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The outline of the paper

1 The intersection of generalized credal sets can be considered as a
generalization conjunction rules in the theory of imprecise
probabilities and in the theory of belief functions. Thus, it is
interesting to look at what happens if we will use the same
approach for updating information used for belief functions and
based on Dempster’s rule.

2 We analyze this approach in the paper and and show that it can
be realized in two possible ways, and in each way leads for
Dempster’s conditioning for belief functions.

3 The proposed approach looks simpler than the traditional in the
theory of imprecise probabilities and allows us better to implement
learning process based on statistical data.

4 The obtained results look promising for using in robust statistics
models.
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Monotone Measures: Some Useful Constructions

Let X be a finite universal set and 2X be the power set of X. The set
function µ : 2X → [0, 1] is called

normalized if µ(∅) = 0 and µ(X) = 1;

monotone if A ⊆ B, A,B ∈ X implies µ(A) 6 µ(B);

a monotone measure if µ is normalized and monotone;

a belief function if there is a set function m : 2X → [0, 1] with∑
B∈2X m(B) = 1 called the basic belief assignment (bba) such

that µ(A) =
∑

B∈2X |B⊆Am(B).

Relations and operations on monotone measures:

µ1 6 µ2 for set functions on 2X if µ1(A) 6 µ2(A) for all A ∈ 2X .

µd is called the dual of µ if µd(A) = 1− µ(Ac) for all A ∈ 2X ,
where Ac denotes the complement of A.

We write µ = aµ1 + (1− a)µ2 if a ∈ [0, 1], µ, µ1, µ2 are set
functions and µ(A) = aµ1(A) + (1− a)µ2(A) for all A ∈ 2X .
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Some definitions from the theory of belief functions

Let Bel be a belief function with the bba m, then A ∈ 2X is called a
focal element for Bel if m(A) > 0. A belief function is called
categorical if it has the only one focal element B. This function is
denoted by η〈B〉 and clearly

η〈B〉(A) =

{
1, B ⊆ A,
0, otherwise,

A ∈ 2X .

Every belief function Bel with the bba m can be represented as a
convex sum of categorical belief functions as

Bel =
∑
B∈2X

m(B)η〈B〉.
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Modeling Uncertainty with Probabilities

A belief function P is a probability measure if its body of evidence
consists of singletons, i.e.

P =

n∑
i=1

aiη〈{xi}〉, (1)

where
∑n

i=1 ai = 1, ai > 0, i = 1, ..., n.
Notation: Mpr is set of all possible probability measures on 2X .
Assume that an experiment is described by P ∈Mpr and a function
f : X → R shows us the award that we get after conducting the
experiment. Then, in a frequentist’s view, the value

EP (f) =

n∑
i=1

f(xi)P ({xi}) =

n∑
i=1

aif(xi)

gives us the expected award. This award can be considered as the
mean value of awards obtained during the series of the same
independent experiments.
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Modeling Uncertainty with Imprecise Probabilities

If the measure P is not exactly known, then it is possible to describe
an experiment by a set of probability measures P, and we know the
lower bound EP(f) and upper bound EP(f) of the expected award
defined by

EP(f) = inf
P∈P

EP (f), EP(f) = sup
P∈P

EP (f).

Let K be the linear space of all possible real valued functions on X.
Then functionals EP and EP on K have the following properties:

1 EP(af + c) = aEP(f) + c, EP(af + c) = aEP(f) + c for every
a > 0, c ∈ R and f ∈ K;

2 EP(f1 + f2) > EP(f1) + EP(f2), EP(f1 + f2) 6 EP(f1) + EP(f2),
for every f1, f2 ∈ K;

3 EP(f1) 6 EP(f2) for every f1, f2 ∈ K with f1(x) 6 f2(x) for all
x ∈ X;

4 EP(f) = −EP(−f) for every f ∈ K.
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Modeling Uncertainty with Imprecise Probabilities

Credal Sets

Credal sets are non-empty sets of probability measures which are
assumed to be closed and convex. There is a bijection between credal
sets and functionals EP.

Lower Previsions

Let K ′ ⊆ K, then every Φ : K ′ → R is called a lower prevision if its
values Φ(f) can be viewed as lower bounds of EP (f). A Φ : K ′ → R is
called non-contradictory or consistent, if it defines the credal set

P(Φ) = {P ∈Mpr|∀f ∈ K ′ : EP (f) > Φ(f)}.

Otherwise, Φ is called contradictory lower prevision. We will assume
that for every lower prevision Φ : K ′ → R

Φ(f) 6 max
x∈X

f(x).

(HSE, Moscow, Russia) Conditioning of Imprecise ProbabilitiesECSQARU 2019 7 / 26



Upper and lower probabilities

If we describe uncertainty by monotone measures, then the set K ′

consists of characteristic functions 1A(x) = 1 if x ∈ A and
1A(x) = 0 otherwise.

Thus, every Φ on K ′ = {1A|A ∈ 2X} is conceived as a set function
µ(A) = Φ(1A), A ∈ 2X .

µ is called a lower probability if its values are viewed as lower
bounds of probabilities.

A lower probability µ is called non-contradictory, if it defines the
credal set

P(Φ) = {P ∈Mpr|P > µ}.

Otherwise, if P(Φ) is empty, then µ is called contradictory.

Analogously, we can define monotone measures conceived as upper
probabilities.
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Contradiction correction based on generalized credal
sets

Assume Φ : K ′ → R is an upper prevision. Following (Bronevich &
Rozenberg, ECQUARY-2017), Φ can be represented as the convex sum
of two functionals:

Φ = (1− a)Φ(1) + aΦ(2), (2)

where a ∈ [0, 1], Φ(1) is a non-contradictory upper prevision and Φ(2) is
a contradictory upper prevision.

The exact lower bound of a in representation (2) is called the amount
of contradiction in Φ, denoted by Con(Φ).

Since Vmin(f) 6 Φ(2)(f), f ∈ K ′, we can compute Con(Φ) by

Con(Φ) = 1− a −→ max
∃P ∈Mpr : aEP (f) + (1− a)Vmin(f) 6 Φ(f) for all f ∈ K ′.
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Contradiction correction based on generalized credal
sets

An upper prevision Φ is called fully contradictory if Con(Φ) = 1.
We can identify the fully contradictory information with the full
ignorance that can be modeled by the upper prevision

Vmax(f) = max
x∈X

f(x).

If the upper prevision Φ is not fully contradictory, then
Con(Φ) = a ∈ [0, 1) and Φ can represented as

Φ = (1− a)Φ(1) + aVmin,

where Φ(1) is a non-contradictory upper prevision.

Contradiction correction:

Φ′ = (1− a)n.ext(Φ(1)) + aVmax,

where n.ext(Φ(1))(f) is the natural extension of Φ(1).
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Generalized credal sets

Lower generalized credal sets (LG-credal sets) consist of upper
probabilities defined by

P = a0η〈X〉 +

n∑
i=1

aiη〈{xi}〉, (3)

where
∑n

i=0 ai = 1, and ai > 0, i = 1, ..., n.
We see that the set function η〈X〉 is the counterpart of Vmin, since

η〈X〉(A) = Vmin(1A), A ∈ 2X .
Any P from (3) can be represented as a convex sum of η〈X〉 and a
probability measure

P (1) =
1

1− a0

n∑
i=1

aiη〈{xi}〉.

We see that Con(P ) = a0. We denote Md
cpr the set of all possible P

defined by (3).
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Generalized credal sets

Definition 1

A non-empty subset P ⊆Md
cpr is called a lower generalized credal set

(LG-credal set) iff the following conditions hold

1 P1 ∈ P implies P2 ∈ P for every P2 6 P1 in Md
cpr;

2 P is a convex subset of Md
cpr, i.e. P1, P2 ∈ P implies

aP1 + (1− a)P2 ∈ P for any a ∈ [0, 1];

3 P is a closed subset of Rn (every P defined by (3) is considered as
a point (a1, ..., an) of Rn).

Let P be a LG-credal set, then the set of all maximal elements in P
w.r.t. 6 is called the profile of P. We denote it by profile(P). We
identify an usual credal set P′ ⊆Mpr with the LG-credal set P whose
profile is P′.
The amount of contradiction in every LG-credal set P can be
computed by Con(P) = inf{Con(P )|P ∈ P}.
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Examples of generalized credal sets

Let X = {x1, x2} and any P ∈Mpr on 2X is defined by probabilities
P ({xi}) = p(xi), i = 1, 2.

Fig. 1. Left: LG-credal set (blue rectangle), whose profile is the
probability measure P .

Right: LG-credal set, whose profile is the usual credal set
{aP1 + (1− a)P2|a ∈ [0, 1]}.
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Generalized credal sets

We can extend any P ∈Md
cpr to K by

EP (f) = a0Vmin(f) + (1− a0)EP (1)(f) = a0 min
x∈X

f(x) +

n∑
i=1

aif(xi).

Every upper prevision Φ : K ′ → R can be described by the LG-credal
set P(Φ) defined by

P(Φ) =
{
P ∈Md

cpr|∀f ∈ K ′ : EP (f) 6 Φ
}
. (4)

Proposition 1

Let Φ : K ′ → R be an upper prevision with Con(Φ) = a0 < 1, and let
P(Φ) be defined by (4), then the contradiction correction is produced
by

Φ′′(f) = sup{EP d(f)|P ∈ P(Φ), Con(P ) = a0},

where EP d(f) = a0 maxx∈X f(x) +
∑n

i=1 aif(xi).
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The conjunctive rule for imprecise probabilities

Assume that sources of information are described by upper previsions
Φ1, ...,Φm on K ′ ⊆ K. If these sources of information are assumed to
be reliable, then we can use the conjunctive rule:

Φ(f) = min
i=1,...,m

Φi(f), f ∈ K ′.

Analogously the conjunctive rule is defined for upper probabilities.

If we describe these sources of information by LG-credal sets P(Φi),
i = 1, ...,m, then

P(Φ) =

m⋂
i=1

P(Φi).

Let us notice that in the traditional theory of imprecise probabilities
the conjunctive rule is defined only in the case, when sources of
information are not contradictory. In this case, the intersection of the
corresponding usual credal sets is not empty.
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Conditioning based on conjunctive rule

Let P be a probability measure on 2X and we know that an event
B ⊆ X occurs, then we can update probabilities using the conditional
probability measure

PB(A) = P (A ∩B)/P (B), A ∈ 2X .

The conditional probability measure PB is not defined if the event B
fully contradicts to the probability measure P , i.e. P (B) = 0.
Such a result can be viewed as an aggregation of two sources of
information. The first source is the prior information described by a
probability measure P , and the second source certifies that the event B
occurred. This can be modeled by the upper probability ηd〈B〉. Thus,
we can implement the conjunctive rule:

µ = min{P, ηd〈B〉}.
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Conditioning based on conjunctive rule

Proposition 2

Let P =
∑n

i=1 aiη〈{xi}〉 be in Mpr and µ = min{P, ηd〈B〉} for a

B ∈ 2X\{∅}. Then the LG-credal set P(µ) = {P ∈Md
cpr|P 6 µ} has

the profile {P ∗B}, where P ∗B = a0η〈X〉 +
∑

xi∈B aiη〈{xi}〉, where
a0 = 1−

∑
xi∈B ai.

We can generalize Proposition 2 as follows.

Proposition 3

Let P = a0ηX +
∑n

i=1 aiη〈{xi}〉 be in Md
cpr and µ = min{P, ηd〈B〉} for a

B ∈ 2X\{∅}. Then the LG-credal set P(µ) = {P ∈Md
cpr|P 6 µ} has

the profile {P ∗B}, where P ∗B = b0η〈X〉 +
∑

xi∈B aiη〈{xi}〉 and
b0 = 1−

∑
xi∈B ai.
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Conditioning based on conjunctive rule

Let us look at the result of the conditioning based on the conjunctive
rule, described by the profile {P ∗B} :

P ∗B = a0η〈X〉 +
∑
xi∈B

aiη〈{xi}〉.

It contains the fully contradictory part: a0η〈X〉, and the
non-contradictory part: (1− a0)PB =

∑
xi∈B aiη〈{xi}〉, where PB is the

conditional probability measure given B.
Consider an arbitrary LG-credal set P ⊆Md

cpr. Then the conditioning

of P given B ∈ 2X is the subset of Md
cpr defined by P∗B = {P ∗B|P ∈ P}.

Lemma 1

Let P ⊆Md
cpr be a LG-credal set and B ∈ 2X . Then

P∗B = P ∩ (Md
cpr)
∗
B, where (Md

cpr)
∗
B = {PB|P ∈Md

cpr}.
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Conditioning based on conjunctive rule

Proposition 4

The subset P∗B of Md
cpr defined above is the LG-credal set.

Thus, by Proposition 4, we define for every LG-credal set P and every
event B ∈ 2X the conditional LG-credal set P∗B. Then we need to
make the correction and to have the consistent information after that.
Notice that the way, earlier discussed in this presentation, is not
suitable for us, because it does not give us the usual result for
probability measures. This correction for measures in Md

cpr should be

ϕ(a0η〈X〉 +
∑n

i=1
aiη〈{xi}〉) =

1

1− a0

n∑
i=1

aiη〈{xi}〉,

and for LG-credal sets we have the following two major possibilities:

1 ϕ(1)(P) = {ϕ(P )|P ∈ P, Con(P ) = Con(P)};
2 ϕ(2)(P) = {ϕ(P )|P ∈ profile(P)}.
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Conditioning based on conjunctive rule

Remark 1

Clearly, ϕ(1)(P) is the usual credal set for every LG-credal set P.
Assume that P is a LG-credal set with the profile P′ ⊆Mpr. Then the
updating ϕ(1)(P∗B) for B ∈ 2X exists if EP′(1B) > 0 and the
conditioning ϕ(1)(P∗B) is called the maximal likelihood conditioning
because

ϕ(1)(P∗B) =
{
PB|P ∈ P′, P (B) = EP′(1B)

}
.

Remark 2

Because the profile of a LG-credal set is not necessarily a convex set,
the set ϕ(2)(P) is not a usual credal set in general. It is sufficient to
know the extreme points of P that belong to profile(P).
Let P be a LG-credal set with the profile P′ ⊆Mpr whose extreme
points are {P1, ..., Pk}. Then all extreme points in profile{P∗B} are in
the set {(P1)

∗
B, ..., (Pk)∗B}.
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Conditioning based on conjunctive rule

Example 1

Assume that X = {x1, ..., x5} and P is the LG-credal set whose profile
is the usual credal set described by extreme points
P1 = (0.5, 0.3, 0.1, 0.1, 0), P2 = (0.2, 0.3, 0.1, 0.1, 0.3),
P3 = (0.4, 0.2, 0.2, 0.1, 0.1). Consider the event B = {x1, x2}. Then
(P1)

∗
B = (0.5, 0.3, 0, 0, 0), (P2)

∗
B = (0.2, 0.3, 0, 0, 0),

(P3)
∗
B = (0.4, 0.2, 0, 0, 0). Because (P1)

∗
B > (P2)

∗
B and (P1)

∗
B > (P3)

∗
B,

the LG-credal set P∗B has the profile {(P1)
∗
B}. Thus, in this case

ϕ(1)(P∗B) = ϕ(2)(P∗B) = {(P1)B}.
Analogously, let C = {x1, x2, x3} then (P1)

∗
C = (0.5, 0.3, 0.1, 0, 0),

(P2)
∗
C = (0.2, 0.3, 0.1, 0, 0), (P3)

∗
C = (0.4, 0.2, 0.2, 0, 0). Because

(P1)
∗
C > (P2)

∗
C , the LG-credal set P∗C has the profile

{a(P1)
∗
C + (1− a)(P3)

∗
C |a ∈ [0, 1]}. In this case, ϕ(1)(P∗C) = {(P1)C}

and ϕ(2)(P∗C) = {a(P1)C + (1− a)(P3)C |a ∈ [0, 1]}.
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Conditioning based on conjunctive rule

Remark 3

Let P′ be an usual credal set. Then the following updating rule is often
used in the theory of imprecise probabilities:

(P′)B = {PB|P ∈ P′} for B ∈ 2X .

This rule is defined iff EP′(1B) > 0.
It is well-known that if P′has a finite set of extreme points {P1, ..., Pk},
then extreme points of (P′)B are in the set {(P1)B, ..., (Pk)B}. Thus,

(P′)B =

{
k∑

i=1

ai(Pi)B

∣∣∣∣∣
k∑

i=1

ai = 1, ai > 0, i = 1, ..., k

}
.

The difference is that the conditioning based on conjunctive rule
throws out probability measures that are not plausible enough for a
given event B.
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Conditioning based on conjunctive rule

Conditioning of upper prevision Φ : K ′ → R given B

Φ∗B(f) =

{
0, f = 1Bc ,

Φ(f), f ∈ K ′′\{1Bc},
where K ′′ = K ′ ∪ {1Bc}.

Conditioning of upper probabilities

Proposition 5

Let µ be an upper probability on 2X , B ∈ 2X , and let µ∗B be an upper
probability on 2X defined by

µ∗B(A) =

{
µ(A ∩B), A 6= X,

1, A = X.

Then (P(µ))∗B = P(µ∗B).
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Conditioning based on conjunctive rule

Proposition 6

Let µ be an upper probability on 2X and µ(B) > 0 for some B ∈ 2X .
Then (P(µ))∗B = {(1− µ(B))ηX + µ(B)P |P ∈ P(µB)}, where
µB(A) = µ(A ∩B)/µ(B), A ∈ 2X .

Corollary 1

Let µ be an 2-alternating upper probabilitya on 2X and µ(B) > 0 for
some B ∈ 2X , and we use the notation from Proposition 5. Then

ϕ(1)((P(µ))∗B) = ϕ(2)((P(µ))∗B) = {P ∈Mpr|P 6 µB} .
aA monotone measure µ is called 2-alternating if

µ(A) + µ(B) > µ(A ∩B) + µ(A ∪B) for all A,B ∈ 2X .
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Conditioning based on conjunctive rule

Remark 4

Let us remind that plausibility functions are the dual of belief
functions. We see that the conditioning based on generalized credal
sets coincides with the conditioning based on Dempster’s rule that for
a plausibility function Pl on 2X gives the result
PlB(A) = Pl(A ∩B)/P l(B) for A ∈ 2X and B ∈ 2X such that
Pl(B) > 0.
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