
Journal of Ambient Intelligence and Smart Environments 10 (2018) 377–391 377
DOI 10.3233/AIS-180497
IOS Press

RapidHARe: A computationally inexpensive
method for real-time human activity
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Abstract. Recent human activity recognition (HAR) methods, based on on-body inertial sensors, have achieved increasing
performance; however, this is at the expense of longer CPU calculations and greater energy consumption. Therefore, these
complex models might not be suitable for real-time prediction in mobile systems, e.g., in elder-care support and long-term
health-monitoring systems. Here, we present a new method called RapidHARe for real-time human activity recognition based
on modeling the distribution of a raw data in a half-second context window using dynamic Bayesian networks. Our method
does not employ any dynamic-programming-based algorithms, which are notoriously slow for inference, nor does it employ
feature extraction or selection methods. In our comparative tests, we show that RapidHARe is an extremely fast predictor, one
and a half times faster than artificial neural networks (ANNs) methods, and more than eight times faster than recurrent neural
networks (RNNs) and hidden Markov models (HMMs). Moreover, in performance, RapidHare achieves an F1 score of 94.27%
and accuracy of 98.94%, and when compared to ANN, RNN, HMM, it reduces the F1-score error rate by 45%, 65%, and 63%
and the accuracy error rate by 41%, 55%, and 62%, respectively. Therefore, RapidHARe is suitable for real-time recognition in
mobile devices.
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1. Introduction

The increasing availability of wearable body sensors
leads to novel scientific studies and industrial applica-
tions in the ubiquitous computing field [1,2]. The main
areas include gesture recognition (GR) [3], recogni-
tion of activities of daily living (ADL), human activ-
ity recognition (HAR) [4], and human gait analysis
(HGA) [5]. Gesture recognition mainly focuses on rec-
ognizing hand-drawn gestures in the air. Patterns to
be recognized may include numbers, circles, boxes,
or Latin alphabet letters. Recognition of activities of
daily living, on the other hand, aims to recognize daily
lifestyle activities performed primarily by the subject’s
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[6,7]. For instance, an interesting research topic is rec-
ognizing activities in or around the kitchen, such as
cooking, loading the dishwasher or washing machine,
and so on [8]. Often, these activities can be interrupted
by, for example, answering the phone. Human activ-
ity recognition (HAR) usually focuses on activities re-
lated to or performed by legs, such as walking, jog-
ging, turning left or right, jumping, lying down, going
up or down the stairs, sitting down, and so on. Human
gait analysis (HGA) focuses not only on the recogni-
tion of activities observed but also on how activities
are performed. This can be useful in health-care sys-
tems for monitoring patients recovering after surgery,
fall detection, or diagnosing the state of, for example,
Parkinson’s disease [5,9,10]. An important application
in HGA is installing body accelerometers on the hips
and legs of people with Parkinson’s disease [11]. Here,

1876-1364/18/$35.00 © 2018 – IOS Press and the authors. All rights reserved

mailto:rchereshnev@hse.ru
mailto:akerteszfarkas@hse.ru
mailto:akerteszfarkas@hse.ru


378 R. Chereshnev and A. Kertész-Farkas / RapidHARe

the objective is to detect freezing of the gait and pre-
vent falling incidents.

Our research group generally focuses on develop-
ing methods related to HGA and HAR, and in this ar-
ticle we were interested in and studied HAR methods,
which have the following properties:

1. Low prediction latency.
2. Smooth, continuous activity recognition within a

given activity and rapid transition in between dif-
ferent activities.

3. Speed and energy efficiency for mobile-pervasive
technologies.

The first requirement ensures that the model is of
low latency; therefore, activity prediction can be made
instantly based on the latest observed data. There-
fore, bidirectional models, such as bidirectional long
short-term memory (LSTM) recurrent neural networks
(RNN) [12] or dynamic time warping (DTW) [13]
methods, are not appropriate for our aims for two main
reasons: First, these bidirectional methods require a
whole observed sequence before making any predic-
tions, which would therefore increase their latency.
Second, the prediction they make on a frame is based
on subsequent data. Standard hidden Markov models
(HMMs) have become the de facto approach for ac-
tivity recognition [14–17], and they yield good perfor-
mance in general. However, they do so at the expense
of increased latency in prediction, because Viterbi al-
gorithms use the whole sequence, or at least some
part of it, to estimate a series of activities (i.e., hid-
den states), and their time complexity is polynomial.
Therefore, in our opinion, HMMs are not adequate
for on-the-fly prediction, because the latency of these
methods can be considered rather high.

The second point is to ensure that an activity recog-
nition method provides consistent prediction within
the same activity, but changes rapidly when the ac-
tivity has changed. Lester et al. [16] have pointed
out that a single-frame prediction method such as
decision stumps is prone to yielding scattered pre-
dictions. However, human activity data are time se-
ries data in nature, and subsequent data frames are
highly correlated. This tremendous amount of infor-
mation can be exploited simply by sequential mod-
els such as HMM and RNN, or by incorporating
the sliding-window technique to single-frame meth-
ods (e.g., nearest-neighbor). In fact, the authors in [15]
have pointed out that the continuous-emissions HMM-
based sequential classifier (cHMM) performs system-
atically better than its simple single-frame Gaussian

mixture model (GMM) counterpart (99.1% vs. 92.2%
in accuracy). Actually, the proposed sequential classi-
fier wins over all its tested single-frame competitors
(the best single-frame classifier is the nearest mean
(NM) classifier which achieves up to 98.5% in accu-
racy). This highlights the relevance of exploiting the
statistical correlation from human dynamics.

Continuous sensing and evaluating CPU-intensive
prediction methods rapidly deplete a mobile system’s
energy. Therefore, the third point requires a system to
be energy-efficient enough for mobile-pervasive tech-
nologies. Several approaches have been introduced for
this problem. Some methods aim to keep the number
of necessary sensors low by adaptive selection [18]
or based on the activity performed [19–21], for accu-
rate activity prediction. Other approaches aim to re-
duce the computational cost by feature selection [22],
feature learning [23], or proposing computationally in-
expensive prediction models such as C4.5, random for-
est [24], or decision trees [25]. In this study, we put
emphasis on a computationally inexpensive prediction
model that uses little memory and takes few computa-
tional steps while still achieving good performance.

Recently, deep-learning technologies, deep LSTM,
and deep convolutional LSTM (DCSLTM) have
emerged for activity recognition systems with superb
performance, mainly in ADL and GR [26,27]. These
methods are capable of learning features automati-
cally from the data [28]. The price of this skill is that
they consist of millions of model parameters that are
more difficult to train, and most importantly, they re-
sult in longer prediction times and require more CPU
time compared to inexpensive models such as decision
trees. On the other hand, we argue that these meth-
ods have too high of a capacity for HAR and HGA
problems, and thus they overfit. In our opinion, these
problems involve only a few thousands input features,
and the “complexity” of the underlying data manifold
is rather low. LSTM methods have the capacity to re-
member the activity performed sometime ago, which
might be useful for recognizing daily activities, such
as scrambling eggs or washing dishes. However, for
HAR and HGA-related problems, such skills are not
needed, because we think that the current activity is in-
dependent of activities performed some time ago. For
instance, if the next activity is going to be walking up
the stairs, then it is because there are stairs ahead, and
this fact is independent of previous activities, whether
the user was sitting or running before. In our opinion,
our hypothesis is supported by the studies in [26,27].
Both studies have reported improvement in perfor-
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mance for ADL using deep LSTM methods. However,
in freezing-of-gait prediction tasks, Hammerla et al.
have reported a 76% F1 score in Table 2 in [27], while
a simple method such as random forests and C4.5 us-
ing smartly crafted features has achieved an F1 score
over 95% on the same dataset, as shown in Table 2 in
[24]. Similar conclusions can be reached from the re-
sults presented in Table 2 in [29], where the nearest-
neighbor and random forest methods outperform mul-
tilayer perceptrons in test scenarios (which the authors
termed “impersonal” and “hybrid”) in which training
and test data were recorded by different users. We
think these results support our argument, and, there-
fore, deep models of high capacity for HAR and HGA
problems do not seem to be justified to us. We believe
that smartly designed features used along with compu-
tationally inexpensive models can provide faster and
more energy-efficient methods with low latency for
this field.

In this article, we present a novel method for HAR
called RapidHARe for real-time prediction of continu-
ous activity recognition. The proposed model is a small
dynamic Bayesian network that does not utilize the
Viterbi algorithm or other dynamic programming ap-
proaches for activity prediction, but instead utilizes the
data distribution within a small, half-second-long con-
text window. Moreover, our method does not employ
feature transformation and selection methods. This
provides a quick method that does not require exhaus-
tive CPU calculations. Therefore, RapidHARe is suit-
able for real-time recognition. Moreover, it is inexpen-
sive for mobile systems and can be employed in elder-
care support and long-term health-monitoring systems
such as freeze-of-gait prediction, fall detection, robotic
exoskeletons in health care, and surgery recovery.

This article is organized as follows: In Section 2,
we introduce the mathematical model of RapidHARe
by using dynamic Bayesian networks. In Section 3, we
describe the data we used in our experiments. In Sec-
tion 4, we present our experimental results obtained
and discuss our findings. Finally, we conclude our
study in the last section.

2. Methods

We created a dynamic Bayesian network, whose
structure is shown in Fig. 1. The states, i.e., activities,
denoted by S and the probability of a state st at a given

Fig. 1. Illustration of an unfolded dynamic Bayesian network w.r.t.
an activity series.

time t with respect to a given observed context window
vt , vt−1, . . . , vt−K of length K , is formulated by

P(st | vt , vt−1, . . . , vt−K)

=
∏K

k=0 P(vt−k | st )P (st )∑N
n=1

∏K
k=0 P(vt−k | st = n)P (st = n)

.

(1)

Certainly, at the beginning of performance, when t <

K , the context window is adjusted. In our experiments,
we did not use different a priori class probabilities for
different P(sk). This is because we did not want our
model to be biased toward some states that are abun-
dant in the training data. Therefore, the activity pre-
diction should be based fully on the data, and the state
probabilities P(sk) can be omitted from Eq. (1).

The state being performed at time t can be predicted
as follows:

ŝt = arg max
st

{
P(st | vt , vt−1, . . . , vt−K)

}
. (2)

Since the optimum of Eq. (2) is invariant to normal-
ization, the normalization factor can be omitted from
Eq. (1). This gives us a very simple model for activity
prediction in the following form:

ŝt = arg max
st

{
K∏

k=0

P(vt−k | st )

}
. (3)

This model can be implemented using the rolling-
window technique for real-time continuous activity
recognition; thus, the model remains fast for large Ks,
and redundant calculation of P(vt−k | st ) (k > 0) can
be avoided by using tables.

The distribution P(V | S) with respect to a
given state is modeled with Gaussian mixture mod-
els (GMMs), and its parameters are trained using the
expectation-maximization (EM) method. The training
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of GMMs was straightforward because training data
were segmented.

Overall, we obtained a simple and fast model that
consumes little energy to recognize human activities.

3. Data collection

To perform our experiments, we have recorded a to-
tal of 5 hours of data from 18 participants performing
8 different activities. These participants were healthy
young adults: 4 females and 14 males with an average
age of 23.67 years (standard deviation [STD]: 3.69),
an average height of 179.06 cm (STD: 9.85), and an
average weight of 73.44 kg (STD: 16.67). The partic-
ipants performed a combination of activities at nor-
mal speed in a casual way, and there were no obstacles
placed in their way. For instance, starting in the sit-
ting position, the participant was instructed to perform
the following activities: sitting, standing up, walking,
going up the stairs, walking, sitting down. The exper-
imenter recorded the data continually using a laptop
and annotated the data with the activities performed.
This provided us a long, continuous sequence of seg-
mented data annotated with activities. We developed
our own data-collector program. In total, 1,138,079
samples were collected. A summary of the activities
recorded and other characteristics of the data is shown
in Table 1.

During data collection, we used MPU9250 inertial
sensors and electromyography (EMG) sensors made in
the Laboratory of Applied Cybernetics Systems, MIPT
(www.mipt.ru). Each EMG sensor has a voltage gain
of about 5000, and a band-pass filter with bandwidth
corresponding to a power spectrum of EMG (10–

500 Hz). The sample rate of each EMG-channel is
1.0 kHz, the ADC resolution is 8 bits, and the input
voltages is 0–5 V. The inertial sensors consisted of
a three-axis accelerometer and a three-axis gyroscope
integrated into a single chip. Data were collected with
the accelerometer’s range equal to ±2g with sensitiv-
ity 16.384 LSB/g and the gyroscope’s range equal to
±2000°/s with sensitivity 16.4 LSB /°/s. All sensors
were powered with a battery, which helped to mini-
mize electrical grid noise.

Accelerometer and gyroscope signals were stored in
int16 format. EMG signals were stored in uint8. In our
experiments, all data were scaled to range [−1, 1].

In total, six pieces of inertial sensors (three-axis ac-
celerometer and three-axis gyroscope) and one pair of
EMG sensors were installed symmetrically on the right
and left legs with elastic bands. A pair of inertial sen-
sors were installed on the rectus femoris muscle 5 cm
above the knee, a pair of sensors around the middle of
the shinbone at the level where the calf muscle ends,
and a pair on the feet on the metatarsal bones. This
provided 36 features. Two EMG sensors were placed
on the vastus lateralis and connected to the skin by
three electrodes. The EMG sensors additionally pro-
vided two more features. The locations of the sen-
sors are shown in Fig. 2. In total, 38 signals were col-
lected.

The sensors were connected through wires with
each other and to a microcontroller box, which con-
tained an Arduino electronics platform with a Blue-
tooth module. The microcontroller collected 56.3500
samples per second on average, with a STD 3.2057,
and then transmitted them to a laptop through the Blue-
tooth connection.

Data acquisition was carried out mainly inside a
building. We note that data were not recorded on a
treadmill. The data are available in [30].

Table 1

Characteristics of data and activities

Activity Time sec (min) Percent Samples Description

Walking 5604 (93) 27.66 314775 Walking and turning at various speeds on a flat surface

Running 1141 (19) 5.63 64122 Running at various paces

Going up 2343 (39) 11.56 131604 Going up stairs at various speeds

Going down 2076 (34) 10.25 116637 Going down stairs at various speeds

Sitting 1336 (22) 6.59 75036 Sitting on chair; floor not included

Sitting down 429 (7) 2.12 24112 Sitting down on chair; floor not included

Standing up 398 (6) 1.97 22373 Standing up from a chair

Standing 6933 (115) 34.22 389420 Static standing on a solid surface

Total 20260 (335) 100.0 11380793

http://www.mipt.ru
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Fig. 2. Sensor locations. Circles show EMG sensors, while boxes
represent accelerometers and gyroscopes.

4. Results and discussions

The performance of our RapidHARe model was
evaluated using a supervised cross-validation approach
[31]. In this approach, data from a designated partic-
ipant were held out for tests, data from another par-
ticipant were held for validation, and the rest of the
data from the 16 participants were used for training.
Thus, this approach gives a reliable estimation of how
an activity recognition system would perform on a new
user whose data have not been seen before. In our ex-
periments, we repeated this test for every user in the
dataset and averaged the results. A similar testing pro-
cedure has been introduced by Weiss et al. [29]. Our
methods were implemented using the Python scikit-
learn package (version 0.18.1) on a PC equipped with
Intel Core i7-4790 CPU, 8 Gb DDR-III 2400 MHz
RAM, and Nvidia GTX Titan X GPU.

Please note that, besides the feature scaling de-
scribed in Section 3, we did not use any preprocessing
step, feature extraction, or feature selection methods.

4.1. On hyperparameters

In our first experiment, we determined the values of
the length of the context window and number of the
Gaussian components in P(V | S) via grid search for
RapidHARe. In our tests, the covariance matrices �

in all Gaussian components were restricted to be diag-
onal. The results were evaluated in terms of accuracy
and F1 score and are shown in Figs 3 and 4. They in-
dicate that a good performance can be achieved using
K = 26 for the context window length. However, for

the Gaussian components, it seems that for dynamic
activities, such as walking and running, the higher the
number of Gaussian components, the better the perfor-
mance. On the other hand, for static activities, such as
sitting and standing, a large number of Gaussian com-
ponents hinders the activity recognition. Therefore, we
set the number of Gaussian components for P(V | S)

for the following activities: walking, 18; running, 18;
going up, 16; going down, 16; sitting, 2; standing up,
5; sitting down, 7; and standing, 4. The activity recog-
nition results using these hyperparameters are shown
in Table 2, and we achieved 97.85% accuracy, 87.4%
precision, 87.22% recall, and an 86.4% F1 score. The
confusion matrix is shown in Table 3.

4.2. Continuous activity recognition

Next, we examined how well RapidHARe performs
on continuous activity recognition. For this reason, we
took a continuous series of activities and performed
the activity recognition. Then, we plotted the true and
predicted activities on a time line, shown in Fig. 5. The
results show that our method does predict continuous
activities, and it does not predict scattered activities for
neighboring frames except for a few frames.

However, it looks like, misclassification occurs on
the borders in many cases. Furthermore, if we enlarge
the standing–sitting activity at 35.6 sec, as shown in
Fig. 6, we can see that our method predicts sitting ac-
tivity, at around 40.94 sec, a small fraction of a second
earlier than it happened, according to the data annota-
tion. It is unlikely that our method can predict the fu-
ture. This phenomenon could be a result of inaccurate
data segmentation made by the data controller and by
the fact that it is difficult to exactly determine an ac-
tivity border in 10–20 ms. We also plotted over the ac-
tivities the signals measured by the x-axis accelerom-
eter placed on the right thigh. This example shows
that, in our opinion, the activity borders predicted by
our model are actually aligned with the signal changes
more appropriately than are the borders determined by
the experimenter.

In order to mitigate this phenomenon, we allow
some tolerance in the misclassification if it occurs on
the activity border. Thus, we tolerate up to 25 data
frames (which is about half a second) to be misclas-
sified on the activity border if and only if our method
correctly recognizes the succeeding activity. We be-
lieve that a half-second misclassification on the ac-
tivity borders during continuous activity recognition
is acceptable in practice. Moreover, if we allow mis-
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Fig. 3. Accuracy w.r.t. the number of Gaussian components and the length of the context window.

Fig. 4. F1 scores w.r.t. the number of Gaussian components and the length of the context window.
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Table 2

Results of activity recognition

Walking Running Going up Going down Sitting Sitting down Standing up Standing Average

Recall 89.09 96.05 92.31 89.14 97.61 68.62 72.51 93.75 87.22

Precision 94.57 91.52 81.23 86.25 88.83 86.57 73.25 97.26 87.4

F1 score 91.62 93.18 85.8 87.25 92.89 75.05 70.95 95.35 86.4

Accuracy 95.63 99.32 96.37 97.24 98.97 99.03 98.76 97.66 97.85

Table 3

Confusion matrix

Walking Running Going up Going down Sitting Sitting down Standing up Standing

Walking 854097 6702 43981 36469 0 34 89 2953

Running 2401 186493 1533 1764 0 0 0 175

Going up 18209 1677 363541 10560 0 61 1 763

Going down 14190 6590 13266 314762 0 0 2 1101

Sitting 0 0 0 586 218933 2244 3345 0

Sitting down 0 0 0 0 11400 48866 2401 9669

Standing up 0 0 0 2 14257 1033 48691 3136

Standing 11149 72 23231 4704 0 5328 14198 1109578

classification on the borders, then we think the perfor-
mance measures will put an emphasis on more reli-
able estimation for the actual scattered misclassifica-
tion made by the model, and it will be more tolerant of
inaccurate data segmentation.

When we tolerate misclassification on the border up
to 25 data frames, we obtain 98.68% accuracy, 91.52%
recall, 92.5% precision, and 91.34% F1 on average
over all activities. The detailed results for each activity
are shown in Table 4. The confusion matrix obtained
with border tolerance is presented in Table 5.

In the rest of our experiments, we allowed a border
tolerance up to 25 data frames, unless otherwise spec-
ified.

4.3. Directional features

Examining the results in Tables 4 and 5 shows that
the recognition performance of sitting down and stand-
ing up activities are relatively poor compared to other
activities. We further investigated the problem, and
we plotted the data recorded with a 3D accelerometer
sensor located on the left thigh during standing, sit-
ting, standing up, and sitting down activities. Data are
shown in Fig. 7. The figure reveals that data from static
activities are precisely concentrated on countersides,
but the data from dynamic activities lay on top of each
other and in-between the static activities. Therefore, it
is difficult to distinguish the two dynamic activities.
However, if we consider the time stamp of the data

in the dynamic activities, we can see that data from
the sitting-down activity go from standing to sitting,
but data related to the standing-up activity go from sit-
ting to standing activity. Therefore, we created addi-
tional features to indicate changes in signal data. For
a signal datum si[t] at time t from x and z-axis ac-
celerometer sensors located on both thighs, we created
four additional features as di[t] = si[t] − si[t − a],
called directional features, where i = {1, 2, 3, 4} in-
dexes the aforementioned signals, and a is a lag param-
eter denoting time offset. For instance, if si[t] is the
signal obtained at time t from the x-axis accelerome-
ter sensor located on the left thigh, then di[t] indicates
how much this signal has changed since time t − a.
Thus, we obtained four additional features. The origi-
nal 38-feature-data vector s[t] were concatenated with
4-feature-data vector d[t], yielding 42 features in total
for every sample. These new features add extra infor-
mation about the direction of movements.

To calibrate the lag parameter, we ran a line search
and obtained the best results using a = 15, which is
equivalent to approximately a third of a second (data
not shown). Thus, in the rest of our test, we used a =
15 for the lag parameter.

The results obtained using the directional features
are shown in Table 6, and they indicate a 50–65% de-
cline in the overall error (cf. Table 4) for the mea-
sured metrics. However, closer investigation of the
sitting down and standing-up activities reveals even
greater improvement. For instance, the F1 score in-
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Fig. 5. Continuous activity recognition.

Fig. 6. Activity recognition at 35.6 s enlarged from Fig. 5. The line represents the x-axis acceleration value recorded by accelerometer located
on thigh.

Table 4

Continuous activity recognition allowing border tolerance

Walking Running Going up Going down Sitting Sitting down Standing up Standing Average

Recall 94.59 97.49 94.77 91.58 98.9 74.18 85.25 96.27 91.52

Precision 96.84 93.21 87.03 92.89 92.29 90.86 88.66 98.17 92.5

F1 score 95.61 94.88 90.17 91.86 95.38 80.47 85.69 97.12 91.34

Accuracy 97.66 99.5 97.54 98.29 99.33 99.24 99.44 98.48 98.68

Table 5

Confusion matrix allowing border tolerance

Walking Running Going up Going down Sitting Sitting down Standing up Standing

Walking 901806 3895 22046 14510 0 0 41 2027

Running 1343 188584 1131 1133 0 0 0 175

Going up 10318 1677 373222 9244 0 0 0 351

Going down 8994 5950 10887 323467 0 0 2 611

Sitting 0 0 0 387 222279 519 1923 0

Sitting down 0 0 0 0 11400 53175 2156 5605

Standing up 0 0 0 0 5887 675 57421 3136

Standing 7283 0 20499 2994 0 4671 3454 1129359

creases from 80.47% to 93.43% for sitting down and
from 85.69% to 96.94% for standing-up. The confu-
sion matrix obtained using directional features, shown
in Table 7, also shows decreased misclassification of
activities (cf. Table 5).

4.4. State-of-the-art methods

Here, we introduce the state-of-the-art methods that
we used in our comparative tests, and we provide the
experimental results of the grid search used to find
the best hyperparameter settings. The following meth-
ods were used: hidden Markov model (HMM), artifi-
cial neural network (ANN), and recurrent neural net-

work (RNN). HMM was taken from hmmlearn (ver-
sion 0.2.0), while ANN and RNN were taken from the
Keras (version 1.2.2) libraries with Theano (version
0.8.2) support in Python.

In the HMM, the data emission probabilities were
modeled with Gaussian mixture models. Initial state
probabilities were equally 0.125. The state transition
probability matrix we used is shown in Table 8. Be-
tween certain activities, the transition probabilities are
set to zero to prohibit absurd transitions. For instance,
a sitting cannot be followed by running without first
standing up. We calibrated the transition matrix man-
ually because we did not want HMM to prefer states
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Table 6

Results of activity recognition with directional features

Walking Running Going up Going down Sitting Sitting down Standing up Standing Average

Recall 96.1 98.31 95.06 91.41 99.52 90.54 96.62 98.32 95.71

Precisions 97.03 93.43 91.66 94.44 96.54 96.77 97.4 99.32 95.88

F1 scores 96.46 95.4 92.74 92.46 98.0 93.43 96.94 98.81 95.55

Accuracy 98.13 99.58 98.33 98.49 99.72 99.71 99.86 99.41 99.15

Table 7

Confusion matrix using directional features

Walking Running Going up Going down Sitting Sitting down Standing up Standing

Walking 914985 2492 15590 9645 0 10 0 1603

Running 1028 189751 580 889 0 0 0 118

Going up 9280 2431 374939 7932 0 0 0 230

Going down 11655 6195 9536 322176 0 7 0 342

Sitting 0 0 0 0 224027 26 1055 0

Sitting down 0 0 0 0 7071 64733 216 316

Standing up 0 0 0 0 885 0 64756 1478

Standing 5045 0 3698 2554 0 1973 468 1154522

Fig. 7. Data from x- and z-axis accelerometer located on left thigh.
Data from y-axis accelerometer were nearly constant and thus are
not shown.

based on a priori information obtained from the train-
ing data.

We ran a grid search on the number of GMM com-
ponents vs. the window length used in the Viterbi al-
gorithm in order to find the best hyperparameters. Pa-
rameters were initialized randomly, and tests were re-
peated five times. The averaged results (along with the
standard deviations (STD) in parentheses) are shown
in Table 9. Our results indicate that the best accu-
racy can be achieved using 30 Gaussian components
with 50 data frames passed to the Viterbi algorithm.
In our experiments with HMMs, we decided to use
the same number of GMM components as for the
RapidHARe for two reasons: First, this gives us bet-
ter performance with HMM, and second, the predic-
tion speeds of HMM and RapidHARe becomes com-
parable. The choice of the window length is also crit-

ical. Long windows result in large lag times in pre-
diction. Because the sampling rate is around 56 sam-
ples per seconds, the main drawback of long window
length is that the system has to wait a long time to col-
lect the adequate number of data samples before pre-
diction. For instance, a window length 50 results in al-
most a 1 s lag time before any prediction can be made.
However, the advantage of long windows is that the
prediction can be made for a bigger data chunk, which
reduces the prediction time per sample. In our experi-
ments, we decided set the window length to 10 because
we found this to be the best trade-off between accuracy
and speed. Fewer data yielded worse accuracy, while
longer blocks increased the prediction latency.

To find the best ANN structure, we ran a grid search
over the following hyperparameters: (1) number of
hidden units within a layer from 10 to 400; (2) num-
ber of hidden layers: 1 or 2; (3) activation function:
sigmoid or rectified linear unit (ReLU). The training
was performed with an Adam optimizer and with early
stopping. In the early stopping, the training stopped if
the validation loss reduced less than 1e-6 in the last
three epochs or if the average validation loss of the last
10 epochs was greater than the average validation loss
of the preceding 10 epochs (that is, the cost tended to
grow). An example for the learning curves along with
the loss on the validation set is shown in Fig. 8. Tests
were repeated five times; average results are shown in
Table 10, along with STD in parentheses. The results
indicate that structures with the ReLU activation func-



386 R. Chereshnev and A. Kertész-Farkas / RapidHARe

Table 8

Transition matrix for hidden Markov model

Walking Running Going up Going down Sitting Sitting down Standing up Standing

Walking 0.99 0.0025 0.0025 0.0025 0 0 0 0.0025

Running 0.0025 0.99 0.0025 0.0025 0 0 0 0.0025

Going up 0.005 0 0.99 0 0 0 0 0.005

Going down 0.005 0 0 0.99 0 0 0 0.005

Sitting 0 0 0 0 0.99 0 0.01 0

Sitting down 0 0 0 0 0.01 0.99 0 0

Standing up 0 0 0 0 0 0 0.99 0.01

Standing 0.002 0.002 0.002 0.002 0 0.002 0 0.99

Table 9

HMM grid search result

#GMM Window length Without border tolerance With border tolerance #Params1 Time (μs)2 Lag (s)3

F1 Accuracy F1 Accuracy

30 50 77.82 (1.02) 96.37 (0.30) 80.57 (1.08) 96.88 (0.31) 18240 34.87 (0.04) 0.85

25 77.56 (1.00) 96.32 (0.30) 80.43 (1.05) 96.85 (0.31) 54.10 (0.71) 0.43

10 76.64 (0.95) 96.17 (0.30) 79.36 (0.98) 96.68 (0.30) 114.05 (0.23) 0.17

5 75.78 (0.96) 95.99 (0.30) 78.36 (1.00) 96.47 (0.30) 213.46 (0.28) 0.09

20 50 77.33 (0.38) 96.03 (0.04) 80.04 (0.34) 96.53 (0.05) 12160 31.39 (0.40) 0.85

25 76.93 (0.39) 95.96 (0.04) 79.75 (0.36) 96.47 (0.05) 47.70 (0.04) 0.43

10 76.15 (0.32) 95.80 (0.03) 78.86 (0.28) 96.29 (0.04) 105.59 (0.21) 0.17

5 75.19 (0.27) 95.57 (0.03) 77.73 (0.25) 96.03 (0.05) 195.65 (0.06) 0.09

10 50 76.87 (0.74) 95.78 (0.10) 79.58 (0.71) 96.22 (0.09) 6080 23.92 (0.05) 0.85

25 76.44 (0.77) 95.73 (0.11) 79.22 (0.74) 96.16 (0.09) 42.01 (0.03) 0.43

10 75.57 (0.72) 95.59 (0.12) 78.27 (0.66) 96.01 (0.10) 93.41 (0.21) 0.17

5 74.81 (0.73) 95.41 (0.11) 77.36 (0.68) 95.81 (0.10) 179.37 (0.06) 0.09

5 50 75.28 (0.23) 94.87 (0.11) 77.92 (0.24) 95.29 (0.11) 3040 21.42 (0.11) 0.85

25 74.68 (0.20) 94.79 (0.09) 77.21 (0.21) 95.20 (0.10) 39.04 (0.05) 0.43

10 73.28 (0.15) 94.57 (0.07) 75.64 (0.16) 94.94 (0.08) 88.38 (0.01) 0.17

5 72.31 (0.12) 94.30 (0.01) 74.52 (0.11) 94.63 (0.00) 171.12 (0.50) 0.09

Tests were repeated five times; mean results are shown along with STD in parentheses. Performance measures are averaged over activities.
1The number of parameters in the models to be trained.
2Time in micro seconds to predict the activity of a single data frame measured on a single-thread CPU.
3Time in seconds to wait to collect an adequate number of data samples.

tion performed poorly; however, two-layered structure
with a sigmoid activation function seemed to be over-
fit and slow in prediction. The best performance with
ANN can be achieved using a single layer network
with sigmoid activation function having 200 hidden
unites, and this is the structure we used in our compar-
ative tests.

For the best hyperparameter search for the RNN, we
ran a grid search over the number of hidden units from
10 to 200 using sigmoid or ReLU activation functions.
Tests were repeated five times, and the averaged results
along with STD presented in Table 11. The results in-

dicate that RNN can be considered rather slow. More-
over, ReLU seems to perform poorly compared to the
sigmoid activation function. The best performance was
achieved using 200 hidden units with a sigmoid acti-
vation function organized in a single layer. Thus, this
is the structure for RNN we used in our comparative
tests.

4.5. Comparison to state-of-the-art methods

Here we compare the performance of the Rapid-
HARe methods to state-of-the-art methods. Recogni-
tion performance was evaluated by recall, precision,
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Table 10

Artificial neural network grid search result

#Units Without border tolerance With border tolerance #Params1 Time (μs)2

F1 Accuracy F1 Accuracy

Two hidden layers with sigmoid activation function

400 85.34 (0.27) 97.78 (0.04) 87.65 (0.29) 98.1 (0.04) 179208 45.27 (0.77)

300 85.86 (0.46) 97.82 (0.02) 88.23 (0.56) 98.13 (0.04) 104408 34.51 (0.4)

200 85.45 (0.41) 97.8 (0.04) 87.77 (0.34) 98.11 (0.03) 49608 24.03 (0.11)

100 86.4 (0.09) 97.84 (0.01) 88.82 (0.14) 98.16 (0.02) 14808 13.51 (0.24)

50 86.5 (0.63) 97.77 (0.08) 88.93 (0.68) 98.08 (0.08) 4908 8.35 (0.31)

20 85.22 (0.23) 97.4 (0.03) 87.59 (0.25) 97.67 (0.03) 1368 4.74 (0.07)

10 80.15 (0.35) 96.44 (0.06) 81.97 (0.37) 96.63 (0.06) 588 3.69 (0.05)

One hidden layer with sigmoid activation function

400 86.73 (0.39) 97.88 (0.04) 89.09 (0.49) 98.18 (0.04) 18808 23.2 (0.16)

300 86.97 (0.23) 97.88 (0.03) 89.3 (0.27) 98.18 (0.04) 14108 18.52 (0.43)

200 86.98 (0.04) 97.88 (0.02) 89.4 (0.08) 98.19 (0.01) 9408 13.01 (0.04)

100 86.51 (0.19) 97.78 (0.03) 88.79 (0.26) 98.07 (0.04) 4708 7.77 (0.08)

50 85.77 (0.28) 97.62 (0.04) 88.1 (0.3) 97.89 (0.04) 2358 4.9 (0.05)

20 83.19 (0.55) 97.07 (0.05) 85.3 (0.68) 97.31 (0.06) 948 3.48 (0.05)

10 77.69 (0.23) 95.89 (0.04) 79.37 (0.2) 96.05 (0.04) 478 3.02 (0.14)

Two hidden layers with ReLU activation function

400 82.37 (0.19) 97.35 (0.03) 84.51 (0.15) 97.66 (0.03) 179208 8.09 (0.06)

300 81.75 (0.15) 97.23 (0.03) 83.95 (0.15) 97.54 (0.02) 104408 6.63 (0.04)

200 81.73 (0.22) 97.22 (0.08) 83.91 (0.24) 97.54 (0.08) 49608 5.33 (0.02)

100 81.66 (0.87) 97.23 (0.11) 83.92 (0.88) 97.55 (0.11) 14808 4.33 (0.16)

50 81.74 (0.24) 97.23 (0.01) 84.04 (0.27) 97.54 (0.01) 4908 3.77 (0.03)

20 82.7 (0.75) 97.16 (0.09) 84.99 (0.84) 97.44 (0.09) 1368 3.23 (0.04)

10 78.27 (0.62) 96.25 (0.09) 80.15 (0.63) 96.44 (0.09) 588 3.13 (0.01)

One hidden layer with ReLU activation function

400 83.29 (0.48) 97.45 (0.04) 85.56 (0.5) 97.77 (0.03) 18808 5.57 (1.32)

300 83.2 (0.33) 97.43 (0.02) 85.38 (0.38) 97.74 (0.03) 14108 4.14 (0.02)

200 83.7 (0.42) 97.49 (0.03) 85.92 (0.43) 97.79 (0.03) 9408 3.78 (0.1)

100 85.07 (0.26) 97.56 (0.06) 87.34 (0.25) 97.85 (0.06) 4708 3.38 (0.06)

50 84.9 (0.41) 97.46 (0.05) 87.16 (0.44) 97.73 (0.05) 2358 2.9 (0.08)

20 82.67 (0.37) 97.0 (0.03) 84.79 (0.34) 97.24 (0.03) 948 2.78 (0.04)

10 77.97 (0.49) 96.13 (0.08) 79.63 (0.5) 96.29 (0.08) 478 2.76 (0.04)

F1 score, and accuracy, and our main results are sum-
marized in the Table 12(A). The best results were
achieved using the RapidHARe method using direc-
tional features (RapidHARe-DF) and all features from
all sensors when we allowed tolerance on the bor-
der between activities. RapidHARe-DF has achieved a
94.27% F1 score and 98.94% accuracy. Compared to
ANN, RNN, and HMM, this decreased the F1 score
error rate by 46%, 66%, and 63% and the accuracy
error rate by 41%, 55%, and 62%, respectively. Al-
lowing border tolerance improves performance met-

rics. For instance, by allowing border tolerance, the
RapidHARe-DF method reduced the F1 score error
rate by 52% and the accuracy error rate by 49% when
compared to the case when border tolerance was not
allowed. However, border tolerance for ANN, RNN,
and HMM reduced the F1-score error rate by 19%, 2%,
and 15%, respectively, and the accuracy error rate by
15%, 2%, and 15%, respectively. This suggests that the
ANN, RNN, and HMM methods tend to make more
scattered misclassifications within the same activity
rather than at the border between different activities.
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Table 11

Recurrent neural network

#Units Without border tolerance With border tolerance #Params1 Time (μs)2

F1 Accuracy F1 Accuracy

One layer with sigmoid activation function

200 82.97 (1.28) 97.58 (0.16) 83.31 (1.29) 97.64 (0.16) 17208 149.85 (1.19)

150 80.15 (1.89) 97.21 (0.36) 80.57 (1.85) 97.29 (0.36) 12908 123.09 (1.83)

100 78.93 (1.42) 96.79 (0.46) 79.29 (1.47) 96.86 (0.46) 8608 94.25 (0.44)

75 82.09 (2.09) 97.44 (0.23) 82.43 (2.09) 97.52 (0.23) 6458 82.33 (1.25)

50 75.54 (1.43) 96.57 (0.33) 75.88 (1.47) 96.64 (0.34) 4308 69.35 (1.36)

20 73.83 (2.86) 96.49 (0.3) 74.12 (2.86) 96.55 (0.31) 1728 52.25 (0.07)

10 70.81 (2.96) 95.73 (0.56) 71.13 (2.99) 95.79 (0.57) 868 43.05 (1.15)

One layer with ReLU activation function

200 65.0 (6.15) 92.39 (1.59) 65.27 (6.2) 92.45 (1.59) 17208 61.54 (0.36)

150 74.02 (5.01) 95.03 (1.36) 74.35 (5.08) 95.09 (1.37) 12908 56.8 (0.73)

100 72.06 (3.05) 94.33 (0.79) 72.35 (3.07) 94.39 (0.79) 8608 53.05 (1.0)

75 69.34 (3.48) 94.02 (0.79) 69.58 (3.53) 94.08 (0.8) 6458 52.25 (1.21)

50 70.19 (1.53) 93.94 (0.54) 70.44 (1.53) 94.0 (0.54) 4308 49.86 (0.55)

20 61.68 (6.27) 93.64 (1.12) 61.93 (6.31) 93.7 (1.12) 1728 46.73 (1.49)

10 34.13 (4.54) 87.86 (0.97) 34.25 (4.56) 87.9 (0.98) 868 42.58 (0.87)

Fig. 8. Learning curve for early stopping. Training terminated after
epoch 80 because of lack of improvement on the validation set.

Because one of our aims is to develop a simple
model for HAR prediction, we tested these methods
with fewer features as well. First, we kept the triaxial
accelerometer data obtained from accelerometers lo-
cated on the thigh and shin, and second, we kept the
accelerometer data from only the thigh. All gyroscope
and EMG data were omitted. The results are shown
in Table 12(B) and 12(C). When border tolerance is
taken into account, ANN’s performance drops from
89.4% to 62.16% in the F1 score as the amount of in-
formation and the number of features decrease. The
F1 scores for RNN and HMM decrease moderately
from 83.31% to 76.73% and 84.34% to 73.54%, re-

spectively. While RapidHARe also shows loss in per-
formance, RapidHare-DF seems to be robust, and its
performance remains roughly the same; it outperforms
all state-of-the-art methods under limited data. Similar
tendencies can be observed when the performance is
evaluated in accuracy with and without allowing bor-
der tolerance.

The CPU time is remarkably low for our model.
RapidHARe and RapidHARe-DF perform activity pre-
dictions around one and a half times faster than ANN,
eight times faster than HMM , and more than ten times
faster than RNN. It is worth noting that the number
of model parameters is also the lowest for our model,
while HMM and RNN consist of significantly more
parameters. The timing results and the number of pa-
rameters are shown in Table 12 as well. In our opin-
ion, these facts make our model plainly appropriate for
real-time recognition.

5. Conclusions

In this article, we have presented a new, fast, and
computationally inexpensive method, called Rapid-
HARe, for continuous activity recognition. It predicts
activities based on the distribution of the raw data in
a small, half-second-long context window, in which
the distribution was modeled using Gaussian mix-
ture models. Note that, our method does not employ
any dynamic-programming-based algorithms for infer-
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Table 12

Overall classification results

Method Without border tolerance With border tolerance #Params2 Time

Recall Precision F1 Accuracy Recall Precision F1 Accuracy (μs)3

(std) (std) (std) (std) (std) (std) (std) (std) (std)

(A) Main classification results

RapidHARe 87.14 87.75 86.48 97.83 91.44 92.82 91.4 98.65 6536 9.7

(0.23) (0.14) (0.2) (0.05) (0.31) (0.17) (0.27) (0.05) (0.032)

RapidHARe-DF1 88.93 88.01 87.9 97.92 94.59 94.58 94.27 98.94 9064 9.933

(0.12) (0.13) (0.14) (0.02) (0.13) (0.12) (0.14) (0.03) (0.219)

ANN 84.55 89.01 86.98 97.88 86.82 91.13 89.4 98.19 9408 13.01

(0.03) (0.06) (0.04) (0.02) (0.01) (0.09) (0.08) (0.01) (0.04)

RNN 80.87 87.21 82.97 97.58 81.11 87.59 83.31 97.64 17208 149.854

(1.33) (0.36) (1.28) (0.16) (1.34) (0.34) (1.29) (0.16) (1.189)

HMM 82.59 83.14 81.54 96.76 85.03 86.11 84.34 97.24 6536 102.862

(0.11) (0.09) (0.1) (0.02) (0.14) (0.08) (0.12) (0.01) (0.184)

(B) Results using only triaxial accelerometer data obtained from thigh and shin

RapidHARe 75.84 74.04 72.32 96.21 79.6 78.11 75.89 96.97 2064 8.859

(0.13) (0.09) (0.13) (0.09) (0.07) (0.1) (0.09) (0.08) (0.091)

RapidHARe-DF1 89.33 87.19 87.64 97.93 94.43 94.21 94.04 98.92 3136 9.183

(0.02) (0.14) (0.09) (0.0) (0.02) (0.11) (0.06) (0.0) (0.17)

ANN 70.4 74.74 70.36 95.84 70.86 75.35 70.82 95.96 4208 12.759

(0.32) (0.11) (0.41) (0.05) (0.31) (0.12) (0.41) (0.05) (0.071)

RNN 79.71 85.87 80.6 97.27 79.95 86.3 80.94 97.35 6808 154.799

(0.94) (0.55) (0.91) (0.18) (0.96) (0.59) (0.94) (0.18) (6.158)

HMM 75.23 73.23 71.61 96.0 78.03 75.95 74.13 96.53 2064 95.571

(0.1) (0.13) (0.12) (0.09) (0.04) (0.12) (0.09) (0.09) (0.032)

(C) Results using only triaxial accelerometer data obtained from thigh

RapidHARe 76.98 76.94 74.45 96.56 79.94 80.92 77.58 97.28 1032 8.724

(0.02) (0.02) (0.03) (0.0) (0.01) (0.03) (0.02) (0.0) (0.021)

RapidHARe-DF1 88.6 87.3 87.33 97.89 93.21 94.19 93.49 98.9 1768 8.945

(0.0) (0.02) (0.02) (0.0) (0.0) (0.02) (0.01) (0.0) (0.094)

ANN 61.89 67.16 61.93 93.73 62.12 67.47 62.16 93.8 3008 12.188

(0.5) (0.3) (0.51) (0.04) (0.48) (0.28) (0.51) (0.04) (0.025)

RNN 75.55 81.75 76.35 96.12 75.86 82.16 76.73 96.23 4408 150.192

(2.85) (3.51) (3.31) (0.52) (2.87) (3.53) (3.35) (0.54) (1.27)

HMM 73.8 73.67 70.96 95.63 76.35 76.88 73.54 96.29 1032 93.944

(0.01) (0.02) (0.0) (0.0) (0.02) (0.06) (0.02) (0.0) (0.164)

Performance measures are averaged over activities.
1RapidHARe using directional features (DF).
2The number of parameters in the models to be trained.
3Time in micro seconds to predict the activity of a single data frame measured on a single-thread CPU.

ence, as they are known to be slow. This fact makes
RapidHARe an extremely fast predictor; as compara-
tive tests showed, our method is one and a half times
faster than an ANN method, and more than eights time
faster than RNN and HMM methods.

RapidHARe outperforms the current state-of-the-art
methods in accuracy as well. However, performance

can be further improved using additional
features, termed directional features, that exploit infor-
mation about signal changes. This information is es-
pecially useful in distinguishing among sitting-related
activities, such as sitting down and standing up. We
also discussed the difficulty of exactly determining the
border between two subsequent activities in the sig-
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nal. If we allow a little tolerance around the border in
the performance evaluation, then RapidHARe provides
nearly perfect performance, while the other methods’
performance remain roughly the same. This, in our
opinion, indicates that the other methods tend to make
scattered misclassifications within the same activity.

It is also worth mentioning that our method did
not utilize any data preprocessing, feature-selection,
extraction, or transformation methods, and it still
achieved outstanding performance. Perhaps these pre-
processing methods could contribute to better perfor-
mance, but this would come at the expense of addi-
tional CPU time.

In this article, we investigated HAR methods from
purely computational aspects, but we did not discuss
any hardware-related issues or how our systems could
be implemented on mobile devices. Since our method
is the fastest and requires the smallest amount of mem-
ory to store the predictor model, we believe that Rapid-
HARe would consume the least amount of energy
compared to the current state-of-the-art methods, in-
dependently from the hardware specifications. That is,
if a HAR system were implemented on a PC, mobile
phone, or microcontroller, the energy consumption for
data collection or for wireless data transfer from the
sensors to work stations (PC, mobile phone) would be
the same independently from the chosen HAR model.

Finally, we also mention that GPUs (and NPUs) are
becoming standard chips in mobile devices in order to
perform AI features − for instance, in Huawei’s Mate
10 (Kirin 970) and Google’s Pixel 2 (Adreno 540) −
and therefore, HAR systems could perform inference
on these GPUs. In this case, the inference will become
faster and independent of the method, albeit at the ex-
pense of additional energy consumption. As we argued
in the introduction that the HAR problem is simple
and does not require a large number of data features
and computationally exhaustive inference algorithms,
we think that the speed gained by GPUs might be not
worth the additional energy consumption required by
GPUs and by the data transfer from the CPU/memory
to the GPU.
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