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The goal of our research is theoretical analysis of stability for a class of
explicit di�erence schemes approximating gas dynamic equations.
Namely, we are interested in the regularizations of Euler and
Navier-Stokes systems proposed by M. Svaerd.
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A new model for viscous and heat conducting �ows of an ideal gas has
recently been suggested by M. Svaerd

∂tρ+ ∂x(ρu) = ∂x(ν∂xρ), (1)

∂t(ρu) + ∂x(ρu2) + ∂xp = ∂x(ν∂x(ρu)), (2)

∂tE + ∂x((E + p)u) = ∂x(ν∂xE ), (3)

where ρ > 0, u and ε > 0 are the density, velocity and internal energy of
the gas (the basic sought functions); p = (γ − 1)ρε is the pressure,
E = 0.5ρu2 + ρε is the total energy, ν is the di�usion coe�cient. Note
that for ν = 0 we obtain the Euler system of equations.
In this report, the system of equations for both one-dimensional
barotropic and heat conductive gas dynamics is considered.
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Here we �rst derive theorems on criterions (necessary and su�cient
conditions) of L2-stability for �nite-di�erence schemes discretizing
equations (1)�(3) with the arti�cial viscosity of the form ν = αĉsh, where
cs is the speed of sound and α > 0 is a parameter, to solve the Euler
system of equations. Both barotropic and the full system are covered for
general background velocity.
The following is accomplished:

• A necessary specrtal (von Neumann) condition for L2-stability is
obtained

• Due to a special form of the regularization the von Neumann
condition is also a su�cient condition.

• The criterions for explicit di�erence schemes discretizing system
(1)�(3) with the physical viscosity as well as a combination of the
physical and arti�cal viscosities are given as corollarie
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Let ωh be a uniform grid on R with nodes xk = kh, k ∈ Z and the step
h = X

N and let ω∗h be an auxiliary grid with nodes
xk−1/2 = (k − 1/2)h, k ∈ Z. Suppose that ω̄∆t is a uniform grid in t on
[0,∞) with nodes tm = m∆t, m ≥ 0 and a step ∆t > 0. De�ne the grid
operators

(sw)k−1/2 =
wk + wk−1

2
, (δw)k−1/2 =

wk − wk−1

h
, δ̊wk =

wk+1 − wk−1

2h
,

(δ∗y)k =
yk+1/2 − yk−1/2

h
, δtv =

v+ − v

∆t
, v+,m = vm+1.
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In barotropic case we consider only equations (1)-(2) with p = p(ρ),
where p′(ρ) > 0 for ρ > 0 (in particular, p(ρ) = p1ρ

γ , γ > 0, p1 > 0).
We consider the following explicit two-level in time and three-point
symmetric in space �nite-di�erence scheme

δtρ+ δ∗[(sρ)(su)] = δ∗(αĉshδρ),

δt(ρu) + δ∗[(sρ)(su)2] + δ∗(sp) = δ∗[αĉshδ(ρu)],

where the basic sought functions ρ and u are de�ned on ωh; p is the
pressure, and ĉs =

√
p′(sρ) is the speed of sound.
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We linearize the system about the constant solutionρ = ρ∗ + ρ∗ρ̃,
u = u∗ + c∗ũ, ãäå u∗ = Mc∗, c∗ =

√
p′(ρ) is the background speed of

sound and |M| is the Mach number. Omitting the terms of second order
of smallness with respect to the normalized perturbations ρ̃, ũ, ε̃ and
tildes above them, we obtain the linearized scheme

δtρ+ Mc∗δ̊ρ+ c∗δ̊v = αc∗hδ
∗δρ, (4)

δtv + c∗δ̊ρ+ Mc∗δ̊v = αc∗hδ
∗δv . (5)
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Let y =
(
ρ v

)T
. Scheme (4)�(5) can be rewritten in the form:

y+ = y − β
(
M 1
1 M

)
δ̊y + αβδ∗δy, (6)

where β = c∗
∆t
h is the Courant number

Let H be the Hilbert space of Cn-valued square summable vector
functions de�ned on ωh with the inner product

〈v, y〉H = h
+∞∑

k=−∞
〈vk , yk〉Cn . The question is under which conditions the

following estimate holds

sup
m≥0
‖ym‖H ≤ ‖y0‖H ∀y ∈ H. (7)

Following [4, 9] for explicit �nite-di�erence schemes, we substitute a
partial solution in the form ymk = e ikξvm(ξ), k ∈ Z, m ≥ 0, into (6),
where 0 ≤ ξ ≤ 2π is a parameter, cancel out the common part e ikξ from
all the terms of the equation, and write the result as
vn+1(ξ) = G (ξ)vn(ξ). This matrix G is called the ampli�cation matrix.
The von Neumann necessary condition has the form |λi (G )| ≤ 1 for all i ,
where λi (A) is the eigenvalue of matrix A.
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Theorem 1

For scheme (4)�(5) the von Neumann condition has the form

β ≤ min

{
2α

(|M|+ 1)2
,

1

2α

}
. (8)

The von Neumann condition is necessary and su�cient for estimate (7)
to hold due to the normality of the ampli�cation matrix (see section 4.8
in [9])



Introduction Di�erence Schemes Stability analysis Conclusion

In the case of the full system of equations (1)�(3) we consider the
following explicit two-level in time and three-point symmetric in space
�nite-di�erence scheme

δtρ+ δ∗[(sρ)(sv)] = δ∗[α ĉs hδρ],

δt(ρv) + δ∗[(sρ)(sv)2] + δ∗(sp) = δ∗[α ĉs hδ(ρv)],

δt(E ) + δ∗[(E (0) + sp) · sv ] = δ∗[α ĉs hδE ],

where ρ > 0, v è ε > 0 are the basic sought functions de�ned on ωh;
p = (γ − 1)ρε, E = 0.5ρu2 + ρε and ĉs =

√
γ(γ − 1)sε are the pressure,

total energy and speed of sound, 59 respectively. Moreover,
E (0) = 0.5(sρ)(su)2 + s(ρε).
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We linearize the system about the constant solution ρ = ρ∗ + ρ∗ρ̃,
v = v∗ + ĉ∗ṽ , ε = ε∗ + ε̂∗ε̃, where ρ > 0, ε > 0,
v∗ = Mc∗, ĉ∗ = c∗√

γ , ε̂∗ =
√
γ − 1ε∗ è c∗ =

√
γ(γ − 1)ε∗ is the

background speed of sound, and |M| is the Mach number. Omitting the
terms of second order of smallness with respect to the normalized
perturbations ρ̃, ũ, ε̃ and tildes above them, we obtain the linearized
scheme

δtρ+ Mc∗δ̊ρ+
c∗√
γ
δ̊v = αc∗hδ

∗δρ, (9)

δtv +
c∗√
γ
δ̊ρ+ Mc∗δ̊v +

√
γ − 1

γ
c∗δ̊ε = αc∗hδ

∗δv , (10)

δtε+

√
γ − 1

γ
c∗δ̊v + Mc∗δ̊ε = αc∗hδ

∗δε. (11)
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Let y =
(
ρ v ε

)T
. Scheme (9)�(11) can be rewritten in the form:

y+ = y − β


M 1√

γ 0

1√
γ M

√
γ−1
γ

0
√

γ−1
γ M

 δ̊y + αβδ∗δy. (12)

Theorem 2

For scheme (9)�(11)the von Neumann condition has form (8). The von
Neumann condition is necessary and su�cient for estimate (7) to hold
due to the normality of the ampli�cation matrix.
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Remarks I

1.Changing the speed of sound ĉs in the arti�cial di�usion coe�cient
from schemes (4)�(5) as well as (9)�(11) by the absolute value of speed
of gas |su| gives us the condition

β ≤ min

{
2α|M|

(|M|+ 1)2
,

1

2α|M|

}
,

the right-hand side of which behaves like O(|M|−1) as |M| → ∞.
2. If we want to consider the physical viscosity as presented in equations
(1)�(3),we make the change ν∗ = αc∗h, and condition (8) can be
rewritten as

∆t ≤ min

{
2ν∗

(|M|+ 1)2c2
∗
,
h2

2ν∗

}
.
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Remarks II

3. If we want to consider the combination of physical and arti�cial
viscosities by changing the di�usion coe�cient in the schemes from ν to
ν∗ + k̂c∗h, condition (8) can be rewritten as

∆t ≤ min

{
2(ν∗ + k̂c∗h)

(|M|+ 1)2c2
∗
,

h2

2(ν∗ + k̂hc∗)

}
.
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Monolithic parabolic regularization presented in [6] is a simpler
regularization than in [10] and has the following form in 1D:

∂tρ+ ∂x(ρu) = ε∂2
xρ,

∂t(ρu) + ∂x(ρu2) + ∂xρ = ε∂2
x (ρu),

∂tE + ∂x((E + p)u) = ε∂2
xE ,

where ε > 0 is a small parameter.
Obviously, for this regularization the linearized barotropic and full
schemes take forms (4)�(5) and (9)�(11) with ε = αc∗h.
This means that Theorems 1 and 2 also hold for this regularization
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The barotropic 1D variant of the simpli�ed quasi-hydrodynamical
regularization proposed in [5] has the following form:

∂tρ+ ∂x(ρ(u − w)) = 0,

∂t(ρu) + ∂x(ρ(u − w)v) + ∂xp = ∂xΠNS ,

where w = τ
ρ∂xp, ΠNS = µ∂xv and µ = αsτρp

′(ρ).

In barotropic case the scheme linearized on a constant solution can be
written in the form

y+ = y − c∗

(
M 1
1 M

)
δ̊y + τ∗c

2
∗

(
1 0
0 αs

)
δ∗δy, (13)

where y =
(
ρ v

)T
.

If αs = 1, then the linearized barotropic scheme written in matrix form is
the same as (6). Thus, for scheme (13) the von Neumann condition has
form (8). This means that Theorems 1 and 2 also hold for this
regularization in this particular case.
In the case of the full system, for this regularization Theorems 1 and 2
hold only for special relations between parameters. More general case
requires the use of technique from [12].
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• The criterion (necessary and su�cient condition) for L2-stability is
deduced for special regularizations of gas dynamics equations for
arbitrary Mach number.

• The criterion can be made to behave as O(|M|−1) as |M| → ∞.
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T�anan teid t�ahelepanu eest! Thank you for your

attention!
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