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INTRODUCTION

The exterior and interior Huygens cubes (Fig. 1)
where the electromagnetic wave propagates along a sin-
gle spatial coordinate are considered in works [1–3].
The structure where the electromagnetic wave propa-
gates along three spatial coordinates (a peculiar 3D
Huygens cube) was first considered by Sestroretskii in
1983. This structure is called the Sestroretskii cube
[4–7]. In the Russian literature, the analysis method
using the Sestroretskii cube is called the method of an
impedance analogue of the electromagnetic space [5].
Later such a structure was considered by Johns [8]. In
the western literature, the analysis method using the
Johns cube was called the transmission line method
(TLM). It was developed by Hoefer [9], Christopoulos

[10], Trenki  [11], and Russer [12]. In these works, the
properties of the electromagnetic wave propagation
were postulated. It is of interest to numerically modu-
late the above structures for verifying the postulates
formulated in these works.

1. INVESTIGATION OF THE INTERIOR 
SESTRORETSKII CUBE

Consider cube A of the dimensions 1 × 1 × 1 mm
(Fig. 2). Cube A is filled with vacuum. A rectangular
parallelepiped also filled with vacuum is attached to
every facet of cube А. The bases of the rectangular par-
allelepipeds coincide with the facets of cube А and
have the equal heights h = 0.05 mm. However, we want
to calculate the properties of the investigated cube
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Fig. 1. (a) Interior and (b) exterior Huygens cubes where the electromagnetic wave propagation along one coordinate is illus-
trated.
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when h → 0. Therefore, after the numerical determi-
nation of the scattering matrix of the interior
Sestroretskii cube with the help of code ANSYS HFSS
v.15 [13], we move the reference planes of the inputs
[14] of the device closely to cube A. In Fig. 2, height h
is considerably smaller than the dimension of the edge
of cube А. The number of rectangular parallelepipeds
is six, which coincides with the number of facets of
cube А. In Fig. 3, the facets of rectangular parallelepi-
peds connected to cube А are displayed. On these fac-
ets, we specify the boundary conditions for the tangen-

tial component of electric field  which is equal to
zero. This corresponds to a metal wall. Consider that
the facets of the cube are the short circuit (SC) walls
[14–16].

In Fig. 4, the facets of rectangular parallelepipeds
connected to cube А are marked out. On these facets,
we specify the boundary conditions for the tangential

components of magnetic field  which is equal to
zero. This corresponds to a magnetic wall. Consider
that the facets of this cube are the idling walls [14–16].

On all of the remaining facets of the rectangular
parallelepipeds connected to cube А (Fig. 5), we spec-
ify the boundary conditions of excitation and match-
ing of plane waves [14–16]. These conditions corre-
spond to the inputs of the Sestroretskii cube. The input
numeration is shown in Fig. 5. The polarizations of the

intensities of the electric ( ) and magnetic ( ) fields
and the directions of the vectors of Umov–Poynting

energy flux densities  [17–20] for incident plane
waves are shown in Fig. 6.

The considered geometry is a 3D interior Huy-
gens cube, because it makes us possible to model the
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propagation of the electromagnetic wave along three
spatial coordinates for interior problems of electro-
magnetics. This geometry was first considered by
Sestroretskii in 1983. Therefore, we call it the interior
Sestroretskii cube.

The scattering matrix of the interior Sestroretskii
cube can be found from the scattering matrices of the
cube halves in the cases of in-phase and antiphase
excitations [4–8, 14].
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Fig. 2. Geometry of cube A and rectangular parallelepipeds
attached to its facets and filled with vacuum.
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Fig. 3. Facets of rectangular parallelepipeds, on which the
SC boundary condition is set.
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Fig. 4. Facets of rectangular parallelepipeds, on which the
idling boundary condition is set.
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Fig. 5. Facets of rectangular parallelepipeds, which are connected to cube А and on which the boundary conditions for excitation
and matching of plane waves are specified.
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2. THE INSIDE SESTRORETSKII CUBE 

IN THE PRESENCE 

OF THE IN-PHASE EXCITATION

Consider the interior Sestroretskii cube in the

case when inputs 1 and 2 are in-phase excited (see

Fig. 5). In the presence of this excitation the solution

of the problem of scattering of the incident electro-

magnetic waves is equivalent to the solution of the

problem for the geometry shown in Fig. 7. This

geometry is the upper half of the initial geometry on

whose lower facet the idling condition is given [4–7, 14].

We call this geometry the Sestroretskii cube half in

the presence of the in-phase excitation (SCHIE) and

denote it А++.

The facets of the SCHIE where the idling condi-

tions are set are shown in Fig. 8, and the facets of the

SCHIE where the SC conditions are set are shown in

Fig. 9. The inputs where the boundary conditions of

matching and excitation of plane electromagnetic

waves are given are enumerated in the same way as in

the case of the initial geometry (see Fig. 5).

The SCHIE facets, where the boundary conditions

of plane wave excitation and matching are given, are

shown in Fig. 10 [14–16]. The polarizations of the

intensities of the electric ( ) and magnetic ( ) fields

and the directions of Umov–Poynting vectors 

[17–20] of these plane waves are shown in Fig. 11.

Modeling of the problem of scattering of the

SCHIE electromagnetic waves will be performed in

the 3D electrodynamic code complex ANSYS HFSS

v.15 [13].
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3. RESULTS OF MODELING 
OF THE SESTRORETSKII CUBE HALF 

IN THE CASE OF THE IN-PHASE EXCITATION

The calculation is performed in the frequency
range 1–300 GHz with a step of 1 GHs. The conver-
gence of the modules of scattering matrix elements is
Delta S = 0.02. The general number of tetrahedrons is
13352, the dimension of the obtained matrix is 83576,
and 211 MB of RAM are used. The general time of the
computation with the use of a computer having the
Intel Core i7 processor with the frequency of
2.79 GHz and 12 GB of RAM is 59 min 04 s.

Figure 12 shows the frequency standing-wave ratio
(SWR) characteristic for input 2 of the SCHIE. In the
region of 1 GHz, the dimension of the SCHIE side is
1/300 of the wavelength, which is the quasi-static case.
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Fig. 6. Directions of the vectors of the electric ( ) and magnetic ( ) field intensities and the directions of the vectors of flux den-

sities of electromagnetic (Umov–Poynting) field energies  for the waves incident on the inputs of the interior Sestroretskii cube.
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The frequency characteristic of the SWR does not
exceed 2 to the frequency of 131 GHz. At the fre-
quency of 150 GHz (a half of the wavelength), we see
the typical resonance, which is due to the possible
propagation of waveguide modes H10 and H01 [21, 22].
In the interval 170–265 GHz, starting with 170 GHz,
the quantity of the SWR frequency characteristic
gradually grows from 2 to 3. At the frequency of
300 GHz, we observe one more resonance, which is
due to the possible propagation of waveguide modes
H20 and H02 [21, 22]. 

Figure 13 shows the possible frequency character-
istic of the absolute value of reflection coefficient S for
the SCHIE. It is seen from the figure that the reflec-
tion level is –74.46 dB at the frequency 1 GHz (1/300
of the wavelength). At the frequency of 150 GHz
(a half of the wavelength), the reflection level
decreases to –9.25 dB and gradually grows to 0 dB at
the frequency of 300 GHz (the wavelength).

Figure 14 shows the frequency characteristic of
attenuations when the signal passes from input 2 to
input 3 (L 23, curve 1) and from input 2 to input 4 (L24,

curve 2) [14] for the SCHIE. It is seen from the figure
that L23 = L24 at all of the frequencies, which is evident
from the symmetry properties. At the frequency
1 GHz (1/300 of the wavelength), the values of atten-
uations L23 and L24 are –3 dB, i.e., we can say that the
signal arriving at input 2 is divided between inputs 3
and 4. At the frequency of 150 GHz (the dimension of
the SCHIE edge corresponds to a half of the wave-
length), we see the characteristic resonance of the
SCHIE and the values of L23 and L24 are –27.13 dB. At
the frequency of 170 GHz, the frequency characteris-
tic of attenuation again increases and is –6.34 dB.
When the frequency continues to increase to
300 GHz, the values of attenuations L23 and L24 con-
tinue to decrease and are –41 and –39 dB, respec-
tively.

Figure 15 shows the frequency characteristic of iso-
lations J between inputs 2 and 5 (J25, curve 1) and
inputs 2 and 6 (J26, curve 2) for the SCHIE. It is seen
from the figure that, practically at all frequencies J25 =
J26, and, at the frequency of 1 GHz (when the dimen-
sion of the SCHIE edge corresponds to 1/300 of the
wavelength), the values of J25 and J26 are –61.65 dB. At
the frequency of 150 GHz (a half of the wavelength),
we see the characteristic resonance of isolation J25 and
J26 of the SCHIE, and the peak is –10.8 dB. The values
of the isolations increase at the frequency of 170 GHz
and are –6.22 dB. The isolations increase at the fre-
quency 260 GHz to the values of J25 and J26, which are
equal to –4.6 dB. The values of J25 and J26 continue to
decrease to 300 GHz and are –17.8 dB.

The frequency characteristic of phase ϕ of the coef-
ficient of the transmission from input 2 to input 3
(curve 1) and from input 2 to input 4 (curve 2) for the
SCHIE is given in Fig. 16. Because of the symmetry of
the SCHIE geometry, the phases of the coefficient of
the transmission from input 2 to input 3 and from
input 2 to input 4 are equal at all frequencies, which is
seen from Fig. 16. Note that ϕ radians should be sub-
tracted from phase π of the reflection coefficient [1–3],
because code ANSYS HFSS v.15 chooses the electric
field polarization for the SCHIE inputs that has the
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Fig. 8. Geometry of SCHIE А++, on which facets with the idling boundary condition are singled out.
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Fig. 9. Geometry of SCHIE А++, on which facets with the
SC boundary condition are singled out.
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opposite direction as compared to the direction shown
in Fig. 11.

The frequency characteristic (see Fig. 17) of the
time delay estimation is based on the formulas

(1)

(2)

Here,  is the time delay (in seconds) between

inputs 2 and 3,  is the time delay (in seconds)

between inputs 2 and 4,  is the phase (in radi-
ans) of the coefficient of transmission from input 2 to

input 3 of the SCHIE,  is the phase (in radi-
ans) of the coefficient of transmission from input 2 to
input 4 of the SCHIE, and f is the frequency in hertzes.

It is seen from Fig. 17 that delay time t is estimated
by 1.65 ps for inputs 3 and 4. The characteristic reso-
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nances of the delay time are seen at the frequency
150 GHz (the dimension of the SCHIE corresponds
to the half of the wavelength) and at the frequency
300 GHz (the dimension of the SCHIE corresponds
to the wavelength).

Figure 18 shows the plots of the frequency depen-
dences of velocity v with which the signal goes from
input 2 to input 3 and from input 2 to input 4 inside the
SCHIE. For the SCHIE, velocity v of the signal pas-
sage relative to the light speed is calculated as follows:

(3)

where 10–3 is the dimension of the SCHIE edge

(in meters),  is the delay time (in seconds) of the
signal passage corresponding to expression (1), and c is
the light speed in vacuum (in meters per second).

It is seen from Fig. 18 that, at the frequency of
1 GHz, the relative value of the velocity with which the
signal passes in the SCHIE is twice as large as the light

3
10 1

,
t c

−

=
∆

v

t∆

10
9

7
6

4
3

1
3002502000 10050 150

2

5

8

SWR

f, GHz

Fig. 12. Frequency characteristic of the SWR of the
SCHIE for input 2 calculated in code ANSYS HFSS v.15.

0

–12.5

–25.0

–37.5

–50.0

–75.0
3002502000 10050 150

–62.5

S, dB

f, GHz
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the reflection coefficient of the SCHIE for input 2 calcu-
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speed. After that, we observe the smooth decrease of
the signal passage velocity to 0.96 of light speed c at the
frequency of 147 GHz. The characteristic resonances
of the signal transmission velocity are seen at the fre-
quencies 150 and 300 GHz.

Thus, the frequency characteristics of the SCHIE
calculated with the help of code ANSYS HFSS v.15
are considered.

4. THE INTERIOR SESTRORETSKII CUBE 
IN THE PRESENCE 

OF THE ANTIPHASE EXCITATION

Consider the interior Sestroretskii cube for
antiphase excitation of inputs 1 and 2 (see Fig. 5). In
the case of this excitation, the solution of the problem
about scattering of incident electromagnetic waves is
equivalent to the solution of the problem for the geom-
etry shown in Fig. 19. This geometry is the upper half
of the initial geometry on whose lower facet the SC

condition is set [4–7, 14]. We call this geometry the
half of the Sestroretskii cube for antiphase excitation
(HSCAE) and denote it А+–.

Figure 20 shows the HSCAE facets where the
idling boundary conditions are set, and Fig. 21 shows
the HSCAE facets where the SC boundary conditions
are set. The enumeration of inputs where the bound-
ary conditions for matching and excitation of electro-
magnetic waves are set is the same as that on the orig-
inal geometry (see Fig. 5).

Figure 22 shows the HSCAE facets where the
boundary conditions for excitation and matching of
plane waves are set [14–16]. The polarizations of the

electric ( ) and magnetic ( ) field intensities and the

directions of Umov–Poynting vectors  [17–20] of
these plane waves are shown in Fig. 23.

Modeling of the problem of scattering of HSCAE
electromagnetic waves will be performed in the 3D elec-
trodynamic code complex ANSYS HFSS v.15 [13].
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Fig. 16. Frequency characteristic of phase ϕ of the coeffi-
cient of transmission (curve 1) from input 2 to input 3 and
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5. RESULTS OF MODELING OF THE HALF 
OF THE SESTRORETSKII CUBE 
FOR ANTIPHASE EXCITATION

The geometry of the HSCAE is dual [21] to the
geometry of the SCHIE when the first one is turned by
90° around the z axis. Therefore, the frequency char-
acteristics of the SWR, attenuation, isolation, the
phases of the transmission coefficient, the delay time,
and the relative velocity of the signal delay for the
HSCAE (see Figs. 12–18) are the same as for the
SCHIE for the following replacement of the input
enumeration: input 2 of the SCHIE corresponds to
input 2 of the HSCAE, input 3 of the SCHIE corre-
sponds to input 5 of the HSCAE, input 5 of the
SCHIE corresponds to input 4 of the HSCAE, input 4
of the SCHIE corresponds to input 6 of the HSCAE,
and input 6 of the SCHIE corresponds to input 3 of the
HSCAE. Therefore, it is not necessary to perform the
calculation.

The full matrix of scattering of the Sestroretskii
cube is found on the basis of the scattering matrices of

the SCHIE and HSCAE according to the method
from [4–7, 14].

6. RESULTS OF MODELING 
OF THE SESTRORETSKII INTERIOR CUBE

We present the results for the frequency character-
istics of the full interior Sestroretskii cube.

The plots of the frequency characteristics of the
SWR and the absolute value of the reflection coeffi-
cient for input 2 of the interior Sestroretskii cube coin-
cide with the corresponding frequency characteristics
for the SCHIE (see Figs. 12 and 13). 

The frequency characteristic of the dependences of the
coefficient of transmission from input 2 to inputs 3–6
(curves 1–4) of the interior Sestroretskii cube is shown
in Fig. 24. For comparison, the frequency characteris-
tic of the dependences of the coefficient of transmis-
sion from input 2 to inputs 3 and 4 (curves 5 and 6) for
the SCHIE is also shown. It is seen from the figure that
the plots of the frequency dependence of the coeffi-
cient of transmission from input 2 to inputs 3–6 and
from input 2 to inputs 3 and 4 coincide. This follows
from the symmetry properties. At the frequency of
1 GHz (the dimension of the edge of the interior
Sestroretskii cube corresponds to 1/300 of the wave-
length), the values of the transmission coefficient for
the interior Sestroretskii cube are equal to –6 dB. This
value remains up to the frequency 120 GHz. Note that
the size of the edge of the interior Sestroretskii cube
corresponds to 2/5 of the wavelength. At the frequency
of 150 GHz (when the size of the edge of the interior
Sestroretskii cube corresponds to the half of the wave-
length), the characteristic resonance of the interior
Sestroretskii cube is seen and the values of the transmis-
sion coefficient are –31.21 dB. After that, the value of the
transmission coefficient for the Sestroretskii cube grows
and, at the frequency 280 GHz, is –9.22 dB. At the
frequency 300 GHz, the value of the coefficient of the
Sestroretskii cube transmission is –21.41 dB.

As we see, up to the half of the wavelength, when
higher mode types do not start propagating, the behav-
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Fig. 20. Geometry of the HSCAE А+–, where the facets
with the idling boundary condition are marked out.
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Fig. 21. Geometry of the HSCAE А+–, where the facets with the SC boundary condition are marked out.
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ior of the transmission coefficient for the interior
Sestroretskii cube corresponds to the behavior of the
SCHIE transmission coefficient, and their values are
different by 3 dB. This is clear, because, for the
SCHIE, the energy arriving at input 2 is divided
between two inputs: 3 and 4, and, for the interior
Sestroretskii cube, the energy arriving at input 2 is
divided between four inputs: 3–6. Up to the frequency
of 120 GHz, the isolation value between SCHIE
inputs 2, 5, and 6 is –25 dB (see Fig. 15). For the fre-
quencies exceeding 120 GHz, the absolute value of the
above isolation is reduced. In addition, after 150 GHz,
the waveguide modes start propagating, and, there-
fore, the behavior of the transmission coefficient for
the interior Sestroretskii cube does not coincide with
the behavior of the transmission coefficient for the
SCHIE.

The frequency characteristic of phase ϕ of the coef-
ficient of transmission from input 2 to inputs 3–6
(curves 1–4) for the interior Sestroretskii cube is given

in Fig. 25. For comparison, we also show the fre-
quency characteristic of phase ϕ of the coefficient of
the signal transmission from input 2 to inputs 3 and 4
(curves 5 and 6) for the SCHIE. It is seen from Fig. 25
that the phases of the coefficient of the signal trans-
mission from input 2 to inputs 3–6 are equal at all of
the frequencies because of the symmetry of the geom-
etry of the interior Sestroretskii cube.

Up to the frequency 90 GHz (when the size of the
edge of the interior Sestroretskii cube corresponds to
3/10 of the wavelength), the value of the transmission
coefficient phase for the interior Sestroretskii cube
equals the value of the SCHIE transmission coeffi-
cient phase. The value of the transmission coefficient
phase is more dependent on the isolation quantity.
Therefore, the influence on the transmission coeffi-
cient phase starts already from the isolation value
equal to –34 dB (see Fig. 25).

Figure 26 shows the frequency characteristics of
the estimate of delay time t during which the signal
comes from input 2 to inputs 3–6 (curves 1–4) for the
interior Sestroretskii cube. For the SCHIE, the fre-
quency characteristics of the estimate of delay time t,
during which the signal comes from input 2 to inputs 3
and 4 (curves 5 and 6), are given for comparison. It is
seen from the figure that the time delay is 1.65 ps for
inputs 3–6. The characteristic resonances of the delay
time are seen at the frequencies of 150 GHz (when the
size of the edge of the interior Sestroretskii cube cor-
responds to the half of the wavelength) and 300 GHz
(when the size of the edge of the interior Sestroretskii
cube corresponds to the wavelength).

Up to the frequency of 90 GHz (when the size of
the edge of the interior Sestroretskii cube corresponds
to 3/10 of the wavelength), the value of the estimate of
delay time t of the signal transit for the interior
Sestroretskii cube is close to the value of the estimate
of the delay time of the signal transit for the SCHIE.
When the frequency continues to increase, we observe
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substantial differences between the values of the esti-
mate of the delay time of the signal transit for the inte-
rior Sestroretskii cube and the estimate of the delay
time of the signal transit for the SCHIE. This corre-
sponds to the behavior of the transmission coefficient
phases (see Fig. 25).

The frequency characteristic of the velocity of sig-
nal transit from input 2 to inputs 3–6 (curves 1–4) for
the interior Sestroretskii cube is presented in Fig. 27.
For comparison, the frequency characteristic of the
velocity of the signal transit from input 2 to inputs 3
and 4 (curves 5 and 6) for the SCHIE is also shown. It
is seen from the figure that, at the frequency of 1 GHz,
the value of the signal transit velocity in the interior
Sestroretskii cube is twice as large as the light speed.
After that, we observe the smooth decrease of the sig-
nal transit velocity to 0.97 of light speed c at the fre-
quency of 142 GHz. At the frequencies of 150 and

300 GHz, we see the characteristic resonances of the
signal transit velocity.

The value of the signal transit velocity for the inte-
rior Sestroretskii cube is close to the value of the signal
transit velocity for the SCHIE up to the frequency of
100 GHz (when the size of the edge of the interior
Sestroretskii cube corresponds to 1/3 of the wave-
length). When the frequency continues to grow, these
velocities are substantially different, which corre-
sponds to the behavior of the phases of the transmis-
sion coefficient (see Fig. 25).

Thus, the analysis of the above frequency charac-
teristics of the interior Sestroretskii cube enables us to
make the following conclusions that confirm the posi-
tions formulated earlier in works [4–12].

(i) The considered interior Sestroretskii cube is
described rather well in the one-mode approximation
and exhibits the properties of a double waveguide T-
branch [14] for the frequency as high as 100 GHz
(when the dimension of the edge is 1/3 of the wave-
length).

(1) Input 2 is matched and decoupled with input 1.

(2) All the energy coming to input 2 is divided in
the identical proportion between inputs 3–6.

(3) When the amplitudes of the electric and mag-
netic field intensities of the wave incident on input 2
are taken as unity, the amplitudes of the waves arriving
at inputs 3–6 will be equal to 1/2.

(4) When the amplitude of the vector of the power
flux density of the electromagnetic wave incident on
input 2 is equal to unity, the amplitudes of the power
flux densities of electromagnetic waves reaching
inputs 3–6 are equal to 1/4.

Figure 28 illustrates the directions of the vectors of

the electric ( ) and magnetic ( ) fields and vectors of
the flux densities of the waves incident on input 2 and
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coming to inputs 3–6 of the interior Sestroretskii
cube.

(ii) When a monochromatic signal comes from
input 2 to inputs 3–6, the phase retard linearly
depends on the frequency up to 100 GHz (when the
size of the edge of the interior Sestroretskii cube cor-
responds to 1/3 of the wavelength). The corresponding
delay time of the signal going from input 2 to inputs 3–6
does not depend on the frequency up to 100 GHz and
corresponds to the doubled light speed in vacuum.
This fact makes us possible to conclude that signals
(including video pulses) whose spectrum lies in the
band of up to 100 GHz go from input 2 to inputs 3–6
of the interior Sestroretskii cube with the velocity that
is twice as large as the light speed in vacuum.

CONCLUSIONS

Numerical modeling has been performed in elec-
trodynamic code ANSYS HFSS v.15 for the frequency
characteristics of the interior Sestroretskii cube. It has
been shown that the interior Sestroretskii cube has the
properties of a double waveguide T-branch for wave-
lengths exceeding 1/3 of the edge length of the interior
Sestroretskii cube. The hypothesis of works [4–7] that
signals go from input 2 to inputs 3–6 of the interior
Sestroretskii cube with the velocity that twice exceeds
the light speed in vacuum has been confirmed. How-
ever, this is possible under the condition the their spec-
trum lies in the frequency band bounded by the fre-
quency equal to 1/3 of the length of the edge of the
interior Sestroretskii cube.
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