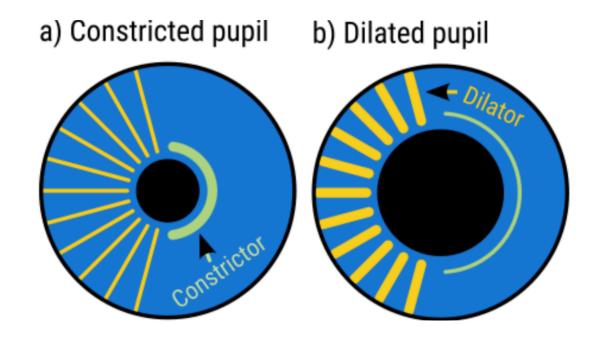

Pupillometry:

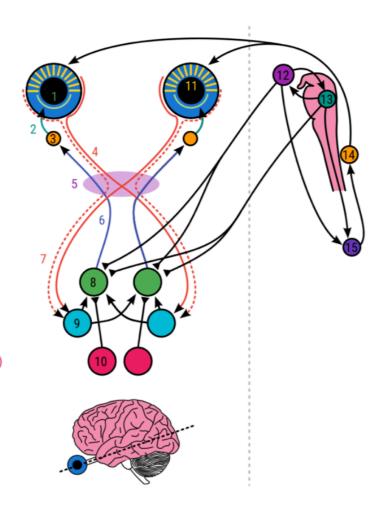

Psychology, Physiology, & Function

Gorina Elena

♥ Vision Modeling Lab ♥ HSE

Anatomy and neural pathways

Parasympathetic constriction pathway iris sphincter muscle (green) **constricts**


Sympathetic dilation pathway iris dilator muscle (yellow) constricts

^{*}pupils are relatively small at rest

Anatomy and neural pathways

a) Constriction pathway

- 1. Iris sphincter muscle
- 2. Short ciliary nerve
- 3. Ciliary ganglion
- 4. Optic nerves
- 5. Optic chiasm
- 6. Oculomotor nerve
- 7. Optic tract
- 8. Edinger-Westphal nucleus (EWN)
- 9. Pretectal olivary nucleus (PON)
- 10. Superior colliculus (SC)

b) Dilation pathway

11. Iris dilator muscle12. Hypothalamus

13. Locus coeruleus (LC)

14. Superior cervical ganglion (SCG)

15. Intermedio-lateral column (IML)

Anatomy and neural pathways

Pathways interaction:

- LC inhibits the EWN
 - arousal & mental effort
- SC inhibits the EWN
 - orienting response

• Eye

- Blinks
- Saccades
- Anatomy (rods, cones)

Visual

- Orienting response (salient, sudden)
- Light (PLR)
- Color (blue)
- Depth (PNR)

Emotional

- Fear
- Stress
- Arousal
- Subjective attitude & meaning
- Emotional stimuli (sounds etc.)

Vegetative

- Para/Symp balance
- Cardiovascular
- Hormonal state
- Aging
- Hippus
- Before REM
- Circadian

Cognitive

- Memory (LTM, WM)
- Attention
- Load / Overload
- Difficulty
- Novelty
- Feedback
- Errors (risk, uncertainty)
- Uncertainty
- Expectation
- Mental imaginary
- Anticipation of movement
- Lying
- Exploration / Exploitation

• Brain

- Neurotransmitters
- Myelination

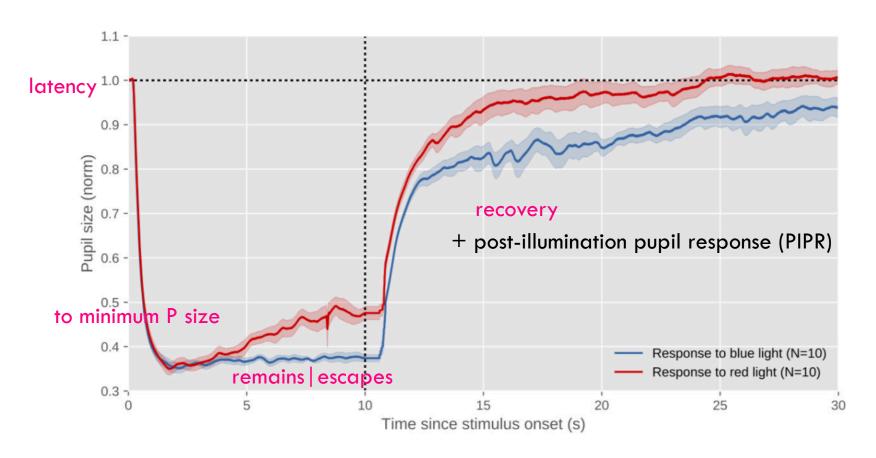
Disorders

- Changed pattern
- Traumas

Doping

Meds / Drugs / Alco / Coffee etc.

Intro


Response to three distinct kinds of stimuli (Mathôt, 2018):

- Constriction
 - pupil light response (PLR)
 - pupil near response (PNR)
- Dilation
 - psycho-sensory pupil response (PPR)
- Partly voluntary
 - ignore peripheral light = P constrict more &vv (Binda & Murray, 2015)
- P response can be conditioned

The pupil light response (PLR)

Constriction to brightness | **Dilation** to darkness

* effect of light is twofold: activates both the dilation (alertness) & constriction (light) pathways

PLR: Neural basis and photoreceptors

Cones

- fovea, color, medium-to-bright luminance
- require intense light to become active

Rods

- bluish-green, weak light & darkness, peripherally
- Both:
 - 0.2-1.5 s
 - strongest for light presented in central vision
 - desensitize quickly

Intrinsically photosensitive retinal ganglion cells (ipRGCs)

- 1.5-10 s
- max response to bluish light
- drives PIPR
- much slower then rods & cons
- lasts as long as the light is on

=> PON => constriction pathway

- Is affected by how visual input is selected, processed, interpreted
- Pupil changes = up to 5%
- Visual awareness
- Covert visual attention
- Eye-movement preparation
- Subjective interpretation
- Mental imagery and word meaning
- Working memory

Visual awareness

- Bárány & Halldén (1948)
 - PLR was strongest for light sources that were consciously perceived

Covert visual attention

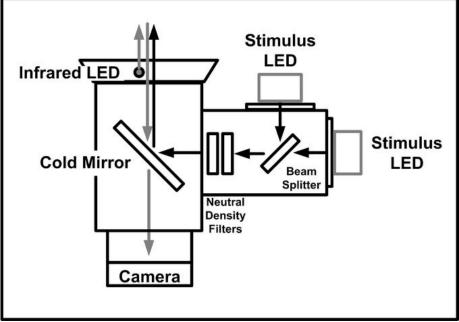
- Mathôt et al. (2013)
 - P constricted due to covert shift of attention to the brighter side of the display (Joe approved ©)
- Ebitz & Moore (2017)
 - stimulated neurons in the frontal eye field (FEF)
 - stronger PLR to stimuli flashed within the stimulated receptive field

Eye-movement preparation

- Mathôt et al. (2015)
 - respond (weakly) to the brightness of the cued side
 already while the eyes were still in motion

Subjective interpretation

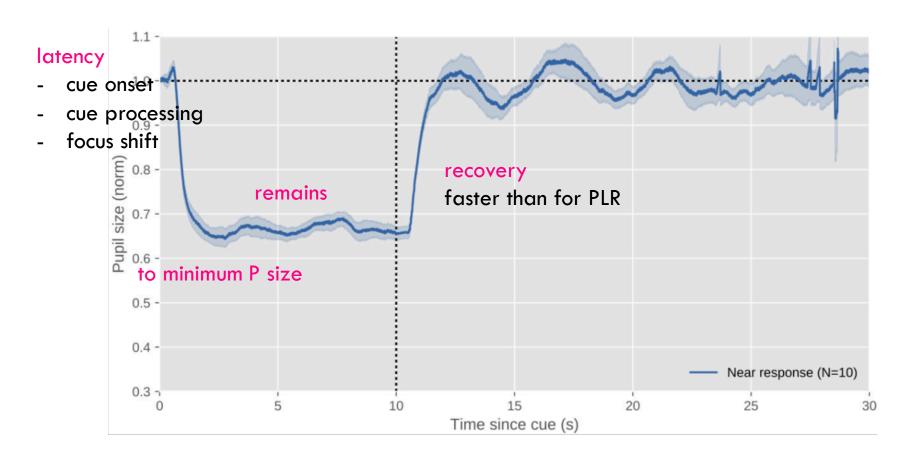
- Naber & Nakayama (2013)
 - images that contained a sun triggered stronger pupil constriction
 - disappeared when images were **flipped** vertically


Mental imagery and word meaning

- Laeng & Sulutvedt (2014)
 - constricted for mentally pictured bright, compared to a dark, environment
- Mathôt et al. (2017)
 - P was smaller to read or heard words that conveyed a sense of brightness

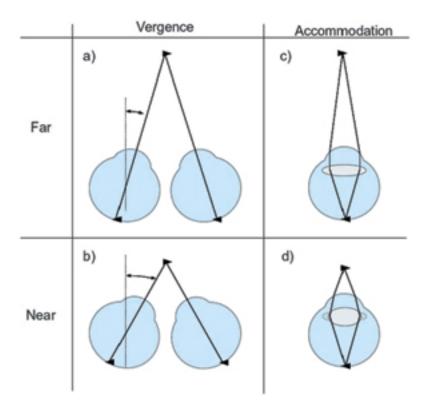
Working memory

- = keeping smth bright or dark in working memory
- Fabius et al. (2017)
 - P was smaller for **memorizing** a location on a bright background
- Olmos-Solis et al. (2018)
 - when a stimulus matches the contents of visual working memory, it triggers a stronger PLR
- Blom et al. (2016)
 - found **no** evidence of working memory affected P size for the stimuli removed from the display


PLR: Function

- To protect the retina from damage due to overexposure
- Transitioning from brightness to darkness
- / depth of field (sharpness)
- / visual acuity
- Modulates visual sensitivity

$$M(D) = anh^{-1}igg(rac{D-4.9}{3}igg) \ rac{{
m d}M}{{
m d}D}rac{{
m d}D}{{
m d}t} + 2.3026 anh^{-1}igg(rac{D-4.9}{3}igg) = 5.2-0.45\lnigg(rac{\Phi[t- au]}{4.8118 imes 10^{-10}}igg)$$


The pupil near response (PNR)

- Constriction ~ nearby | Dilation ~ far-away
- The Near Triad: PNR + vergence + accomodation

PNR: Neural basis

cortical projections (FEF, parietal cortex) => EWN => iris sphincter muscle

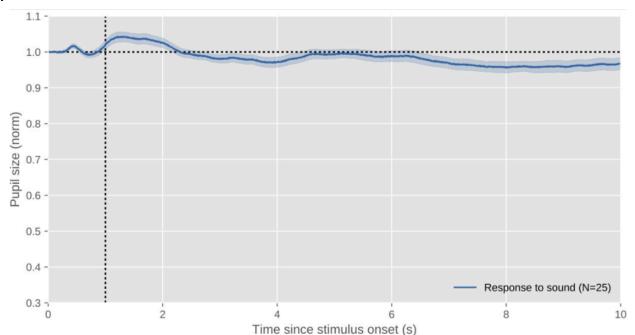
- Enright (1987)
 - Neckercubes
 - P was smaller when the corner was subjectively nearby, compared to far-away
- Van der Mijn & Mathôt (2017)
 - PNR is not modulated by covert shifts of attention, but overt
 - cognitive influences on PNR (if exist) are smaller than on PLR

PNR: Function

• Increase depth of field for near vision

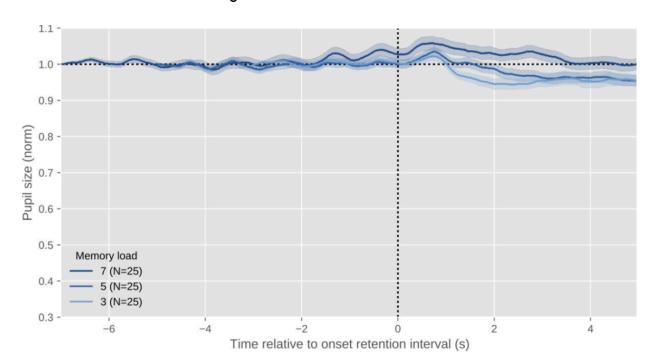
The psycho-sensory pupil response (PPR)

- = arousing stimulus | thought | emotion
- = reflex dilation | arousal-related dilation | effort-related dilation


Types of PPR:

- Orienting response
- Mental effort and arousal
- The adaptive-gain theory

Types of PPR: Orienting response


Sudden events (sounds, movements, painful touch, etc.)

- unexpected (Friedman et al., 1973)
- salient (Wang et al., 2014)
- Fast: 0.5-1 s
- Smaller < PLR & PNR
- Second period of dilation: 1-2 s

Types of PPR: Mental effort & Arousal

- Endogenous
- Size and profile = highly variable
- Arousal (Hess & Polt, 1964)
 - the harder the calculation, the larger the P
 - doesn't depend on valence (positive v negative), but arousal itself (Bradley et al., 2008)
- Mental effort, cognitive load, cognitive intensity (Kahneman & Beatty, 1966)
 - P size reflected the number of digits memorized

Types of PPR: The adaptive-gain theory

Aston-Jones & Cohen (2005), Jepma & Nieuwenhuis (2011), Gilzenrat et al., (2010)

Locus Coeruleus (LC) => behavior

- Exploitation intermediate phasic LC activity => intermediate pupil size
- Exploration high tonic LC activity, reduced phasic responses => large pupil size

PPR: Neural basis

- Orienting-response
 - intermediate layers of the SC
 - phasic activation of LC
- Arousal & Mental-effort
 - Hypothalamus
 - LC
- Adaptive-gain theory
 - LC

PPR: Function

• Optimal trade-off between visual sensitivity and visual acuity

* how much P dilate under extreme conditions (non-Lab) is yet **unclear**

Spontaneous fluctuations in pupil size

= hippus = pupillary unrest

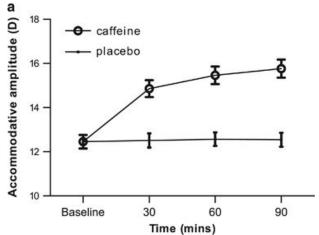
- reflects fluctuations in level of arousal
 - esp. for tired subjects (smaller & more restless)
 - $-\sim$ with changes in eye-movement behavior:
 - smaller P = attention to conspicuous parts (~low arousal)
 - during constriction, visual brain areas became less responsive (Reimer et al., 2014)
 - \sim with activity in NA projections to the cortex & other areas (Joshi et al., 2016)
- Cardiovascular
- Neurotransmitters
- Degenerative diseases & Psychiatric
- Due to time of the day

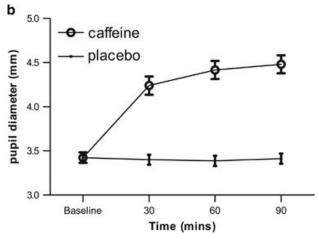
Neurotransmitters effects

- LC-NA system
 - arousal, attention
- /Da increases dilation (L-dopa)
 - errors, reward
- /S increases dilation (SSRI)
- /Oxytocin enhances stimulus-induced dilation
- Opioids
- etc.

Heroin Morphine Oxycodone Fentanyl Methadone Codeine

Marijuana Cocaine or Crack Benzodiazepines (i.e. Xanax)


Depressants (i.e. Alcohol or Sedatives)


Amphetamines Methamphetamines Cocaine or Crack Hallucinogens (i.e. LSD or mushrooms) Opiates

(prescription painkillers)

...coffeeee mmmmm...

Pupil dilation in disorders

- Depression
 - decreased P-dilation following stimuli
 - non-task related P dilation not in relation to the cognitive prompt time frame
- Parkinson's Disease
 - larger P diameter after light adaptation
 - reduced amplitude of contraction
 - prolonged contraction time at PLR
- Multiple System Atrophy
 - larger P after dark & light adaptation
 - higher anisocoria during light,
 - increase in latency, contraction time,
 - reduction in contraction amplitude.
- ASD
 - greater phasic P response & tonic dilation
 - increased latency
 - lower speed & magnitude
- Anxiety
 - smaller P dilation (pattern of emotional avoidance)
- etc...

Eye

- Blinks
- Saccades
- Anatomy (rods, cones)

Visual

- Orienting response (salient, sudden)
- Light (PLR)
- Color (blue)
- Depth (PNR)

Emotional

- Fear
- Stress
- Arousal
- Subjective attitude & meaning
- Emotional stimuli (sounds etc.)

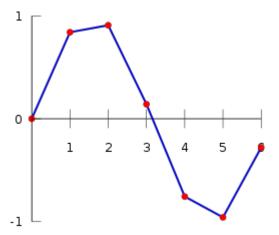
Vegetative

- Para/Symp balance
- Cardiovascular
- Hormonal state
- Aging
- Hippus
- Before REM
- Circadian

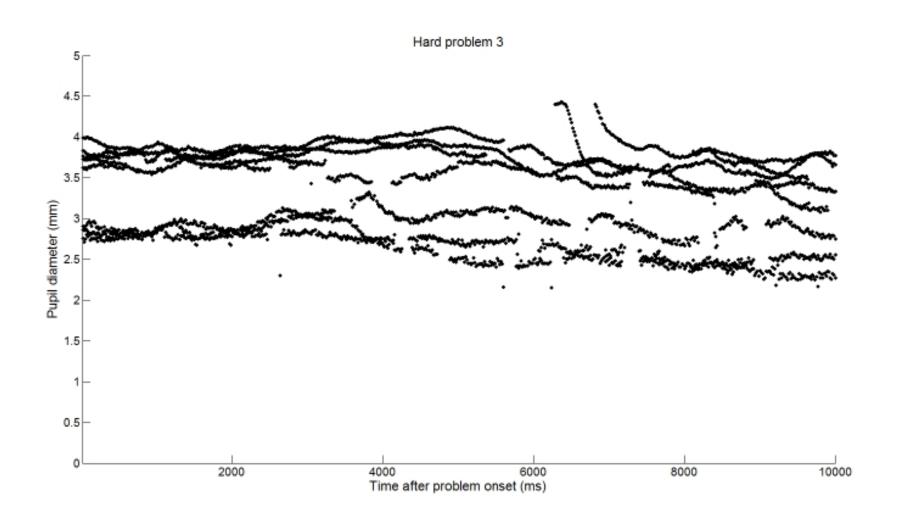
Cognitive

- Memory (LTM, WM)
- Attention
- Load / Overload
- Difficulty
- Novelty
- Feedback
- Errors (risk, uncertainty)
- Uncertainty
- Expectation
- Mental imaginary
- Anticipation of movement
- Lying
- Exploration / Exploitation

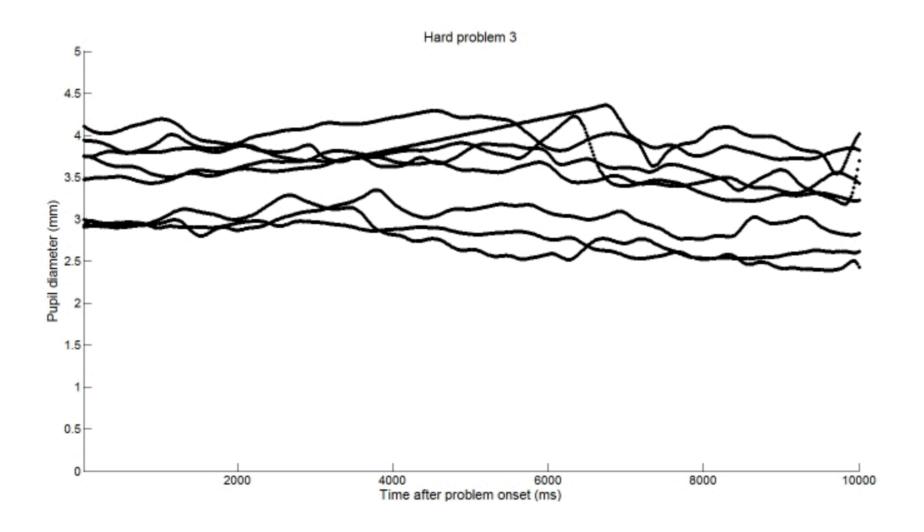
Brain


- Neurotransmitters
- Myelination

Disorders

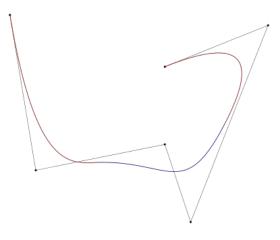

- Changed pattern
- Traumas (anisocoria)
- Doping
 - Meds / Drugs / Alco / Coffee etc.

Methodology: Steps in pupil analysis


- Data inspection & artifacts rejection (e.g. Hampel filtering)
 - thresholding remove data caused by eye blinking, loss of pupil tracking, and/ or headmovement
- Noise filtering
 - Low-pass with 10/15 Hz
- Replacement of missing data
 - Use of other eye (if available)
 - Linear interpolation
 - or discarding trials
- (Averaging both pupil size values)
- Baseline corrections
- Calculating baseline-adjusted measures
- (Normalizing)
 - Participant's pupil mean
 - Condition's pupil mean

Raw Data

Cleaned Data


Methodology: Pupillometry parameters

- baseline diameter
 - 500 ms before critical stimulus
 - neutral stimulus
- minimum & maximum diameter
- mean diameter average in an interval of interest
- response amplitude
- re-dilation amplitude
- response time
- re-dilation time
- average constriction velocity
- average re-dilation velocity
- maximum constriction velocity
- maximum re-dilation velocity
- onset latency
- peak latency amount of time before peak size is reached

Task Evoked Pupillary Response (TEPR)

Methodology: Analysis techniques

- Means of time windows (Laeng et al., 2007; Falk-Ytter, 2008)
- Slope in a time window (Engelhardt et al., 2010)
- B-splines (Jackson & Sirois, 2009)
- Like EEG/ERP data
- PCA
- Fixation-based pupil measures

Summary

- Pupillometry is fun!
- Non-invasive marker
- Task design, set & setting carefully
- Differentiate bw effectors
- Participants
- Data processing carefully, improve
- Clinical: differential diagnostic (ASD vs. schizo)
- Most papers that report pupil size don't know anything of previously mentioned

References

Mathôt, S. (2018). Pupillometry: Psychology, Physiology, and Function. Journal of Cognition, 1(1).

Wang T.P. Pupil Dilation and Eye-tracking. // Handbook of Process-Tracing Methods. – 2010.

Preuschoff K., Hart B.M., Einhäuser W. Pupil dilation signals surprise: evidence for noradrenaline's role in decision making. // Frontiers in neuroscience. – 2011. – Vol. 5(115).

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.

Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavior research methods, 45(4), 1322-1331.

Bradshaw J.L. Pupil size and problem solving. // Science. - 1968. - Vol. 20(2). - P. 116-122.

Hess E.H., Polt J.M. Pupil Size in Relation to Mental Activity during Simple Problem-Solving. // Science. — 1964. - Vol. 143(3611). — P. 1190-1192.

Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation.

Psychophysiology, 45(4), 602-607.

Van Der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., ... & Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158-169.

Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 1583-1585.

Loewenfeld, I. E. (1993) The Pupil: Anatomy, Physiology and Clinical Applications. Iowa State University Press.

Fan X., Miles J.H., Takahashi N., Yao G. Abnormal Transient Pupillary Light Reflex in Individuals with Autism Spectrum Disorders. // Autism Developmental Disorders. – 2009. – № 9. – P. 1499–1508.

Nuskea H.J., Vivantia G., Hudrya K., Dissanayakea C. Pupillometry reveals reduced unconscious emotional reactivityin autism. // Biological Psychology. – 2014. - № 101. - P. 24-35.

Feinberg R., Podolak E. Latency of pupillary reflex to light stimulation and its relationship to aging. // Behaviour, aging and the nervous system. – 1965.

Abokyi, S., Owusu-Mensah, J., & Osei, K. A. (2017). Caffeine intake is associated with pupil dilation and enhanced accommodation. Eye, 31(4), 615.

Jackson, I., & Sirois, S. (2009). Infant cognition: going full factorial with pupil dilation. Developmental science, 12(4), 670-679.

Canver, M. C., Canver, A. C., Revere, K. E., Amado, D., Bennett, J., & Chung, D. C. (2014). Novel mathematical algorithm for pupillometric data analysis. Computer methods and programs in biomedicine, 113(1), 221-225.

. . .

Thank you for your pupil dilation!

