Программа учебной дисциплины «Информационный менеджмент: Введение в Data Science»

Утверждена Академическим советом ООП Протокол № от «__»___20__ г.

Автор	Теванян Элен Арамовна, etevanian@hse.ru,	
	Ульянкин Филипп Валерьевич, fulyankin@hse.ru	
	Бабушкин Валерий Валерьевич, vbabushkin@hse.ru	
Число кредитов	4 кредита	
Контактная	46	
работа (час.)		
Самостоятельная	106	
работа (час.)		
Курс	1 курс бакалавриата	
Формат	С использованием онлайн курса	
изучения		
дисциплины		

І. ЦЕЛЬ, РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПРЕРЕКВИЗИТЫ

Цель учебной дисциплины познакомить студентов первого курса с культурой работы с данными, основными концепциями анализа данных и машинного обучения.

В результате освоения дисциплины студенты научатся:

- ставить измеримые цели;
- считать основные показатели;
- оценивать эффективность изменений;
- понимать, как делать прогнозы по данным.

Пререквизиты курса:

- знание английского языка на уровне Intermediate (B1/B2 по международной шкале)
- знание школьного курса алгебры и геометрии
- желательно знакомство с азами линейной алгебры, теории вероятностей и математической статистики

II. Содержание УЧЕБНОЙ ДИСЦИПЛИНЫ

Тема 1. Введение в область Data Science.

Понятия Data Science, Machine Learning, Deep Learning, Big Data. Классы задач машинного обучения.

Тема 2. Математика для Data Science.

Линейная алгебра: векторы, матрицы. Теория вероятностей: вероятность, плотность, распределение, характеристики распределений. Математическая статистика: выборка, типы выборок.

Тема 3. Описательные статистики и визуализация данных.

Понятие описательных статистик. Минимум, максимум, среднее, стандартное отклонение, медиана, процентили. Основные виды графиков.

Тема 4. Задача регрессия. Метрики регрессии. Линейная регрессия.

Постановка задачи регрессии. Метрики регрессии: MSE, MAE, MAPE, R²

Тема 5. Задача классификации. Метрики классификации.

Постановка задачи классификации. Метрики классификации: доля правильных ответов, точность, полнота.

Тема 6. Алгоритмы классификации: KNN, решающее дерево.

Алгоритм KNN. Алгоритм решающего дерева.

<u>Тема 7. А/В-тестирование.</u>

Понятие гипотезы, ошибок первого и второго рода. Тестирование гипотез.

<u>Тема 8. Защита проекта с применением машинного обучения, или выход на инвестиционный комитет.</u>

Тема 9. Кейсы машинного обучения в бизнесе: истории успехов и неудач.

ІІІ. ОЦЕНИВАНИЕ

Итоговая оценка за курс формируется нелинейно:

$$O_{\text{итог}} = max\{0.7*O_{\text{накопленная}} + 0.3*O_{\text{Экзамен}}; \ 0.5*O_{\text{накопленная}} + 0.5*O_{\text{Экзамен}}\}$$

Накопленная оценка формируется из мероприятий текущего контроля:

$$O_{\text{накопленная}} = 0.1*O_{\text{DataCamp}} + 0.1*O_{\text{Семинары}} + 0.2*O_{\text{Самостоятельные}} + 0.2*O_{\text{Keŭc}} + 0.2*O_{\text{Д31}} + 0.2*O_{\text{Д32}}$$

Таблица 1. Описание содержания мероприятий текущего контроля.

Оценка мероприятия	Содержание мероприятия текущего контроля
текущего контроля	
O _{DataCamp}	Оценка за изучение онлайн-курсов на платформе DataCamp.
	Шкала перевода представлена в таблице 2.
Осеминары	Оценка за задачи, выданные на семинаре. Задач от 10 до 12 штук,
	каждая из которых оценивается по десятибалльной системе.
	Итоговая оценка по семинарам выставляется как среднее
	арифметическое по всем задачам.
Осамостоятельные	Оценка за самостоятельные работы на семинарах. Планируется 4
	работы, каждая из которых оценивается в десятибалльной шкале.
	Итоговая оценка по самостоятельным выставляется как среднее
	арифметическое по всем самостоятельным.
Окейс	Оценка за кейс. Кейс представляет собой групповую (по 3
	студента) работу. Каждая группа получает оценку в
	десятибалльной шкале.
Одзі	Оценка за домашнее задание 1. Домашнее задание 1 представляет

	собой проектную работу группы студентов (по 3 студента), в	
	котором нужно сделать ценовую сегментацию категории товаро	
	Каждая группа получает оценку в десятибалльной шкале.	
Одз2	Оценка за домашнее задание 2. Домашнее задание представляет	
	собой индивидуальную работу по анализу трендов и проведению	
	А/В-тестирования. Оценка выставляется в десятибалльной шкале.	

Таблица 2. Шкала перевода оценок за DataCamp.

Количество выполненных заданий	Оценка в 10- балльной шкале
0 - 142	0
143 – 157	1
158 – 171	2
172 – 185	3
186 – 200	4
201 – 214	5
215 – 228	6
229 – 243	7
244 – 257	8
258 – 271	9
272 – 286	10

IV. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ

1. DataCamp

1. DataCamp	
Название курса	Ссылка на курс
Introduction to Python For	https://www.datacamp.com/courses/intro-to-python-for-data-science
Data Science	
Intermediate Python For Data	https://www.datacamp.com/courses/intermediate-python-for-data-
Science	science
Pandas Foundations	https://www.datacamp.com/courses/pandas-foundations
Manipulating DataFrames with	https://www.datacamp.com/courses/manipulating-dataframes-with-
Pandas, Chapters: "Extracting	pandas, chapters 16 4
and transforming Data",	
"Grouping data"	

Introduction to Data	https://www.datacamp.com/courses/introduction-to-data-
Visualization with Python	visualization-with-python

- 2. Пример семинарской задачи
- Попробуйте обучить метод одного ближ
- айшего соседа. Что произошло с качеством модели? Как называется такая ситуация? Проинтерпретируйте её.
- Попробуйте перебрать соседей и узнать какое количество будет давать самое крутое значение ROC-AUC. Попробуйте сделать это с помощью цикла. Нарисуйте график, где по оси X будет отложено число соседей, а по оси Y значение ROC-AUC на тестовой выборке.
 - 3. Пример задачи на самостоятельной работе

Найдите точность и полноту для предсказаний модели.

yi	b_i
1	1
1	0
0	0
0	0

4. Пример кейса

В ваших руках оказались данные по удержанию сотрудников. Ваша задача состоит в предсказании того, уйдёт ли конкретный сотрудник с работы в ближайшее время. Одним из применений данной модели могла бы быть раздача ништяков тем людям, которые в ближайшее время хотят покинуть компанию. Возможно, вы могли бы попробовать понять какие именно ништяки нужно выписать сотрудникам из тестовой выборки, чтобы вероятность их оттока уменьшилась.

5. Домашние задания

Домашние задания 1 и 2 являются уникальными, детальные требования к их содержанию публикуются на вики-странице курса, ссылка на который представлена в разделе V.4.

6. Пример экзаменационного вопроса

Выберите правильный ответ на вопрос.

Какая из метрик является не подходит для задачи классификации?

- Точность
- Полнота
- Доля правильных ответов
- MSE

V. РЕСУРСЫ

1. Основная литература

- 1. David Julian, Designing Machine Learning Systems with Python, PACKT, 2016
- 2. Gene Kim, Kevin Behr, George Spafford, The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win, IT Revolution Press, 2014
- 3. Jennifer Davis, Katherine Daniels, Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scale, O'Reilly Media, Inc., 2016
- 4. Mark C. Layton, Agile Project Management For Dummies, John Wiley & Sons, 2012
 - 2. Дополнительная литература

- 1. Как понять, что ваша предсказательная модель бесполезна; https://habrahabr.ru/post/337722/
- 2. Метрики в задачах машинного обучения, https://habrahabr.ru/company/ods/blog/328372/
- 3. Байесовские многорукие бандиты против A/B тестов, https://habrahabr.ru/company/ods/blog/325416/
- 4. crazyhatter. (2017). CRISP-DM: проверенная методология для Data Scientist-ов. Получено из Habrahabr: https://habrahabr.ru/company/lanit/blog/328858/
- 5. KDnuggents. (б.д.). Crisp-DM top methodology analytics. Получено из http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html
- 6. Project Management Insitute, Inc. (2013). Руководство РМВОК 5.
- 7. Wikipedia. (б.д.). Cross Industry Standard Process for Data Mining. Получено из https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
- 8. Wikipedia. (б.д.). SEMMA. Получено из Wikipedia: https://en.wikipedia.org/wiki/SEMMA
- 9. НОУ "ИНТУИТ". (2017). Организационные и человеческие факторы в Data Mining. Получено из http://www.intuit.ru/studies/courses/6/6/lecture/198

3. Программное обеспечение

No	Наименование	Условия доступа
п/п		
1.	Anaconda 2018.12 (Python 3)	Свободно распространяемое ПО

4. Профессиональные базы данных, информационные справочные системы, интернет-ресурсы (электронные образовательные ресурсы)

№ п/п	Наименование	Условия доступа
	И	нтернет-ресурсы
1.	DataCamp	URL: https://datacamp.com
2.	Wiki-страница курса	URL:
		http://wiki.cs.hse.ru/Информационный_менеджмент:
		Введение в Data_Science

5. Материально-техническое обеспечение дисциплины

Учебные аудитории для лекционных занятий по дисциплине обеспечивают использование и демонстрацию тематических иллюстраций, соответствующих программе дисциплины в составе:

- ПЭВМ с доступом в Интернет (операционная система, офисные программы, антивирусные программы);
 - мультимедийный проектор с дистанционным управлением.

Учебные аудитории для лабораторных и самостоятельных занятий по дисциплине оснащены компьютерами с установленной Anaconda (Python 3.6 и старше), с возможностью подключения к сети Интернет и доступом к электронной информационно-образовательной среде НИУ ВШЭ.