Nov­02 ­0.5 large cut ­0.252 1.68 2.9 0 1 ­0.194

10­Dec­02 0 no change 0.282 1.66 3.1 0 0 0.000
29­Jan­03 0 no change 0.066 1.77 3.8 0 0 0.000

18­Mar­03 0 no change ­0.080 1.82 4.3 0 0 0.048
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

6­May­03 0 no change ­0.028 1.76 3.1 0 0 0.037
25­Jun­03 ­0.25 small cut ­0.280 1.70 2.4 0 1 0.150
12­Aug­03 0 no change 0.342 1.74 4.6 0 1 0.000
16­Sep­03 0 no change 0.204 1.80 5.9 0 1 0.000
28­Oct­03 0 no change 0.288 1.84 5.2 0 1 0.000
9­Dec­03 0 no change 0.374 1.93 5.5 0 1 0.000
28­Jan­04 0 no change 0.182 1.92 6.6 0 1 0.000

16­Mar­04 0 no change 0.158 1.90 6.6 0 1 0.000
4­May­04 0 no change 0.536 1.89 6.2 0 1 ­0.006
30­Jun­04 0.25 small hike 1.116 1.97 7.4 0 0 ­0.010
10­Aug­04 0.25 small hike 0.752 1.93 4.9 0 0 0.022
21­Sep­04 0.25 small hike 0.528 1.98 4.5 0 0 0.017
10­Nov­04 0.25 small hike 0.636 1.98 5.2 0 0 0.000
14­Dec­04 0.25 small hike 0.546 1.98 5.6 0 0 0.000

2­Feb­05 0.25 small hike 0.502 1.97 5.1 0 0 0.000
22­Mar­05 0.25 small hike 0.658 2.15 7.2 0 0 0.000
3­May­05 0.25 small hike 0.480 2.02 6.3 0 0 0.000
30­Jun­05 0.25 small hike 0.286 2.00 5.6 0 0 0.000
9­Aug­05 0.25 small hike 0.462 2.01 5.9 0 0 0.000

20­Sep­05 0.25 small hike 0.252 2.00 5.8 0 0 0.015
1­Nov­05 0.25 small hike 0.424 2.10 6.6 0 0 0.000

13­Dec­05 0.25 small hike 0.256 2.00 5.6 0 0 0.000
31­Jan­06 0.25 small hike 0.142 2.10 6.3 1 0 0.000

28­Mar­06 0.25 small hike 0.136 2.10 8.2 1 0 0.000
10­May­06 0.25 small hike 0.170 2.00 7.0 1 0 ­0.007
29­Jun­06 0.25 small hike 0.264 1.90 5.9 1 0 ­0.015
8­Aug­06 0 no change ­0.150 1.80 5.3 1 0 ­0.040

20­Sep­06 0 no change ­0.228 1.70 4.0 1 0 0.000
25­Oct­06 0 no change ­0.170 1.60 4.0 1 0 0.000
12­Dec­06 0 no change ­0.326 1.50 2.9 1 0 0.000
31­Jan­07 0 no change ­0.156 1.50 5.7 1 0 0.000

21­Mar­07 0 no change ­0.328 1.40 5.5 1 0 0.000
9­May­07 0 no change ­0.314 1.40 5.5 1 0 0.000
28­Jun­07 0 no change ­0.308 1.50 6.0 1 0 0.000
7­Aug­07 0 no change ­0.460 1.30 3.6 1 0 0.026
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

10­Aug­07 0 no change ­0.490 1.30 3.6 1 0 0.000
17­Aug­07 0 no change ­0.202 1.30 3.6 1 0 0.155
18­Sep­07 ­0.5 large cut ­1.008 1.30 3.5 0 0 ­0.150
31­Oct­07 ­0.25 small cut ­0.848 1.20 2.3 0 0 ­0.020
11­Dec­07 ­0.25 small cut ­1.246 1.20 1.9 0 0 0.008
22­Jan­08 ­0.75 large cut ­1.394 1.20 1.9 0 0 ­0.741
30­Jan­08 ­0.5 large cut ­1.182 1.00 3.3 0 1 ­0.095

18­Mar­08 ­0.75 large cut ­1.420 1.00 2.7 0 1 0.167
30­Apr­08 ­0.25 small cut ­0.324 0.90 ­0.6 0 1 ­0.055
25­Jun­08 0 no change 0.604 1.00 1.9 0 0 ­0.030
5­Aug­08 0 no change 0.260 0.90 4.3 0 0 ­0.006

16­Sep­08 0 no change ­0.202 0.90 5.5 0 0 0.059
8­Oct­08 ­0.5 large cut ­0.154 0.90 5.5 0 0 ­0.142

29­Oct­08 ­0.5 large cut 0.734 0.80 2.9 0 1 ­0.060
16­Dec­08 ­0.75 large cut 0.356 0.70 ­2.4 0 1 ­0.119
28­Jan­09 0 no change 0.252 0.50 ­4.3 0 1 0.000

18­Mar­09 0 no change 0.508 0.40 ­3.3 0 1 ­0.006
29­Apr­09 0 no change 0.342 0.50 ­1.0 0 1 ­0.005
24­Jun­09 0 no change 0.262 0.50 ­1.6 0 1 ­0.025
12­Aug­09 0 no change 0.324 0.60 1.6 0 1 ­0.008
23­Sep­09 0 no change 0.244 0.60 3.1 0 1 0.000
4­Nov­09 0 no change 0.270 0.70 3.1 0 1 0.000

16­Dec­09 0 no change 0.230 0.60 4.6 0 1 ­0.010
27­Jan­10 0 no change 0.188 0.60 4.7 0 1 ­0.019

16­Mar­10 0 no change 0.234 0.60 4.2 0 1 0.000
28­Apr­10 0 no change 0.248 0.60 4.6 0 1 0.000
23­Jun­10 0 no change 0.110 0.60 4.8 0 1 0.000
10­Aug­10 0 no change 0.080 0.60 3.8 0 1 0.000
21­Sep­10 0 no change 0.052 0.60 3.6 0 1 0.000
3­Nov­10 0 no change 0.028 0.60 2.8 0 1 0.003

14­Dec­10 0 no change 0.126 0.50 2.8 0 1 0.000
26­Jan­11 0 no change 0.096 0.60 5.7 0 1 0.000

15­Mar­11 0 no change 0.108 0.60 4.8 0 1 0.000
27­Apr­11 0 no change 0.132 0.60 6.1 0 1 0.000
22­Jun­11 0 no change 0.084 0.50 5.8 0 1 ­0.009
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Table A1 (contd). Data

Date of
FOMC

decision

Change to
federal funds

rate target

Dependent
variable
Δy t

spread t houstart t Δgdp t tbias t­1 ebias t­1 surprise t

9­Aug­11 0 no change 0.024 0.600 5.100 0 1 0.000
21­Sep­11 0 no change 0.002 0.600 5.300 0 1 0.008
2­Nov­11 0 no change 0.052 0.600 3.900 0 1 0.000

13­Dec­11 0 no change 0.032 0.600 4.300 0 1 ­0.004

Table A2. Sample descriptive statistics

Variable Mean Median Standard
deviation Minimum Maximum

First­order
autocorrelation

coefficient

Δ y t ­0.04 0.00 0.92 ­0.50 0.50 0.50

spread t 0.05 0.11 0.54 ­1.45 1.76 0.82

houstart t 1.48 1.47 0.26 0.95 2.15 0.98

Δgdp t 5.05 5.10 1.75 ­2.00 9.40 0.79

tbias t­1 0.27 0.00 0.44 0.00 1.00 0.63

ebias t­1 0.32 0.00 0.47 0.00 1.00 0.73

surprise t ­0.29 0.00 0.91 ­4.25 1.50 ­0.02

Notes. Sample period: 7/1987—1/2006 (190 observations).
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Table A3. Tests for unit roots

Δ y t
7/87­12/16
(281 obs.)

FOMC
decisions C 1 ­6.01 0.0000

spread t
1/62­2/17

(14341 obs.) daily C 41 ­7.84 0.0000

houstart_act t
1/59­1/17
(680 obs.) monthly C, LT 16 ­4.23 0.0043

Δgdp t
7/87­12/11
(241 obs.)

FOMC
decisions C, LT 0 ­5.73 0.0000

tbias t­1
7/87­12/16
(281 obs.)

FOMC
decisions C 1 ­4.82 0.0001

ebias t­1
7/87­12/16
(281 obs.)

FOMC
decisions C 0 ­5.22 0.0000

surprise t
7/87­1/14
(258 obs.)

FOMC
decisions C, LT 0 ­16.18 0.0000

Sample
period

(and size)

Data
frequency

The Augmented Dickey­Fuller (ADF) unit root tests

Variable Deterministic
terms* Lag length t­

statistic P­value**

Notes. * C - constant, LT - linear trend; ** MacKinnon (1996) one-sided p-values. The lag order of the
lagged first differences of the dependent variable in the ADF tests is selected according to a criterion of no
serial correlation among the ADF regression residuals.
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