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The goal of our research is theoretical analysis of stability for a class of
explicit difference schemes approximating gas dynamic equations.
Namely, we are interested in the regularizations of Euler and
Navier-Stokes systems proposed by M. Svaerd.
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A new model for viscous and heat conducting flows of an ideal gas has
recently been suggested by M. Svaerd

Oep + Ox(pu) = 0x(vxp), (1)
De(pu) + Ox(pu?) + Oup = O (vOx(pu)), (2)
O:E + 0x((E + p)u) = 0x(vO<E), (3)

where p > 0, u and £ > 0 are the density, velocity and internal energy of
the gas (the basic sought functions); p = (7 — 1)pe is the pressure,

E = 0.5pu? + pe is the total energy, v is the diffusion coefficient. Note
that for v = 0 we obtain the Euler system of equations.

In this report, the system of equations for both one-dimensional
barotropic and heat conductive gas dynamics is considered.
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Here we first derive theorems on criterions (necessary and sufficient
conditions) of L2-stability for finite-difference schemes discretizing
equations (1)—(3) with the artificial viscosity of the form v = aésh, where
Cs is the speed of sound and o > 0 is a parameter, to solve the Euler
system of equations. Both barotropic and the full system are covered for
general background velocity.
The following is accomplished:
® A necessary specrtal (von Neumann) condition for L2-stability is
obtained
® Due to a special form of the regularization the von Neumann
condition is also a sufficient condition.
® The criterions for explicit difference schemes discretizing system
(1)—(3) with the physical viscosity as well as a combination of the
physical and artifical viscosities are given as corollarie
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Let wy, be a uniform grid on R with nodes xx = kh, k € Z and the step
h= % and let w} be an auxiliary grid with nodes
Xk—172 = (k — 1/2)h, k € Z. Suppose that &**is a uniform grid in t on

[0, 00) with nodes t,, = mAt, m > 0 and a step At > 0. Define the grid

operators

Wi + Wk—1 Wik — Wk—1 ¢ Wit1 — Wk—1
W1 =————, (W)g_1p = ————, Wy = ———,
(sW)k—1/2 5 (Ow)k—1/2 h k h
_ Ykt1/2 7 Yk-1/2 vi—v yHm — m+l

(57y) = PRI gy Y
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In barotropic case we consider only equations (1)-(2) with p = p(p),
where p’(p) > 0 for p > 0 (in particular, p(p) = p1p?, v > 0, p; > 0).
We consider the following explicit two-level in time and three-point
symmetric in space finite-difference scheme

0rp + 6*[(sp)(su)] = 6*(aéshdp),
5(pu) + 6*[(sp)(su)?] + 6% (sp) = & [adshd(pu)],

where the basic sought functions p and u are defined on wy; p is the
pressure, and & = +/p’(sp) is the speed of sound.
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We linearize the system about the constant solutionp = p, + p.j,

U= u, + ¢, rae u, = Mc,, c. = /p’(p) is the background speed of
sound and |M]| is the Mach number. Omitting the terms of second order
of smallness with respect to the normalized perturbations g, i, £ and
tildes above them, we obtain the linearized scheme

0ep + Mc*gp +c by = ac,.hd*op, (4)
§tv+c*5p—|— Mc,dv = ac,hd*Sv. (5)
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Lety = (p v)T. Scheme (4)—(5) can be rewritten in the form:

M 1) :
+ _ _ *
y' =y 5(1 M>5y+aﬁ55y, (6)
where 5 = c*% is the Courant number
Let H be the Hilbert space of C"-valued square summable vector
functions defined on w;, with the inner product

+oo
(v,¥y)u=h > {(vk,Yk)cr. The question is under which conditions the
k=—o0

following estimate holds

sup [ly™ || < Hy0||H Vy € H. (7)
m>0

Following [4, 9] for explicit finite-difference schemes, we substitute a
partial solution in the form y? = eikév™ (&), k € Z, m > 0, into (6),
where 0 < & < 27 is a parameter, cancel out the common part e'*¢ from
all the terms of the equation, and write the result as

V(&) = G(&)v"(€). This matrix G is called the amplification matrix.
The von Neumann necessary condition has the form |\;(G)| <1 for all /,
where \;(A) is the eigenvalue of matrix A.
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Theorem 1
For scheme (4)—(5) the von Neumann condition has the form

The von Neumann condition is necessary and sufficient for estimate (7)
to hold due to the normality of the amplification matrix (see section 4.8

in [9])
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In the case of the full system of equations (1)—(3) we consider the
following explicit two-level in time and three-point symmetric in space
finite-difference scheme

0rp + 6*[(sp)(sv)] = §*[a & hdp],
8e(pv) + 0*[(sp)(sv)’] + 6% (sp) = 0" [a & hd(pv)],
5:(E) + 6*[(E® + sp) - sv] = 6*[a & hOE],

where p > 0, v n ¢ > 0 are the basic sought functions defined on wp;

p=(y—1)pe, E=05pu?+ pe and & = /v(7 — 1)se are the pressure,
total energy and speed of sound, 59 respectively. Moreover,

E©) = 0.5(sp)(su)? + s(pe).
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We linearize the system about the constant solution p = p. + p.p,
V=V,+ &V, e =c,+EE where p >0, e >0,

vie = Mc,, & = %, Ex =71 —1lexmco = /y(y — 1)e is the
background speed of sound, and |M| is the Mach number. Omitting the
terms of second order of smallness with respect to the normalized
perturbations 3, i, £ and tildes above them, we obtain the linearized
scheme

Sep+ Medp + %Sv = ac,hd*op, (9)
6tv+i(§p+ Mec,dv + 7_1c*55:ac*h6*6v, (10)
VAl V'
v—1

0te + c.dv + Mc,be = ac, hd*de. (11)
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lety=(p v E)T. Scheme (9)—(11) can be rewritten in the form:
M 1 0

1] = N
yi=y-8|4 V5 | Oy + aBs*dy. (12)
0 ,/%1 M

S

Theorem 2

For scheme (9)—(11)the von Neumann condition has form (8). The von
Neumann condition is necessary and sufficient for estimate (7) to hold
due to the normality of the amplification matrix.
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Remarks |

1.Changing the speed of sound & in the artificial diffusion coefficient
from schemes (4)—(5) as well as (9)—(11) by the absolute value of speed
of gas |su| gives us the condition

ﬁ<min{ 20| M| ! }
- (IM]+1)2" 2a|M| ]

the right-hand side of which behaves like O(|M|~1) as [M| — oo.
2. If we want to consider the physical viscosity as presented in equations
(1)—(3),we make the change v. = ac.h, and condition (8) can be

rewritten as
2V, h?
At<min ——————, — 5.
= m'“{(|M| +12c 2,,*}
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Remarks 11

3. If we want to consider the combination of physical and artificial
viscosities by changing the diffusion coefficient in the schemes from v to
v, + ke, h, condition (8) can be rewritten as

r 2
At < min 2+ kc;h2)7 h = .
(IM[ +1)2c2’ 2(v, + khc,)
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Monolithic parabolic regularization presented in [6] is a simpler
regularization than in [10] and has the following form in 1D:

Oep + Ox(pu) = €03 p,
B:(pu) + Ou(pu?) + Oxp = 83 (pu),
OcE + 0x((E + p)u) = ed2E,

where ¢ > 0 is a small parameter.

Obviously, for this regularization the linearized barotropic and full
schemes take forms (4)—(5) and (9)—(11) with € = ac.h.

This means that Theorems 1 and 2 also hold for this regularization
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The barotropic 1D variant of the simplified quasi-hydrodynamical
regularization proposed in [5] has the following form:

9ep + Ox(p(u — w)) =0,
O(pu) + Ox(p(u — w)v) + dxp = OxMys,

where w = 20xp; Mns = poxv and p = astpp’(p).
In barotropic case the scheme linearized on a constant solution can be
written in the form

M 1) : 1 0
+ _ 2 *

where y = (p v)T

If as =1, then the linearized barotropic scheme written in matrix form is
the same as (6). Thus, for scheme (13) the von Neumann condition has
form (8). This means that Theorems 1 and 2 also hold for this
regularization in this particular case.

In the case of the full system, for this regularization Theorems 1 and 2
hold only for special relations between parameters. More general case
requires the use of technique from [12].
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® The criterion (necessary and sufficient condition) for L2-stability is
deduced for special regularizations of gas dynamics equations for
arbitrary Mach number.

® The criterion can be made to behave as O(|M|~1) as [M| — oo.
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Tanan teid tahelepanu eest! Thank you for your
attention!
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