

Unconventional pairing in three-dimensional topological insulators with warped surface state

01

H·SDIN

Andrey Vasenko

Moscow Institute of Electronics and Mathematics, Higher School of Economics

Collaborators

Alexander A. Golubov, Twente University, Netherlands University of Twente

Vyacheslav M. Silkin, DIPC, Spain

Eugeny V. Chulkov, DIPC, Spain

Topological insulator in a nutshell

Surface States

...a new state of matter that has been predicted and discovered!

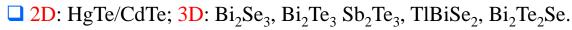
□ Bulk is insulating; edge (2D)/ surface (3D) a very good conductor.

□ Important ingredient: spin-orbit coupling:

opposite force for opposite spins.

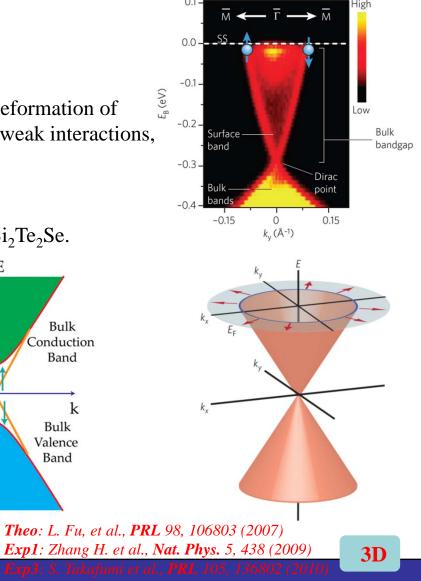
□ Topological invariant is insensitive to any continuous deformation of Hamiltonian (topological protection): disorder, geometry, weak interactions, etc...

Examples:



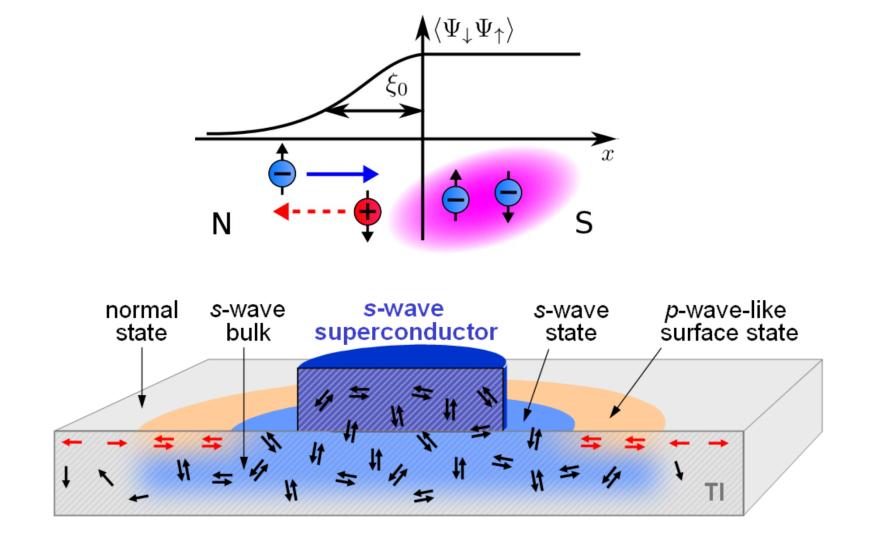
Theo1: C.L. Kane and E.J. Mele, **PRL** 95, 226801 (2005)

Theo2: B.A. Bernevig et al., Science 314, 1757 (2006)



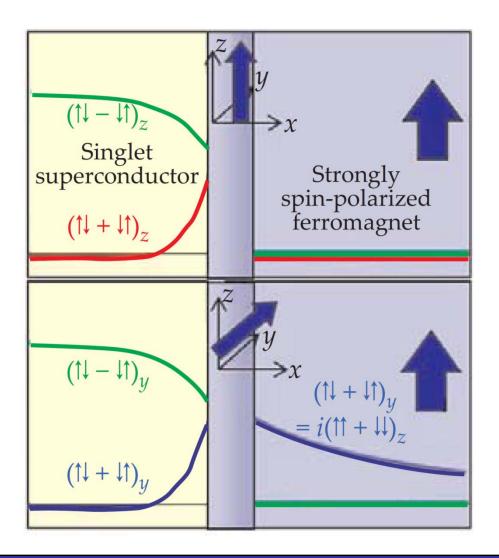
2D

Superconductor/ topological insulator proximity effect



J. Shen et al., arXiv:1303.5598 (2013)

Spin-triplet superconductivity



Hetero-spin triplet component

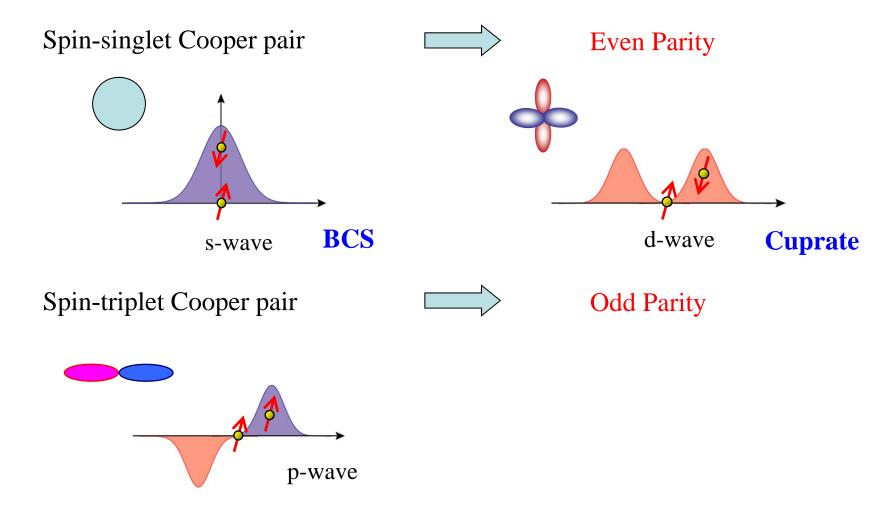
 $(\uparrow\downarrow + \downarrow\uparrow)$

Equal-spin triplet components

 $(\uparrow\uparrow - \downarrow\downarrow)$ $(\uparrow\uparrow + \downarrow\downarrow)$

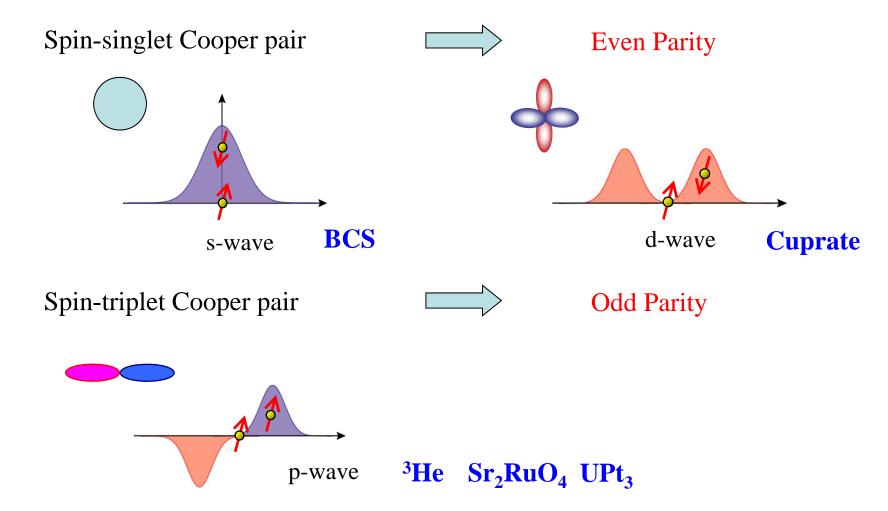
M. Eschrig, Physics Today (2011)

Conventional classification of the pairing symmetry



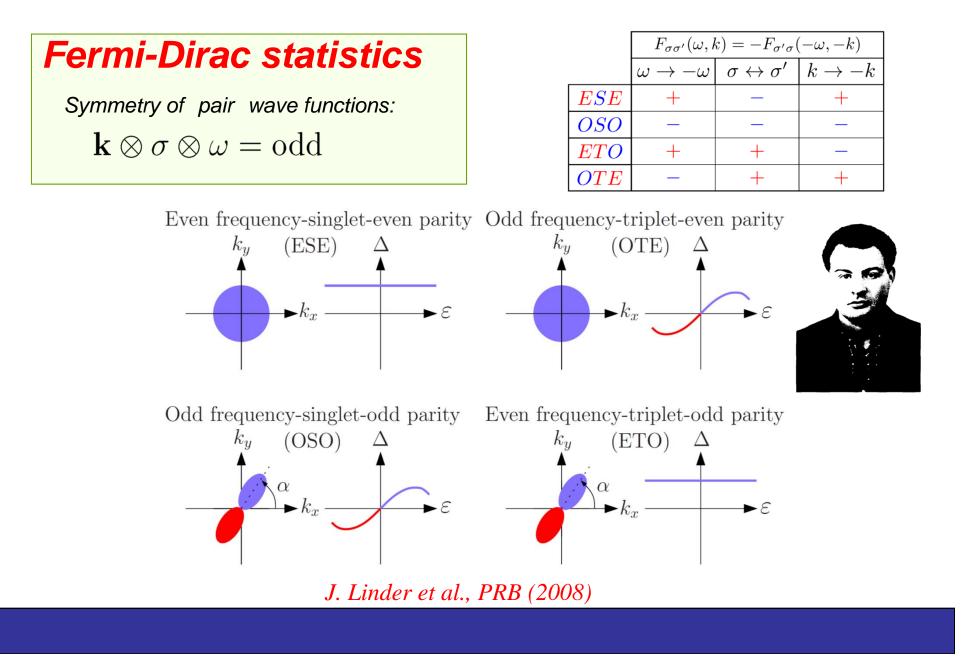
In both cases, the pair amplitude is an even function of energy (or Matsubara frequency).

Conventional classification of the pairing symmetry

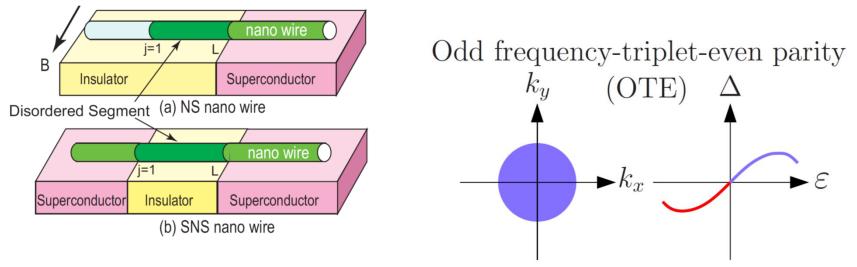


However, the so-called odd-frequency pairing states when the pair amplitude is an odd function of energy can also exist.

Symmetry classification of induced pair potential



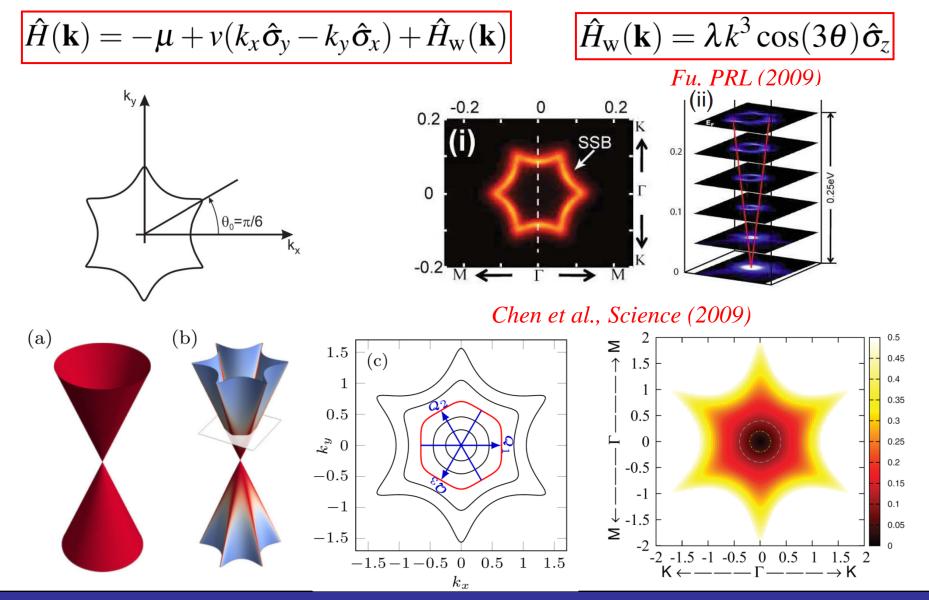
Odd-frequency pairing and Majorana state



Asano, Tanaka, PRB (2013)

The physics behind the anomalous transport can be understood in terms of the odd-frequency Cooper pairing. We conclude that Majorana fermions and odd-frequency Cooper pairs in solids are two sides of a same coin.

Hexagonal warping in 3D Topological insulators



Mendle, Kotetes, Schon, PRB (2015)

Li, Carbotte, PRB (2013)

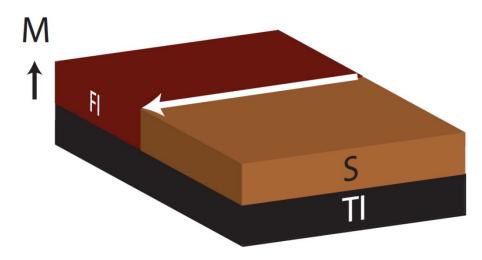
Model: S/ FI/ TI hybrid junction

Bogoliubov – de Gennes – Dirac Hamiltonain $\check{H}_{S}(\mathbf{k}) = \begin{pmatrix} \hat{H}(\mathbf{k}) + M\hat{\sigma}_{z} & \hat{\Delta} \\ -\hat{\Delta} & -\hat{H}^{*}(-\mathbf{k}) - M\hat{\sigma}_{z} \end{pmatrix}$

Green's function (Nambu + spin space)

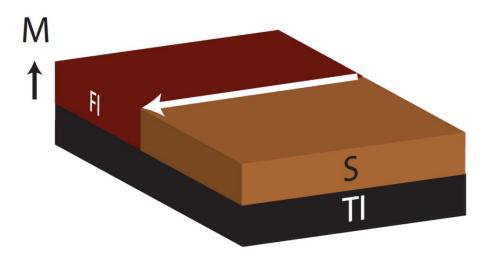
$$\begin{bmatrix} E - \check{H}_S(\mathbf{k}) \end{bmatrix} \check{G} = \check{1} \qquad \check{G} = \begin{pmatrix} \hat{G}_{ee} & \hat{G}_{eh} \\ \hat{G}_{he} & \hat{G}_{hh} \end{pmatrix}$$

Model: S/ FI/ TI hybrid junction



Tanaka, Yokoyama, Nagaosa, PRL (2008)

Model: S/ FI/ TI hybrid junction



Tanaka, Yokoyama, Nagaosa, PRL (2008)

Anomalous Green's function

Bergeret, Volkov, Efetov, RMP (2005)

$$\hat{G}_{eh} = i \left(f_0 \hat{\sigma}_0 + f_x \hat{\sigma}_x + f_y \hat{\sigma}_y + f_z \hat{\sigma}_z \right) \hat{\tau}_y$$

$$(\uparrow \downarrow - \downarrow \uparrow) \text{ singlet triplet triplet triplet } (\uparrow \downarrow + \downarrow \uparrow)$$

$$(\uparrow \uparrow - \downarrow \downarrow) (\uparrow \uparrow + \downarrow \downarrow)$$

No warping

$$\check{H}_{S}(\mathbf{k}) = \begin{pmatrix} \hat{H}(\mathbf{k}) + M\hat{\sigma}_{z} & \hat{\Delta} \\ -\hat{\Delta} & -\hat{H}^{*}(-\mathbf{k}) - M\hat{\sigma}_{z} \end{pmatrix} \qquad \hat{H}(\mathbf{k}) = -\mu + \nu(k_{x}\hat{\sigma}_{y} - k_{y}\hat{\sigma}_{x})$$

$$\hat{G}_{\rm eh} = i \left(f_0 \,\hat{\sigma}_0 + f_x \,\hat{\sigma}_x + f_y \,\hat{\sigma}_y + f_z \,\hat{\sigma}_z \right) \hat{\tau}_y$$

Anomalous Green's function symmetry, Z is even in E and k

$$f_{0} = \frac{\Delta}{Z} \left(E^{2} + M^{2} - \mu^{2} - \Delta^{2} - v^{2}k^{2} \right), \quad (\uparrow \downarrow - \downarrow \uparrow) \quad \text{ESE}$$

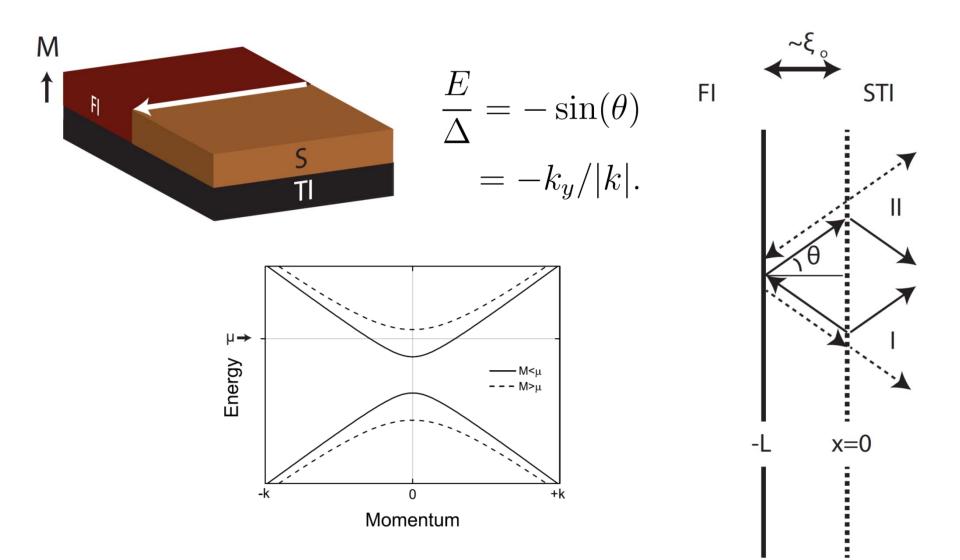
$$f_{x} = \frac{2\Delta}{Z} kv \left[\mu \sin(\theta) + iM \cos(\theta) \right], \quad (\uparrow \uparrow - \downarrow \downarrow) \quad \text{ETO}$$

$$f_{y} = -\frac{2\Delta}{Z} kv \left[\mu \cos(\theta) - iM \sin(\theta) \right], \quad (\uparrow \uparrow + \downarrow \downarrow) \quad \text{ETO}$$

$$f_{z} = \frac{2\Delta}{Z} EM. \quad (\uparrow \downarrow + \downarrow \uparrow) \quad \text{OTE} \quad \text{Majorana mode}$$

Vasenko, Golubov, Silkin, Chulkov, JETP Lett. (2017)

Majorana fermion realization



Snelder, Golubov, Asano, Brinkman, J. Phys.: Cond. Mat. (2015)

Finite warping

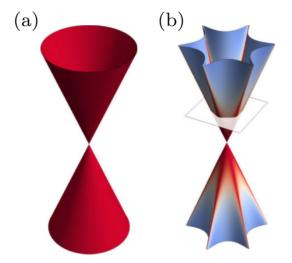
$$\check{H}_{S}(\mathbf{k}) = \begin{pmatrix} \hat{H}(\mathbf{k}) + M\hat{\sigma}_{z} & \hat{\Delta} \\ -\hat{\Delta} & -\hat{H}^{*}(-\mathbf{k}) - M\hat{\sigma}_{z} \end{pmatrix}$$

$$\hat{H}(\mathbf{k}) = -\boldsymbol{\mu} + v(k_x\hat{\boldsymbol{\sigma}}_y - k_y\hat{\boldsymbol{\sigma}}_x) + \hat{H}_w(\mathbf{k})$$

$$\hat{G}_{\text{eh}} = i \left(f_0 \hat{\sigma}_0 + f_x \hat{\sigma}_x + f_y \hat{\sigma}_y + f_z \hat{\sigma}_z \right) \hat{\tau}_y \qquad \qquad f_i = f_i^+ + f_i$$

Spin-singlet component $(\uparrow \downarrow - \downarrow \uparrow)$

$$f_0^+ = \left(E^2 + M^2 - \mu^2 - \Delta^2 - E_S^2\right) F_{\text{even}}/2, \quad \text{ESE}$$
$$f_0^- = \left(E^2 + M^2 - \mu^2 - \Delta^2 - E_S^2\right) F_{\text{odd}}/2. \quad \text{OSO}$$



Finite warping

$$\check{H}_{S}(\mathbf{k}) = \begin{pmatrix} \hat{H}(\mathbf{k}) + M\hat{\sigma}_{z} & \hat{\Delta} \\ -\hat{\Delta} & -\hat{H}^{*}(-\mathbf{k}) - M\hat{\sigma}_{z} \end{pmatrix}$$

$$\hat{H}(\mathbf{k}) = -\boldsymbol{\mu} + v(k_x\hat{\boldsymbol{\sigma}}_y - k_y\hat{\boldsymbol{\sigma}}_x) + \hat{H}_w(\mathbf{k})$$

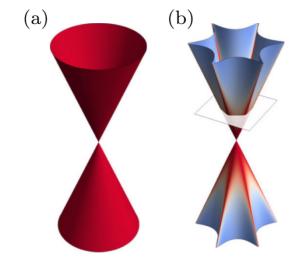
Equal spin triplet components $(\uparrow\uparrow - \downarrow\downarrow)$ $(\uparrow\uparrow + \downarrow\downarrow)$

$$f_x^+ = kv [\mu \sin(\theta) + iM \cos(\theta)] F_{even}, \quad \text{ETO}$$

$$f_x^- = kv [\mu \sin(\theta) + iM \cos(\theta)] F_{odd}, \quad \text{OTE}$$

$$f_y^+ = -kv [\mu \cos(\theta) - iM \sin(\theta)] F_{even}, \quad \text{ETO}$$

$$f_y^- = -kv [\mu \cos(\theta) - iM \sin(\theta)] F_{odd}. \quad \text{OTE}$$



Finite warping

$$\check{H}_{S}(\mathbf{k}) = \begin{pmatrix} \hat{H}(\mathbf{k}) + M\hat{\sigma}_{z} & \hat{\Delta} \\ -\hat{\Delta} & -\hat{H}^{*}(-\mathbf{k}) - M\hat{\sigma}_{z} \end{pmatrix}$$

$$\hat{H}(\mathbf{k}) = -\mu + v(k_x\hat{\sigma}_y - k_y\hat{\sigma}_x) + \hat{H}_w(\mathbf{k})$$

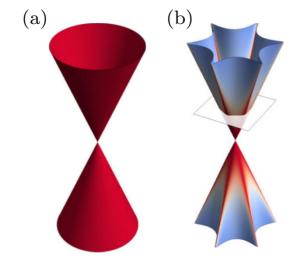
Hetero-spin triplet component

$$(\uparrow\downarrow+\downarrow\uparrow)$$

$$f_{z} = f_{z}^{-} + f_{z}^{+},$$

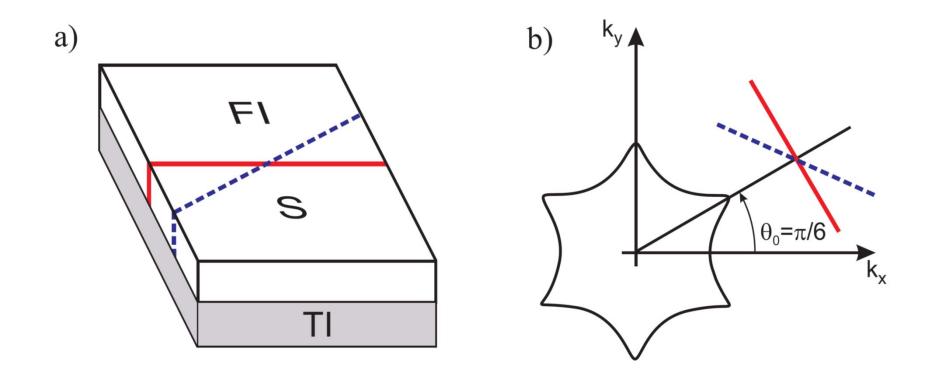
$$f_{z}^{-} = EMF_{\text{even}} - \mu\lambda k^{3}\cos(3\theta)F_{\text{odd}}, \quad \text{OTE}$$

$$f_{z}^{+} = EMF_{\text{odd}} - \mu\lambda k^{3}\cos(3\theta)F_{\text{even}}. \quad \text{ETO}$$



$$\theta_n = \pi/6 + \pi n/3$$

Majorana fermion (?) and warping

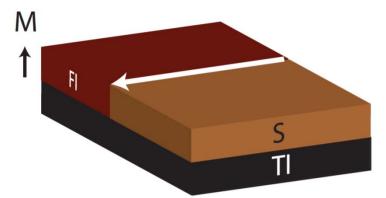


Vasenko, Golubov, Silkin, Chulkov, J. Phys.: Cond. Matt. (2017)

$$\theta_n = \pi/6 + \pi n/3$$

Spontaneous supercurrent

$$\hat{H}_M(\mathbf{k}) = -\mu + v(k_x\hat{\sigma}_y - k_y\hat{\sigma}_x) + \lambda k^3\cos(3\theta)\hat{\sigma}_z + M\hat{\sigma}_z$$



Let us project this Hamiltonian on the S/FI interface, i.e., on the y axis. Then the effective one-dimensional Hamiltonian for electronic states at the S/FI interface will look like $(k_x \sim 0)$,

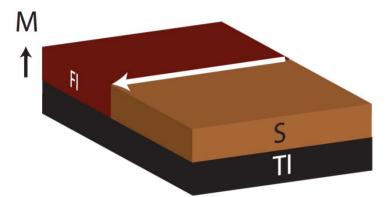
$$\hat{H}_{eff}(k_y) = -\mu - vk_y\hat{\sigma}_x + \hat{\sigma}_z\lambda k_y^3\cos(3\theta) + \hat{\sigma}_zM$$

From the viewpoint of the time reversal and spatial symmetries, it is equivalent to the following one dimensional Hamiltonian of a topological nanowire,

$$\hat{H}(\mathbf{k}) = -\mu + vk_x\hat{\sigma}_y + \hat{\sigma}_xM_x + \hat{\sigma}_yM_y + \hat{\sigma}_zM_z$$

Spontaneous supercurrent

$$\hat{H}_M(\mathbf{k}) = -\mu + v(k_x\hat{\sigma}_y - k_y\hat{\sigma}_x) + \lambda k^3\cos(3\theta)\hat{\sigma}_z + M\hat{\sigma}_z$$



Let us project this Hamiltonian on the S/FI interface, i.e., on the y axis. Then the effective one-dimensional Hamiltonian for electronic states at the S/FI interface will look like $(k_x \sim 0)$,

$$\hat{H}_{eff}(k_y) = -\mu - vk_y\hat{\sigma}_x + \hat{\sigma}_z\lambda k_y^3\cos(3\theta) + \hat{\sigma}_zM$$

From the viewpoint of the time reversal and spatial symmetries, it is equivalent to the following one dimensional Hamiltonian of a topological nanowire,

$$\hat{H}(\mathbf{k}) = -\mu + vk_x\hat{\sigma}_y + \hat{\sigma}_xM_x + \hat{\sigma}_yM_y + \hat{\sigma}_zM_z$$

Spontaneous supercurrent at zero phase difference.

Nesterov, Houzet, Meyer, PRB (2016)

Review

• We discuss singlet to triplet mixing in proximized 3D topological insulators with warped surface state

• We speculate on the selection rule for Majorana Fermion realization in S/FI structures formed on the surface of the TI: S/FI boundary should be properly aligned with respect to the snowflake contour.

• Spontaneous currents in S/TI hybrids at nonzero warping.

Thank you!