Analysing phonological systems: on Bayesian typological research

George Moroz
Linguistic Convergence Laboratory, NRU HSE, Moscow, Russia

24 August 2019

Societas Linguistica Europaea, 52nd Annual Meeting, Leipzig University

Presentation is available here: tinyurl.com/y3wtkcbq
In this talk I will cover the following:

- Goals of linguistic typology
- Different strategies of sampling
- The Bayesian way of thinking about linguistic typology
- Case study: vowels
Goals of linguistic typology

- Attest distributions (statistical and areal) of typological values
Goals of linguistic typology

- Attest distributions (statistical and areal) of typological values
- Find a correlation between the distributions of different typological categories
 - Absolute universals
 - Distributional patterns and tendencies
 - Semantic maps
 - Diachronic change of typological values
Goals of linguistic typology

- Attest distributions (statistical and areal) of typological values
- Find a correlation between the distributions of different typological categories
 - Absolute universals
 - Distributional patterns and tendencies
 - Semantic maps
 - Diachronic change of typological values
- Find a correlation between linguistic and non-linguistic patterns
 - Population movements
 - Population size
 - Language contact
 - Sociolinguistic parameters
 - Geopolitical environment (including the spread of diseases)
Goals of linguistic typology

- Attest distributions (statistical and areal) of typological values
- Find a correlation between the distributions of different typological categories
 - Absolute universals
 - Distributional patterns and tendencies
 - Semantic maps
 - Diachronic change of typological values
- Find a correlation between linguistic and non-linguistic patterns
 - Population movements
 - Population size
 - Language contact
 - Sociolinguistic parameters
 - Geopolitical environment (including the spread of diseases)
- Deal with mixed typological values
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL_1 and VAL_2.

- Get a grant, hire some students, or select a holiday you want to spend working on this topic...

- Pick a sample of languages, calculate the desired statistics, e.g. $\hat{\theta}$

- From now on $\hat{\theta}$ is the best estimation of θ that you know

- Add some confidence intervals if you need to convince an editor who is mad about statistics

- After you have published your paper, your project is finished
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL 1 and VAL 2. What is the probability θ of finding VAL 1 in a randomly picked language?
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL 1 and VAL 2. What is the probability θ of finding VAL 1 in a randomly picked language?

- Get a grant, hire some students, or select a holiday you want to spend working on this topic...
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL 1 and VAL 2. What is the probability θ of finding VAL 1 in a randomly picked language?
- Get a grant, hire some students, or select a holiday you want to spend working on this topic...
- Pick a sample of languages, calculate the desired statistics, e.g. $\hat{\theta}$
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL 1 and VAL 2. What is the probability θ of finding VAL 1 in a randomly picked language?

- Get a grant, hire some students, or select a holiday you want to spend working on this topic...

- Pick a sample of languages, calculate the desired statistics, e. g. $\hat{\theta}$

- From now on $\hat{\theta}$ is the best estimation of θ that you know
Frequentist typological research

- Formulate a theoretical problem
 There is a category in some languages with values VAL 1 and VAL 2. What is the probability θ of finding VAL 1 in a randomly picked language?
 - Get a grant, hire some students, or select a holiday you want to spend working on this topic...
- Pick a sample of languages, calculate the desired statistics, e.g. $\hat{\theta}$
- From now on $\hat{\theta}$ is the best estimation of θ that you know, add some confidence intervals if you need to convince an editor who is mad about statistics
 - After you have published your paper, your project is finished
There are different types of sampling

Random sampling
each member of the population has an equal probability of selection
There are different types of sampling

Random sampling
each member of the population has an equal probability of selection

but each language is grouped in a language family and an area, so observations are not independent...
Language families (languages > 10)
There are different types of sampling:

Stratified random sampling divide the population into groups that differ in important ways, and then perform random sampling for each group.
There are different types of sampling:

Stratified random sampling divide the population into groups that differ in important ways, and then perform random sampling for each group.

!!! The Glottolog version in the lingtypology package suggests that there are **214 unique combinations** (142 sign languages and 82 isolates counted as one family)
There are different types of sampling:

Stratified random sampling divide the population into groups that differ in important ways, and then perform random sampling for each group

‼️ The Glottolog version in the lingtypology package suggests that there are 214 unique combinations (142 sign languages and 82 isolates counted as one family)

⇒ So to create a statistically reasonable sample one needs to get around 300 languages
I am not the first to discuss this problem

- [Bell 1978] "Language Samples"
- [Dryer 1989] "Large Linguistic Areas and Language Sampling"
- [Nichols 1992] "Linguistic Diversity in Space and Time"
- [Rietveld and Van Hout 1993] "Statistical Techniques for the Study of Language and Language Behaviour"
- [Rijkhoff and Bakker 1998] "Language sampling"
- [Maslova 2000] "A dynamic approach to the verification of distributional universals"
- [Widmann 2001] "Language Sampling for Typological Studies"
- [Janssen et al. 2006] "Randomization Tests in Language Typology"
- [Baker 2010] "Language Sampling"
Sampling bias

- Geneological
- Caused by contact
- Cultural
- Typological
- Populational
Sampling bias

- Geneological
- Caused by contact
- Cultural
- Typological
- Populational
- Bibliographical
Sampling bias

- Geneological
- Caused by contact
- Cultural
- Typological
- Populational
- Bibliographical

Typologistical — only typologists think that one typological value corresponds to one so called language
Theoretical linguists
- Complain about how hard it is to solve a problem
- Don’t publish any results until it will be ideal

Computational linguists
- Solve the wrong problem
- Publish messy data and messy results

My suggestion:
- Don’t do any sampling
- Use a linguistic family (or analogous units) as a minimal unit of typological research
- Analyse all languages in a family
- Publish your data
- Make a call for contributions
- Update your results
Theoretical linguists

- Complain about how hard it is to solve a problem
- Don’t publish any results until it will be ideal

Computational linguists

- Solve the wrong problem
- Publish messy data and messy results

My suggestion:

- Don’t do any sampling
- Use a linguistic family (or analogous units) as a minimal unit of typological research
- Analyse all languages in a family
- Publish your data
- Make a call for contributions
- Update your results
frequentist view

- There is a population with one fixed value θ
- Sample from the population and estimate the value $\hat{\theta}$
- If you want to replicate the previous study, resample the data and reestimate the value $\hat{\theta}$

Bayesian view

- There is a value θ that could be described as a distribution of probabilities
- Take into account previous works and formulate prior knowledge about θ
- Sample from the population and estimate the value θ
- Use Bayes’ formula to get posterior distribution of θ
- Use an obtained result as a future prior and update your previous data
Case study: how frequent are \(a, i \) and \(u \)? (10 families)
Case study: how frequent are \(a\), \(i\) and \(u\)? (10 families)

![Graphs showing the frequency of vowels a, i, and u](image)

Sample of 128 languages
Case study: how frequent are a, i and u? (29 families)
What about phonology?

It is possible to use phonological units or relations from any phonological theory you like:

- Features, feet, syllables, etc.
- Feature constituents, OT constraints, exemplars, phonological are diachronic alternations
- Phonological distinctions (e.g. /i/ vs. /ɨ/)
- ...
Send me a letter!
agricolamzg@gmail.com

Presentation is available here:
tinyurl.com/y3wtkcbq
References

