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a b s t r a c t

We deal with an explicit finite-difference scheme with a regularization for the 1D
gas dynamics equations linearized at the constant solution. The sufficient condition
on the Courant number for the L2-dissipativity of the scheme is derived in the case
of the Cauchy problem and a non-uniform spatial mesh. The energy-type technique
is developed to this end, and the proof is both short and under clear conditions on
matrices of the convective and regularizing (dissipative) terms. A scheme with a
kinetically motivated regularization is considered as an application in more detail.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The stability issue is crucial in theory of numerical methods for solving the gas dynamics equations,
and often it is studied in a linearized statement [1–4]. In this paper, we deal with an explicit in time
and three-point in space linear finite-difference scheme with general matrices of convective and regularizing
(dissipative) terms. Such schemes arise from schemes with various regularizations for the 1D gas dynamics
equations linearized with scaling at the constant background solution (with any velocity u∗); the well-known
linearized Lax–Wendroff scheme [1] belongs to them. The sufficient condition on the Courant number for
stability, more precisely, L2-dissipativity is derived in the case of the Cauchy problem and a non-uniform
spatial mesh. The energy-type technique is developed to this end, and the proof is both short and under
clear conditions on the mentioned matrices. The same technique can be applied for initial–boundary value
problems under suitable homogeneous boundary conditions. Notice that the derived condition is valuable for
practical gas dynamics computations since it helps to reduce essentially the amount of numerical experiments
to find the most suitable parameters of the schemes.
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The L2-dissipativity of a linearized scheme from [5] with a complicated kinetically motivated regular-
ization [6–8] is considered as an application of the general result, for zero and general u∗. The case of
other possible regularizations, for example, based on [9,10] can be covered as well (results will be published
elsewhere).

The technique essentially improves and generalizes its version suggested in [8] where only the case of the
kinetic regularization, the uniform mesh and u∗ = 0 was considered. Moreover, even in this particular case
our condition on the Courant number is more clear and precise.

The alternative approach based on the spectral method [2] has recently been developed for the same
purpose in the simplest case of the uniform spatial mesh in [11,12]. In particular, close sufficient conditions
have been proved which are only slightly (at most twice) broader than in this paper. But the spectral method
is inapplicable for non-uniform meshes and thus much more restrictive for further multidimensional studies.

2. An abstract explicit finite-difference scheme and its dissipativity

Let ωh = {xk}k∈Z be a non-uniform mesh on R with the steps hk = xk − xk−1 > 0 and ω∗
h = {xk−1/2 =

(xk−1 + xk)/2}k∈Z be the auxiliary mesh with the steps hk+1/2 = xk+1/2 − xk−1/2. We assume that
hmin := infk∈Z hk > 0. For functions y and v defined respectively on ωh and ω∗

h, we introduce the averages,
difference quotients and shifts

(sy)k−1/2 = yk−1 + yk

2 , (δy)k−1/2 = yk − yk−1

hk
, y−,k−1/2 = yk−1, y+,k−1/2 = yk,

(s∗v)k =
hkvk−1/2 + hk+1vk+1/2

2hk+1/2
, (δ∗v)k =

vk+1/2 − vk−1/2

hk+1/2
.

We define a Hilbert space H of vector-functions y: ωh → Rn equipped with the inner product (y, z)H =∑+∞
k=−∞(yk, zk)Rnhk+1/2 and the associated norm ∥ · ∥H (where ∥y∥H < ∞ for y ∈ H).
Let ω̄∆t = {tm = m∆t}m⩾0 be the uniform mesh in t on [0, ∞) with the step ∆t > 0. We set

δty
m = ym+1−ym

∆t and y+,m = ym+1 for y defined on ω̄∆t.
We first consider an abstract explicit two-level in time and three-point in space linear finite-difference

scheme
δty + c0Bδ∗sy − c2

0Aδ∗(τ∗δy) = 0 on ωh × ω̄∆t, (1)

where ym ∈ H for m ⩾ 0, y0 is given, A and B are square matrices (of regularizing and convective terms)
of order n, c0 > 0 is a scaling parameter (a characteristic velocity) and τ∗ > 0 is a regularizing function
depending on ωh. The particular case A = B2 and τ∗ = ∆t/2 covers the linearized Lax–Wendroff scheme [1].

We are interested in the validity of the stability bound

sup
m⩾0

∥ym∥H ⩽ ∥y0∥H ∀ y0 ∈ H. (2)

This bound is equivalent [12] to the H-dissipativity property

∥ym+1∥H ⩽ ∥ym∥H ⩽ · · · ⩽ ∥y0∥H ∀ y0 ∈ H, ∀ m ⩾ 0.

Let τ∗ and ∆t be given by the standard-type formulas

τ∗ = αh+

c0
on ω∗

h, ∆t = β̃hmin

c0
, (3)

where α > 0 is a parameter and β̃ > 0 is a Courant-like number. The question is under what conditions on
B, A and β̃ the stability bound (2) is valid.
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Theorem 1. Let the matrices B and A have the following properties

B = B∗, A = A∗ ⩾ 0, B2 ⩽ a0A, A ⩽ λ̄I (4)

for some a0 > 0 and λ̄ > 0. The stability bound (2) is valid under the condition

β̃ ⩽ 2α
/(

2
√

λ̄α +
√

a0
)2 ≡ 1

/(
2λ̄α + 2

√
a0λ̄ + a0

2α

)
. (5)

Remark 1. The maximal eigenvalue λmax(A) of A is clearly the best value of λ̄ but often not available
analytically.

Proof. 1. We begin with rewriting scheme (1) in the recurrent form

y+ = (I − c0∆tF )y, F := Bδ∗s − Aδ∗(c0τ∗δ).

Then the bound
∥y+∥2

H = ∥y∥2
H + (c0∆t)2∥Fy∥2

H − 2c0∆t(Fy, y)H ⩽ ∥y∥2
H

is clearly equivalent to the following inequality

c0∆t∥Fy∥2
H ⩽ 2(Fy, y)H . (6)

Applying the Cauchy ε-inequality, we find

∥Fy∥2
H = ∥Bδ∗sy∥2

H + ∥Aδ∗(c0τ∗δy)∥2
H − 2

(
Bδ∗sy, Aδ∗(c0τ∗δy)

)
H

⩽ (1 + ε−1)∥Bδ∗sy∥2
H + (1 + ε)∥Aδ∗(c0τ∗δy)∥2

H ∀ε > 0. (7)

2. Let H∗ and H∗0 be Hilbert spaces of vector-functions v: ω∗
h → Rn equipped with the inner products

(v, w)H∗ =
+∞∑

k=−∞

(vk−1/2, wk−1/2)Rnhk, (v, w)H∗0 =
+∞∑

k=−∞

(vk−1/2, wk−1/2)Rn

and the associated norms ∥ · ∥H∗ and ∥ · ∥H∗0 (where ∥v∥H∗ < ∞ for v ∈ H∗ and ∥v∥H∗0 < ∞ for v ∈ H∗0).
According to [13] the following identities hold

(sy, v)H∗ = (y, s∗v)H , (δy, v)H∗ = −(y, δ∗v)H ∀y ∈ H, v ∈ H∗; (8)

note that here sy, δy ∈ H∗ and s∗v, δ∗v ∈ H as well as yk → 0 and vk−1/2 → 0 as |k| → ∞ (remind the
assumption hmin > 0).

Clearly δ∗s = s∗δ and thus

∥δ∗sz∥2
H =

+∞∑
k=−∞

1
hk+1/2

⏐⏐⏐1
2

[
(h+δz)k+1/2 + (h+δz)k−1/2

]⏐⏐⏐2
⩽

1
2hmin

+∞∑
k=−∞

(h+δz)2
k+1/2 + (h+δz)2

k−1/2

= h−1
min∥h+δz∥2

H∗0 ∀z ∈ H. (9)

It easy to see that also
∥δ∗v∥2

H ⩽ 4h−1
min∥v∥2

H∗0 ∀v ∈ H∗0. (10)

3. Owing to identities (8), the formula s∗δ = δ∗s and the property B∗ = B we also find

(Bδ∗sy, y)H = −(By, s∗δy)H = −(Bδ∗sy, y)H ,
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i.e. (Bδ∗sy, y)H = 0. Therefore using the first formula (3) and the second identity (8), we get

(Fy, y)H = (−Aδ∗(c0τ∗δy), y)H = α
(
A(h+δy), h+δy

)
H∗0

. (11)

4. Next applying inequalities (9)–(10) and then properties (4) we derive

∥Bδ∗sy∥2
H ⩽ h−1

min∥Bh+δy∥2
H∗0 ⩽ h−1

mina0
(
A(h+δy), h+δy

)
H∗0

,

∥Aδ∗(c0τ∗δy)∥2
H ⩽ 4α2h−1

min∥A(h+δy)∥2
H∗0 ⩽ 4α2λ̄h−1

min
(
A(h+δy), h+δy

)
H∗0

.

Using these inequalities in (7) and then choosing the optimal value ε = √
a0/(2α

√
λ̄), we get

∥Fy∥2
H ⩽ h−1

min
(
4α2λ̄ + 4α

√
a0λ̄ + a0

)(
A(h+δy), h+δy

)
H∗0

.

This inequality and identity (11) imply the desired inequality (6) under condition (5). □

An essential practical question is the optimal value of α. According to condition (5), this is αopt = 1
2

√
a0/λ̄

ensuring the maximal possible value 1/(4
√

a0λ̄) for β̃.
Note that the general case B2 ⩽ a0A for some a0 > 0 could be easily derived from the particular one for

a0 = 1 by the change of parameters α and λ̄ by α/a0 and a0λ̄.

3. A finite-difference scheme with a kinetically motivated regularization for the 1D gas dynamics
equations and its linearized L2-dissipativity

Next we consider explicit two-level in time and three-point symmetric in space finite-difference scheme
with a kinetically motivated regularization [6–8] and the entropy dissipative spatial discretization for the
1D gas dynamics equations from [5]:

δtρ + δ∗j = 0,

δt(ρu) + δ∗(jsu + sp) = δ∗Π ,

δtE + δ∗[
(E(1) + sp)(su − w) − 0.25h2

+(δu)δp
]

= δ∗(−q + Π su).

Here ρ > 0, u, ε > 0 are the density, velocity and the specific internal energy of the gas (the main sought
functions defined on ωh), p = (γ − 1)ρε and E = 1

2 ρu2 + ρε are the pressure (in the perfect polytropic gas
case) and total energy. Moreover, the following formulas are in use

j = ρln(su − w), w = ŵ + τ

sρ
(su)δ(ρu), ŵ = τ

sρ

[
(sρ)(su)δu + δp

]
,

Π = µδu + (sρ)(su)ŵ + τ
[
(su)δp + γ(sp)1δu

]
,

−q = κ̃δε + τ(sρ)
(

δε − (sp)1

(sρ)2 δρ

)
(su)2,

where j is the regularized mass flux, w, ŵ, Π and q are the two regularizing velocities, viscous stress and
τ = τh(su, sε) > 0 is a regularizing function (all defined on ω∗

h). In addition, the following formulas are
applied

E(1) = 1
2 ρlnu−u+ + ρlnεln, (sp)1 = (γ − 1)(sρ)sε, ρln = 1/ ln(ρ−; ρ+), εln = ε−ε+ ln(ε−; ε+);

the non-standard means ρln and εln exploit the difference quotient for the logarithmic function

ln(a; b) = (ln b − ln a)/(b − a) for a ̸= b, ln(a; a) = 1/a, a > 0, b > 0.
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Let the artificial viscosity and scaled heat conductivity coefficients are given by

µ = αSτsp = αSτs(ρc2)/γ, κ̃ = γαP τsp = αP τs(ρc2)

(the usual QGD-formulas [7,8]), where c =
√

γ(γ − 1)ε is the sound velocity, αS ⩾ 0 and αP ⩾ 0 are
parameters (the Schmidt and inverse Prandtl numbers). Note that a generalization and verification of this
scheme were accomplished in [14,15].

The scheme is linearized at the constant background solution ρ∗ > 0, u∗ and ε∗ > 0. To this end, similarly
to the differential case [16] the solution of the scheme is written in the form

(ρ, u, ε) = (ρ∗ + ρ∗ρ̃, u∗ + ĉ∗ũ, ε∗ + ε̂∗ε̃) with ĉ∗ = c∗√
γ

, ε̂∗ =
√

γ − 1ε∗, c∗ =
√

γ(γ − 1)ε∗,

where c∗ is the background sound velocity. Let τ∗ = τh(u∗, ε∗) and c0 = c∗. Omitting the second order terms
with respect to the scaled perturbation y = (ρ̃, ũ, ε̃)T we obtain for it the linearized scheme like (1) with
the matrices [12]

B =

⎛⎜⎜⎝
M 1√

γ 0
1√
γ M

√
γ−1

γ

0
√

γ−1
γ M

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
M2 + 1

γ 2 M√
γ

√
γ−1
γ

2 M√
γ M2 + αS

γ + 1 2
√

γ−1
γ M

√
γ−1
γ 2

√
γ−1

γ M M2 + αP + γ−1
γ

⎞⎟⎟⎠ . (12)

Here M = u∗/c∗, and |M | is the Mach number. We rewrite formulas (3) in the form like in [12]

τ∗ = α̂h+

c∗ + |u∗|
on ω∗

h, ∆t = βhmin

c∗ + |u∗|
, (13)

where β is the Courant number, i.e., with α = α̂/(|M | + 1) and β̃ = β/(|M | + 1). Clearly α = α̂ and β̃ = β

in the case u∗ = 0.

Theorem 2. For the scheme (1), (12) and (13), the sufficient L2-dissipativity condition (5) is satisfied:
(1) in the particular case u∗ = 0, for

β ⩽ 1
/(

2λ̄0α + 2
√

λ̄0 + 1
2α

)
, (14)

where

λ̄0 = max
{αS

γ
+ 1,

αP + 1
2 +

√(αP − 1
2

)2
+ γ − 1

γ
αP

}
;

(2) in the general case, for

β ⩽ 1
/(

2α̂
λ̄

(|M | + 1)2 + 2
√

λ̄

|M | + 1 + 1
2α̂

)
, (15)

where
λ̄ = M2 + max

{αS

γ
+ 1 + 21 +

√
γ − 1

√
γ

|M |, αP + 1 + 2
√

γ − 1
γ

|M |
}

.

Proof. Clearly B = B∗ and A = A∗. Also we have A ⩾ 0, B2 ⩽ A (i.e., a0 = 1) and, moreover, in the case
u∗ = 0 and the general one, respectively λ̄0 = λmax(A) and λmax(A) ⩽ λ̄, see [12]. Owing to Theorem 1 this
implies the stated results. □

Notice that Theorem 2 remains valid for various other schemes based on the same regularization, in
particular, see [5–8,17] since the constant background solution is considered.
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The practically important point is that due to the applied regularization the right-hand side of (15) is
uniformly bounded (from below and above) in |M | as |M | → ∞, for fixed α̂, that is essential in computing
super- and hypersonic flows. This property is not guaranteed at all for more simple regularizations.

Sufficient conditions close to (5) (for a0 = 1), (14) and (15) have recently been derived by the spectral
method in [12] in the particular case of the uniform spatial mesh. They contain no the above intermediate
terms with

√
λ̄ or

√
λ̄0, and thus they are only slightly (at most twice) broader than (5), (14) and (15).
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