Программа учебной дисциплины «Проектирование цифровых устройств»

Утверждена Академическим советом ООП Протокол № от «28» _июня_2018 г.

Автор	Харитонов И.А., к.т.н., профессор	
Число кредитов	5	
Контактная ра-	70	
бота (час.)		
Самостоятельная	120	
работа (час.)		
Курс	I	
Формат изуче-	без использования онлайн-курса	
ния дисциплины		

І. ЦЕЛЬ, РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПРЕРЕКВИЗИТЫ

Целями освоения дисциплины «Проектирование цифровых устройств» являются формирование у студентов знаний о методах проектирования цифровых узлов интегральных схем, цифровых схем современных и перспективных изделий электроники, вычислительной техники, микро- и наноэлектроники, назначении, принципах работы, методов и средств проектирования сложных цифровых электронных компонентов и схем для приборов и систем электронной техники с учетом заданных требований; умений разработки методик и проведения исследований и измерений параметров и характеристик изделий электронной техники, анализ их результатов.

В результате освоения дисциплины студент должен:

знать:

- особенности электронной компонентной базы цифровых схем и устройств
- принципы и особенности работы элементов и фрагментов цифровых микросхем, схем и устройств;

уметь:

- применять методы расчета, проектирования и модернизации цифровых устройств с учетом заданных требований и с использованием систем автоматизированного проектирования;

владеть:

- современными программными средствами для проектирования цифровых схем и устройств электроники и наноэлектроники различного функционального назначения.

Изучение дисциплины «Проектирование цифровых устройств» базируется на следующих дисциплинах:

- Физика;
- Материалы электронной техники;
- Теоретические основы электротехники;
- Физические основы электроники;
- Основы технологии электронной компонентной базы.

Для освоения учебной дисциплины студенты должны владеть следующими знаниями и компетенциями:

- OK-1 Способность владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения;
- OK-2 Способность к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности;
- ПК-1 Способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естествен
- ПК-6 Способность собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии;
- ПК-18 Способность собирать, анализировать и систематизировать отечественную и зарубежную научно-техническую информацию по тематике исследования в области электроники и наноэлектроники;
- ПК-21 Готовность анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций.

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

- 1. Системы автоматизированного проектирования приборов и элементов микро- и наноэлектроники
- 2. Электро-магнитная совместимость электронных устройств.

II. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

- **Тема 1.** Совместная работа цифровых устройств. Синхронизация в цифровых устройствах, риски сбоя. Типы выходных каскадов логических схем, цепи питания, формирователи импульсов, оптоэлектронные устройства развязки. Синхронизация в цифровых устройствах, риски сбоя.
- **Тема 2. Расчет характеристик цифровых устройств с помощью пакетов SPICE моделирования**. Методы расчета передаточных, переходных характеристик, параметров устройств с помощью пакетов SPICE моделирования. Анализ полученных результатов.
- **Тема 3. Функциональные узлы комбинационного типа.** Шифраторы и дешифраторы, мультиплексоры и демультиплексоры, сумматоры, АЛУ. Особенности их проектирования
- **Тема 4. Функциональные узлы последовательного типа. Особенности их про-ектирования.** Регистры, счетчики, распределители импульсов. Их схемотехника и особенности проектирования.
- **Тема 5 Схемотехника запоминающих устройств.** Статические и динамические ЗУ, постоянные и перепрограммируемые ЗУ. Масочные, прожигаемые ЗУ. Проектирование блоков памяти в цифровых системах.
- **Тема 6. Влияние перекрестных помех в цифровых системах. Влияние проводников интегральных схем и печатных плат** на динамические характеристики систем. Особенности проектирования высокоскоростных устройств
- **Тема 7** Использование БИС/СБИС с программируемой структурой. Проектирование цифровых систем с помощью ПЛМ и БМК. Типы базовых матричных кристаллов. Типы и классы ПЛМ. Архитектура ПЛМ. Средства программирования ПЛМ.
- **Тема 8. Цифро-аналоговые и аналого-цифровые преобразователи.** Характеристики и параметры.
 - Тема 9. Цифровая обработка сигналов в аналоговых системах. Цифровая обра-

ботка аудиосигнала. Цифровая обработка видеосигнала.

Тема 10. Проектирование типовых узлов цифровых систем на VHDL. Языки описания аппаратуры (HDL). История возникновения и развития, области применения HDL. HDL - взгляд схемотехника и взгляд программиста.

Ш. ОПЕНИВАНИЕ

Формы контроля знаний студентов:

Тип контроля	Форма кон-	1 год			Параметры
	троля	2 мо- дуль	3 мо- дуль	4 модуль	
Текущий (неделя)	Контрольная работа Эссе				
	Реферат				
	Коллоквиум Домашнее задание		*		
Итоговый	Экзамен			*	Устный

Текущий контроль предусматривает учет активности студентов в ходе проведения семинаров, выступлений по конкретному разделу, консультаций с преподавателем.

Промежуточный контроль предусматривает в срок выполненную домашнюю работу.

Итоговый контроль –зачет– проводится в устной форме по соответствующим билетам.

Активность на практических занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем
- обсуждение сложных вопросов по предложенной тематике
- письменные ответы на тестовые вопросы

Итоговая оценка за модуль формируется как взвешенная сумма оценки за выполнение домашнего задания и устного экзамен.

$$O_{\text{pes, utor. Mod}} = 0.6 * O_{\text{экзамен}} + 0.4 * O_{\text{накопленная мод,}}$$

где

 $o_{\text{экзамен}}$ - оценка, полученная на устном экзамене.

 ${\it O}_{{\scriptscriptstyle {
m Hakon, nehhas}}\ {\scriptscriptstyle {
m Mod}}}$ – накопленная оценка за модуль, полученная за домашнее задание

Результирующая оценка за дисциплину (выставляется в диплом) формируется как средняя оценка за промежуточный и итоговый экзамены

$$O_{\text{pe3, utor}} = 0.5 * O_{\text{pe3, utor. 2 Mog}} + 0.5 * O_{\text{pe3, utor. 4 Mog}},$$

В билете 2 вопроса по тематике оцениваемого модуля.

Все оценки выставляются по 10-балльной шкале.

Способ округления накопленной суммы баллов текущего контроля – арифметический, в пользу студента.

IV. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ

Оценочные средства для промежуточной аттестации

Вопросы к экзамену

- 1. Совместная работа цифровых устройств. Синхронизация в цифровых устройствах, риски сбоя.
- 2. Счетчики, параметры, классификация, примеры схем.
- 3. Ячейки статической памяти. Примеры схем.
- 4. Ячейки динамической памяти. Примеры схем.
- 5. Программируемые логические схемы. Особенности проектирования на их основе
- 6. Цифровая обработка аналоговых сигналов. DSP
- 7. АЦП. Параметры, классификация, варианты реализации.
- 8. ЦАП. Параметры. Схемные варианты
- 9. Конструктивные параметры печ. плат. Высокочастотные параметры печ. плат.
- 10. Особенности проектирования высокоскоростных устройств на печатных платах.

V. РЕСУРСЫ

5.1 Основная литература

1. Петросянц К. О., Козынко П. А., Рябов Н. И., Самбурский Л. М., Харитонов И. А. Электроника интегральных схем. Лабораторные работы и упражнения. Учебное пособие / Под общ. ред.: К. О. Петросянц. М.: Солон-Пресс, 2017.

5.2 Дополнительная литература

- 2. Казённов, Г.Г. Основы проектирования интегральных схем и систем // Г.Г. Казённов. М.: БИНОМ. Лаборатория знаний, 2005. 295 с.
- 3. Основы проектирования интегральных микросхем: учебное пособие / Н. В. Лемешко. М.: МИЭМ, 2010. 270 с. ISBN 978-5-9902319-1-7.
- 4. Микроэлектронные схемы цифровых устройств / И. Н. Букреев, В. И. Горячев, Б. М. Мансуров. Изд. 4-е, перераб. и доп. М.: Техносфера, 2009. 708 с. (Сер. "Мир электроники") .

5.3 Программное обеспечение

№	Наименование	Условия доступа
п/п		
1.	Microsoft Windows 7 Professional RUS	Из внутренней сети университета (договор)
2.	Microsoft Office Professional Plus 2010	Из внутренней сети университета (договор)
3.	Пакеты программ LtSPICE, BTEMP, Mentor Graphics FPGA Advantage, Xilinx Foundation, Symphony EDA Sonata.	

№ п/п	Наименование	Условия доступа				
	Профессиональные базы данных, информационно-справочные системы					
1.	Электронно-библиотечная система Юрайт	URL: https://biblio-online.ru/				
	Интернет-ресурсы (электронные образовательные ресурсы)					
1.	Открытое образование	URL: https://openedu.ru/				
2.	Сайт паяльник	http://cxem.net/software/soft_PCB.php				

5.5 Материально-техническое обеспечение дисциплины

Учебные аудитории для лекционных занятий по дисциплине обеспечивают использование и демонстрацию тематических иллюстраций, соответствующих программе дисциплины в составе:

- ПЭВМ с доступом в Интернет (операционная система, офисные программы, антивирусные программы);
 - мультимедийный проектор с дистанционным управлением.