

ALGEBRAIC GEOMETRY. FINAL EXAM PROBLEMS

For the full credit, please, write complete solutions of any two problems from the list below and send me a scan of your paper by 9 pm, Tuesday, March 26.

Problem 1. Let $X \subset \mathbb{P}^n$, $n > 1$, be a smooth hypersurface of degree d .

- (a) Compute $\dim H^0(X, \omega_X)$. Here ω_X denotes the sheaf of top degree differential forms on X .
- (b) Prove that if $d > n$ then X is not rational.
- (c) Show that if $d = n + 1$ then $\omega_X = \mathcal{O}_X$.

Problem 2. Let X be a projective scheme over a field. For a coherent sheaf E , its Euler characteristic $\chi(E)$ is defined to be

$$\chi(E) := \sum_{i=0}^{\infty} \dim H^i(X, E).$$

- (a) Show that, for any short exact sequence $0 \rightarrow E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow 0$ of coherent sheaves, one has that

$$\chi(E_0) - \chi(E_1) + \chi(E_2) = 0.$$

(b) Let X be a smooth projective connected curve over an algebraically closed field k . Recall that the genus of X is set to be $g_X := \dim H^0(X, \omega_X)$. Let E be a line bundle over X . Show that $\chi(E) = 1 - g_X + \deg E$. This is the Riemann-Roch formula. (Hint: use Serre's duality to check it for $E = \mathcal{O}_X$. Then use part (a).)

- (c) In notation of part (b) show that $\deg \omega_X = 2g_X - 2$.

Problem 3. Let X, Y be smooth projective connected curves over an algebraically closed field k . Assume that $g_X < g_Y$. Show that every morphism $f : X \rightarrow Y$ is constant. (Hint: if $\text{char } k = 0$ the proof is easier.)

Problem 4. Let X and Y be smooth connected projective varieties over a field k . Assume X and Y are birationally equivalent and that X has k -point. Show that Y has a k -point. (Hint: there are dense open subschemes $U \subset X$, $W \subset Y$, and an isomorphism $U \xrightarrow{\sim} W$. Let $x \in X(k)$. Show that there is a curve on X passing through x which is smooth at x , and which intersects U .)

Problem 5. (a) Let V be a finite-dimensional vector space over a field k , $S(V)$ the symmetric algebra (*i.e.*, the algebra of polynomials on V^*). Show that $\text{Ext}_{S(V)}^q(k, k)$ as an algebra (with respect to the Yoneda product) is isomorphic to $\bigwedge^q V^*$. Here k is considered as a module over $S(V)$ such that $V k = 0$.

- (b) Let X be a smooth scheme over a field k , $i : X \rightarrow X \times X$ the diagonal embedding. Show that

$$\text{Ext}_{\mathcal{O}_{X \times X}}^q(i_* \mathcal{O}_X, i_* \mathcal{O}_X) \xrightarrow{\sim} i_*(\bigwedge^q T_X),$$

where T_X is the tangent sheaf on X .

Problem 6. Suppose we have a coherent sheaf E on a projective scheme X over a field and that we have an endomorphism $f : E \rightarrow E$.

- (a) Show that if f is injective then it is an isomorphism.
- (b) Give a counterexample to the above statement if X is not projective.