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Introduction

Large-scale financial projects, including those in the field of transporta-
tion, are quite common in the economy of every country. Both modernizing
the existing transportation infrastructure and developing a new one can
serve as examples of such projects. The implementation of these projects
requires a large volume of investment, which federal and regional authorities
cannot usually provide in full. If this is the case, forming certain partner-
ships with the private sector, for instance, public-private partnerships or
concession agreements to implement the projects may become an effective
strategic decision that the authorities can make. (Here, it seems natural to
assume that both legal and financial conditions that the authorities offer
to their potential private partners are acceptable to the latter.) This is a
general approach to financing any large-scale economic projects, including
transportation ones. So to start negotiations with the private sector on the
matter, the authorities are to estimate the investment volume they believe is
needed for a particular project. However, the structure of negotiations with
potential private investors much depends on what the authorities consider
a part of the project. Also, this depends on how the project is expected
to generate revenue in any particular planning period (or in several such
periods). Both the negotiation structure and the revenue expected to be
generated by the project are among the negotiation subjects.

In developing a regional freight transportation infrastructure, building a
set of new transport hubs with access roads to them is one of the two key
parts of a project that a regional administration may offer to finance to its
potential partners from the private sector. The other key part is associated
with modernizing the existing transportation fleet by acquiring a new one
for at least some freight transportation modes. However, modernizing this
fleet may or may not be part of negotiations with the private sector on
investing in the regional freight transportation infrastructure for certain
organizational or financial reasons.

Only the part of a project on developing a regional freight transportation
infrastructure associated with building transport hubs and access roads to
them is the subject of consideration in the present paper.

The importance of this part of the project is recognized by every country
in the world. That is, as the country’s economy develops, the cargo flows via
particular regions of the country increase. At a certain point, the existing
freight transportation infrastructure in these regions or even statewide may
turn out to be insufficient to handle the increased cargo flows. In this case,
evaluating the economic effectiveness of developing new transport hubs with
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access roads to them in either a particular region or even in every region of
the country becomes inevitable.

This economic effectiveness much depends on a) the chosen locations
and capacities of the new hubs, b) the chosen types and capacities of access
roads to them, and c) a chosen redistribution of cargo flows among all the
transport hubs. While the government of a country as a whole and/or the
administration of a particular region of the country may recognize the im-
portance of the project, all the efforts to make the project a reality may fail.
This may happen even if the choices mentioned in a)-c) are recognized as
important. That is, without securing the needed financing for the project,
all the promises of the governments/regional administrations to the voters,
particularly, on developing a regional freight transportation infrastructure
may remain only promises. In order to avoid making unrealistic promises,
as well as to make at least some of already made promises real, the govern-
ments/administrations need decision-support tools. These tools should help
them a) estimate expenses associated with implementing the project, and
b) negotiate with private investors both legal and financial conditions for
their potential financial contributions. The latter is needed if the regional
administration and the country’s government cannot finance a particular
project in full.

It is well known that applied mathematics helps a great deal in analyzing
and solving logistics, operational, and managerial problems in transporta-
tion systems. However, investment problems associated with the logistics
underlying a regional freight transportation infrastructure have their own
specifics. These specifics complicate the use of general financial engineering
approaches in solving these strategic management problems, which every re-
gional administration faces. So the question is: Can operations researchers
provide a decision-support tool that would reflect these specifics in analyzing
the investment needs of regional administrations associated with developing
regional transportation infrastructures?

This paper demonstrates that with respect to developing and/or mo-
dernizing regional freight transportation infrastructures, the answer is ”yes,”
provided the analytical means needed to this end are properly chosen and
correctly applied. Particularly, a mathematical model underlying a decision-
support tool for financial negotiations with potential investors from the pri-
vate sector is proposed. This model is a nonlinear generalization of the
known facility location problem. It reflects the legal and financial capabili-
ties of the regional administration to offer to the private sector its coopera-
tion in the framework of, for instance, a potential public-private partnership.
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On the basis of this (generalized) model, estimating the expenses associated
with implementing the project can be done with the use of standard opti-
mization software packages. Moreover, solutions to the corresponding opti-
mization problems can quickly be obtained when a part of or even all the
data reflecting the geography of a corresponding region can be known only
approximately. This reflects the uncertainty conditions under which the
above-mentioned expenses are estimated.

In addition to the Introduction, the paper contains eight more sections
and three Appendices.

Section I contains a) the problem statement, b) the features of mathe-
matical models to formalize this problem in two situations depending on
the assumptions on what information is available to the regional authorities
in formalizing this problem, and c) certain observations to bear in mind in
solving optimization problems formulated on the basis of these models.

Section II presents a review of two groups of mathematical problems
close in formulation to those under consideration in this paper, including a
classification of these problems for one of the groups.

Section III provides mathematical formulations of the problems under
consideration in two forms. The first form is that of an ordinary optimiza-
tion problem, when all the coefficients in the goal (objective) function are
considered to be fixed. The second form is that of a robust (minimax) opti-
mization problem, when all the vectors of the coefficients in the goal function
are considered as variables. In this case, the best economic strategy of the
regional administration is searched for in the “worst-case scenario” of the
uncertain input data value combinations.

Section IV presents the formulation of the Basic Assertion, which allows
one to reduce the minimax problem of finding the best economic strategy
of the regional administration in the “worst-case scenario” to a mixed pro-
gramming problem with linear constraints.

Section V discusses the results of testing the proposed decision-support
tool (for estimating the investment volume needed to develop a regional
freight transportation infrastructure). This is done on several sets of the
data needed to form the input information for the mathematical models un-
derlying both the ordinary optimization problems and the minimax one. In
the course of the testing, corresponding mixed programming problems were
solved by the MATLAB software package, and solutions to these problems
were compared.

Section VI provides a discussion of what should be considered a contri-
bution to the research field, and to what extent the authors’ paper could
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be considered as such. Also, it provides an assessment of the number of
Boolean variables in real optimization problems of the considered kind. Fur-
ther, it contains methodological recommendations for using the proposed
decision-support tool by both regional and federal administrations in their
negotiations with potential investors from the private sector on forming, for
instance, a public-private partnership. Finally, this section discusses the
requirements that the decision-support tool should meet to be helpful in
solving problems associated with developing (modernizing) regional freight
transportation infrastructures.

Section VII briefly summarizes the research results reflected in the paper.

Section VIII contains concluding remarks.

Appendix 1 offers the proof of the Basic Assertion from Section IV, Ap-
pendix 2 presents tables with numerical test results from Section V, and
Appendix 3 illustrates some of them graphically.

I. The problem statement, features of mathematical
models to formalize this problem, and those

of optimization problems formulated on their basis

Usually, the geography of the region and the part of the country’s trans-
portation infrastructure already functioning there determine potential places
in which new transport hubs could be built. If this is the case, the expected
volumes of, for instance, yearly cargo flows via these new hubs help roughly
estimate the desirable capacities of the new hubs. However, the capacities
of both new transport hubs and access roads to them affect the distribution
of the expected total cargo flows in the new freight transportation infras-
tructure as a whole, which is planned to be developed. So, in considering
the development of a new regional fright transportation infrastructure, a
decision-support tool for analyzing

a) how many new transport hubs should be built in the region,

b) where these new transport hubs should be located,

c) what capacities the new transport hubs and access roads to them
should have,

d) what schemes for moving cargo via new and already functioning trans-
port hubs and access roads to them could be viewed as optimal for the region
and for the country as a whole,

e) what total expenses associated with building new transport hubs and
access roads to them and with maintaining all the elements of the planned
regional freight transportation infrastructure one should expect, and
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g) what volume of the revenue the planned regional freight transporta-
tion infrastructure should generate in the form of taxes to allow the regional
administration to offer this revenue as (at least a part of) its financial contri-
bution to, for instance, a private-public partnership with potential investors

would be extremely helpful for both federal and regional administrations.

Such a tool together with appropriate software packages for processing
available data to form the input information for the tool should allow re-
gional administrations to analyze the effectiveness of the regional freight
transportation infrastructures, both existing and those to be developed.
This analysis is a part of a set of economic tasks that regional and federal
administrations face.

The present paper proposes a mathematical model underlying a variant
of a decision-support tool for determining

—optimal (from the regional administration view point) locations of new
cargo transport hubs in a region to meet the expected demand for servicing
cargo flows via thus modernized regional freight transportation infrastruc-
ture (on account of building both new transport hubs and access roads to
them in these locations),

—total expenses associated with building new transport hubs in the cho-
sen (optimal) locations and access roads to them, and

—the revenue expected to be generated by the functioning of thus mo-
dernized regional freight transportation infrastructure in any planning pe-
riod being of interest to the regional administration

by solving two optimization problems. One of the problems is a mathe-
matical programming problem with mixed variables, linear constraints, and
a linear goal function, which can be solved by standard software packages
for solving optimization problems. The other problem is a minimax problem
with linear constraints, mixed variables, and a bilinear goal function of two
vector arguments one of which has only integer coordinates. As is proven in
Section IV, the second (minimax) problem can also be solved with the use
of standard packages for solving optimization problems. For processing the
available data to obtain the input information for the calculations and for
graphically depicting the calculation results, other standard software pac-
kages can be used. The difference in the two problem formulations reflects
the one that exists in two situations under study in this paper.

Situation 1. Depending on what information for a particular planning
period is known to decision makers from the regional administration exactly,
two cases are possible.
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Case A. The total demand for cargo flows at each place of cargo origin
and that at each cargo destination point are known numbers. Also, a) the
total demand for cargo flows in the region, b) the cost values for building
new transport hubs and new access roads to these new hubs, c) the cost
values for transporting cargo to every point of cargo destination and from
every place of cargo origin via each transport hub (both already existing
and those to be built), and d) the maintenance cost values for both the
transport hubs and access roads to them, are known numbers.

Case B. Only the areas to which volume values for a) the total demands
for cargo flows at each place of cargo origin and at each cargo destination
point belong, and b) the total demand for cargo flows in the region belongs
are known. At the same time, all the above-mentioned cost values (for
building new transport hubs and new access roads to these new hubs, for
transporting cargo to every point of cargo destination and from every place
of cargo origin via each transport hub (both known and to be built), and
the maintenance cost values for both the transport hubs and access roads
to them, are known values as they are in Case A.

Situation 2. Only the areas to which values of each vector of all the pa-
rameters listed in Situation 1 belong are known to those who make decisions
on how the existing regional freight transportation infrastructure should be
developed and used.

In both cases of Situation 1, the regional administration intends to spend
as little as possible for a) building both the new cargo transport hubs and
access roads to them, and b) the maintenance for both the existing transport
hubs and access roads to them and the new ones. This are the expenses
that the regional administration would like private investors to cover. At
the same time, the administration offers its financial contribution to the
potential partnership. This contribution (or a part of it) comes in in the
form of the expected cash flow volume generated by the taxes to be received
by the regional budget. These taxes are to be paid by cargo owners and
cargo carriers for using the transport hubs and access roads to them as
elements of the (new) regional freight transportation infrastructure.

Thus, the total expenses reduced by the expected amount of revenue to
be received in the form of the above-mentioned regional taxes are to be
minimized in both cases. Corresponding optimization problems are mathe-
matically formulated as mathematical programming ones with mixed vari-
ables and linear constraints. In these two optimization problems, both the
expenses and the revenue are mathematically described by linear functions
of mixed variables. Solutions to these problems determine a) an optimal
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location of new transport hubs to be built, along with their optimal capa-
cities, b) an optimal set of access roads to these new transport hubs to be
built, along with their types and capacities, and c) an optimal distribution
of the cargo flows via both existing transport hubs and the new ones.

In Situation 2, the goal function in the (third) optimization problem
is still the difference between the expenses and the expected amount of
revenue to be received in the form of the above-mentioned regional taxes.
However, in this situation, the goal function of the optimization problem is
mathematically described by the maximum function of an algebraic sum of
three bilinear functions of vector arguments in finite-dimensional spaces.

Components of the vector arguments of these bilinear functions are

a) the expenses associated with (the cost values for) building new trans-
port hubs at each of the potential locations,

b) the expenses associated with (the cost values for) building access roads
to new transport hubs at these locations,

c) the maintenance expenses associated with (the maintenance cost values
for) both new transport hubs and access roads to them,

d) the volumes of transportation flows expected to be moved between all
the transport hubs of the developed transportation network (both existing
and those to be built) and all the places of cargo origin and cargo destination
points,

e) Boolean variables determining whether a new transport hub of a par-
ticular capacity should be built at a particular location, and

g) Boolean variables determining whether a new access road of a par-
ticular type to a new transport hub should be built (or the existing access
roads are sufficient to allow the transport hub to function in full capacity)
and the capacity of each new access road to be chosen to be built.

Continuous variables mentioned in a)-d) belong to polyhedra described
by compatible systems of linear equations and inequalities. It is natural to
assume that each of the polyhedra to which each variable vector belongs is
a subset of a parallelepiped in a corresponding Euclidean space. Boolean
variables mentioned in e) and those mentioned in g) form two vectors, each
belonging to a unit cube (different for each of these two vectors) in a corre-
sponding Euclidean space.

Remark 1.

In using the proposed mathematical model and in solving both types of
optimization problems formulated on the basis of this model (i.e., mathe-
matical programming problems with linear constraints and mixed variables
and the minimax one with linear constraints and mixed variables) in prac-
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tical calculations with any real data, one should bear in mind three simple
(though important) observations.

1. All the estimates that the regional administration makes in considering
the development of the regional freight transportation infrastructure are
usually made for a certain period of time. Usually, it makes them for a
year, for several years, for a decade, etc., beginning from the time when all
the new facilities are expected to start their cargo operations. Each of the
new facilities that are planned to be built may require a different amount
of time for completing the construction work. So to consider the operations
in this infrastructure as having started, in all the calculations, the regional
administration may need to solve either the above-mentioned mathematical
programming problems with linear constraints and mixed variables, or the
minimax one with linear constraints and mixed variables several times. At
each of the times, the administration may consider facilities that will be
built and will start their cargo operations before some (or all) of the others
will as already existing ones. This is to be reflected in the corresponding
version of the mathematical model underlying the mathematical formulation
of the corresponding problem (via its system of constraints).

2. The revenue that is expected to be generated by the functioning of the
regional freight transportation infrastructure will come in yearly beginning
from the time of starting the cargo operations by each of the newly built
facilities.

3. In running the calculations, one should check the comparability of
the numbers determining the values of the parameters that are present in
the chosen mathematical model. One should be sure that these numbers
correspond to the same period of time (a year, several years, a decade, etc.),
proceeding from the fact that the known capacities of both the (new and
existing) transport hubs and access roads to them are usually yearly ones.

II. A review of scientific publications studying problems
close to those under consideration in the present paper

Scientific publications that are close to the subject of this paper form
two groups. The first group includes publications traditionally considered
in studies associated with the hub location problem in various formulations.
The second group includes publications dealing with public-private partner-
ship investments in developing transportation infrastructures. Both groups
are briefly reviewed in this section of the paper. For the first group of pub-
lications, the text to follow mostly only cites the papers in which brief or
detailed reviews of the hub location problem studies are offered.
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A review of publications on hub location problems.

A variety of formulations of the hub location problems can be structured,
for instance, based upon several characteristics of the hubs and the places to
be connected with them. One can view these characteristics as parameters
of the corresponding mathematical models.

(1) The type of the mathematical formulation of the problem. In the
framework of a “discrete” formulation, places for hub locations in a
region are to be chosen within a set of a finite number of particular
places in the region. In the framework of a “continuous” formulation
of the problem, the hubs can be placed anywhere in the region.

(2) The goal function type in the optimization problem. Two major
types of the goal functions are usually considered: the maximum cost
of services for all the origin-destination pairs that is to be minimized
(the minimax criterion), and the sum of all the costs that is to be
minimized (the mini-sum criterion). In addition to the costs the
goal function may include profits from providing services. Also, in
some cases, non-financial objectives, reflecting the service level are
among the criteria.

(3) The available data on the number of hubs. The number of hubs in
a particular problem can be either an exogenous parameter or the
one to be determined in the course of solving the problem.

(4) The cost of placing the hubs. Three types of the cost are considered
in the hub location problems: the zero cost, the fixed cost, and the
variable cost.

(5) A connection type between the hubs and places connected with the
hub. There are two types of the connection between the hubs and
such places: a single connection and a multiple connection. Under
the single connection, each place (a sender or a recipient) may be
associated with (or assigned to) the only service hub. Under the
multiple connection, each place can be connected with (assigned to)
several service hubs.

(6) The cost of connecting the hubs to the customers (places). As in the
case of the cost of placing the hubs, three types of the connection
cost are considered: the zero cost, the fixed cost, and the variable
cost.

(7) The existence of special conditions on the connections among the
hubs (the types of subgraphs formed by sets of the hubs). Among
major assumptions on such conditions, the following four assump-
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tions on a subgraph of the hubs — a) a complete graph, b) a star,
c) a tree, and d) a line — dominate.

(8) The existence of restrictions on the capacities of either the hubs or
their connections with the places (or both).

(9) The existence of flows between particular origin-destination pairs in
the sets of the hubs and those of the places connected to them.

(10) The existence of service level constraints.
(11) The existence of uncertainty in parameters of the network such as,

for instance, costs and demands.

(ReVelle and Swain 1970) published one of the first papers in which the
problem of optimally locating service centers in a region was studied. The
problem of locating hospitals, warehouses, factories, post offices, shops, and
other facilities was formulated there as an integer programming one. Its
objective function reflected the total distance from a particular point in the
region to the service centers to be placed in the region, taking into account
the importance of those points. One of the problem constraints was that
on the number of service centers to be placed in the region. The problem
formulated there has become known in applied mathematics as the p-median
problem, and it received the name“p-median problem” due to its similarity
with that of finding the median in a graph. ((In Hakimi 1964), in the median
graph problem, the median is understood as a graph vertex that minimizes
the weighted sum of the distances between this vertex and all other vertices
of the graph.) (Daskin and Maas 2015) consider the p-median problem in
which a location of the service centers that minimizes the average distance
between the locations and the nearest of the service centers to be placed is
searched. (Particular locations to be connected to the centered to be placed
are weighted there by the importance of their locations.) (ReVelle and
Swain 1970) and (Cornuejols and Nemhauser 1990) analyzed this problem
in the case of no capacity limitations put on the service centers to be placed
though capacitated versions of the problem are also known. (Garey and
Johnson 1979) proved that, generally, all these problems are NP -hard.

Hub location problems have intensively been studied in the last several
decades. Almost every recent publication, particularly, in the network ana-
lysis cites surveys on this subject in (Krarup and Pruzan 1983), (Campbell
1994a), (O’Kelly and Miller 1994), (Labbe and Louveaux 1997), (Klincewicz
1998), (Campbell et al. 2002), (Alumur and Kara 2008), (Campbell and
O’Kelly 2012), (Farahani et al. 2013), (Contreras 2015), and (Zabihi and
Gharakhani 2018).
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Numerous publications consider the uncapacitated multiple allocation
p-hub median problem (UMApHMP), first presented in (Campbell 1992).
Its modifications are presented in (Campbell 1994b), (Skorin-Kapov et al.
1996), including the uncapacitated multiple allocation hub location problem
with fixed costs (UMAHLP), considered by (Campbell 1994b). Exact and
heuristics algorithms to solve these problems are proposed, for instance, in
(Campbell 1996), (Klincewicz 1996), (Ernst and Krishnamoorthy 1998a),
(Ernst and Krishnamoorthy 1998b), (Ebery et al. 2000), (Mayer and Wag-
ner 2002), (Boland et al. 2004), (Hamacher et al. 2004), (Marin 2005) and
(Canovas et al. 2007), and they are applicable to solving both the UMAHLP
and the UMApHMP problems. A review of a number of heuristic algorithms
for solving the p-median problem is presented in (Mladenovic et al. 2007).

Other hub location problems are formulated a) for networks of particular
structures such as a line structure ((Martins et al. 2015)), a tree structure
((Contreras et al. 2010)), a star structure ((Labbe and Yaman 2008), (Ya-
man 2008), and (Yaman and Elloumi 2012)), structures with a particular
number of connections (r-allocation) ((Yaman 2011)), and structures with
an incomplete hub network ((Nickel et al. 2001), (Yoon and Current 2008),
(Calik et al. 2009), and (Alumur et al. 2009)), b) under a number of assump-
tions on the transportation cost and cargo flows such as the economies of
scale ((O’Kelly and Bryan 1998), (Horner and O’Kelly 2001), and (Camargo
et al. 2009)), different discounting policies ((Podnar et al. 2002), (Campbell
et al. 2005a), and (Campbell et al. 2005b)), and under the presence of arcs
with fixed setting costs ((O’Kelly et al. 2015)), c) assuming a possibility
to select the capacity of a hub ((Correia et al. 2010)), d) for multimodal
hub location problems with different transportation modes ((Kelly and Lao
1991), (Racunica and Wynter 2005), (Limbourg and Jourquin 2009), (Ish-
faq and Sox 2011), (Meng and Wang 2011), and (Alumur et al. 2012a)), e)
under price sensitive demands ((Kelly et al. 2015)), f) assuming a sequen-
tial addition of competing hubs ((Mahmutogullari and Kara 2016)), g) for
dynamic multi-period hub location problems ((Gelareh et al. 2015)), and h)
for hub-and-spoke models dealing with disruptions at the stage of designing
transportation networks with backup hubs and alternative routes ((An et
al. 2015)).

Most of the papers on the hub location problem consider the case in
which all the data is assumed to be known exactly. In papers addressing the
uncertainty in the data, the existence of particular probability distribution
over the uncertain parameters is assumed ((Marianov and Serra 2003), (Sim
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et al. 2009), (Yang 2009), (Contreras et al. 2011), (Alumur et al. 2012b),
(Adibi and Razmi 2015) and (Yang et al. 2016)).

A recognized direction of dealing with the uncertainty in parameters of,
particularly, networks, including transportation ones, in optimizing both
network design and work consists of formulating corresponding problems
as robust optimization ones. In these problems, the best solutions in the
worst-case combination of parameters assuming values from particular sets
is searched. Numerous authors, for instance, (Belenky 1981), (Ben-Tal and
Nemirovski 1998), (Ben-Tal and Nemirovski 1999), (Yaman et al. 2001),
(Bertsimas and Sim 2003), (Bertsimas and Sim 2004), (Ben-Tal et al. 2004),
(Atamturk 2006), (Ordonez and Zhao 2007), (Yaman et al. 2007), (Ben-Tal
and Nemirovski 2008), (Mudchanatongsuk et al. 2008), (Shahabi and Un-
nikrishnan 2014), (Merakli and Yaman 2016, 2017), (Yang and Yang 2017),
(Zetina et al. 2017) and (Talbi and Todosijevic 2017) exercise this approach
for problems in which sets of uncertain parameters are those described by
systems of linear equations and inequalities.

Results that are close to those presented in this paper are discussed in
(Merakli and Yaman 2016), (Serper and Alumur 2016), and (Alibeyg et al.
2016). (Merakli and Yaman 2016, 2017) propose a hub location model with
a demand uncertainty described by systems of linear constraints. Similar
to (Belenky 1981), they formulate a minimax optimization problem on two
polyhedra and apply the dual transformation to linearize it and find the
best solution in the worst-case of the demand combinations. To solve the
linearized problem on CAB, AP, and the Turkish network data, the CPLEX
software package, along with particular variants of the Benders decompo-
sition algorithms, is used. An approach presented in (Zetina et al. 2017)
and (Talbi and Todosijevic 2017) differs from those proposed in (Merakli
and Yaman 2016, 2017). That is, in (Zetina et al. 2017) and in (Talbi
and Todosijevic 2017), the change of some problem’s parameters (demand,
transportation cost) is allowed , and the objective is to find the best solu-
tion under the worst set of these parameters. The cardinality of this set
can be interpreted as a budget of uncertainty, but this approach is limited
and cannot be used for modeling complex relationships among uncertain pa-
rameters. (Serper and Alumur 2016) consider the capacitated hub location
model with different vehicle types and variable hub capacities. The model
lets: a) choose transportation modes (air, ground) and the vehicle type (air-
plane, trailer, truck) for both hub-to-hub and hub-to-node transportation,
and b) choose the capacity level at a hub for each transportation mode. To
solve the formulated problem for the Turkish transportation network (with
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81 nodes) on CAB, both CPLEX and a neighborhood search (heuristic) al-
gorithm are used. The authors report the average gap between the CPLEX
optimal solution and the heuristic algorithm solution to be about 1%. The
same approach to modeling variable hub capacities is used in (Alumur et
al. 2018), where the authors propose a framework for modeling congestions
at hubs in hub location problems with a service time limit. (Alibeyg et al.
2016) introduce a class of hub network design problems with profit-oriented
goal functions, which reflect the tradeoff between the profits obtained from
moving the commodities and the costs of building transportation networks.
The authors propose several profit-oriented models and compare their com-
putational results related to designing networks with those obtained with
the use of traditional cost-oriented models based on the CAB data and the
use of CPLEX. In (Alibeyg at al. 2018), the authors propose an exact algo-
rithmic framework for solving profit-oriented hub location problems. In this
framework, a Lagrangian relaxation is used to obtain efficient bounds at the
nodes in a branch-and-bound method taking into account the structure of
the goal function. The resulting exact algorithms are tested using a CAB
dataset with up to 100 nodes, and they appear to solve more instances of
the problems in a limited period of time than CPLEX can solve.

Also, there are publications that do not address the hub location prob-
lem itself while studying models related to those used in the hub location
problem, which may eventually, be helpful in studying this problem. For
instance, (Wang 2016) presents a theoretical study of the optimal hubs net-
work topology, and (Redondi et al. 2011), (Czerny et al. 2014), (Bracaglia
et al. 2014), and (Teraji and Morimoto 2014) consider a competition among
the hubs. (Small and Ng 2014) study optimization problems of choosing a
capacity and the type of access roads to transport hubs, whereas (Nagur-
ney et al. 2015) and (Li and Nagurney 2015) apply a game theory approach
to finding equilibrium prices in supply chain networks under competition
conditions. That is, (Nagurney et al. 2015) consider supply chain net-
works with competing manufacturers and freight service providers, whereas
(Li and Nagurney 2015) consider supply chain networks with competing
suppliers of product components to be assembled by the purchasing firms,
which may eventually manufacture some of these components on their own.

A review of publications on public-private partnership in transportation.

(Rouhani et al. 2016) propose a particular framework for analyzing
public-private partnership investment projects in transportation from the
public welfare viewpoint. In these projects, a share of the revenue that is
generated by the project is returned to the citizens who own the public
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infrastructure involved in the public-private partnership project. (Geddes
and Nentchev 2013) assert that such a strategy may increase a public sup-
port for a system-wide pricing of the existing roads. The proposed public
welfare framework estimates the benefits and the costs of using the invest-
ment approach for an urban transportation network with respect to all the
major project stakeholders (residents, users, government, and the private
sector). (Carpintero and Siemiatycki 2016) study how various political fac-
tors affect the formation and the effectiveness of public-private partnership
projects with respect to Spain light rail transit projects, and conclude that
they affect them significantly.

(Aerts et al. 2014) propose to use of a multi-actor analysis to identify
factors being critical for success in implementing public-private partnerships
in developing the infrastructure of a port. Based on results presented in
several surveys, the authors assert that a) the concreteness and preciseness
of the concession agreement, b) the ability to appropriately allocate and
share risk, c) the technical feasibility of the project, d) the commitment
made by the partners, e) the attractiveness of the financial package, f) a clear
definition of responsibilities, g) the presence of a strong private consortium,
and h) a realistic cost/benefit assessment are such factors. (Panayides et
al. 2015) also consider ports in a study of the influence of institutional
factors on the effectiveness of the public-private partnership. An empirical
analysis provided by the authors in their paper allows them to suggest that
a) “the regulatory quality, b) the market openness, c) the ease of starting
a business, and d) the enforcement contracts” are important institutional
determinants of the effectiveness of port public-private partnership projects.

(Wang and Zhang 2016) study a road pricing problem in networks be-
longing to public-private partnerships in the form of a game. Two types
of the players are considered by the authors in their game model: a) a set
of individual travellers each of whom tries to find her/his own path with
the minimal travel cost, and b) a set of transportation firms that cooperate
among themselves in an attempt to minimize the total operational cost for
every firm. The model allows the authors to find road charging schemes
for the players that yield the optimum flows for players of both kind. Also,
several other publications dedicated to studying the road pricing problem
are listed in that paper. Particularly, among the listed ones, there are a)
(Yang and Zhang 2002), where the authors study the tolling design con-
ducted to secure a certain level of the social equity, b) (Sumalee and Xu
2011), where the authors consider optimal pricing schemes under an uncer-
tain demand for services on a transportation network, c) (Zhang and Yang
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2004), where the authors research a cordon-based congestion pricing (deter-
mining the payment for the right to travel inside a particular city zone), d)
(Liu et al. 2014), where the authors analyze a model from (Zhang and Yang
2004) and modify it to take into consideration both the travelling time and
the parking time inside the zone, e) (Zhang et al. 2008), where the aut-
hors suggest to determine particular prices as components of equilibria in a
game model similar to (Wang and Zhang 2016)—where a stochastic nature
of the player payoff functions is taken into consideration—and (Meng et
al. 2012)—where cordon-based congestion pricing problems are considered,
and stochastic equilibria for heterogeneous users are analyzed.

(Zhang and Durango-Cohen 2012) present a game-theoretic model of a
concession agreement for examining how a government’s tax policy affects
the interest of private investors to invest in transportation infrastructure.

Organizational problems associated with forming public-private partner-
ships for Indian dry (inland) ports are reported in (Haralambides and Gujar
2011) based on the interviews with various stakeholders that the authors
have conducted. According to the authors, the excess capacity of the ports,
limit pricing policies, and a weak legal framework for setting and running
a public-private partnership are among the major obstacles in this field.
(Cabrera et al. 2015) consider similar problems for ports in Spain, where
the authors list what they believe are primary concerns for public-private
partnership schemes in this area of freight transportation services. An im-
proper risk allocation in tendering processes, a failure to meet expectations
of the demand for services, and concerns associated with turning the trans-
portation enterprise into a monopoly are listed and discussed there.

(Dementiev and Loboyko 2014) propose a game-theoretic approach to
analyzing the chances of establishing public-private partnerships in Russia’s
suburban railway sector of passenger transport. (Dementiev 2016) further
develops this approach by considering the idea to delegate some regulatory
functions in public transportation to a public-private partnership. The im-
plementation of this idea is expected to help balance social and commercial
interests in line with a predetermined objective. So this idea presents a
certain theoretical interest from the viewpoint of welfare comparisons for
alternative organizational structures in the public transport sector. Certain
optimal corporate structures for such a partnership are determined depen-
ding on local costs for public funds and society preferences. The proposed
approach was applied for analyzing the effectiveness of a railways suburban
transport reform in Russia.
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(Carmona 2010) considers general problems of developing a transporta-
tion infrastructure in a country in the context of economic regulations in
public-private partnership settings. The author proposes to take into ac-
count three particular measures of the efficiency. That is, a) the dynamic
allocation efficiency (determining whether the whole life-cycle social benefits
exceed the costs of the infrastructure provisions), b) the utilization efficiency
of the transportation infrastructure (determining whether charging the price
that promotes the best possible use of available infrastructure capacity posi-
tively affects the infrastructure functioning), and c) the productive efficiency
(determining how the services provided by the road infrastructure minimize
the transportation cost).

(Galilea and Medda 2010) analyze to what extent and how economic and
political statuses of a particular country (mainly the presence of corruption
and democracy) may contribute to success of a public-private partnership
in developing transportation infrastructures.

One should notice that most of the publications related to public-private
partnership problems, in particular, in the field of transportation, are those
of general considerations. These publications do not address quantitative
approaches to studying issues underlying these problems. Certainly, there
are publications in which mathematical models associated with forming
public-private partnerships and analyzing their effectiveness are proposed
for general interactions of the public and private sector. Also, there are those
related to such an interaction in areas other than transportation. However,
neither take into consideration any specifics of transportation services, and
for this reason, they are not considered in the presented brief review.

Particularly, (Belenky 2014) considers such models in the form of tree-
person games in which a state, and investor, and a developer of a project
(or a set of projects) interact—in an attempt to find a mutually acceptable
conditions for the partnership. In those models the players proceed from a)
the minimum volume of investment required for each project from the view-
point of the state, b) the volume of investment that the state can afford to
contribute, c) preferences and requirements of the developer for the compen-
sation of its services, and d) the volume of investment that the investor can
afford to contribute. Some other financial factors are also taken into con-
sideration. For this type of the games, under linear constraints describing
a set of strategy for each player, necessary and sufficient conditions for the
equilibria are established. These conditions allow one to find equilibria in
the problem under consideration there by solving linear programming prob-
lems forming a dual pair. However, the results presented in that publication
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are not directly applicable to the problems under consideration in this pa-
per. This is the case due to the presence of Boolean variables in the model
underlying mathematical formulations of the problems to be considered in
Section III of the present paper.

Thus, the presented review shows that there are classes of problems with
formulations being close to the problems mentioned in Section I, which are
under consideration in this paper. These close problems have not been mo-
deled and studied in a manner allowing one to use results from the reviewed
publications. This is the case even when these results may help work out
decisions by the parties negotiating a potential private-public partnership
on developing a regional freight transportation infrastructure

III. Mathematical formulations
of the problems under consideration

Let

M be the number of locations (nodes) on the regional transportation
network under consideration each of which is either a place of cargo origin
or a cargo destination point (or both),

Nnew be the number of points (nodes) on the network suitable for loca-
ting new transport hubs,

Nexist be the number of points (nodes) on the network with already
functioning transport hubs,

sj be the expected yearly demand for (the volume of) cargo transporta-

tion services at node j, j ∈ 1,M of the transportation network (from node
j to transport hubs in the new (modernized) transportation network and
from the hubs to that node),

sminj be the expected yearly minimum demand for cargo transportation

services at node j, j ∈ 1,M of the transportation network (from node j to
transport hubs in the new (modernized) transportation network and from
the hubs to that node),

smaxj be the expected yearly maximum demand for cargo transportation

services at node j, j ∈ 1,M of the transportation network (from node j to
transport hubs in the new (modernized) transportation network and from
the hubs to that node),

Smin be the expected yearly minimum total demand for cargo trans-
portation services in the region in the planning period,

Smax be the expected yearly maximum total demand for cargo trans-
portation services in the region in the planning period,
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ϵi be the number of variants of the capacity that a new transport hub to
be built at node i may have, i ∈ 1, Nnew,

µ be the number of the chosen variant of the transport hub capacity at
node i, i ∈ 1, Nnew, µ ∈ 1, ϵi,

d new
iµ be the yearly capacity of a new transport hub at node i under

variant µ of the hub capacity, i ∈ 1, Nnew, µ ∈ 1, ϵi,

d max new
iµ be the maximum yearly capacity of a new transport hub at

node i under variant µ of the hub capacity, i ∈ 1, Nnew, µ ∈ 1, ϵi,

d min new
iµ be the minimum yearly capacity of a new transport hub at

node i under variant µ of the hub capacity, i ∈ 1, Nnew, µ ∈ 1, ϵi,

d exist
i′ be the capacity of the existing transport hub at node i′, i′ ∈

1, Nexist,

Li be the number of types of all the new access roads to a new transport
hub at node i, i ∈ 1, Nnew that are planned to function on the transporta-
tion network as a result of its development during the planning period,

li′ be the number of types of all the access roads to the existing transport
hub at node i′, i′ ∈ 1, Nexist that are planned to remain on the transporta-
tion network as a result of its development during the planning period,

sk newji be the yearly volume of cargo that is planned to be moved between

node j, j ∈ 1,M of the transportation network and a new transport hub at
node i, i ∈ 1, Nnew via a new access road of type k, k ∈ 1, Li,

sk
′ exist
ji′ be the yearly volume of cargo that is planned to be moved be-

tween node j, j ∈ 1,M of the transportation network and the existing
transport hub at node i′, i′ ∈ 1, Nexist via an existing access road of type
k′, k′ ∈ 1, li′ ,

tk newji be the (average) cost of transporting a unit volume of cargo
between node j and a new transport hub at node i via a new access
road of type k to the hub, which cargo owners and cargo carriers are ex-
pected to pay to operators of the regional transportation infrastructure
(which will act under an agreement with regional transportation authori-
ties or on their behalf) for the access to the new transport hub at node
i, j ∈ 1,M, i ∈ 1, Nnew, k ∈ 1, Li,

tk
′ exist
ji′ be the (average) cost of transporting a unit volume of cargo

between node j and the existing transport hub at node i′ via the existing
access road of type k′ to the hub, which cargo owners and cargo carriers are
expected to pay to operators of the regional transportation infrastructure
(which will act under an agreement with regional transportation authorities
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or on their behalf) for the access to the existing transport hub at node

i′, j, j ∈ 1,M, i′ ∈ 1, Nexist, k′ ∈ 1, li′ ,

Qk newiµ be the yearly capacity of a new access road of type k to a new
transport hub at node i with the hub capacity dnewiµ on the transportation

network, k ∈ 1, Li, µ ∈ 1, ϵi, i ∈ 1, Nnew,

Qk new max
iµ be the maximum yearly capacity of a new access road of type

k to a new transport hub at node i with the hub capacity dmax newiµ on the

transportation network, k ∈ 1, Li, µ ∈ 1, ϵi, i ∈ 1, Nnew,

Qk new min
iµ be the minimum yearly capacity of a new access road of type

k to a new transport hub at node i with the hub capacity dmin new
iµ on the

transportation network, k ∈ 1, Li, µ ∈ 1, ϵi, i ∈ 1, Nnew,

Qk
′ exist
i′ be the yearly capacity of the existing access road of type k′ to

the existing transport hub at node i′, k′ ∈ 1, li′ , i
′ ∈ 1, Nexist,

fiµ be the cost of building a new cargo transport hub at node i of variant

µ of the hub capacity, µ ∈ 1, ϵi, i ∈ 1, Nnew on the transportation network,

gkiµ be the cost of building a new access road of type k to a new transport

hub at node i of variant µ of the hub capacity, µ ∈ 1, ϵi, i ∈ 1, Nnew, k ∈
1, Li.

cnewiµ be the yearly maintenance cost of a new cargo transport hub at

node i of variant µ of the hub capacity, µ ∈ 1, ϵi, i ∈ 1, Nnew on the
transportation network,

qk newiµ be the yearly maintenance cost of a new access road of type k to a

new transport hub at node i of variant µ of the hub capacity, µ ∈ 1, ϵi, i ∈
1, Nnew, k ∈ 1, Li.

cexisti′ be the yearly maintenance cost of the existing cargo transport hub

at node i′, i′ ∈ 1, Nexist on the transportation network, and

qk
′ exist
i′ be the yearly maintenance cost of the existing access road of

type k′ to the existing transport hub at node i′, k′ ∈ 1, li′ , i
′ ∈ 1, Nexist.

Further, let

yiµ be a binary (Boolean) variable that equals 1 if a new transport hub of
variant µ of the hub capacity will be built at node i and equals 0, otherwise,
µ ∈ 1, ϵi, i ∈ 1, Nnew,

zkiµ be a binary (Boolean) variable that equals 1 if a new access road of
type k to a new transport hub at node i of variant µ of the hub capacity
will be chosen to be built and equals 0, otherwise, k ∈ 1, Li, µ ∈ 1, ϵi, i ∈
1, Nnew, and
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ψ be the number of years in the planning period of time for which the
regional administration is interested in estimating the economic effectiveness
of modernizing the existing freight transportation infrastructure.

Basic Assumptions

1. The cost of building a new transport hub of variant µ of the hub
capacity at node i is a piecewise linear function of the hub capacity so that
for each segment dmin new

iµ ≤ d new
iµ ≤ dmax newiµ , this cost is a linear function

fiµ = aiµ + γiµd
new
iµ , µ ∈ 1, ϵi, i ∈ 1, N new.

where aiµ, γiµ are positive, real numbers µ ∈ 1, ϵi, i ∈ 1, N new, and the

inequalities dmax newiµ ≤ dmin new
i(µ+1) hold, µ ∈ 1, ϵi − 1, ϵi ≥ 2, i ∈ 1, Nnew.

2. The cost of building a new access road of type k to a new transport
hub of variant µ of the hub capacity at node i is a piecewise linear function
of the capacity of this road (which depends on the hub capacity) so that
for each segment Qk min new

iµ ≤ Qk newiµ ≤ Qk max newiµ , this cost is a linear
function

gkiµ = bkiµ + βkiµQ
k new
iµ , µ ∈ 1, ϵi, i ∈ 1, Nnew, k ∈ 1, Li.

where biµ, βiµ are positive real numbers µ ∈ 1, ϵi, i ∈ 1, Nnew, and the in-

equalities Qk max newiµ ≤ Qmin new
k i(µ+1) hold, µ ∈ 1, ϵi − 1, ϵi ≥ 2, i ∈ 1, Nnew.

One should bear in mind that access roads to a new transport hub are
those connecting this hub to the closest element of the existing regional
transportation network (a highway segment, a railroad segment, etc.) rather
than a new road to be built to connect any node j to this hub. In calculating
the cost tk newji , the total length of the road between node j and transport
hub i, the length of the access road of type k to hub i, and other parameters
affecting the cost are taken into account.

Also, the assumption on a piece-wise structure of both costs reflects two
features of this type of approximation. First, it allows one to approximate
any particular continuous function of one variable that may appear in trans-
portation practice with any needed degree of accuracy (by increasing the
number of segments on each of which the function is approximated by a
linear one). Second, it helps remain within linear or mixed programming
with linear constraints in formulating both ordinary and robust optimiza-
tion problems formalizing practical problems under consideration in this
paper, which makes a difference in calculating solutions to these problems.
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3. The expected minimum and maximum yearly demands for (the vol-
umes of) cargo transportation services at node j of the regional transporta-
tion network are strictly positive, real numbers ∀j ∈ 1,M so that the in-
equalities

0 < sminj ≤ sj ≤ smaxj ,∀j ∈ 1,M

hold.
4. The inequalities

∑Nexist

i′=1 dexisti′ < Smin < Smax, and Qk new max
iµ >>

1, µ ∈ 1, ϵi, k ∈ 1, Li, i ∈ 1, Nnew hold. No new access roads to already
existing transport hubs will be built, and no modernization construction
work will be done there in the planning period.

5. The number of types of new access roads that can be built to a new
transport hub at node i, i ∈ 1, Nnew to choose from does not depend on
the hub capacity. At the same time, the capacities of the new access roads
to a new transport hub chosen to be built may depend on the hub capacity.

These tariffs are those expected to be paid by the cargo owners to the
transportation carriers based on the situation in the market of transporta-
tion services.

6. Cargo flows may originate inside every new transport hub and inside
every existing transport hub, and they may go to any node of the trans-
portation network.

7. The amount of the cash flow formed by the taxes to be charged for
providing access to the transportation infrastructure of the region is cal-
culated as a particular percentage (ν) of the corresponding transportation
tariffs. These tariffs are those expected to be paid by the cargo owners to
the transportation carriers based on the situation in the market of trans-
portation services. This percentage is considered to be the same for the
whole planning period of time ψ (in years), where ψ ≥ 1.

8. In negotiations with potential private sector partners, the regional
administration chooses an arbitrary length of the planning period ψ for
which it estimates the expenses associated with developing the regional
freight transportation infrastructure. It proceeds from the yearly capacities
of the new transport hubs and new access roads to them to be built during
that period. However, the planning period starts once all the new elements
of this infrastructure or any particular elements of it (selected by the regional
administration) have been built and start functioning.

9. The functioning of the regional freight transportation infrastructure
generates revenue in the form of taxes. These taxes start coming in once all
the facilities (new transport hubs and new access roads to them) that are
expected to be built in the planning period have been built.
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In Tables 1-6, reflecting the results of testing the proposed tool on the
model data (see Appendix 2), both this revenue and the profit/loss that
the potential partnership may receive/sustain are calculated for different
periods of time. These time segments begin from the moment at which all
the above facilities start their cargo operations (i.e., for different ψ, ψ ≥ 1).

Remark 2.

To calculate financial parameters, mentioned in basic assumption 9, a)
capacities of both the existing facilities and of those to be built (new trans-
port hubs and (new) access roads to them) should be scaled accordingly,
and b) the maintenance cost for all the facilities (the existing ones and
those to be built) for the whole planning period should be deducted from
the revenue. Generally, the maintenance costs (for at least the new facilities
to be built) can be considered as a vector belonging to a set of its feasible
values (for, instance, to a polyhedron).

Let the regional administration consider the modernization of the existing
regional freight transportation infrastructure proceeding from the expected
volumes of each cargo flow in the region in this planning period. Let the
administration determine that the existing transportation network cannot
meet the expected demand for moving cargoes in the region in principle.

Subcase 1. As mentioned in Section I, based upon this determination,
the administration then intents

a) to find out what new transport hubs should be built, where these hubs
should be located, what types of access roads to each of them, how many,
and of what capacities should be built,

b) to analyze the expediency of keeping the existing distribution scheme
of at least some of the cargo flows between the nodes on the regional trans-
portation network and the existing freight transport hubs (which is done by
estimating the results of possibly redistributing the existing cargo flows by
switching portions of these flows to new transport hubs that are planned to
be built), and

c) to analyze the expediency of possibly directing parts of the expected
new cargo flows to some of (or to all) the existing transport hubs.

These estimates and this analysis should be done to determine an eco-
nomic strategy of developing the regional freight transportation infrastruc-
ture. This strategy depends on the ability of the regional adminstration to
obtain federal funds to support this project. It also depends on the adminis-
tration’s ability to convince private investors to contribute to this project on
acceptable (to them and to the administration) conditions in the framework
of, for instance, a public-private partnership.
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In the case under consideration, let the regional administration know the
values that the parameters tk

′ exist
ji′ , tk newji , fiµ, g

k
iµ, c

new
iµ , qk newiµ , cexisti′ ,

and qk
′ exist
i′ may assume in the planning period. Then it can estimate

the expected total expenses associated with developing the regional freight
transportation infrastructure and redistributing the existing cargo flows
between the existing transport hubs and those to be built. This can be
done by minimizing the function describing these expenses on the set of
feasible solutions to the system of linear constraints binding the variables
sk newji , sk

′ exist
ji′ , yiµ, and z

k
iµ.

For ψ ≥ 1, this function takes the form

ψ(

Nexist∑
i′=1

cexisti′ +

Nexist∑
i′=1

li′∑
k′=1

qk
′ exist
i′ )+

Nnew∑
i=1

ϵi∑
µ=1

(fiµ + ψcnewiµ )yiµ +

Nnew∑
i=1

Li∑
k=1

ϵi∑
µ=1

(gkiµ + ψqk newiµ )zkiµ−

ψν

(Nexist∑
i′=1

M∑
j=1

li′∑
k′=1

tk
′ exist
ji′ sk

′ exist
ji′ +

Nnew∑
i=1

M∑
j=1

Li∑
k=1

tk newji sk newji

)
.

For the sake of simplifying the reasoning on mathematically modelling the
problem under consideration, it is assumed that in every year of the planning
period, each of the parameters tk

′ exist
ji′ , tk newji , fiµ, g

k
iµ, c

new
iµ , qk newiµ , cexisti′ ,

and qk
′ exist
i′ assumes the same value. This assumption, however, is not

restrictive, and one can consider any values of these parameters for each
particular year and add corresponding terms into all the three sums in the
above formula (see the last paragraph in Section III).

Subase 2. A deal with potential investors on a public-private partnership
associated with developing a regional freight transportation infrastructure
is the major goal of the regional administration. However, the version of
this infrastructure may substantially depend on what the private sector in-
vestors may be interested in considering as the investment subject. That is,
depending on what providing transportation services may bring to the ser-
vice providers, the investors may become interested in both developing the
infrastructure and providing these services. Thus, the potential investors
may also be interested in signing, for instance, a concession agreement with
the regional administration on operating the transportation network that is
to be built thanks to their investment. Then the situation changes compared
with that in which the development of the regional freight transportation
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infrastructure is considered as the only subject of the private-public part-
nership with the investors. That is, the taxes expected to be paid by the
providers of transportation services to the regional administration will no
longer be considered by the administration as its financial contribution to
this partnership. As a signee to the concession agreement, the investors will
receive a license to provide transportation services by hiring transportation
and other companies to work with both cargo owners and cargo recipients.
In this capacity, the private investors will be responsible for paying taxes to
the regional administration. In exchange, they will be entitled to receive a
profit from providing transportation services (provided this profit may exist
in principle).

Certainly, the administration is interested in having a decision-making
tool that would allow it to estimate the investor expenses in both situations.
It is obvious that the second situation (in which paying taxes becomes the
responsibility of the private investors contributing to the development of the
regional freight transportation infrastructure) is covered by the previous
reasoning. That is, the goal function of the optimization problems to be
solved in this situation will differ from the ones to be solved in the first
situation only by the sign before its second term (which will be plus instead
of minus). Though, for the sake of definiteness, only Subcase 1 is considered
in this paper, calculations on model data are conducted for Subcase 1 and
Subcase 2 for both Case A and Case B in Situation 1 and for Subcase 1 and
Subcase 2 in Situation 2 (see Section I). Two regional freight transportation
infrastructures corresponding to the calculation results are compared in
Section V.

Finding the minimum of the goal function, considered in Case 1, requires
solving a mathematical programming problem with mixed variables. The
problem to be solved then takes the form

Nnew∑
i=1

ϵi∑
µ=1

(fiµ + ψcnewiµ )yiµ +

Nnew∑
i=1

Li∑
k=1

ϵi∑
µ=1

(gkiµ + ψqk newiµ )zkiµ

−νψ
(Nexist∑

i′=1

M∑
j=1

li′∑
k′=1

tk
′ exist
ji′ sk

′ exist
ji′ +

Nnew∑
i=1

M∑
j=1

Li∑
k=1

tk newji sk newji

)
→ min,

(1)

ϵi∑
µ=1

yiµ ≤ 1, i ∈ 1, Nnew, (2)
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ϵi∑
µ=1

zkiµ ≤ 1, i ∈ 1, Nnew, k ∈ 1, Li, (3)

zπiγ + zλiω ≤ 1, i ∈ 1, Nnew, ∀π, λ ∈ 1, Li, ∀γ, ω ∈ 1, ϵi, γ ̸= ω, (4)

M∑
j=1

Li∑
k=1

sk newji ≤
(
Smax −

Nexist∑
i′=1

dexisti′
) ϵi∑
µ=1

yiµ, i ∈ 1, Nnew, (5)

yiµ ≤
Li∑
k=1

zkiµ ≤
( Li∑
k=1

Qk new max
iµ

)
yiµ, i ∈ 1, Nnew, µ ∈ 1, ϵi, (6)

M∑
j=1

Li∑
k=1

sk newji ≤
ϵi∑
µ=1

yiµd
max new
iµ , i ∈ 1, Nnew, (7)

M∑
j=1

sk newji ≤
ϵi∑
µ=1

zkiµQ
k new max
iµ , i ∈ 1, Nnew, k ∈ 1, Li, (8)

M∑
j=1

sk
′ exist
ji′ ≤ Qk

′ exist
i′ , k′ ∈ 1, li′ , i

′ ∈ 1, Nexist, (9)

Nnew∑
i=1

Li∑
k=1

sk newji +

Nexist∑
i′=1

li′∑
k′=1

sk
′ exist
ji′ = sj , j ∈ 1,M, (10)

sminj ≤ sj ≤ smaxj , j ∈ 1,M, (11)

Smin ≤
M∑
j=1

sj ≤ Smax, (12)

M∑
j=1

li′∑
k′=1

sk
′ exist
ji′ ≤ dexisti′ , i′ ∈ 1, Nexist, (13)

sk newji ≥ 0, i ∈ 1, Nnew, j ∈ 1,M, k ∈ 1, Li,

sk
′ exist
ji′ ≥ 0, i′ ∈ 1, Nexist, j ∈ 1,M, k′ ∈ 1, li′ ,

yiµ ∈ {0, 1}, µ ∈ 1, ϵi, i ∈ 1, Nnew,

zkiµ ∈ {0, 1}, µ ∈ 1, ϵi, i ∈ 1, Nnew, k ∈ 1, Li.

(14)
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The constraints in Problem (1)-(14) have the following meaning:
(2) – no more than one new transport hub (of any variant of the hub

capacity) can be located at each place from the set 1, Nnew,
(3) – no more than one new access road of each of Li types to a new

transport hub at place i, i ∈ 1, Nnew (whose capacity corresponds to the
hub capacity) can be built,

(4) – new access roads of all Li types to a new transport hub at place
i, i ∈ 1, Nmew can be built for only one chosen variant of the capacity of
this hub,

(5) - a cargo flow via a new transport hub at place i ∈ 1, Nnew cannot
exceed the maximum of the cargo volume expected to be moved via all the
new transport hubs to be located in places from the set 1, Nnew,

(6) - for any capacity µ ∈ 1, ϵi of a new hub that is to be built at place
i, i ∈ 1, Nnew, an access road to the hub of at least one type (corresponding
to the capacity of this hub) is to be built,

(7) – a cargo flow via every new transport hub that is to be built at place
i, i ∈ 1, Nnew cannot exceed the capacity of this hub,

(8) – a cargo flow via a new transport hub at place i, i ∈ 1, Nnew that
comes to this hub via any new access road to this hub cannot exceed the
capacity of this road,

(9) – a cargo flow via every existing access road k′ ∈ 1, li′ to existing

transport hub i′, i′ ∈ 1, Nexist cannot exceed the capacity of this road,
(10) – an expected cargo flow via location j, j ∈ 1,M equals the sum of

the flows that go there via the existing transport hubs and via new ones to
be built,

(11) – each cargo flow volume sj , j ∈ 1,M is considered to be a known
number in Situation 1, Case A, and it is considered to vary in Situation
1, Case 2 (see Section II). In Situation 2, for each cargo flow via location
j, j ∈ 1,M , the volume of this flow is to remain within certain known limits,

(12) – the total volume of the cargo flow via all the M locations is to
remain within certain known limits,

(13) – a cargo flow via every existing transport hub i′, i′ ∈ 1, Nexist does
not exceed the capacity of this hub,

(14) all the variables in the model are non-negative.
Remark 3.
It is assumed that system of constraints (2)-(14) is compatible. This is

easy to verify by solving an auxiliary mixed programming problem that can
be formulated in line with the methodology described in (Belenky, 1981).
The compatibility, particularly, means that the existing freight transporta-
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tion network is capable of handling the expected volumes of cargo to be
moved between all the M nodes of this network and the regional transport
hubs (both the existing ones and those to be built). If this assumption does
not hold, the verification by means of solving the above-mentioned auxil-
iary mixed programming problem determines which existing roads should
be modernized to increase their capacities. Also, it determines what new
roads should be built to meet the expected demand for moving cargoes via
the network. In either case, parameters of all the nodes and roads of all the
kinds in the network, except for those associated with new transport hubs
and access roads to them (see also Basic Assumption 2), under which the
problem of finding the needed volume of investment is formulated can be
considered to be known.

One should bear in mind that the goal function in Problem (1)-(14) only
partly reflects the expenses that the regional administration (and the poten-
tial public-private partnership) should expect to bear. (These expenses are
calculated with respect to the end of each year, after all the new transport
hubs and (new) access roads to them start functioning.) This is the case
since in calculating expenses described by the goal function of the above
type, only the expenses associated with developing new transport hubs and
(new) access roads to them (along with the revenue to be generated by
the project via regional taxes) are taken into account. (It is this revenue
that the regional administration would like the potential private partners
to consider as its financial contribution to the public-private partnership.)

To calculate the total expenses associated with running the project, one
should add the number

ψ(

Nexist∑
i′=1

cexisti′ +

Nexist∑
i′=1

li′∑
k′=1

qk
′ exist
i′ )

to the minimum value of the goal function calculated as a result of solving
the Problem (1)-(14). This number reflects the expenses associated with
the maintenance of the existing transport hubs and access roads to them.
(Since these expenses are represented by a real positive number, there is no
need to include them into the goal function of Problem (1)-(14).)

Here, it is assumed that the values of the parameters cexisti′ and qk
′ exist
i′ ,

i′ ∈ 1, Nexist, k′ ∈ 1, li′ do not change during the whole planning period of
ψ years. Otherwise, if they remain unchanged only during each year of the
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planning period, the sum

ψ∑
κ=1

(Nexist∑
i′=1

cexist κi′ +

Nexist∑
i′=1

li′∑
k′=1

qk
′ exist κ
i′

)
,

where cexist κi′ and qk
′ exist κ
i′ are the values of the corresponding parameters

during year κ, κ ∈ 1, ψ, should be added to the above-mentioned expenses.
Also, one should bear in mind that if the inequality d max new

iµ ≤ Smax−∑Nexist

i′=1 dexisti′ holds for all i ∈ 1, Nnew, system (5) in the system of con-
straints of Problem (1)-(14) becomes redundant.

Remark 4. One should bear in mind that to find whether providing trans-
portation services under a potential concession agreement is profitable to
the private investors, they should first solve a separate optimization prob-
lem. This problem may have the same system of constraints (2)-(14) and the
goal function describing the profit expected to be received from providing
transportation services. This goal function will have the form(Nexist∑

i′=1

M∑
j=1

li′∑
k′=1

tk
′ exist
ji′ sk

′ exist
ji′ +

Nnew∑
i=1

M∑
j=1

Li∑
k=1

tk newji sk newji

)
−

−fex(sk
′ exist
ji′ , sk newji ),

where the function fex(s
k′ exist
ji′ , sk newji ) describes expenses associated with

providing transportation services in volumes determined by the vectors
sk

′ exist
ji′ , sk newji . This goal function describes the maximum revenue that
the investors may expect to receive yearly in the framework of the conces-
sion agreement, provided they will be the only operator to provide trans-
portation services to all the cargo owners and cargo recipients in the region.
This maximum revenue is calculated by maximizing this function under the
system of constraints (2)-(14). This maximum should be multiplied by the
number of years, say, ψ under which the concession agreement is signed and
compared with the value of the goal function in Problem (1)-(14) in which
the second term in the goal function is present with a plus sign. If even
in this ideal situation (in which the investors are the only provider of the
transportation services for ψ years), the total expenses exceed the expected
profit, the investors will be unlikely to be interested in providing any trans-
portation services in the framework of the concession agreement. So, if this
is the case, they will be considering only the investment in developing the
regional freight transportation infrastructure.
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If, however, this expected profit will exceed the expected total expenses,
the investors should try to estimate their profit and expenses in a real situ-
ation. That is, they should estimate both values under competition condi-
tions, i.e. when the transportation services that they may provide will have
only a limited demand, and they may not know exactly what the limitation
numbers are. However, considering these problems goes beyond the scope
of the present paper.

Problem (1)-(14) is a mathematical programming one with mixed va-
riables, which corresponds to Situation 1, Case B, described in Section I.
For Situation 1, Case A (described in Section I), inequalities (11) are to be
replaced by the equalities sj = smaxj , j ∈ 1,M . Additionally, inequalities
(12) are to be excluded from the system of constraints of Problem (1)-(14)

(since the equality
∑M
j=1 s

max
j = Smax must hold). In both cases, this

problem can be solved with the use of standard software packages that are
currently widely available (see, for instance, (Mittelmann 2017)).

Since even the average values of the parameters in Problem (1)-(14) may
not be known with certainty, the administration may decide to estimate
the “worst-case scenario.” To this end, the estimates of the areas of the
parameter values that these parameter values may belong to (in any parti-
cular planning period) should be taken into consideration. This is also the
case when a) the parameters tk existji , tk newji , fiµ, and g

k
iµ are the piece-wise

linear functions described earlier, and b) the parameters determining the
maintenance costs for the new transport hubs and those for access roads to
these hubs may vary.

In such situations, a robust optimization problem should be formulated
and solved.

Let

x = (sk newij , sk
′ exist
i′j ) ∈ R

M
∑Nnew

i=1 Li+M
∑Nexist

i′=1
li′

+ ,

t = (tk newij , tk
′ exist
i′j ) ∈ R

M
∑Nnew

i=1 Li+M
∑Nexist

i′=1
li′

+ ,

y = (yiµ) ∈ R
∑Nnew

i=1 ϵi
+ , f = (fiµ) ∈ R

∑Nnew

i=1 ϵi
+ , c = (cnewiµ ) ∈ R

∑Nnew

i=1 ϵi
+ g =

(gkiµ) ∈ R
∑Nnew

i=1 ϵiLi

+ , q = (qk newiµ ) ∈ R
∑Nnew

i=1 ϵiLi

+ , z = (zkiµ) ∈ R
∑Nnew

i=1 ϵiLi

+ ,
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be vector variables, and let the inclusions

t ∈ Λ = {t ≥ 0 : tI ≤ l}, f ∈ Θ = {f ≥ 0 : fF ≤ r},
g ∈ Γ = {g ≥ 0 : gG ≤ e}, c ∈ ∆ = {c ≥ 0, cW ≤ λ},

q ∈ Υ = {q ≥ 0, qΨ ≤ η}
(x, y, z) ∈ Φ = {(x, y, z) ≥ 0 : P (x, y, z) ≥ δ},

x ∈MX = {x ≥ 0 : Ax ≥ b},
y ∈ ΩY = {y ≥ 0 : By ≥ π, y ∈ T∑Nnew

i=1 ϵi
},

z ∈ HZ = {z ≥ 0 : Kz ≥ h, z ∈ T∑Nnew

i=1 Liϵi
},

where I, F,G,W,Ψ, P,A,B,K are matrices and l, r, e, λ, η, δ, b, π, h are vec-

tors of corresponding dimensions, T∑Nnew

i=1 ϵi
is a unit cube in R

∑Nnew

i=1 ϵi
+ ,

and T∑Nnew

i=1 Liϵi
is a unit cube in R

∑Nnew

i=1 ϵiLi

+ , hold.

Here, it is assumed that a) the sets MX, Λ, Θ, Γ, ∆, and Υ are (non-
empty) polyhedra in Euclidean spaces of corresponding dimensions, i.e., the
systems of linear inequalities describing these sets are compatible (see Re-
mark 3), b) each of the sets ΩY and HZ is a subset of a convex polyhedron

in a finite-dimensional space of a corresponding dimension (R
∑Nnew

i=1 ϵi and

R
∑Nnew

i=1 Liϵi , respectively) and consists of only the vectors from the poly-
hedron being its vertices each coordinate of which is either 0 or 1 (i.e.,
belong to the unit cubes T∑Nnew

i=1 ϵi
and T∑Nnew

i=1 Liϵi
, respectively), and c)

P (x, y, z) ≥ δ determines a subset of a polyhedron in which each vector
(x, y, z) with a particular pair of the integer components (y, z) is located.

Under the assumption made and with the use of this notation, one can
formulate a problem that corresponds to Situation 2 (see Section I) and
generalizes Problem (1)-(14). A solution to the generalized problem allows
the regional administration to estimate the above-mentioned “worst-case
scenario.” For the planning period of ψ ≥ 1 years and under the Basic
Assumptions 1-9, this problem can be written in the vector-matrix form,
for instance, as follows:

max
(t,f,c,g,q)∈Λ×Θ×∆×Γ×Υ

(
− νψ ⟨t, x⟩+ ⟨(f + ψc), y⟩+ ⟨(g + ψq), z⟩

)
→ min

(x,y,z)∈(MX×ΩY×HZ)∩Φ

. (15)
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Let u = (t, (f +ψc), (g+ψq)), v = (x, y, z), let D =

−νψE1 01 02
03 E2 04
05 06 E3


be a quadratic matrix with the number of rows equalling the sum of the num-
bers of all the vector components belonging to the vectors t, f , and g, where

E1 E2, E3 are unit matrices of the sizes
(
M

∑Nnew

i=1 Li +M
∑Nexist

i′=1 li′
)
,∑Nnew

i=1 ϵi, and
∑Nnew

i=1 ϵiLi, respectively, 0κ, κ ∈ 1, 6 are zero matrices of
the corresponding sizes, and let Π = (MX × ΩY ×HZ) ∩ Φ.

Then Problem (15) can be rewritten as

max
u∈Λ×Θ×∆×Γ×Υ

⟨u,Dv⟩ → min
v∈Π

. (16)

Remark 5.
One should emphasize the difference between the statement underlying

the formulation of Problem (15) and that of another problem statement that
may, eventually, be considered by the regional administration. This other
problem statement may appear in an attempt to deal with the expected
volumes of cargo to be moved via the transportation network (being part
of the regional freight transportation infrastructure) to be built. That is, in
Problem (15), the administration chooses both locations for new transport
hubs and types of new access roads to these hubs to be built, along with
cargo flows to go via the hub locations for each particular cargo flow. This
makes the flow volumes a part of the variables that the regional administra-
tion controls. However, a) the costs of cargo transportation, b) the costs of
building new transport hubs, c) costs of building new access roads to them,
and d) the maintenance costs for both the hubs and access roads to them
are considered as market variables, not controlled by the administration.

In the above-mentioned other statement of the problem of determining
optimal locations for new transport hubs and types of access roads to them,
the transport costs are considered to be under the regional administration
control. The costs of building new transport hubs, costs of building new
access roads to them, and the maintenance costs for both the hubs and
access roads to them are still considered to be market variables. However,
the volumes of cargoes to be moved in particular directions (flow volumes)
are considered to be market variables as well. In this case, a different
minimax problem is to be formulated.

If û = (x, (f +ψc), (g+ψq)), v̂ = (t, y, z), and Π̂ = (Λ×ΩY ×HZ)∩Φ,
this minimax problem can then be written as

max
û∈MX×Θ×∆×Γ×Υ

⟨û,Dv̂⟩ → min
v̂∈Π̂

. (16’)
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However, since the vector x is present in the description of both the setMX
and the set Π̂, this minimax problem turns out to be the one with connected
variables. That is, while the maximization of the function ⟨û,Dv̂⟩ is done
over the vector variables that include the vector x, the minimization of the
maximum function is done over the vector variables v̂ = (t, y, z). However,

the vector x is present in the description of the set Π̂ (via the description
of the set Φ), binding the variables y, z and x, which makes Problem (16’)
a problem with connected variables. Even when all the variables are con-
tinuous (which is not the case in Problem (16’)), problems with connected
variables are more complicated than Problem (15) (Belenky 1997). In any
case, Problem (16’) is not a subject of considerations in the present paper.

Remark 6.
The goal function in Problem (15) can also be rewritten as follows:

max
(t,f,c,g,q)∈Λ×Θ×∆×Γ×Υ

(
− νψ ⟨t, x⟩+ ⟨f, y⟩+ ψ ⟨c, y⟩+ ⟨g, z⟩+ ψ ⟨q, z⟩

)
→ min

(x,y,z)∈(MX×ΩY×HZ)∩Φ
.

(17)

Let now (f, c) = f̃ , (g, q) = g̃, and let

f̃ ∈ Θ̃ = {f̃ = (f, c) ≥ 0 : fF ≤ r, cW ≤ λ},
g ∈ Γ̃ = {g̃ = (g, q) ≥ 0 : gG ≤ e, qΨ ≤ η}.

Here, Θ̃ and Γ̃ are polyhedra, and Problem (15) can be rewritten in the
form

max
(t,f̃ ,g̃)∈Λ×Θ̃×Γ̃

(
− νψ ⟨t, x⟩+

⟨
f̃ Ẽ2, y

⟩
+
⟨
g̃Ẽ3, z

⟩)
→ min

(x,y,z)∈(MX×ΩY×HZ)∩Φ

(17’)

where Ẽ2 =

(
E2

ψE2

)
, Ẽ3 =

(
E3

ψE3

)
, and E2, E3 are unit matrices (see

(15) and (16)). Thus, Problem (16) can be rewritten as

max
ũ∈Λ×Θ̃×Γ̃

⟨
ũ, D̃v

⟩
→ min

v∈Π
, (18)

where ũ = (t, f̃ , g̃), v = (x, y, z), and D̃ =


−νψE1 0 0

07 E2 08
09 ψE2 010
011 012 E3

013 014 ψE3

, and

0κ, κ ∈ 7, 14 are zero vectors of corresponding sizes.
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A solution to minimax Problem (17’) provides the estimate of only a
part of the expenses of the potential public-private partnership associated
with developing a regional freight transportation infrastructure with newly
built transport hubs and access roads to them. As mentioned in consid-
ering Problem (1)-(14), this estimate does not take into consideration the
expenses associated with the maintenance of the already existing transport
hubs and access roads to them (during the planning period of ψ years). To
take these expenses into consideration in estimating the economic effective-
ness of the regional freight transportation infrastructure for ψ years, ψ ≥ 1,
one should add either the number

ψ

(Nexist∑
i′=1

cexisti′ +

Nexist∑
i′=1

li′∑
k′=1

qk
′ exist
i′

)
or the number

ψ∑
κ=1

(Nexist∑
i′=1

cexist κi′ +

Nexist∑
i′=1

li′∑
k′=1

qk
′ exist κ
i′

)
,

to the minimax value to be obtained as a result of solving Problem (17’).

Here, cexist κi′ and qk
′ exist κ
i′ are the values of the corresponding parameters

during year κ, κ ∈ 1, ψ. Finally, one can, of course, consider these two costs
to be as uncertain as are the costs cnewiµ and qk newiµ and include corresponding
vector variables into the formulation of the minimax problem. This can be
done in just the same way this takes place for the variable vectors c and q.

IV. The Basic Assertion

For the sake of definiteness, the Basic Assertion is formulated with respect
to Problem (18) assuming that the parameters cexisti′ and qk

′ exist
i′ , i′ ∈

1, li′ , i
′ ∈ 1, Nexist are not variables over the planning period of ψ years.

Basic Assertion.
The equality

min
v∈Π

max
ũ∈Λ×Θ̃×Γ̃

⟨
ũ, D̃v

⟩
= min
v∈Π, Jw≥D̃v

⟨ω,w⟩

holds, where J is a matrix and ω is a vector of corresponding dimensions.
Proof is presented in Appendix 1.
Corollary 1.
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Problem (18) is reducible to a mixed programming problem with linear
constraints.

Corollary 2.
Let Y = {y ≥ 0 : By ≥ π}, and Z = {z ≥ 0 : Kz ≥ h}. Then the

number
min

v∈(MX×Y×Z)∩Φ, Jw≥D̃v
⟨ω,w⟩

is the lower bound for the number

min
v∈Π, Jw≥D̃v

⟨ω,w⟩,

and this lower bound can be found by solving a linear programming problem

⟨ω,w⟩ → min
v∈(MX×Y×Z)∩Φ, Jw≥D̃v

.

According to (Belenky 1981), a solution to this linear programming problem,
along with that to the dual (to this linear programming) one, determine a

saddle point in an antagonistic game on the polyhedra Λ × Θ̃ × Γ̃ and

MX × Y × Z with the payoff function
⟨
ũ, D̃v

⟩
.

V. Testing the proposed tool on model data

The proposed tool has been tested on several sets of model data col-
lected by the authors using open source (see https://github.com/ggfedin/
Model dataset). The aim of the testing was to demonstrate how the pro-
posed decision-support tool can be used in negotiations between a regional
administration and potential investors. That is, for any set of model data,
which the negotiating parties may change many times, calculation results
obtained with the use of this tool can be presented in the form of easily
read tables and observable illustrative pictures. The tables are presented in
Appendix 2, whereas the pictures are presented in Appendix 3.

A model region with 32 cargo origin/destination points was ”designed”
based on the information taken from these open sources. It was assumed
that there are two already functioning transport hubs (i′ ∈ {1, 2}) and eight
locations for potentially locating new transport hubs to be built (i ∈ 3, 10).
Two types of access roads (railways and highways) to both the new and
existing transport hubs were considered (k, k′ ∈ {1, 2}), and it was assumed
that each type of access road can have two capacities to choose from. Three
different tax rates included in the transportation tariffs (that constitute
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ν percents of these tariffs, ν ∈ {1, 7, 13}), and three particular planning
periods (with the number of ψ years, ψ ∈ {1, 3, 5}) were considered. Pic-
ture 1 from Appendix 3 shows the geographic locations of the cargo ori-
gin/destination points in the “designed” region, possible locations for new
transport hubs in this region, and the location of the existing transport hubs
there.

Picture 1 from Appendix 3 shows the geographic locations of the cargo
origin/destination points in the ’designed” region, possible locations for new
transport hubs in this region, and the location of the existing transport hubs
there.

Calculations for four variants of the mixed programming problem (“Sit-
uation 1, Case A, Subcase 1”, “Situation 1, Case A, Subcase 2”, “Situation
2, Case B, Subcase 1” and “Situation 1, Case B, Subcase 2”) and for two
variants of a robust (minimax) optimization problem (“Situation 2, Subcase
1” and “Situation 2, Subcase 2”) were conducted.

For “Situation 1, Case A, Subcase 1” and for “Situation 1, Case A,
Subcase 2,” described in Sections I and III, the following data was assigned:
a) the capacity of a new transport hub for each of the two variants of the
hub capacity at each of the eight potential locations of new transport hubs
(i ∈ 3, 10), b) the capacities of the existing two transport hubs (i′ ∈ {1, 2}),
c) the capacity of a new access road to each new transport hub for each of
the two variants of the hub capacity, d) the capacities of each access road
to each of the two existing transport hubs, e) the expected yearly demand
for cargo services at each of the above 32 cargo origin/destination points,
f) the expected total yearly demand for cargo services in the region, g) the
cost of building a new transport hub for each of the two variants of the hub
capacity, h) the cost of building a highway to a new transport hub for both
variants of the highway capacity, i) the cost of building a railway to a new
transport hub for both variants of the hub capacity, and j) the maintenance
cost for highways for both variants of the highway capacity and for railways
for both variants of the railway capacity. The costs for transporting a unit
volume of cargo between each of the 32 cargo origin/destination points and
between each of these points and the existing and new transport hubs were
calculated.

The calculations were conducted proceeding from a) the length of the
route between the above points and the hubs (computed via Google Maps),
b) the average cost of transporting a unit volume of cargo per kilometer,
and c) a discount that depends on the length of the route. As mentioned
in Section III, Subcase 2 differs from Subcase 1 only by the sign before the

37



second term in the goal function. For Subcase 2 the goal function takes the
form

Nnew∑
i=1

ϵi∑
µ=1

(fiµ + ψcnewiµ )yiµ +

Nnew∑
i=1

Li∑
k=1

ϵi∑
µ=1

(gkiµ + ψqk newiµ )zkiµ

+νψ

(Nexist∑
i′=1

M∑
j=1

li′∑
k′=1

tk
′ exist
ji′ sk

′ exist
ji′ +

Nnew∑
i=1

M∑
j=1

Li∑
k=1

tk newji sk newji

)
→ min .

(1’)
Problems (1)-(14) and (1’)-(14) were solved with the assigned and calculated
parameters as described above, and the calculation results for “Situation 1,
Case A, Subcase 1.” and “Situation 1, Case A, Subcase 2” are presented
in Tables 1 and 2 from Appendix 2, respectively. Two examples of the
optimal hub locations and their capacities in Problem (1)-(14) for Case A,
Subcase 1 and in Problem (1’)-(14) for Case A, Subcase 2 for the values of
the parameters (ν = 7, ψ = 5), which correspond to line 8 in Table 1 and in
Table 2, respectively, are shown on Picture 2 and Picture 3 from Appendix
3, respectively.

For “Situation 2, Case B, Subcase 1” and for “Situation 1, Case B, Sub-
case 2,” described in Sections I and III, it was assumed that the expected
demands on transporting cargo at each of the network nodes, as well as
the expected total demand for cargo services in the region, vary. It was
assumed that for the demand on transporting cargo at each of the above
32 locations, the maximum demand could not exceed 30% of the demand
specified in e) in the above (for Case A). Further, it was assumed that the
minimum demand could not be lower than 20% of this demand, whereas the
total demand for cargo services in the region could not exceed 15% of the
demand specified in f) in the above (for Case A). Finally, it was assumed
that the minimum of the total demand could not be lower than 5% of the
demand specified in f).

All the other assumptions, i.e., a)-d) and g)-i), were the same as in Case
A. Problems (1)-(14) and (1’)-(14) were solved with thus chosen, assigned,
and calculated data, and the calculation results are presented in Tables 3
and 4 from Appendix 2, respectively. Two examples of the optimal hub
locations and their capacities in Problems (1)-(14) for Case B, Subcase 1
and in Problem (1’)-(14) for Case B, Subcase 2 for the values of the param-
eters (ν = 7, ψ = 5), which correspond to line 8 in Table 3 and in Table
4, respectively, are shown on Picture 4 and Picture 5 from Appendix 3,
respectively.
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For the robust (minimax) problem in Situation 2, described in Section
I, with Subcases 1 and 2, described in Section III, particular values of the
following parameters in this model were used based on the expert opinions:

— The maximum and the minimum average cost of transporting a unit
volume of cargo between node j and a new (or an existing) transport hub
at point i (i′) via access road of type k (k′) for each i ∈ 3, 10, (i′ ∈ {1, 2}),
for each k ∈ {1, 2}, and for both variants of the hub capacity,

— the maximum and the minimum average costs of building a new trans-
port hub at each place i, i ∈ 3, 10,

— the maximum and the minimum average costs of building a new access
road of each of the two types (highways and railways) to a new transport
hub i, i ∈ 3, 10,

— the maximum and the minimum average maintenance costs for every
new transport hub i, i ∈ 3, 10,

— the maximum and the minimum average maintenance costs for high-
ways and railways to every new transport hub, and

— the maximum and the minimum average maintenance costs for high-
ways and railways to every existing transport hub.

Also, the following assumptions were made:

a) The unknown cost of transporting a unit volume of cargo between
node j and a new (or existing) transport hub at point i (i′) via access road
of type k (k′) could not exceed 30% and could not be lower than 30% of
its current value (i.e., corresponding to the existing scheme of moving the
cargo), k, k′ ∈ {1, 2}, i ∈ 3, 10, i′ ∈ {1, 2},

b) the unknown cost of building a new transport hub at point i, i ∈ 3, 10
of both variants of the hub capacity could not exceed 20% and could not
be lower than 9% of its current value (i.e., corresponding to the existing
market value),

c) the unknown cost of building a highway to a new transport hub at
point i, i ∈ 3, 10 of both variants of the hub capacity could not exceed 15%
and could not be lower than 15% of its current value (i.e., currently existing
market value),

d) the unknown cost of building a railway to a new transport hub i, i ∈
3, 10 of both variants of the hub capacity could not exceed 17.5% and could
not be lower that 17.5% of its current value (i.e., currently existing market
value),

e) the unknown maintenance cost for a new cargo transport hub at point
i, i ∈ 3, 10 of both variants of the hub capacity could not exceed 25% and
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could not be lower than 10% of its current value (i.e., currently existing
market value),,

f) the unknown maintenance cost for highways and railways to a new
cargo transport hub at point i, i ∈ 3, 10 could not exceed 50% and could
not be lower than 50% of its current value (i.e., currently existing market
value),, and

g) the maintenance costs for the existing cargo transport hubs and the
maintenance costs for the roads to the existing cargo transport hubs were
known exactly.

For Situation 2, Subcase 1 the robust (minimax) problem is formulated
as Problem (18), and for Situation 2, Subcase 2 the problem takes the form

max
ũ∈Λ×Θ̃×Γ̃

⟨
ũ, D̃′v

⟩
→ min

v∈Π
, (18’)

where

D̃′ =


νψE1 0 0
07 E2 08
09 ψE2 010
011 012 E3

013 014 ψE3

 .

Problems (18) and (18’) were solved with the input data, which was de-
scribed above. The calculation results for Situation 2, Subcase 1 are pre-
sented in Table 5, and the calculation results for Situation 2, Subcase 2 are
presented in Table 6 from Appendix 2, respectively.

Two examples of optimal hub locations and their capacities, and optimal
assignments of cargo origin/destination points to the hubs in Problem (18)
for Situation 2, Subcase 1 and in Problem (18’) for Situation 2, Subcase 2
for the values of the parameters (ν = 7, ψ = 5), which correspond to line 8
in Table 5 and in Table 6, respectively, are shown on Pictures 6 and Picture
7 from Appendix 3, respectively.

Both in Situation 1 (in Problem (1)-(14) for Case A and in Problem (1’)-
(14) for Case B) and Situation 2 (in Problem (18) for Subcase 1and in Prob-
lem (18’) for Subcase 2), the systems of constraints and the goal functions
were formed in accordance with their description presented in Section III.
These problems were solved with the use of the solver Intlinprog, being part
of the MatLab interactive environment installed in a personal laptop. The
laptop was equipped with a 2.5-GHz Intel Core i5 CPU and 16-GB RAM,
based on the Windows platform. The optimal solutions were obtained in
less that 0.5 second for Problem (1)-(14) and for Problem (1’)-(14) in all
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the nine combinations of the values for ν = 7 and ψ = 5 in each of the two
subcases described by each of these two problems. The optimal solutions
were obtained in less than three seconds for Problem (18) and Problem (18’)
in all the nine combinations for ν = 7 and ψ = 5 in one subcase described
by each of these two problems.

For Situation 2, Subcase 1, the calculation results show that under a par-
ticular set of the input data, in considering both Problem (1)-(14) and Prob-
lem (18), the expected yearly revenue does not cover the required expenses
within one year after all the new facilities start functioning. However, in
more than a year, the functioning of the regional freight transportation in-
frastructure generates substantial revenue. Based on these estimates, which
are quite expectable for large-scale projects, the regional administration
may make at least two strategic decisions.

1. The regional administration may offer a part of this (substantial)
amount as its financial contribution to the public-private partnership in
negotiations with potential partners from the private sector.

2. The regional administration may decide not to form any partnership
with the private sector on the project for providing the functioning of the
regional freight transportation infrastructure. This may happen if a) the
project is expected to generate profit in a relatively short period of time
after all facilities of the new regional freight transportation infrastructure
start functioning, and b) the regional administration can get a loan from,
say, a bank under acceptable conditions. (Certainly, what period of time
should be viewed as a short one is to be determined.)

According to Tables 1, 3, and 5, the second strategic decision may be the
case

a) for the estimates obtained by solving Problem (1)-(14) for Situation 1,
Case A and Case B for three years and for five years (under 7% and under
13% of the tax value both in Case A and in Case B),

b) for the estimates obtained by solving Problem (18) for three years and
for five years (under 13% of the tax value).

Depending on the potential loan conditions, there could be certain combi-
nations of both strategies. Further, a determination of how much to borrow
and how much to ask the private investors to contribute may require the
use of mathematical methods. Finally, other strategies that are based upon
the above estimates of the expected financial results of the project function-
ing could be formed. At the same time, the regional administration should
bear in mind that the calculation results are those for a particular set of
the data, and changing the data can lead to calculating a strategy that
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may seem more promising. Also, the calculation results may suggest that
the values of some parameters reflecting the uncertainty conditions should
be reconsidered. For instance, the boundaries within which the expected
volumes of cargo flows may vary could be such parameters.

Thus, the estimates that can be calculated with the use of the proposed
decision-support tool may provide a certain flexibility to the regional admin-
istration in choosing its financial strategy for developing a regional freight
transportation infrastructure.

Section III describes how private investors participating in negotiations
with the regional administration on potential investments in developing a
new regional fright transportation infrastructure can benefit from using the
proposed decision-making tool. That is, first, they are to calculate the
maximum yearly revenue that they may expect to receive by operating the
new transportation network in the framework of the new regional freight
transportation infrastructure. (They can do this by solving an optimization
problem discussed in Section III, provided they know the function describ-
ing their expenses associated with providing transportation services in the
framework of the new regional freight transportation infrastructure.) Sec-
ond, they are to calculate the total expenses associated with both developing
this new infrastructure and with paying taxes to the regional administra-
tion and to compare these expenses with the revenue. (To calculate the
expenses, they should solve Problem (1’)-(14) and Problem (18’).)

With respect to the model data, as one can see from Tables 2, 4, and 6
and from Pictures 6 and 7, if the revenue exceeds the total expenses, the
investors may agree to finance the infrastructure corresponding to Picture
7. This infrastructure differs from the one depicted on Picture 6 while
the regional administration may prefer them to finance the infrastructure
depicted on Picture 6.

It is clear that in a) Situation 1, Case A, Subcase 2, b) Situation 1, Case
B, Subcase 2, and c) Situation 2, Subcase 2, the regional administration may
affect the total expenses of its potential partners from the private sector by
changing the tax value. The calculation results presented in Appendix 2
under a particular set of the input data show that the share of taxes in
total expenses is relatively small for one year projects. The lowest share for
these projects is about 1% (in Problem (1’)-(14), Case B under 1% of the
tax value), and the highest share is about 12% (in Problem (1’)-(14), Case
A under 13% of the tax value). At the same time, for five year projects the
lowest share is about 2.6% (in Problem (18’) under 1% of the tax value),
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and the highest share is about 30.8% (in Problem (1’)-(14), Case A under
13% of the tax value).

Based on these calculations, which were conducted for a particular set of
model data, solving Problem (1’)-(14) and Problem (18’), long term projects
are more sensitive to changes in the tax value than short projects.

VI. Discussion

1. From the authors’ viewpoint, the present paper makes a contribution
to solving large-scale problems that appear in transportation economics.
Particularly, it suggests how a problem associated with making strategic
management decisions on investing in the development of a regional freight
transportation infrastructure can be formalized as a solvable mathemati-
cal problem. That is, it shows that a substantially nonlinear problem with
mixed variables can be solved with the use of mixed programming techniques
implemented in the framework of standard software packages, for instance,
MILP. Thus, solving this strategic management problem does not, generally,
require developing any heuristics or special software for practically reason-
able sizes of the problem. This finding distinguishes the authors’ approach
to economic problems in transportation from those proposed by some other
authors, including (Merakli and Yaman 2016).

2. Though the number of points on the regional cargo transportation
network may be quite high, the number of points suitable for locating new
transport hubs there is usually relatively small (for instance, does not usu-
ally exceed 10). Also, a) the number of the hub capacity options to choose
from does not usually exceed 4, b) the number of types of new roads that
are planned to be built to a new transport hub does not exceed 3, and c) the
road capacity of each type is usually determined by the hub capacity. Thus,
the total number of Boolean variables in practical problems formulated as
Problem (1)-(14) or Problem (18) is relatively small. This allows one to
solve these practical problems with the use of standard software packages
such as MILP or CPLEX quite quickly, even when these packages are im-
plemented in laptops. (For optimization software packages see, for instance,
(Bixby 2002) and (Mittelmann 2017).)

3. Even if the number of Boolean variables in any practical problem
under consideration in this paper were high, the lower estimates of the
expenses and the profit/loss, could be calculated with the use of linear
programming techniques. These techniques are described, particularly, in
(Bertstimas and Tsitsiklis 1997) and in (Yudin and Golshtein 1965), and
their use is possible due to the results from (Belenky 1981). That is, as
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shown in (Belenky 1981), calculating the minimax of a bilinear function
with continuous variables, for instance, in a continuous analog of Problem
(18), is reducible to solving linear programming problems forming a dual
pair. Calculating these lower estimates requires solving such a continuous
analog.

4. Finally, as is known, in operations management in general and in
transportation systems in particular, experimental findings obtained in one
system can usually be used to improve daily operations in another one, at
least for a short period of time. In strategic management, however, the sit-
uation is different, particularly in transportation systems. That is, strategic
decisions in transportation systems are not universal for obvious reasons.
They are unique for every particular system, and they cannot usually be
replicated in other systems. Regularities established by researchers based
upon any chosen set of data do not matter much to decision makers involved
in developing strategic management decisions. This is the case since such
regularities may change dramatically when a different set of data is used,
whereas these decisions are made for a long period of time. In contrast,
these decision makers feel “armed” when they have an easy-to-operate tool
helping them quickly calculate solutions to the problems they face with any
sets of the data.

The “value” of strategic recommendations that are based on regulari-
ties drawn from experiments with a particular set (or even with several
particular sets) of data is usually doubtful. This is the case unless these
regularities allow researchers a) to indicate a class of situations in each of
which (within this class) these regularities always hold, and b) to establish
verifiable criteria to determine whether a particular situation belongs to this
class. Otherwise, not only do such regularities not contribute to any the-
ory, they may be misleading and even damaging to those who apply them
in practice. This is especially so with respect to financial decisions that
are to be made by regional administrations or by the country governments,
since, usually, the taxpayers’ money is at stake. When this is the case, any
unsubstantiated decisions that are based on experimental data may cause
financial troubles at least to the region for which these decisions are made.
However, the authors are not aware of such classes of situations in strategic
management either in general or in transportation systems. At the same
time, finding such classes of situations is not within the goals of the present
paper.

This, of course, does not mean that all the experimental calculation re-
sults related to strategic management decisions in particular systems, in-
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cluding those from transportation, are useless. Nor does this mean that
decision makers responsible for strategic management decisions will always
ignore them. These calculation results may eventually reveal extremely
helpful strategic business information. However, for that very reason, one
should bear in mind that real data will very unlikely be made available to
interested researchers by regional administrations.

For obvious business reasons (especially if negotiations with potential
investors from the private sector are under way or are planned), as well as
for security ones, regional administrations prefer to have a tool that allows
them to make calculations with real data themselves, with any data they
may decide to put in. At the same time, as mentioned earlier, experimental
calculation results conducted on any set of data (real or not) may change
dramatically when a different set of data is used.

VII. Results

1. A mathematical model to formalize problems associated with finding
quantitative estimates of investments needed from the private sector for
developing (modernizing) a regional freight transportation infrastructure is
proposed.

2. Depending on the information available to decision makers, three opti-
mization problems are formulated on the basis of the proposed mathematical
model.

Two of these three problems allow one to find the estimates assuming
that the information on the values of the parameters of the model is known
exactly either for all the parameters or for a part of them. In both cases, the
corresponding optimization problems are formulated as mixed programming
ones.

A robust optimization problem is formulated on the basis of the same
mathematical model under uncertainty on the values of all the parameters
of the model. It is proven that this robust optimization problem is reducible
to a mixed programming one under natural assumptions on the boundaries
within which the values of the parameters can vary.

3. In the above-mentioned (three) mixed programming problems, all the
integer variables are Boolean, and the number of these variables is relatively
small. This allows one to use standard software packages like MILP and
CPLEX, implemented even on laptops, to find the quantitative estimates
of the investment volumes needed from the private sector for developing
(modernizing) a regional freight transportation infrastructure.
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Thus, any of these three problems, which decision makers from regional
administrations responsible for making strategic management decisions may
choose to solve, can be solved on laptops.

4. The proposed model was used to formulate three above-mentioned
mixed programming problems based upon the model data taken from open
sources. Solutions to these problems are presented in Appendix 2. Pos-
sible strategic management decisions that these solutions may suggest are
described in Section V.

5. Two brief surveys of publications relevant to the subject of the present
paper are offered. One of the surveys is on hub location problems, whereas
the second one is on modelling public-private partnership in transportation
projects. Both surveys, particularly, help substantiate the need for devel-
oping the decision-making tool proposed in the present paper.

VIII. Concluding remarks

1. One of the goals of this paper is to describe a decision-making tool that
may help a regional administration in its negotiations with both the federal
government and private investors on developing (modernizing) a regional
freight transportation infrastructure. By estimating the needed volume of
investment in this project, the tool may substantiate the need for a private-
public partnership if the federal government and the regional administration
cannot finance the project in full.

2. The proposed approach to modelling the problem under consideration
in this paper by taking into account the uncertainty in the values of all its
parameters consists of considering this problem as a robust (minimax) one
on a Descartes product of two sets of vector variables. One of these sets is a
polyhedron, and the other is a subset of another polyhedron formed by the
vectors each of whose components equals either 0 or 1. The minimax of a
bilinear function of these two vector variables is sought, and it is proven that
finding this minimax is reducible to solving a mixed programming problem.

3. Any decision-support system for analyzing the existing regional freight
transportation infrastructure and/or for developing an optimal one that has
a chance to work effectively should meet certain criteria. Particularly, it
should allow the administration of a region

a) to find and to estimate variants of this infrastructure (that the ad-
ministration may consider to be of interest to the region) in an acceptable
time, despite the fact that large-scale problems are to be solved to this end,

b) to depict the locations of all the infrastructure elements on a geo-
graphic map graphically, in an easy-to-understand form,
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c) to input new and to change already existing information relating to
the transportation infrastructure from easy-to-operate interfaces,

d) to obtain solutions (infrastructure variants) based on the available
information only, including the data that can be known only approximately
in principle, as well as on statistical estimates that can be calculated based
on this information, and

e) to be flexible in incorporating both new information and new regular-
ities formalizing relations between variables and parameters in the math-
ematical models that are in use as they become known in the course of
developing and analyzing strategic decisions related to a regional freight
transportation infrastructure.

The described features of the approach presented in this paper bear evi-
dence that a decision-support system for the considered purposes can easily
be assembled based on the decision-making tool proposed in this paper.
Such a decision-support system should include software for a) solving linear
and mixed programming problems, and b) graphically depicting solutions
to mathematical problems. As mentioned earlier, standard software pack-
ages for solving mixed programming problems are widely available even
on laptops. A geographic information system software applicable to trans-
portation problems is described, for instance, in (Abulizi et.el 2016)).

4. One can easily be certain that the proposed approach can be used in
estimating the needed investment in developing regional passenger trans-
portation infrastructures, as well as in developing the regional freight and
passenger transportation infrastructures concurrently.

5. Basic Assumptions 1 and 2 consider piecewise linear approximations of
the costs of building both new hubs and new access roads to them, which are
usually described by convex functions with positive values. A description
of known techniques for approximating, particularly, such convex functions
by piecewise linear functions can be found in many scientific publications,
including (Gavrilovich 1975).

6. Basic Assumption 4, which is about not building new access roads to
the existing transport hubs and not doing any modernization construction
work there in the planning period, is not restrictive. That is, by introducing
new variables, one can include a modernization of the existing transport
hubs and access roads to them as part of the activities associated with
developing a new regional freight transportation infrastructure. These new
variables should be present in the system of constraints of Problem (1)-(14).

7. Basic Assumption 9, determining that the revenue in the form of
regional taxes (that the administration expects to receive as a result of the
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functioning of the regional freight transportation infrastructure) comes in
after all the facilities (new transport hubs and access roads to them) that
are planned to be built start functioning, is not restrictive. In fact, the
regional administration may solve Problem (1)-(14) or Problem (18) several
times taking into account the schedule of developing new facilities within
any particular period of time. To this end, this period should be divided into
a corresponding number of parts. During each of these parts, the regional
administration expects a particular set of facilities to be built and to start
functioning, while considering already built new facilities as the existing
ones.
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Appendix 1

Proof of the Basic Assertion.
1. Let v = v∗ = (x∗, y∗, z∗) ∈ Π = (MX × ΩY × HZ) ∩ Φ. Since

Λ×Θ̃× Γ̃ is a (non-empty) convex polyhedron, the linear function
⟨
ũ, D̃v∗

⟩
is bounded from above on this polyhedron, so it attains its maximum on
the set Λ× Θ̃× Γ̃. By the duality theorem of linear programming (see, for
instance, Yudin and Golshtein (1965)), this means that the set of feasible
solutions to the problem that is dual to the problem of maximizing this
linear function on the set Λ× Θ̃× Γ̃ is non-empty.

Let the problem of maximizing the linear function
⟨
ũ, D̃v∗

⟩
on the set

Λ× Θ̃× Γ̃ be written as ⟨
ũ, D̃v∗

⟩
→ max

ũ∈Λ×Θ̃×Γ̃

ũJ ≤ ω, ũ ≥ 0,

(19)

where J =


I 0 0 0 0
0 F 0 0 0
0 0 W 0 0
0 0 0 G 0
0 0 0 0 Ψ

, ω = (l, r, λ, e, η), and ũ = (t, f, c, g, q).

Then the set of feasible solutions to the problem that is dual to Problem
(19) is determined by the system of linear inequalities Jw ≥ D̃v∗, w ≥ 0,
where w is the vector of (dual) variables in the problem being dual to
Problem (19). This set is non-empty, and the maximum of the goal function
in Problem (19) is attainted.

2. Let now y = y∗, z = z∗, and x ∈ MX so that (x, y∗, z∗) ∈ (MX ×
ΩY ×HZ)∩Φ. Further, let v(y∗, z∗) = (x, y∗, z∗) ∈

(
MX×{y∗}×{z∗}

)
∩Φ,

where
(
MX×{y∗}×{z∗}

)
∩Φ is a convex polyhedron, which is a subset of

the set (MX×ΩY ×HZ)∩Φ. Based on the results from Belenky (1981), one
can easily be certain that for every pair of the vectors (y∗, z∗) : (x, y∗, z∗) ∈
(MX × ΩY ×HZ) ∩ Φ, the inequality

min
v(y∗,z∗)∈(MX×{y∗}×{z∗}∩Φ

max
ũ∈Λ×Θ̃×Γ̃

( ⟨
ũ, D̃v(y∗, z∗)

⟩
= min
v(y∗,z∗)∈(MX×{y∗}×{z∗}∩Φ

min
Jw≥D̃v(y∗,z∗)

⟨ω,w⟩

holds.
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3. Since the set (MX × {y∗} × {z∗}
)
∩Φ is a subset of a polyhedron for

any pair of the vectors (y∗, z∗), and the number of the sets of these pairs
for which the inclusion (x, y∗, z∗) ∈ (MX ×{y∗}× {z∗})∩Φ holds is finite,
the equalities

min
v∈Π

max
ũ∈Λ×Θ̃×Γ̃

⟨
ũ, D̃v

⟩
= min

(y∗,z∗)∈ΩY×HZ
min

v(y∗,z∗)∈(MX×{y∗}×{z∗})∩Φ
min

Jw≥D̃v(y∗,z∗)
⟨ω,w⟩

= min
(x,y,z)∈(MX×ΩY×HZ)∩Φ, Jw≥D̃(x,y,z)

⟨ω,w⟩ = min
v∈Π, Jw≥D̃v

⟨ω,w⟩

hold. The Basic Assertion is proved.
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Table 2. Problem (1’)-(14),
Situation 1. Case A. Subcase 2.

Construction Total
ψ ν New hubs New New Taxes expenses expenses

(years) (%) to be highways railways (USD, (USD, (USD,
constructed to build to build mln) mln) mln)

1 1 7(2),8(2),10(2) 7, 10 7, 8, 10 68 4 750 4 818

1 7 5(2),7(2),10(2) 7, 10 5, 7, 10 357 4 850 5 207

1 13 5(2),7(2),10(2) 7, 10 5, 7, 10 664 4 850 5 514

3 1 7(2),8(2),10(2) 7, 10 7, 8, 10 205 5 450 5 655

3 7 5(2),7(2),10(2) 7, 10 5, 7, 10 1 072 5 550 6 622

3 13 5(2),7(2),8(2) 5, 7, 8 5, 7, 8 1 837 5 680 7 517

5 1 7(2),8(2),10(2) 7, 10 7, 8, 10 342 6 150 6 492

5 7 5(2),7(2),10(2) 7, 10 5, 7, 10 1 787 6 250 8 037

5 13 3(2),5(2),8(2) 3, 5, 8 3, 5, 8 2 899 6 500 9 399
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Table 4. Problem (1’)-(14),
Situation 1. Case B. Subcase 2.

Construction Total
ψ ν New hubs New New Taxes expenses expenses

(years) (%) to be highways railways (USD, (USD, (USD,
constructed to build to build mln) mln) mln)

1 1 7(2),8(1),10(2) 7, 10 7, 8, 10 47 4 450 4 497

1 7 5(2),7(2),8(1) 5, 7 5, 7, 8 217 4 550 4 767

1 13 5(2),7(2),8(1) 5, 7 5, 7, 8 403 4 550 4 953

3 1 7(2),8(1),10(2) 7, 10 7, 8, 10 140 5 150 5 290

3 7 5(2),7(2),8(1) 5, 7 5, 7, 8 651 5 250 5 901

3 13 3(2),5(2),8(1) 3, 5 3, 5, 8 1 091 5 350 6 441

5 1 7(2),8(1),10(2) 7, 10 7, 8, 10 233 5 850 6 083

5 7 3(2),5(2),8(1) 3, 5 3, 5, 8 979 6 050 7 029

5 13 3(2),5(2),8(1) 3, 5 3, 5, 8 1 818 6 050 7 868
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Table 6. Problem (18’),
Situation 2. Subcase 2.

Construction Total
ψ ν New hubs New New Taxes expenses expenses

(years) (%) to be highways railways (USD, (USD, (USD,
constructed to build to build mln) mln) mln)

1 1 7(2),8(1),10(2) 7, 10 7, 8, 10 61 5 380 5 441

1 7 5(2),7(2),8(1) 5, 7 5, 7, 8 282 5 480 5 762

1 13 5(2),7(2),8(1) 5, 7 5, 7, 8 524 5 480 6 004

3 1 7(2),8(1),10(2) 7, 10 7, 8, 10 182 6 280 6 462

3 7 5(2),7(2),8(1) 5, 7 5, 7, 8 846 6 380 7 226

3 13 3(2),5(2),8(1) 3, 5 3, 5, 8 1 418 6 480 7 898

5 1 5(2),7(2),8(1) 5, 7 5, 7, 8 201 7 280 7 481

5 7 3(2),5(2),8(1) 3, 5 3, 5, 8 1 273 7 380 8 653

5 13 3(2),5(2),8(1) 3, 5 3, 5, 8 2 363 7 380 9 743
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Appendix 3

Picture 1
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Picture 2. Example of solution for
Problem (1)-(14), Case A, Subcase 1.

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

First coordinate

76.5

77

77.5

78

78.5

79

79.5

80

80.5

81

81.5

S
e

c
o

n
d

 c
o

o
rd

in
a

te

Cargo origin and/or cargo destination points

Existing transport hubs

Nodes suitable for locating new transport hubs

New transport hubs with capacity variant 1

New transport hubs with capacity variant 2

65



Picture 3. Example of solution for
Problem (1)-(14), Case A, Subcase 2.
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Picture 4. Example of solution for
Problem (1)-(14), Case B, Subcase 1.
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Picture 5. Example of solution for
Problem (1)-(14), Case B, Subcase 2.
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Picture 6. Example of solution
for Problem (18), Subcase 1.
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Picture 7. Example of solution
for Problem (18), Subcase 2.
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