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INTRODUCTION

In [1], we presented the results of numerical simu-
lation of the frequency characteristics of the external
Sestroretskii cube radiating into the free space: the
standing wave ratio (SWR), the loss, the attenuation,
and the gain and compared them with the frequency
characteristics of the internal Sestroretskii cube [2].
When comparing the scattering matrices of the exter-
nal and internal Sestroretskii cubes at the frequencies
corresponding to the edge length much smaller than
the wavelength, we noted the following property: the
absolute values of the scattering matrices of the exter-
nal and internal Sestroretskii cubes differ by a value
tending to zero with an increase in the wavelength.
This property suggests the possibility of existence of a
solution similar to the eigensolution for lossless sys-
tems [3], which may be called a self-consistent solu-
tion for a system uniting the ports of the external and
internal Sestroretskii cubes for the quasi-static case.
Let us consider the process of constructing such a
solution for a system consisting of the external and
internal Sestroretskii cubes in the quasi-static case,
i.e., at the frequencies corresponding to the to the edge
length of the Sestroretskii cubes much smaller than the
wavelength.

It should be noted that the internal Sestroretskii
cube simulates an isolated vacuum cell onto which
plane waves are incident from the external space, while
the external Sestroretskii cube simulates an
unbounded space onto which plane waves are incident
from the internal Sestroretskii cube. As a result, after
uniting the external and internal Sestroretskii cubes,
we obtain a system making it possible to simulate the
process of energy scattering in an unbounded space,
i.e., in vacuum, from the viewpoint of both internal
and external electrodynamic problems.

1. THE SELF-CONSISTENT SOLUTION 
OF THE SYSTEM OF THE EXTERNAL 

AND INTERNAL SESTRORETSKII CUBES 
FOR THE QUASI-STATIC CASE

Let us separate a domain in an infinite space and
define in it external and internal Sestroretskii cubes.

Figure 1 shows vectors of the electric, , and mag-

netic, , fields and the Poynting vector  (the energy
flux density of the electromagnetic field) of the inci-
dent and reflected waves for the external Sestroretskii
cube in the first cycle. Solid lines represent the vectors

of electric, , and magnetic, , fields and the Poynt-

ing vector  of the wave incident onto the external
Sestroretskii cube. Suppose that the amplitude of
these waves is unity. Then, as follows from the results
of [1], the amplitudes of the reflected waves will is

 for the electric, , and magnetic, , fields and

 for the Poynting vector , where the value of D in

the quasi-static case is very close to unity. The vectors

of the electric, , and magnetic, , fields and the

Poynting vector  of the reflected waves in Fig. 1 are
represented by the dashed lines.

In the quasi-static case, the quantity D, which
characterizes the radiation loss of the external Sestro-
retskii cube, can be written in the form

(1)

where x is the fraction of energy radiated by the exter-
nal Sestroretskii cube into the free space for one cycle,
which, in the quasi-static case, tends to zero.

The waves that were reflected for the external Ses-
troretskii cube (Fig. 1, dashed lines), in the first cycle,
are incident for the internal Sestroretskii cube.
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Figure 2 shows the vectors of the electric, , and

magnetic, , fields and the Poynting vector  of the
incident (solid lines) and reflected (dashed lines)
waves of the first cycle for the internal Sestroretskii
cube. The amplitudes of the four incident waves are

 for the electric, , and magnetic, , fields and

 for the Poynting vector . As follows from the

results presented in [2], the amplitude of the electric,

, and magnetic, , fields of the reflected wave is

 and the amplitude of the energy f lux density (the

Poynting vector)  of the reflected wave is D.

Thus, we have described the first cycle of the
energy transfer through the system, which is a recom-
position (combination) of the external and internal
Sestroretskii cubes and simulates the energy scattering
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in the free space (vacuum).  The time spent for the first

cycles is

(2)

where  is the delay of the electromagnetic wave

passing through the internal Sestroretskii cube [2] and

 is the delay of the electromagnetic wave passing

through the external Sestroretskii cube [1].

Considering in a similar manner the second cycle

of the energy transfer through the system of the exter-

nal and internal Sestroretskii cubes, we obtain the

amplitude of the electric, , and magnetic, , fields

of the reflected wave:

(3)

τ = τ + τin ext,
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Fig. 1. Vectors of the electric, , and magnetic, , fields and the Poynting vector  of the incident and reflected waves for the

external Sestroretskii cube.
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Fig. 2. Vectors of the electric, , and magnetic, , fields and the Poynting vector  of the incident and reflected waves of the

first cycle for the internal Sestroretskii cube.
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The amplitude of the energy f lux density (the Poy-

nting vector)  for the second cycle is 

Repeating this procedure of energy transfer n

times, we obtain the amplitude of the electric, , and

magnetic, , fields of the reflected wave of 
and the amplitude of the energy f lux density (the Poy-

nting vector)  for the nth cycle equal to 

Thus, we may conclude that the self-consistent
solution in the system under consideration exists.

The self-consistent solution is understood in the
sense that, in each cycle, the energy of the process
under consideration decreases by the factor of D. This
reduction in energy is connected with the loss for the
radiation to the free space. In the quasi-static case, this
loss is small (tends to zero with decreasing sizes of the
system as compared to the wavelength).

2. ESTIMATING THE TIME FOR WHICH HALF 
OF THE ENERGY IS RADIATED 

FOR THE SELF-CONSITENT SOLUTION

For estimating the time  for which half of the

energy is radiated, we will use the condition

(4)

(5)

Leaning upon relationships (4) and (5), we can
write the following expression:

(6)

Since, as , we have [4]

(7)

taking into account (1), we can rewrite expression (6)
in the form

(8)

Thus, for estimating the time , for which half of

the energy is radiated, we need to know the following
quantities:

(i) the delay of passage of the electromagnetic wave

through the internal Sestroretskii cube, ;

(ii) the delay of passage of the electromagnetic

wave through the external Sestroretskii cube, ;

(iii) the fraction of energy radiated to the free space
by the external Sestroretskii cube for one cycle, x.

In the quasi-static case, the delay of an electromag-
netic wave passing through the internal Sestroretskii

cube, , can be estimated, using the results of [2]:

(9)
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where a is the edge length of the internal Sestroretskii
cube and с is the speed of light in vacuum.

The delay of an electromagnetic wave passing through

the external Sestroretskii cube, , in the quasi-static
case, can be estimated, using the results of [1]:

(10)

In the quasi-static case, x, the fraction of energy
radiated to the free space for one cycle by the external
Sestroretskii cube with an edge length a = 1 mm can be
estimated using the following relationship [1]:

(11)

where

(12)

where λ is the wavelength in the free space and f is the
frequency in gigahertzs.

At the same time, the gain factor  can be written

in the form [5]

(13)

where D is the directivity of the external Sestroretskii
cube and η is the efficiency of the external Sestro-
retskii cube.

In the quasi-static case, the directivity of the exter-
nal Sestroretskii cube equals the directivity of a Huy-
gens element, i.e., 3 [5, 6]:

(14)

The efficiency of the external Sestroretskii cube is
determined as

(15)

where  is the energy radiated to the free space by

the external Sestroretskii cube and  is the power
arriving at the input of the external Sestroretskii cube.

Since the amplitude of the energy f lux density (the

Poynting vector)  in the first cycle was taken equal to

1, for the first cycle, we have  W and ,
and the efficiency for the first and subsequent cycles is

(16)

Taking into account relationships (14)–(16), we
can write expression (12) as

(17)

Substituting expression (17) into (11) and taking

into account that  =  we obtain the

following relationship for the fraction of energy radi-
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ated to the free space for one cycle by the external Ses-
troretskii cube with an edge length а of 1 mm:

(18)

Relationship (18) can be rewritten as follows:

(19)

Expression (19) can also be applied for an arbitrary
edge length of the external Sestroretskii cube:

(20)

where  is the fraction of energy radiated by the exter-

nal Sestroretskii cube at the frequency  In particu-
lar, for the external Sestroretskii cube with an edge
length a of 1 mm, we have

(21)

where  is the wavelength in the free space for the fre-

quency 

Since it is true that  [5], taking into account

special case (21), we can rewrite expression (20) in the
following form:

(22)

Thus, substituting into relationship (8) expres-
sions (9), (10), and (22), we obtain the following

expression for estimating the time  for which half of

the energy is radiated:

(23)

After uniting all number coefficients, relation-

ship (23) for estimating the time  for which half of

the energy is radiated can be written in the form

(24)

It should be emphasized once more that relation-

ship (24) is an estimate of the time  for which half

of the energy is radiated in the quasi-static case, when
the ratio of the edge lengths a of the external and inter-
nal Sestroretskii cubes to the wavelength λ in the free
space tends to zero.

Relationship (24) can be interpreted as follows: a
wave train [7] of length λ in vacuum can be repre-
sented as a sum of local self-consistent solutions circu-
lating in cubes with edge lengths a, and, on a finer
decomposition into self-consistent solutions, they are

more stable, because the time  for which half of the

energy is radiated increases.

For example, let us present a numerical estimate of

the time  for which half of the energy is radiated

when the edge length of the Sestroretskii cube is 1 mm
and the wavelength in the free space is 1 m:

(25)

As is evident from estimate (25), the time  for

which half of the energy is radiated in this case is rather
small.

CONCLUSIONS

It has been shown that the fact that the absolute
values of the scattering matrices of the external and
internal Sestroretskii cubes in the quasi-static case are
equal makes it possible to form a self-consistent solu-
tion in vacuum, which is simulated by uniting the
external and internal Sestroretskii cubes. The expres-

sion obtained for the time  for which half of the

energy is radiated has confirmed that this time is very
small, which is explained by a very high speed of light
in vacuum. To increase this time, it is necessary to
increase the wavelength with a simultaneous reduction
in the spatial scale of energy localization.
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