xperience / ai

Optimizing Neural Nets with Quantization and Pruning

Anna Petrovicheva

anna@xperience.ai

Xperience.ai

- Deep Learning for Computer Vision
 - Digital Surveillance
 - Retail
 - Automating routine work
- Optimized for Mobile and FPGA
 - Quantization and Pruning

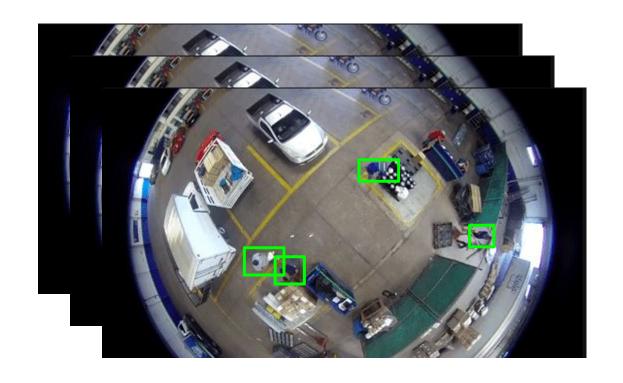
- Full pipeline of model development
 - Getting the data right
 - Building the model
 - Porting to target hardware

Pedestrian tracking for Surveillance

- Popular scenario
- Target hardware
 - Low-power
 - FPGA
 - RISC-V
- Custom datasets

Pedestrian tracking for Surveillance

- How to solve
 - Pedestrian detection
 - Person re-identification
- Privacy concerns



KITTI Leaderboard

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	Runtime	Environment	
1	iDST-VC			90.55 %	90.88 %	81.04 %	4 s	GPU @ 2.5 Ghz (Python + C/C++)	
2	BM-NET			90.48 %	90.83 %	80.63 %	4.0 s	GPU @ 2.5 Ghz (C/C++)	
3	TuSimple		<u>code</u>	90.33 %	90.77 %	82.86 %	1.6 s	GPU @ 2.5 Ghz (Python + C/C++)	
and Patte	ern Recognition 2016.			261 262		el reve expless		scaded rejection classifiers. Proceedings of the IEEE Conferent Example: mputer vision and pattern recognition 2016.	
4	THU CV-AI			90.31 %	90.75 %	72.20 %	0.2 s	GPU @ 2.5 Ghz (Python + C/C++)	
5	RRC		<u>code</u>	90.22 %	90.61 %	87.44 %	3.6 s	GPU @ 2.5 Ghz (Python + C/C++)	
J. Ren, X	. Chen, J. Liu, W. Sun, J	. Pang, Q. Yan,	Y. Tai and	L. Xu: Accurate	Single Stage De	etector Using R	ecurrent Rolling Co	onvolution. CVPR 2017.	
6	SJTU-HW	ax		90.08 %	90.81 %	79.98 %	0.85 s	GPU @ 1.5 Ghz (Python + C/C++)	
7	SWC			90.05 %	90.82 %	80.59 %	0.5 s	GPU @ >3.5 Ghz (Python + C/C++)	
8	Deep MANTA			90.03 %	97.25 %	80.62 %	0.7 s	GPU @ 2.5 Ghz (Python + C/C++)	
F. Chabo	t, M. Chaouch, J. Rabari	soa, C. Teulière	and T. Ch	ateau: <u>Deep MA</u>	NTA: A Coarse-	to-fine Many-Ta	ask Network for join	ıt <u>2D and 3D vehicle analysis from monocular image</u> . CVPR 2	
9	<u>lpm</u>			90.03 %	90.75 %	80.99 %	1 s	4 cores @ 3.5 Ghz (C/C++)	
10	sensekitti		code	90.00 %	90.76 %	81.83 %	4.5 s	GPU @ 2.5 Ghz (Python + C/C++)	

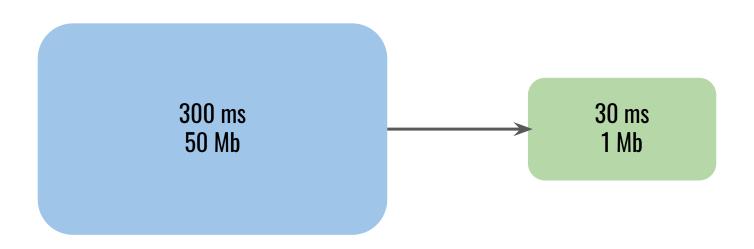
Image sources: KITTI leaderboard

KITTI Leaderboard

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	Runtime	Environment	
1	iDST-VC			90.55 %	90.88 %	81.04 %	4 s	GPU @ 2.5 Ghz (Python + C/C++)	
2	BM-NET			90.48 %	90.83 %	80.63 %	4.0 s	GPU @ 2.5 Ghz (C/C++)	
3	<u>TuSimple</u>		code	90.33 %	90.77 %	82.86 %	1.6 s	GPU @ 2.5 Ghz (Python + C/C++)	
and Patte	ern Recognition 2016.			10 10 10 10 10 10 10 10 10 10 10 10 10 1		al raya syrica		ascaded rejection classifiers. Proceedings of the IEEE Conferer computer vision and pattern recognition 2016.	
4	THU CV-AI			90.31 %	90.75 %	72.20 %	0.2 s	GPU @ 2.5 Ghz (Python + C/C++)	
5	RRC		<u>code</u>	90.22 %	90.61 %	87.44 %	3.6 s	GPU @ 2.5 Ghz (Python + C/C++)	
J. Ren, X	(. Chen, J. Liu, W. Sun, J	. Pang, Q. Yan,	Y. Tai and	L. Xu: Accurate	Single Stage De	etector Using F	Recurrent Rolling C	Convolution. CVPR 2017.	
6	<u>SJTU-HW</u>			90.08 %	90.81 %	79.98 %	0.85 s	GPU @ 1.5 Ghz (Python + C/C++)	
7	SWC			90.05 %	90.82 %	80.59 %	0.5 s	GPU @ >3.5 Ghz (Python + C/C++)	
8	Deep MANTA			90.03 %	97.25 %	80.62 %	0.7 s	GPU @ 2.5 Ghz (Python + C/C++)	
F. Chabo	t, M. Chaouch, J. Rabari	soa, C. Teulière	and T. Ch	ateau: <u>Deep MA</u>	NTA: A Coarse-	to-fine Many-T	ask Network for jo	int <u>2D and 3D vehicle analysis from monocular image</u> . CVPR 2	
9	<u>lpm</u>			90.03 %	90.75 %	80.99 %	1 s	4 cores @ 3.5 Ghz (C/C++)	
10	sensekitti		<u>code</u>	90.00 %	90.76 %	81.83 %	4.5 s	GPU @ 2.5 Ghz (Python + C/C++)	

Image sources: KITTI leaderboard

Porting to Mobile / FPGA



Ways to optimize a model

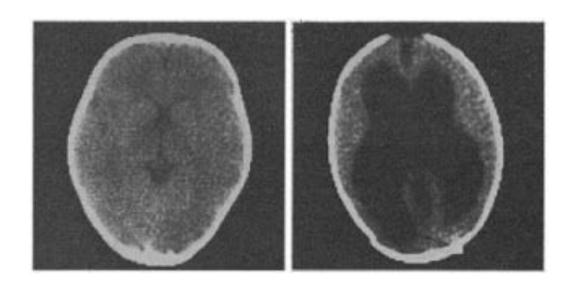
- Small backbone
- Pruning
- Quantization
 - Untrainable
 - Trainable

Small backbone

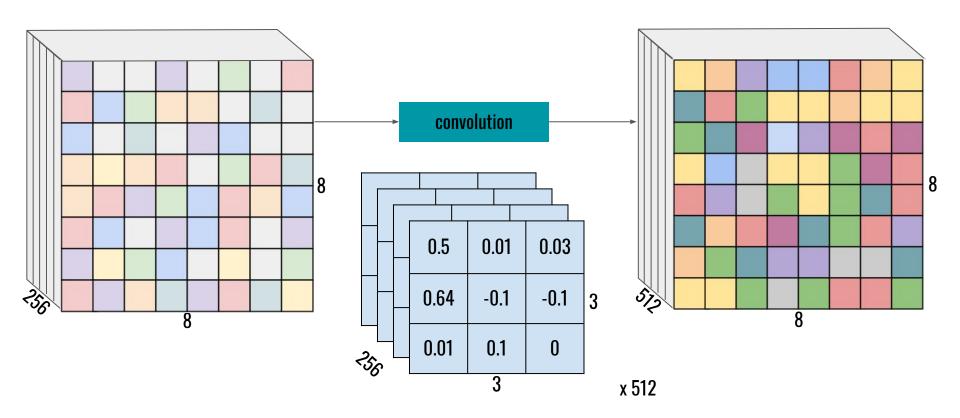
- State-of-the-art in compression: compress VGG
 - o Too big
- Good choices:
 - o MobileNet <u>v1</u> & <u>v2</u>
 - V2: not that small
 - NASNet
 - o **ESPNet**

Pruning

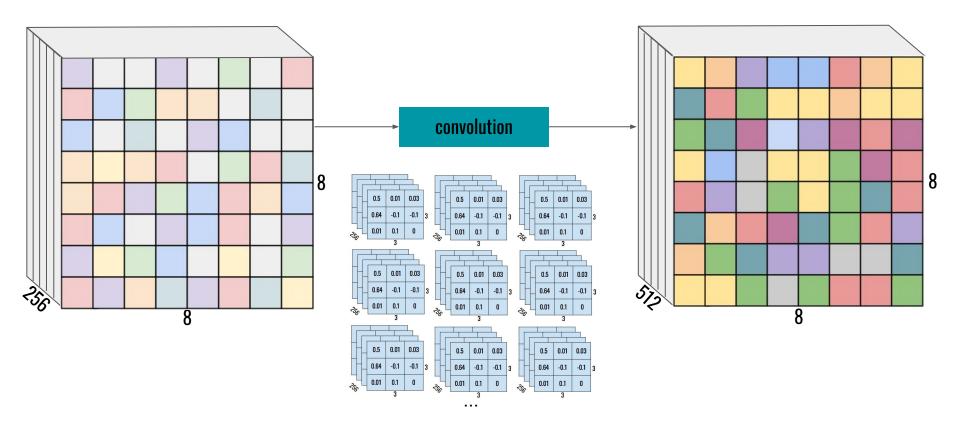
Neuroplasticity



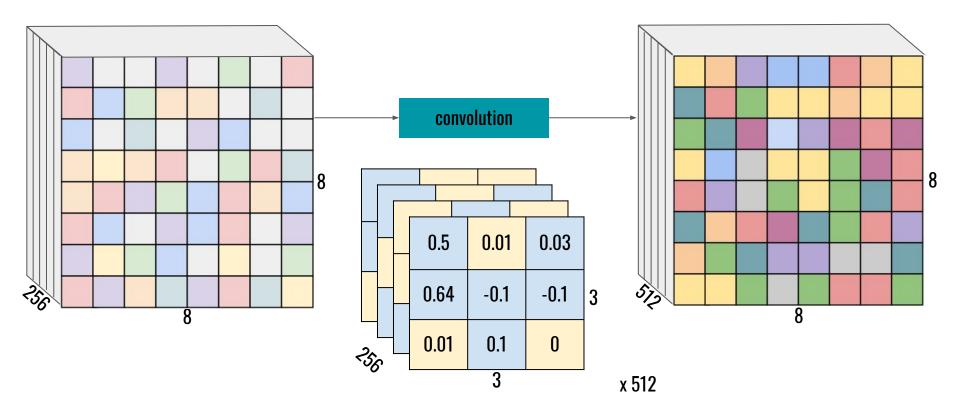
Convolution



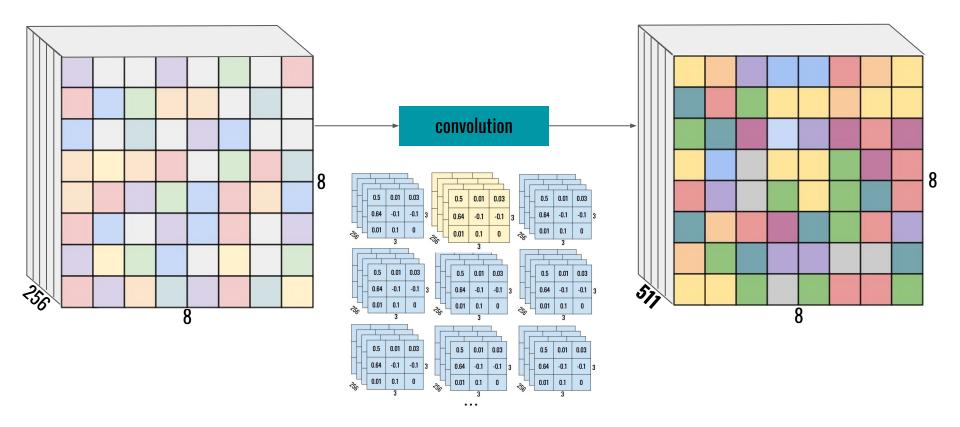
Convolution



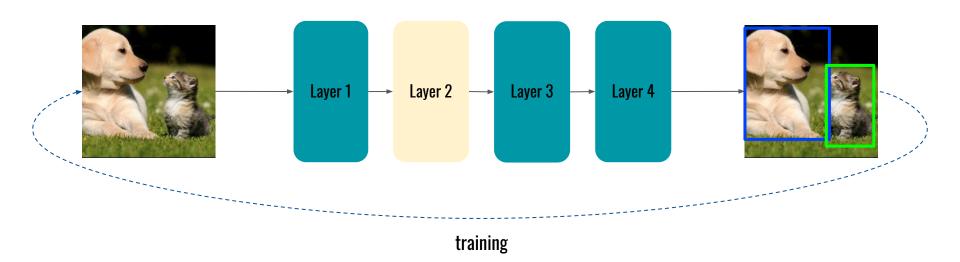
Pruning per element



Pruning per channel



Finetuning



How to select convolutions to prune

- Randomly
 - Not that bad
- By lowest mean absolute weights
- By lowest mean absolute results
- More complicated ways

Pruning results

Figure 1: Comparison of channel reduction techniques on DETRAC validation split. Real-time performance on CPU is labeled with vertical line.

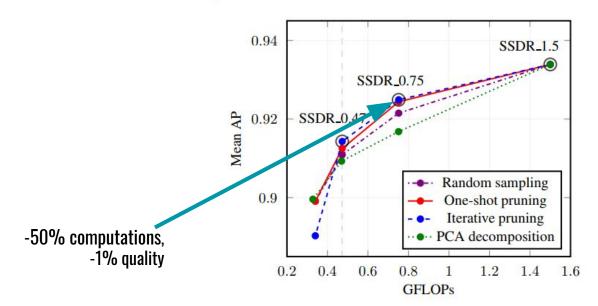
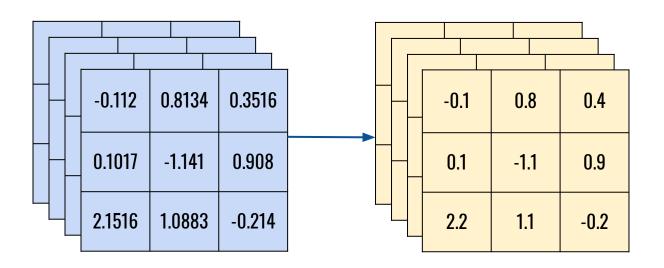


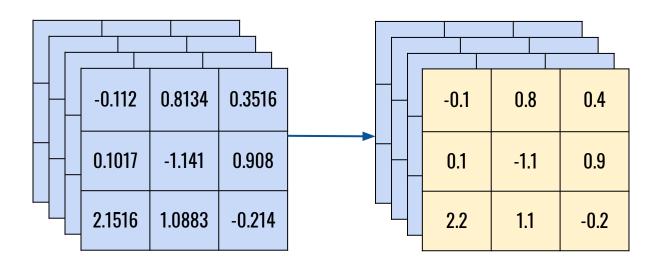
Image source: Towards lightweight convolutional neural networks for object detection

Quantization

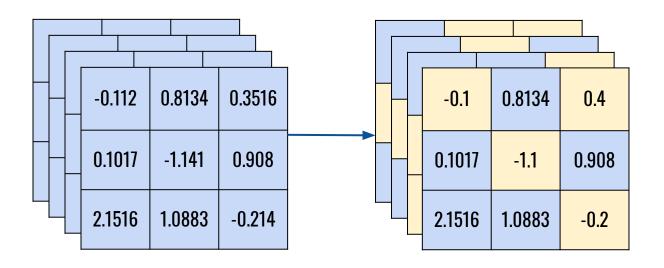


Fixed point computations

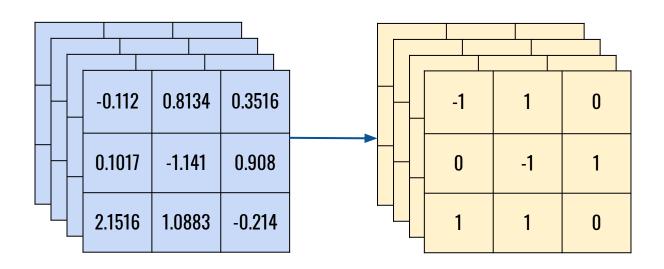
Quantization: trainable



Quantization: trainable

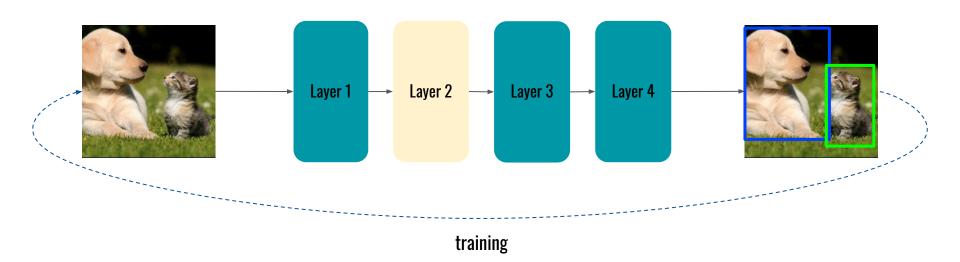


Ternary weight quantization: trainable

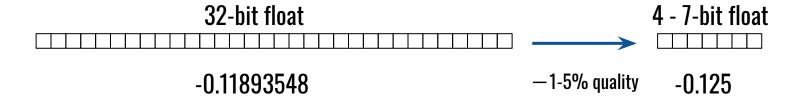


$$a = 0.835$$

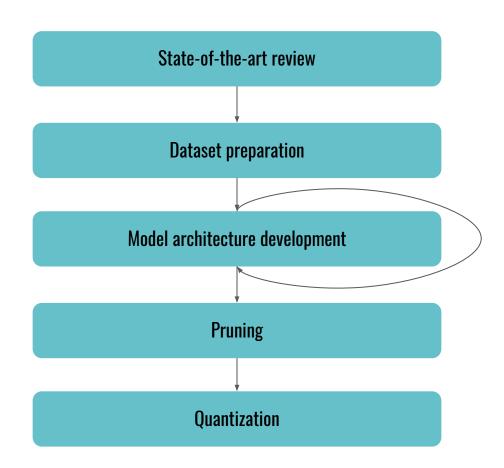
Finetuning



Quantization



Process



Runs fast on mobile devices. Does not output rotated boxes. Single Shot Text Detector with Regional Attention. Based on SSD detector, generalized for rotated boxes.

SSD: Single Shot Multibox Detector. Generic object detector applicable for

Can detect very small text. Has special inception-like modules to handle multi-scale text.

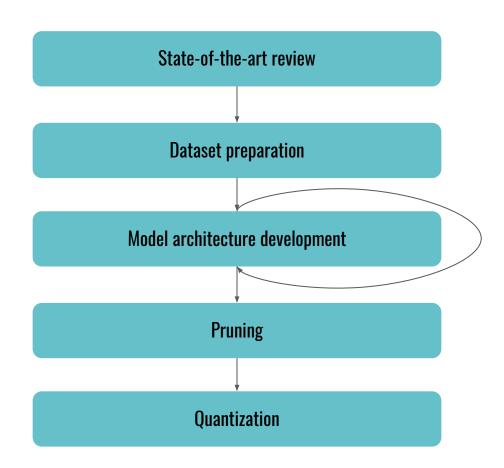
AABB.

- - Worse quality compared to other methods from overview. Has redundant functionality for this task.
- TextBoxes++: A Single-Shot Oriented Scene Text Detector. Based on SSD detector, generalized for rotated boxes.
 - Good quality on various public datasets (such as ICDAR 2015 and COCO-Text).
- Can be optimized for mobile devices.
- Has redundant functionality for this task.
- R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection. Based on Faster-RCNN object detector with generalization for
- rotated bounding boxes.

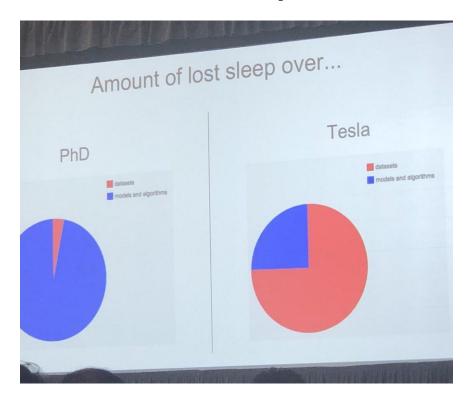
 - Good quality on some public datasets.

Bad performance on mobile devices.

Process



A. Karpathy on data in real-life projects



Dataset

- Biggest portion of time
- Public + custom data
 - Versatile
 - o Big enough
 - Synthetic data generation

- Fixed data splits
 - Versioning
 - Data honesty
 - Splits never intersect
 - Different splits -> different videos

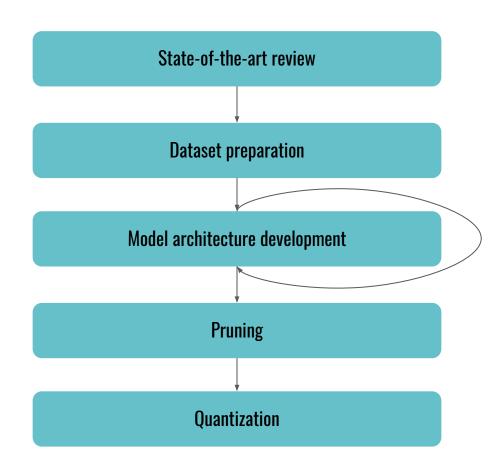
- Human 3.6M dataset
- 11 people
- 17 poses
 - Discussion
 - Smoking
 - Talking on the phone

	Person 1	Person 2	Person 3	Person 4
Pose 1				
Pose 2				
Pose 3				
Pose 4				

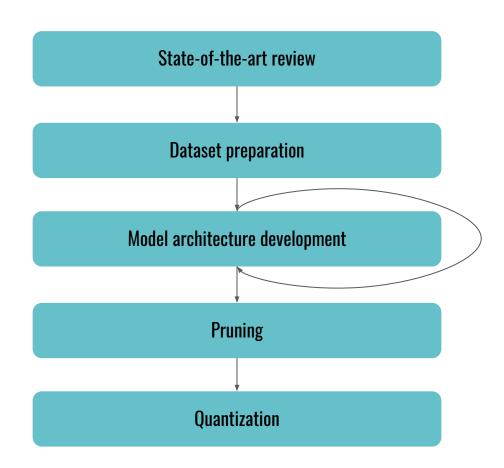
		Person 1	Person 2	Person 3	Person 4
. <u>≡</u>	Pose 1				
train	Pose 2				
val	Pose 3				
	Pose 4				

Image source: Multistage Adversarial Losses for Pose-Based Human Image Synthesis

Process



Process



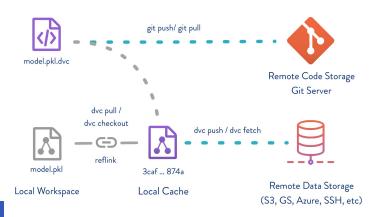
Requirements for good model development

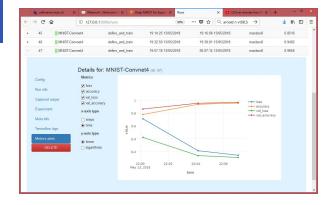
- Metric computation procedure
- Table with experiments
 - Data
 - Architecture
 - Metrics
- Inference speed measurement procedure
 - FLOPs / MACs computation script

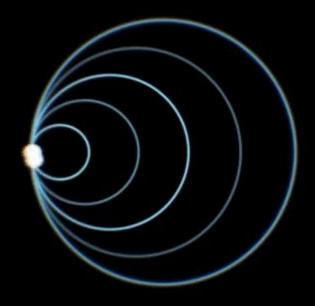
Experiment	Backbone	Training dataset	Validation dataset	Image width 300	Metric 0.790
0001	resnet_50	v1	v1		
0003	resnet_10	v1	v1	300	0.72
0005	resnet_10	v1	v1	300	0.785
0006	nasnet	v1	v1	300	0.79
8000	nasnet	v1	v1	250	0.76
0009	mobilenet_v1	v1	v1	300	0.81
0011	mobilenet_v1	v1	v1	300	0.84
0012	mobilenet_v1	v1	v1	250	0.79
0013	mobilenet_v1_reduced	v1	v1	300	0.81
0015	mobilenet_v1_reduced	v1	v1	300	0.82
0016	mobilenet_v2	v1	v1	300	0.84
0018	mobilenet_v2	v1	v1	300	0.86
0019	mobilenet_v2_dilated	v1	v1	300	0.83
0021	mobilenet_v2_dilated	v1	v1	300	0.84
0022	mobilenet_v2_dilated_reduced	v1	v1	300	0.86
0024	mobilenet v2 dilated reduced	v1	v1	300	0.88

Comparability and reproducibility

- Dataset + Metric = Comparability
- Dataset + Metric + Table =
 - Reproducibility







anna@xperience.ai