
Программа учебной дисциплины «Основы и методология программирования»

Утверждена
Академическим советом ООП
Протокол № от « » 20 г.

Авторы Т. В. Вознесенская, С. А. Шершаков
Число кредитов 8
Контактная работа (час.) 120
Самостоятельная работа (час.) 184
Курс 1
Формат изучения дисциплины без использования онлайн-курса

1 Course Description

1.1 Title of a Course
Introduction to Programming.

1.2 Pre-requisites
1.2.1 Part I

As amatter of fact, good English andMath are usually enough to enter the program, so no preliminary
knowledge in data science or specific programming skills are required, because some of the students
may have zero experience in these.

1.2.2 Part II

Successful completion of the first part of the course is the sole prerequisite for being enrolled for the
second part.

1.3 Course Type
Compulsory.

1.4 Abstract
The training course “Introduction to Programming” is offered to students of Bachelor Program “HSE
and University of London Double Degree Programme in Data Science and Business Analytics” (area
code 01.03.02) at the Faculty of Computer Science of the National Research University — Higher
School of Economics (HSE).The course is classified as an compulsory subject (Б.Пр.Б unit / base mod-
ule, Б.Пр – Major disciplines of 2018–2019 academic year working curriculum); it is a two-module
course (semester A quartiles 1 and 2).

The course is divided into two logical parts, which do not basically depend on each other. The
first part is given during semester A quartile 1 under responsibility of Dr. Tamara Voznesenskaya. The
second part is given during semester A quartile 2 under responsibility of Lect. Sergey Shershakov.

The syllabus is prepared for teachers responsible for the course (closely related disciplines), teaching
assistants, students enrolled in the course as well as experts and statutory bodies carrying out assigned
or regular accreditations.

1

1.4.1 Part I

The first part of the course is intended to be taught during the first module (quartile) of the program,
so it starts from the very beginning and takes into account, that some of the students may have zero
experience in programming.

The lectures and practical classes are closely inter-related. The lectures are primarily intended to
introduce new topics, whereas the practical classes are intended for solving specific problems by coding
programs in Python.

1.4.2 Part II

The second part of the course is intended to be taught during the thirdmodule (quartile) of the program.
It is dedicated to the base features of the C++ programming language and C++ Standard Library (STL).
The part covers all necessary topics that are needed to start developing a modern CLI1-applications in
C++14.

The lectures and practical classes are closely inter-related. The lectures are primarily intended to
introduce new topics, whereas the practical classes are intended for solving specific problems by coding
programs in C++.

2 Learning Objectives
During the course “Introduction to Programming” the participants will:

• study methodology of programming;
• develop algorithmic thinking;
• study approaches and toolkits for the development of Python applications;
• study approaches and toolchains for the development of C++-applications;
• practice application debugging anddeploymentwith respect to various platforms and toolchains.

3 Learning Outcomes
Students who complete this course successfully will learn or acquire:

• basic concepts and methods of software development;
• skills in Python programming to formalize and solve simple development tasks;
• analyze a problem to be implemented in the form of an C++-application;
• design app architecture with respect to problem decomposition and known limitations;
• select the most appropriate toolset for app development;
• create a testbed environment for essential testing of the application.

1CLI — Command-line interface.

2

4 Course Plan

4.1 Part I: semester A quartile 1
Topic Name
1 Introduction
2 Dynamic typing. Operations of sequence’s, selection, and iteration
3 Float in the computer memory, rounding and other aspects. Strings
4 Strings. Tkinter GUI
5 Functions and recursion. Lambda-functions. Named parameters
6 Tuples. Lists. Function map. Methods Split and Join
7 Zen of python. PEP-8. Documenting code (PEP-257). Files. Exceptions and errors. Program debugging
8 Sets. Dictionaries
9 Sort and found. Introduction into the complexity theory
10 Elements of functional programming. Function Enumerate. Module Functools
11 Object-oriented programming. Main ideas: encapsulation, inheritance and polymorphism. Operator

Overriding. Function Isinstance. Examples
12 Python for data analysis. Overview

4.2 Part II: semester A quartile 2
Topic Name
1 Introduction to C++ (Sec. 4.2.1)
2 Data types and Objects (Sec. 4.2.2)
3 Control flow statements (Sec. 4.2.3)
4 Expressions and Operators (Sec. 4.2.4)
5 Functions and procedures (Sec. 4.2.5)
6 C++ Memory model(Sec. 4.2.6)
7 Classes (Sec. 4.2.7)
8 Strings (Sec. 4.2.8)
9 Standard library (STL) (Secs. 4.2.9, 4.2.10)
10 Operator overloading (Sec. 4.2.11)
11 Templates (Sec. 4.2.12)
12 Exceptions and Move semantics (Secs. 4.2.13, 4.2.14)
13 Inheritance (Sec. 4.2.15)
14 Object-Oriented Analysis and Design (Sec. 4.2.16)
15 Optional: C++ plus Python (Sec. 4.2.17)

Notes:
1. Each sequential number above corresponds to a separate theme, whereas a theme can span over

one or more lectures and/or practical classes.

4.2.1 Introduction to C++

Introduction to C++. C++ program structure. Statements. Programs and modules. Toolchains and
building C++ Programs.

4.2.2 Data types and Objects

Datatypes and Objects. Primitive, composite and user datatypes. Scope of variables (objects). Con-
stants. Basic input/output. Introduction to streams.

3

4.2.3 Control flow statements

Control flow statements: conditional (if, switch); loops (while, do..while, for).

4.2.4 Expressions and operations

Expressions. Operations and operators. Operator precedence. Logical and Bitwise operations.

4.2.5 Functions and procedures

Procedural decomposition. Functions and procedures. Formal and Actual Parameters of a Function.
Function return value. Function signature. Passing parameters to a function by value and by reference.
Function overloading. Operator overloading.

4.2.6 C++ memory model

Memorymodel of a C++ program. Addresses and pointers. Difference between pointer and reference.
Stack- and heap-memory. Object life-cycle.

4.2.7 Classes

Classes overview. Class members: methods and fields. Access modifiers: public, protected, pri-
vate. Classes vs. structures. The (.) “dot” and (->) “arrow” operators. Constructors. Destructor. Safe
array. Copy constructor. Copy operation. Copy-and-swap idiom. Rule of three.

4.2.8 Strings

Strings in C++. Null-terminated string. std:string class. Unicode supporting. String streams. Ap-
proaches to deal with strings.

4.2.9 Standard library overview

Standard library (STL) overview. Containers and adapters. Algorithms. Iterators. “for-each” loop for
iterating collections/containers. stl::vector<T> and C-style arrays. Dynamic resizing of a vector.

4.2.10 Standard library components

Sequence containers: vector, list, dequeue∗. Associative containers: map, set, unordered_map,
unordered_set. Adapters: stack, priority_queue. Main std algorithms.

4.2.11 Operator overloading

More on operator overloading. Bitwise operations. std::bitset<N> class.

4.2.12 Templates

Templates: classes and functions. Header-only approach. typename and inner types. Templates and
duck-typing. Concepts. std template framework. Lambda functions.

4.2.13 Exceptions

Exceptions. RAII idiom. Smart pointers.

4

4.2.14 Move semantics

Move semantics. Rvalue reference. Rule of five.

4.2.15 Inheritance

TheThree Pillars of Object-Oriented Programming: Encapsulation, Inheritance, Polymorphism. Single
inheritance. Virtual and pure-virtual methods. Abstract classes and interface classes.

4.2.16 Object-Oriented Analysis and Design

Introduction to Object-Oriented Analysis and Design. Class relationships.

4.2.17 C++ plus Python

Optional: binding c++ and python together.

5 Reading List

5.1 Part I
Required

1. Mark Pilgrim. Dive Into Python. 2004
2. The Python Tutorial. url: https://docs.python.org/3/tutorial/index.html.

5.2 Part II
Required

1. Marc Gregoire. Professional C++. 3rd ed. 2014
2. Mikael Olsson. C++ 14 Quick Syntax Reference. 2nd ed. 2015
3. Stephen R. Davis. C++ For Dummies. 7th ed. 2014

6 Grading System
The course grade is based on both ongoing assessment and final examination. Every module ends up
with an final exam. The grade for the exam together with a cumulative grade represent a final grade
for the module. The ultimate gradeG for the whole course is calculated as:

G = 0.7 ·min(P1, P2) + 0.3 ·max(P1, P2), (1)

where P1 is a first part final grade, and P2 is a second part final grade.
GradeG is rounded (up or down) to an integer number of points before entering them into records.

P1 and P2 are also rounded in (1). The conversion of rounded 10-point scaled results to 5-point scaled
ones is performed according to Table 1.

6.1 Part I Grading Details
The final grade P1 for the first part is calculated as follows:

P1 = 0.4 · E1 + 0.6 · OA1, (2)

5

https://docs.python.org/3/tutorial/index.html

Table 1: Correspondence of ten-point to five-point marks

Ten-point scale [10] Five-point scale [5]
1 — unsatisfactory

Unsatisfactory — 2
2 — very bad
3 — bad
4 — satisfactory

Satisfactory — 35 — quite satisfactory
6 — good

Good — 47 — very good
8 — nearly excellent

Excellent — 5
9 — excellent
10 — brilliant

where E1 is a grade of the first part exam, which takes place at the end of the quartile 1 (semester A),
OA1 is an ongoing assessment grade of the first part (both 10-point scale). The ongoing assessmentOA1

measures participant’s performance throughout all classes and involves various types of activities (see
Sect. 6.3).

6.2 Part II Grading Details
The final grade P2 for the second part is calculated as follows:

P2 = 0.4 · E2 + 0.6 · OA2, (3)

whereE2 is a grade of the second part exam, which takes place at the end of the quartile 3 (semester B),
OA2 is an ongoing assessment grade of the second part (both 10-point scale). The ongoing assessment
OA measures participant’s performance throughout all classes and involves various types of activities
(see Sect. 6.3).

6.3 Ongoing Assessment
Theongoing assessment grade is accumulated throughout all the classes and is related to a participant’s
activity. An ongoing control structure is individual for every class.

During the classes, there are some activities available for students to be involved in. They include
(but are not limited by) writing code and developing applications, evaluating practical problems, solv-
ing tests, answering questions and so on. Every activity is evaluated and grants some points (RP) to
participants. We consider two sorts of points: 1) regular points (RP) and 2) bonus points (BP). BPs are
given for additional efforts and for excellent jobs.

RPs andBPs are accumulated during amodule. At the end of themoduleOA is calculated according
to the following formula for calculating OA1 and OA2 of formulas (2) and (3) correspondly:

OA = max
([

10 · RP+ BP
RPmax

]
, 10

)
, (4)

where, RPmax denotes the maximum possible number of points that can be taken during the module.
Finally, some kinds of out-of-class activities can be accounted for as a part of ongoing assessment.

Peer review work, preparing and reporting one of a course-related topics are examples of such activities.

6.3.1 Regular tests

Students’ skills in programming are tested using automated testing. This way, a student is assigned
an individual task, prepares it by using a personal computer and, then, submits it by using a special

6

service, such as Yandex.Contest or a repository-based tool. The specific solution is subject to further
clarification.

The individual home-based task submissions are to be further reassessed through in-class tests or
examinations.

For any two corresponding submissions, one for home work and one for class work, graded as H
and C respectively, the resulting grade R is calculated as follows:

R = 0.8 ·min(H,C) + 0.2 ·max(H,C). (5)

6.4 Other conditions
The final exams as well as the intermediate tests are given in the form of a written test (paper- or
computer-based). One (10-point scale) grade is given for the exam.

The second re-sit of each of the final exams is provided by a board of professors. There is allowed
to omit any ongoing assessment when calculating the ultimate grade.

7 Guidelines for Knowledge Assessment
Theknowledge gained by the students is systematically and consistently assessed throughout the course,
which includes understanding and attendance rate of the lectures, as well as tests taken during practi-
cal classes. A quantitative basis is provided elsewhere. The instructors are supposed to check with the
students highly probable coding mistakes and drawbacks in advance.

8 Methods of Instruction
Learning happens through traditional face-to-face lectures (classroom presentations being distributed
through a repositiry) and consolidation of the delivered knowledge and getting hands-on experience
at practical classes.

9 Special Equipment and Software Support (if required)
Students are highly reccommended to use their own laptopswith pre-installed and configured software,
if possible. The computers in computer classes are also suitable for performing programming tasks. The
exact set of software needed for the courses will be listed in an associated educational service, such as
LMS or wiki.

References
[1] Stephen R. Davis. C++ For Dummies. 7th ed. 2014.
[2] Marc Gregoire. Professional C++. 3rd ed. 2014.
[3] Mikael Olsson. C++ 14 Quick Syntax Reference. 2nd ed. 2015.
[4] Mark Pilgrim. Dive Into Python. 2004.
[5] The Python Tutorial. url: https://docs.python.org/3/tutorial/index.html.

Author of the program: Tamara Voznesenskaya

Author of the program: Sergey Shershakov

Ред. 0.2.1 / 30.08.2019 г.

https://docs.python.org/3/tutorial/index.html

	Course Description
	Title of a Course
	Pre-requisites
	Part I
	Part II

	Course Type
	Abstract
	Part I
	Part II

	Learning Objectives
	Learning Outcomes
	Course Plan
	Part I: semester A quartile 1
	Part II: semester A quartile 2
	Introduction to C++
	Data types and Objects
	Control flow statements
	Expressions and operations
	Functions and procedures
	C++ memory model
	Classes
	Strings
	Standard library overview
	Standard library components
	Operator overloading
	Templates
	Exceptions
	Move semantics
	Inheritance
	Object-Oriented Analysis and Design
	C++ plus Python

	Reading List
	Part I
	Part II

	Grading System
	Part I Grading Details
	Part II Grading Details
	Ongoing Assessment
	Regular tests

	Other conditions

	Guidelines for Knowledge Assessment
	Methods of Instruction
	Special Equipment and Software Support (if required)

