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Abstract

We study voting rules with respect to how they allow or limit a majority to dominate
minorities. For this purpose we propose a novel quantitative criterion for voting
rules: the qualified mutual majority criterion (q, k)-MM. For a fixed total number of
m candidates, a voting rule satisfies (q, k)-MM if whenever some k candidates receive
top k ranks in an arbitrary order from a majority that consists of more than q ∈ (0, 1)
of voters, the voting rule selects one of these k candidates. The standard majority
criterion is equivalent to (1/2, 1)-MM. The standard mutual majority criterion (MM)
is equivalent to (1/2, k)-MM, where k is arbitrary. We find the bounds on the size
of the majority q for several important voting rules, including the plurality rule, the
plurality with runoff rule, Black’s rule, Condorcet least reversal rule, Dodgson’s rule,
Simpson’s rule, Young’s rule and monotonic scoring rules; for most of these rules we
show that the bound is tight.

Keywords. Majority tyranny, single winner elections, plurality voting rule, plurality
with runoff, instant runoff voting, mutual majority criterion, voting rules

1 Introduction

In this paper for various voting rules we propose a simple way to quantitatively measure
their robustness to majority tyranny, that is the extent to which each voting rule allows a
majority to dominate minorities.

Majority tyranny has been a buzzword for centuries and can be traced back to the ancient
Greek ochlocracy. A more modern yet classical reference are the works of James Madison:

If a majority be united by a common interest, the rights of the minority will be
insecure. (Federalist 51.)

Consider the following illustrative example. Let there be 5 candidates (Bernie, Donald,
Hillary, John and Ted) and let the voters have one of the five rankings of the candidates as
presented in Table 1, where the top row gives the share of these voters in the population.

∗Support from the Basic Research Program of the National Research University Higher School of Eco-
nomics is gratefully acknowledged.
The previous version of this paper has circulated under the title “Weak Mutual Majority Criterion for Voting
Rules“
We use this occasion to thank Fedor Sandomirskiy, Constantine Sorokin, Misha Gavrilovich for their helpful
comments, as well as all our colleagues from the Game theory lab at the Higher School of Economics in
St.Petersburg for the support.



Table 1. Preference profile

share of voters 24% 25% 16% 17% 18%
1st candidate Donald Hillary John Bernie Ted
2nd candidate John Bernie Ted John Bernie
3rd candidate Ted John Bernie Ted John
4th candidate Bernie Ted Donald Hillary Donald
5th candidate Hillary Donald Hillary Donald Hillary

Consider the voters in the last three columns in Table 1. These voters constitute a
mutual majority of 51% as they prefer the same subset of candidates (Bernie, John and
Ted) over all other candidates. Informally, by majority tyranny we mean that a voting rule
chooses one of these three candidates regardless of the opinion and the voting strategy of
others. To formalize, a voting rule satisfies the mutual majority criterion if whenever
more than half of voters prefer each candidate from a group of some k candidates over each
other candidate outside the group (in an arbitrary order), then the rule must select one of
these k candidates.

The mutual majority criterion is a generalization of the innocuous and desirable ma-
jority criterion: if only one of the candidates (i.e. k = 1) is top-ranked by more than half
of voters, then this one candidate is selected.

The previous literature has studied two specific types of majority tyranny. The first type
deals with the rules that do not satisfy the majority criterion (scoring rules like Borda rule)
and thus let the minorities veto the only top-ranked candidate of the majority [2, 31]. The
second type deals with the rules that satisfy the mutual majority criterion and thus even
a simple majority is enough to vote through one of its top-ranked candidates (a review of
these results can be found in [40]). However, there was no systematic analysis of majority
tyranny for the rules between these two extremes.

To fill up this gap we focus on the rules that satisfy the majority criterion and do
not satisfy the mutual majority criterion and determine where exactly between these two
axioms does each rule lie. To do that we introduce a quantitative criterion that we call the
qualified mutual majority criterion and denote as (q, k)-MM: for a fixed total number
of m candidates, it requires that if there is a group of k candidates that get top k positions
by a qualified mutual majority of more than q of voters, then the rule must select one of
these k candidates. Thus, the majority criterion is equivalent to (q, k)-MM with k = 1 and
q = 1/2, and the mutual majority criterion is equivalent to (q, k)-MM with arbitrary k and
a fixed quota q = 1/2.

Among such rules of our main interest are the plurality rule and the plurality with runoff
rule. In the plurality rule the winner is determined by the highest number of top ranks. In
the example above the plurality rule selects Hillary as she is top-ranked by 25% of voters
which is higher than what other candidates get. In the plurality with runoff rule the two
candidates with the highest number of top ranks proceed to the second round where the
winner is determined by a simple majority. In the example above the plurality with runoff
rule first selects Donald and Hillary into the second round, and then Donald wins by a
simple majority.

Together with the instant-runoff rule1 these rules are most widespread in political elec-
tions around the world.2 We find that for the plurality rule for arbitrary number of preferred

1In the instant-runoff rule each voter submits a ballot with a rank-ordered list of the candidates. The
candidate that gets the least number of the first positions in the ballots is eliminated, the candidates with
the lowest number of the first positions keep being eliminated one by one until there is a candidate that
receives more than half of first positions. In the example above the instant-runoff rule selects Ted: first it
eliminates John, his first positions are transferred to Ted; then it eliminates Bernie, his first positions are
transferred to Ted who wins the election by receiving more than half of first positions.

2A version of plurality with run-off is used for presidential elections in France and Russia. The US



candidates k > 1 the quota is q = k/(k + 1) of voters, and for the plurality with runoff rule
the quota is q = k/(k + 2). Both quotas are tight: for each smaller quota we find a coun-
terexample.

We further study other voting rules, which are popular in the literature, with respect to
the qualified mutual majority criterion. We find bounds on q for Dodgson’s rule (aka Lewis
Carroll’s rule), Young’s rule, Condorcet least-reversal rule, Simpson’s rule (aka maximin
rule), and the convex median voting rule;3 for most of them we show that the bounds are
tight (except for Dodgson’s rule). We show that unless we restrict the total number of
candidates Black’s rule fails the qualified mutual majority criterion: for each q < 1 and each
k > 1 there exists a counter-example.

The summary of our results is presented in Table 2 below. For each of the listed rules we
find a tight bound on the size q of the qualified mutual majority. If this bound equals 1/2
(as in the case of the instant-runoff rule), then the mutual majority criterion is satisfied.

Table 2. The minimal quota q such that (q, k)-MM is satisfied for any m candidates.

Voting rule q supk q reference
1 Instant-runoff 1/2 1/2 [40]
2 Condorcet least reversal (even k) (5k − 2)/(8k) 5/8 Theorem 3.5

Condorcet least reversal (odd k) (5k2 − 2k + 1)/(8k2) 5/8 Theorem 3.5
3 Convex median (3k − 1)/(4k) 3/4 Theorem 3.8
4 Plurality with runoff k/(k + 2) 1 Theorem 3.2

5-6 Simpson’s (k − 1)/k 1 Theorem 3.3
5-6 Young’s (k − 1)/k 1 Theorem 3.4
7 Plurality k/(k + 1) 1 Theorem 3.1
8 Black’s 1 1 Theorem 3.7

Notes. The voting rules are ordered according to the minimal size of the qualified mutual majority q(k)
(for k > 4). For all these rules q = 1/2 whenever k=1. The instant-runoff rule satisfies the mutual majority
criterion and therefore q = 1/2.

Of special interest is the inverse plurality rule: there each candidate gets an additional
point from each voter unless this voter ranks him as the worst among all, and the candidate
with the highest total number of points wins. When the number of the preferred candidates
k is only by one smaller than the total number of candidates m = k + 1, then the tight
quota for the mutual majority is less than one half and equals 1/m. This effectively means
that the mutual majority can be very small but still be able to select one of its preferred
candidates, which is the same as to veto their least preferred candidate. Generalizing this
result we find the tight quota q for any monotonic scoring rules, which incorporates the
results for the plurality rule and for Borda rule.

The paper proceeds as follows. Section 2 presents the model and the necessary defini-
tions. Section 3 presents the voting rules satisfying the majority criterion and the results.
Section 4 presents the results (Theorems 4.1 and 4.2) on monotonic scoring rules. Section 5
concludes.

Presidential election system with primaries also resembles the plurality with runoff rule given the dominant
positions of the two political parties. The instant runoff rule is currently used in parliamentary elections
in Australia, presidential elections in India and Ireland. According to the Center of Voting and Democracy
fairvote.org [16] the instant-runoff and plurality with runoff rules have the highest prospects for adoption in
the US. In the UK a 2011 referendum proposing a switch from the plurality rule to the instant-runoff rule
lost when almost 68% voted No.

3Let us briefly motivate the results about the convex median voting rule. Borda rule satisfies positional
dominance of second order (WPD) but it fails the majority criterion (Maj). The convex median voting
rule was proposed in [26] as a rule that satisfies both WPD and Maj. Our paper shows that this rule is
much closer to satisfying the stronger criterion of mutual majority (or, equivalently 1/2-MM) as it satisfies
3/4-MM. According to the incompatibility result (e.g. in [26]) there is no rule that satisfies both WPD and
1/2-MM.



2 The model

This section introduces the standard voting problem and the main criteria for voting rules.
Consider a voting problem where n ≥ 1 voters I = {1, . . . , n} select one winner among

m ≥ 1 candidates (alternatives) A = {a1, . . . , am}. Let L(A) be the set of linear orders
(complete, transitive and antisymmetric binary relations) on the set of candidates A.

Each voter i ∈ I is endowed with a preference relation �i∈ L(A). (Voter i prefers a
to b when a �i b.)

Preference relation �i corresponds to a unique ranking bijection Ri : A → {1, . . . ,m},
where Ra

i is the relative rank that voter i gives to candidate a,

Ra
i = |{b ∈ A : b �i a}|+ 1, a ∈ A, i ∈ {1, . . . , n}.

The collection of the individual preferences � = (�1, . . . ,�n) ∈ L(A)
n

as well as cor-
responding ranks (R1, . . . , Rn) are referred to as the preference profile. (There exist m!
different linear orders and (m!)n different profiles.)

Table 3 provides an example of a preference profile for n = 7 voters over m = 4 can-
didates. Here voters are assumed to be anonymous which allows us to group voters with
the same individual preferences. Each column represents some group of voters, the number
of voters in the group is in the top row; the candidates are listed below (starting from the
most preferred candidate) according to the preference of the group.

Table 3. Preference profile

2 2 2 1
a b c c
b a d d
c c a b
d d b a

Given a preference profile we determine function h(a, b) as the number of voters that
prefer candidate a over candidate b,

h(a, b) = |{i : a �i b, 1 ≤ i ≤ n}|, a, b ∈ A, a 6= b.

Matrix h with elements h(a, b) is called a tournament matrix. (Note that h(a, b) =
n− h(b, a) for each a 6= b.)

Table 4 provides the tournament matrix for the preference profile from Table 3.

Table 4. Tournament matrix

a b c d
a 4 4 4
b 3 4 4
c 3 3 7
d 3 3 0

Matrix h is called transitive if there exists a linear order �0∈ L(A) such that h(a, b) ≥
h(b, a) whenever a �0 b. For example, the matrix in Table 4 is transitive.

We say that candidate a (weakly) dominates candidate b, or (weakly) wins in
pairwise majority comparison, if h(a, b) > n/2 (h(a, b) ≥ n/2). For arbitrary disjoint
subsets of candidates A1, A2 ∈ A we say that A1 (weakly) dominates A2, if for each element
a ∈ A1 and each element b ∈ A2 candidate a (weakly) dominates b.



For some subset B ⊆ A, a candidate is called a Condorcet winner [12],4 if he/she
dominates any other candidate in this subset. Thus, the set of Condorcet winners is

CW (B) = {b ∈ B : h(b, a) > n/2 for each a ∈ B \ b}, B ⊆ A.

It is easy to see that the set of Condorcet winners CW is either a singleton or empty.
For some subset, a candidate is called a weak Condorcet winner, if he/she weakly

dominates any other candidate in this subset.
Similarly, a Condorcet loser in some subset B ⊆ A is a candidate that loses in pairwise

comparisons to each candidate in this subset:

CL(B) = {b ∈ B : h(b, a) < n/2 for each a ∈ B \ b}, B ⊆ A.

Let a positional vector of candidate a be vector n(a) = (n1(a), . . . , nm(a)), where
nl(a) is the number of voters for whom candidate a has rank l in individual preferences,

nl(a) = |{i : Ra
i = l, 1 ≤ i ≤ n}|, a ∈ A, l ∈ {1, . . . ,m}.

The definition implies that each positional vector has nonnegative elements, nl(a) ≥ 0

for each l, and the sum of elements is equal to the number of voters
m∑
l=1

nl(a) = n.

Candidate a is called a majority winner, if n1(a) > n/2.
A collection of positional vectors for all candidates is called a positional matrix

(n(a1), . . . , n(am)) = n(�).
Table 5 provides the positional matrix for the preference profile in Table 3.

Table 5. Positional matrix

Rank a b c d
1 2 2 3 0
2 2 2 0 3
3 2 1 4 0
4 1 2 0 4

A mapping C(B,�) that to each nonempty subset B ⊆ A and each preference profile �
gives a choice set is called a social choice rule,5

C : 2A \ ∅ × L(A)n → 2A,

where C(B,�) ⊆ B for any B; and C(B,�) = C(B,�′), if preference profiles �,�′ coincide
on B.

A rule is called universal if C(B,�) 6= ∅ for any nonempty B and any profile �.
Let us define the criteria that are critical for the results of the paper and the social choice

rules considered below.6

Majority (Maj) criterion. For each preference profile, if some candidate a is top-ranked
by more than half of voters (n1(a) > n/2), then the choice set is a singleton and coincides
with this candidate.

4The collection [29] contains English translations of original works by Borda, Condorcet, Nanson, Dodg-
son and other early researches.

5Any social choice rule is a voting rule. There exist voting rules (for example, approval voting, range
voting and majority judgement) that are not social choice rules.

6The ”extremely desirable” criteria of universality, non imposition, anonymity, neutrality, unanimity are
satisfied by all social choice rules considered in this paper [18, 38, 40, 45].



Mutual majority (MM) criterion.7 For each preference profile, if more than half of
voters give to some k candidates (B = {b1, . . . , bk}, 1 ≤ k < m) top k ranks in an arbitrary
order, then the choice set is included in B.

For any fixed quota q ∈ (0, 1) and any fixed number of preferred candidates k among
the total of m candidates, we define the next criteria.

(q, k)-MM criterion.8 For each preference profile, if a share of voters higher than q gives
to some k candidates (B = {b1, . . . , bk}, 1 ≤ k < m) top k ranks in an arbitrary order, then
the choice set is included in B.

We say that a rule satisfies q-MM criterion, if it satisfies (q, k)-MM criterion for each k.
For universal rules, it is also apparent from the definitions that MM implies Maj; for

any k and any q′ ≥ q, (q, k)-MM implies (q′, k)-MM; Maj is equivalent to (1/2, 1)-MM; MM
is equivalent to 1/2-MM.9

3 Voting rules satisfying the majority criterion

This section considers the classic social choice rules that satisfy the majority criterion (thus,
they satisfy (q, k)-MM with k = 1 and any q ≥ 1/2) but do not satisfy the mutual majority
criterion.10 In case of only two candidates each rule satisfying the majority criterion coin-
cides with the simple majority rule where the winner is the candidate that gets at least
half of votes.11 In what follows we consider the case of m > 2 candidates.

In the plurality (Pl) voting rule the candidate that receives the highest number of top
positions is declared to be the winner,

Pl(A,�) = {a ∈ A : n1(a) ≥ n1(b) for each b ∈ A \ a}.

Theorem 3.1. For each m > k ≥ 1, plurality voting rule satisfies (q, k)-MM criterion if
and only if q ≥ k/(k + 1).

Proof.
Let m ≥ 3, and let more than nk/(k+1) voters give candidates from some subset B ( A

(m > |B| = k ≥ 1) top k positions. Then all together candidates in B receive strictly more
than nk/(k + 1) top positions, while candidates from A \B all together receive strictly less
than n/(k+ 1) top positions. Therefore, at least one of the candidates in B receives strictly
more than n/(k+ 1) top positions, and each candidate from A \B receives strictly less than
n/(k+1) top positions. Therefore, the plurality voting rule can only select a candidate from
set B.

For any smaller quota q < k/(k + 1) we can always find the following counterexample.
Let the total number of voters be n = k + 1 and let k voters give candidates from set B top
k positions such that each of these candidates gets the top position exactly once. Let some

7MM is implied by a more general axiom for multi-winner voting called Droop-Proportionality for Solid
Coalitions [43].

8(q, k)-MM is even more general than the concept q-PSC formalized in [1] if the latter is applied to
single-winner elections. The weak mutual majority criterion defined in [26] turns as a particular case of
q = k/(k + 1).

9Also one can see that unanimity criterion is equivalent to (1− ε, 1)-MM with infinitely small ε > 0.
10For completeness of results, we should mention well-studied voting rules that satisfy the mutual majority

criterion: Nanson’s [29, 30], Baldwin’s [4], single transferable vote [23], Coombs [13], sequential majority
comparison [45], maximal likelihood [25], ranked pairs [41], beat paths [33], median voting rule [6], Bucklin’s
[40], majoritarian compromise [35], q-approval fallback bargaining [9], and those tournament solutions which
are refinements of the top cycle [21, 34]. For their formal definitions and properties, we also advise [10, 18,
38, 40, 45].

11In case of only m = 2 candidates the simple majority rule is the most natural as it satisfies a number
of other important axioms according to May’s Theorem [28].



voter give the top position to some other candidate a /∈ B. Then the plurality voting rule
selects all candidates from the set B ∪ a. �

The plurality with runoff (RV) voting rule proceeds in two rounds: first the two
candidates with the highest number of top positions are determined, then the winner is
chosen between the two using simple majority rule.

Theorem 3.2. For each m− 1 = k ≥ 1, plurality with runoff satisfies (q, k)-MM criterion
if and only if q ≥ 1/2; for each m− 1 > k > 1, the rule satisfies the criterion if and only if
q ≥ k/(k + 2).

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2, k = 1, 2).
In case k = m− 1, and q = 1/2, in the second round there is at least one candidate from

the supported k candidates, and this candidate wins.
Let m > 3, and let more than nk/(k+2) voters give candidates from some subset B ( A

(m − 1 > |B| = k > 1) top k positions. Then all together candidates in B receive strictly
more than nk/(k+2) top positions, while candidates from A\B all together receive strictly
less than 2n/(k + 2) top positions. Therefore, at least one of the candidates in B and at
most one of the candidates in A \ B receive strictly more than n/(k + 2) of top positions.
Thus, in the second round there is at least one candidate from set B. Even if the second
candidate is from A \ B, this second candidate loses to the candidate from B by simple
majority rule. Hence, the winner is from B.

For any smaller quota q < k/(k + 2) we can always find the following counterexample.
Let the total number of voters be n = (k+2)n′+2 and let kn′ voters give k candidates from
set B top k positions such that each candidate in B gets the top position exactly n′ times.
Consider the other 2 · (n′+ 1) voters and two other candidates a1, a2 /∈ B. Let n′+ 1 voters
top-rank candidate a1 and the other n′ + 1 voters top-rank candidate a2. Then candidates
a1 and a2 make it to the second round.

If we set n′ > 2q/(k − kq − 2q) then set B is supported by more than qn voters. �

According to Simpson’s rule (also known as maximin voting rule) [36, 44] each candi-
date receives a score equal to the minimal number of votes that this candidate gets compared
to any other candidate,

Si(a) = min
b∈A\{a}

h(a, b).

The winner is the candidate with the highest score.

Theorem 3.3. For each m > k > 1, Simpson’s rule satisfies (q, k)-MM criterion if and only
if q ≥ (k − 1)/k.12

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2, k = 1, 2).
Let m > 3, and more than n(k − 1)/k voters top-rank k ≥ 2 candidates, denote this

subset of candidates as B = {b1, . . . , bk}. It is easy to see that each candidate in A \B gets
less than n/k of Simpson’s scores (a candidate from A \B gets the highest score when it is
top-ranked by all voters that do not top-rank B).

Denote the number of the first positions of some candidate b ∈ B among all other
candidates in B as n1(b, B):

n1(b, B) = |{i : b �i b
′ for each b′ ∈ B \ b}|. (1)

12This tight bound q = (k− 1)/k for Simpson’s rule coincides with the tight bound of q-majority equilib-
rium [22, 27], and with the minimal quota, that guarantees acyclicity of preferences [14, 17, 42].



Since the total number of first positions is fixed n1(b1, B) + . . . + n1(bk, B) = n, there
is a candidate b ∈ B with the number of top positions weakly higher than the average:
n1(b, B) ≥ n/k.

Hence, there is a candidate that receives not less than n/k of scores, and each candidate
from A \B gets less than n/k scores and cannot be the winner.

To see that the bound q = (k − 1)/k is tight consider the following counterexample in
Table 6: each candidate b ∈ B receives exactly qn/k first positions, qn/k second positions
and so on from the qualified mutual majority of qn voters, while all voters outside of the
qualified mutual majority top-rank some other candidate a1 and also prefer all candidates
in A \B over candidates in B.

Table 6. Preference profile
qn
k . . . qn

k
(1−q)n

k . . . (1−q)n
k

b1 . . . bk a1 . . . a1
b2 . . . b1 . . . . . . . . .
. . . . . . . . . am−k . . . am−k
bk . . . bk−1 b1 . . . bk
a1 . . . a1 . . . . . . . . .
. . . . . . . . . bk−1 . . . bk−2

am−k . . . am−k bk . . . bk−1
Notes. The qualified mutual majority of qn voters give exactly qn/k first, second and so on positions to
each candidate bi ∈ B, all preferences over remaining alternatives A \B are the same. The other (1− q)n
voters prefer each candidate in A \B over each candidate in B, and have identical relative ordering of
candidates within these two sets. This type of cyclical preferences over B is known as a Condorcet k-tuple.

For each k>1 we can set n=k2 and q=(k−1)/k. Then set B is supported by n(k−1)/k
voters, while each candidate from the set B ∪ a1 gets the same Simpson’s score. �

By Young’s rule [11, 44] the winner is the candidate that needs the least number of
voters (integer or not) to be removed for this candidate to become a Condorcet winner.

Theorem 3.4. For each m > k > 1, Young’s rule satisfies (q, k)-MM criterion if and only
if q ≥ (k − 1)/k.

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2, k = 1, 2).
Let m > 3, and let more than n(k − 1)/k voters top-rank k ≥ 2 candidates, denote this

subset of candidates as B = {b1, . . . , bk}. For each candidate from A \ B to make him a
Condorcet winner, we need to remove strictly more than n(k − 2)/k voters.

Consider some candidate b ∈ B with a higher than average number of top positions
n1(b, B) ≥ n/k (as defined in equation (1)). For b to win, at most n(k − 2)/k + ε voters
have to be removed.

The example from Table 6 shows that the bound (k − 1)/k is tight. �

According to Condorcet least-reversal rule (the simplified Dodgson’s rule) [40] the
winner is, informally, the candidate a ∈ A that needs the least number of reversals in
pairwise comparisons in order to become the a Condorcet winner. Formally, the winner d
minimizes the following sum of losing margins compared to each other candidate c:

pCLR
d =

∑
c∈A\d

max
{n

2
− h(d, c), 0

}
. (2)

Theorem 3.5. For each m > k ≥ 2 and for each even k, Condorcet least-reversal rule
satisfies (q, k)-MM criterion if and only if q ≥ (5k − 2)/(8k); for each m > k ≥ 1 and for
each odd k, the rule satisfies the criterion if and only if q ≥ (5k2 − 2k + 1)/(8k2).



Proof.
Again we use the preference profile in Table 6. Let’s first show that it is the worst

possible profile for each candidate b ∈ B to win by the Condorcet least-reversal rule, i.e.
it has the maximum minimum score pCLR

b among all candidates b ∈ B. To maximize the
minimum score pCLR for candidates in B we can maximize the scores (2) for the subset B
separately:

∑
c∈B\b

. This is true, because the other part
∑

c∈A\B
is zero whenever q ≥ 1/2.

According to Proposition 5 in [32], each tournament matrix with k candidates has unique
representation as the sum of its transitive matrix and its Condorcet k-tuple matrix (Table 7).

Table 7. Condorcet k-tuple profile and tournament matrix
n
k

n
k . . . n

k

b1 b2 . . . bk
b2 b3 . . . b1
. . . . . . . . . . . .
bk b1 . . . bk−1

b1 b2 . . . bk
b1 n(k − 1)/k . . . n/k
b2 n/k . . . 2n/k
. . . . . . . . . . . . . . .
bk n(k − 1)/k n(k − 2)/k . . .

Thus, the maximal element of the transitive matrix gets not more total scores pCLR than
in the k-tuple matrix only. Hence, the profile in Table 6 qualifies as the worst case.

Next we find the bound for the profile in Table 6. Each candidate a ∈ A\B gets at least
pCLR
a ≥ nk(2q − 1)/2 points.

Candidate b1 gets n/k, 2n/k, . . . , (k − 1)n/k pairwise majority wins against candidates
bk, . . . , b2 correspondingly. For even k the score for each b ∈ B is pCLR

b = n(k − 2)/8,
for odd k the score is pCLR

b = n(k − 1)2/(8k). Setting these scores equal to the score
pCLR
a1

= nk(2q − 1)/2 received by a1 we get the tight bounds. �

The classic Dodgson’s [11, 15, 29] winner is determined as the candidate that needs
the least upgrades by one position in individual preferences that makes him a Condorcet
winner. To satisfy homogeneity property such upgrades are allowed to perform for non
integer amount of voters.

Theorem 3.6. For m > k ≥ 1, Dodgson’s rule (with non integer amount of upgrades)
satisfies (q, k)-MM criterion with q ≥ k/(k + 1); the rule fails the criterion with q < (5k −
2)/(8k) in case of even k ≥ 2, and q < (5k2 − 2k + 1)/(8k2) in case of odd k ≥ 1.

Proof.
Let more than k/(k + 1) portion of voters give candidates from some subset B ( A

top k positions. Then each candidate a ∈ A \ B gets less than n/(k + 1) votes in pairwise
comparison against each candidate in set B. Upgrading candidate a by one position in
the preference profile adds not more than one vote in a pairwise comparison against each
candidate in set B. Therefore candidate a needs more than k(n

2 −
n

k+1 ) upgrades to become
a Condorcet winner. A candidate in B that gets more than n/(k + 1) top positions needs
not more than (k − 1)(n

2 −
n

k+1 ) upgrades in the preference profile in order to become a
Condorcet winner. Since (k− 1)(n

2 −
n

k+1 ) < k(n
2 −

n
k+1 ), Dodgson’s rule selects from set B.

The second statement follows from the calculations for profile in Table 6. �

By Borda rule [8, 29] the first best candidate in an individual preference gets m − 1
points, the second best candidate gets m− 2, . . . , the last gets 0 points.

The total Borda score can be calculated using positional vector n(a) as follows:

Bo(a) =

m∑
i=1

ni(a)(m− i), a ∈ A. (3)



The candidate with the highest total score wins. The score can also be calculated using
the tournament matrix:

Bo(a) =
∑

b∈A\{a}

h(a, b), a ∈ A. (4)

The previous equation readily shows that the Borda score of a Condorcet loser is always
lower than the average score of all candidates (half of the maximally reachable points),
Bo(a) < n(m − 1)/2 whenever a ∈ CL(A). Similarly, the Borda score of a Condorcet
winner is always higher than the average score of all candidates, Bo(a) > n(m − 1)/2
whenever a ∈ CW (A).

Black’s rule [7] selects a Condorcet winner. If a Condorcet winner does not exist, then
the candidate with the highest Borda score (4) is selected.

Theorem 3.7. For each m > k > 1, Black’s rule satisfies (q, k)-MM criterion if and only if
q ≥ (2m− k − 1)/(2m).13

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2, k = 1, 2).
Let m ≥ 3, and let more than qn voters give candidates from some subset B ( A

(m > |B| = k > 1) top k positions. Then one can find the tight bound for the quota
q = q(k,m) using the following equation:

(1− q)(m− 1) + q(m− k − 1) = q
m− 1 + m− k

2
+ (1− q)

k − 1

2
,

where the left part is the maximal Borda score for any a /∈ B, and the right part is the
minimal maximal Borda score for any b ∈ B.

The example from Table 6 shows that the bound (2m− k − 1)/(2m) is tight. �

Based on truncated Borda scores the convex median voting rule (CM) is defined
in the following way [26]. First for some positional vector n(a) and some real number
t ∈ (0,+∞) define the truncated Borda score [19] as

Bt(a) = t · n1(a)+(t−1)n2(a)+ . . .+(t−btc)nbtc+1(a), t ∈ (0,+∞),

where formally put ni(a) = 0 for i > m. The definition implies that Bm−1(a) = Bo(a).
For each candidate a define the score of convex median using the following formula:

CM(a) =

{
m− 1− 1

2 max
{
t ∈ [1,2(m−1)] : Bt(a)

t ≤ n
2

}
, n1(a) ≤ n

2 ,

m− 2 + n1(a)
n , n1(a) > n

2 ,

The winner is the candidate with the highest value of the convex median; ties are broken
using Borda scores (3).

Theorem 3.8. For each m > 2k, the convex median voting rule satisfies (q, k)-MM criterion
if and only if q ≥ (3k − 1)/(4k); for each m = k + 1 – if and only if q ≥ 1/2; for each
2k ≥ m > k + 1, the tight bound q satisfies to the inequality 1

2 < q < 3k−1
4k and to the

equation

4k(m− k − 1)q2 + (5k2 + 5k − 2mk −m2 + m)q + m(m− 1− 2k) = 0. (5)

Proof.
Let qn voters give candidates from some subset B = {b1, . . . , bk} top k positions. Then

each candidate a /∈ B gets the following truncated Borda score:

13In the theorem, we actually find the tight bound of quota for Borda rule. In particular case k = 1, this
quota equals q = (m− 1)/m, and also was calculated in [2, 31].



B2kq(a)

2kq
≤ (1− q)n +

(2kq − k)qn

2kq
=

n

2
.

Let m > 2k and q > (3k − 1)/(4k). It is sufficient to show that for some b ∈ B its
truncated Borda score is higher: B2kq(b)/(2kq) > n/2. For a contradiction assume the
opposite:

B2kq(b)

2kq
≤ n

2
for each b ∈ B.

Then
(2kq)n1(b) + . . . + (2kq − k + 1)nk(b)

2kq
≤ n

2
for each b ∈ B,

whence, after summing up k inequalities, we get:

qnk(4kq − k + 1)

4kq
<

nk

2
.

The latter inequality contradicts the assumption q > (3k − 1)/(4k).
To show that the bound is tight we again use the preference profile from Table 6.
Similarly we find a tight bound for the case 2k ≥ m ≥ k + 1:

min
�

max
b∈B

B2kq(b)

2kq
=

qn
k

(4kq−k+1)
2 k

2kq
+

(1−q)n
k

(4kq−m)
2 (2k −m + 1)

2kq
=

n

2
,

which leads to equation (5) and also to a special case m = k + 1, q = 1/2. �

4 Monotonic scoring rules

In a scoring rule each of m candidates is assigned a score from s1, . . . , sm for a corresponding
position in a voter’s individual preference and then the scores are summed up over all voters.
In the paper we consider monotonic scoring rules in which s1 > sm and s1 ≥ s2 ≥ . . . ≥ sm.

The next theorem generalizes Theorem 3.1 for the plurality rule (s1 = 1, s2 = . . . sm = 0)
and Theorem 3.7 for Borda rule (si = m − i, i = 1, . . . ,m). In particular case k = 1, the
quota (6) equals q = (s1 − sm)/(s1 − sm + s1 − s2), and also was calculated in [2, 31].

Theorem 4.1. For each m > k ≥ 1, a monotonic scoring rule satisfies (q, k)-MM criterion
if and only if the quota q satisfies the next inequality

q ≥
s1 − 1

k

k∑
i=1

sm−i+1

s1 − 1
k

k∑
i=1

sm−i+1 + 1
k

k∑
i=1

si − sk+1

. (6)

Proof.
Let m ≥ 3, and let more than qn voters give candidates from some subset B ( A

(m > |B| = k ≥ 1) top k positions. Then one can find the tight bound for the quota
q = q(k, s1, . . . , sm) using the following equation:

(1− q) · s1 + q · sk+1 = q · s1 + . . . + sk
k

+ (1− q) · sm + . . . + sm−k+1

k
,

where the left part is the maximal total score for any a /∈ B, and the right part is the
minimal maximal total score for any b ∈ B.



The example from Table 6 shows that the bound (6) is tight. �

Inverse plurality rule is a monotonic scoring rule with the scores s1 = . . . = sm−1 =
1, sm = 0. Theorem 4.1 directly implies the next statement.

Theorem 4.2. For each m − 1 > k ≥ 1 and for each q < 1, the inverse plurality rule fails
(q, k)-MM criterion; for each m − 1 = k ≥ 1, the rule satisfies (q, k)-MM criterion if and
only if q ≥ 1/m.

Our analysis confirms the idea of [3] that among monotonic scoring rules the plurality
rule respects the majority most and the inverse plurality rule respects the minority most.

5 Conclusions

We introduced and studied the quantitative property which we call the qualified mutual
majority criterion. We focused on the widespread voting rules such as the plurality rule,
the plurality with runoff rule, and the instant runoff rule. The instant-runoff rule respects
the majority extremely well as it satisfies the mutual majority criterion. We show that
plurality with runoff does it slightly better than the plurality rule as it has a smaller tight
bound. According to this criterion, all other voting rules considered here are located between
the quota of the instant-runoff rule and the quota of the plurality rule.

Besides majority tyranny our results have two secondary interpretations. The first in-
terpretation is about the easiness with which a mutual majority that happens to be smaller
than the required quota q can modify their preferences for the top k candidates in order
to make sure that one of these candidates wins. At the extreme, this mutual majority can
top-rank one of these k candidates and thus always vote him through. This is the same as
saying that the mutual majority agrees to eliminate k−1 candidates among their k preferred
candidates. Yet, if this type of coordination is difficult, then they might agree to eliminate
fewer candidates. For instance, in the example above presented in Table 1 with k = 3
preferred candidates, if the plurality rule is used, the mutual majority has to have at least
3/(3+1) = 75% to guarantee that one of the three candidates wins regardless of the opinion
of other voters. But if the mutual majority agrees to top-rank only two candidates, then
they need only 2/(2 + 1) = 67% to guarantee that one of these two candidates wins. This
marginal decrease in q as k decreases corresponds to the incentives of the mutual majority
to coordinate on the smaller set of preferred candidates.

The second interpretation is related to incentives to participate. If the mutual majority is
large enough, then others can only influence which of the top-ranked k candidates is selected,
but they cannot effectively veto any of these candidates. When voting is voluntary, the rules
that have higher quota q give stronger incentives for minorities to participate since their
votes are more likely to be pivotal. This somewhat opposes the common opinion of the social
choice literature that the instant-runoff rule promotes participation. Indeed, when minorities
face a larger group of voters with a single preferred candidate, then the instant-runoff allows
the minorities to transfer their votes instead of wasting them. However, if minorities face a
mutual majority with more than one preferred candidate, then the instant-runoff works in
favor of this majority [39, 45].

One specific open question arises from the incomplete result regarding Dodgson’s rule:
in contrast to other results, Theorem 3.6 does not specify the tight bound on the size of
the qualified mutual majority. The value of the tight bound seems to be a hard question,
as Dodgson’s rule is known to be difficult to work with [5, 11, 24]. It is not easy to check
whether the profile in Table 6 gives the worst case for each candidate in group of mutually
supported candidates B and at the same time the best case for some other candidate in
A \B.



A more general open question is the analysis of the aggregative properties of voting rules
in practically-relevant scenarios. In this paper the main results are based on the worst-case
analysis. Future research can make use of more realistic scenarios inspired by theories of
individual decision-making, empirical results and experiments on voting.
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