Algebras and formal languages

Dmitri Piontkovski

National Research University Higher School of Economics, Moscow, Russia

Lens, 2019

Graded algebras

We call an associative (or non-associative, or multi-operator) algebra A graded if

$$
A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \ldots,
$$

where $A_{0}=k$ is a basic field (or $A_{0}=0$, in non-associtive case), $\operatorname{dim}_{k} A_{i}<\infty$. All our algebras are graded.
Hilbert function: $h_{A}(n)=\operatorname{dim} A_{n}$
Hilbert series: $H_{A}(z)=\sum_{n \geq 0} z^{n} \operatorname{dim} A_{n}=\sum_{n \geq 0} z^{n} h_{A}(n)$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ with deg $x_{i}=1$, and let $\bar{F}=k\langle X\rangle$ be the free associative algebra. Then the algebra $A=F / I$ (where I is a two-sided homogeneous ideal) is standard graded. This means that A is generated by A_{1}.

Rationality

An algebra A is called finitely presented if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)
If the relations of a finitely presented graded algebra A are monomials in generators then $H_{A}(z)$ is a rational function.

Corollary. If the ideal of relations of A has finite (noncommutative) Groebner basis, then $H_{A}(z)$ is a rational function.

Irrationality

Conjecture (Govorov)

For each finitely presented algebra A the Hilbert series $H_{A}(z)$ is a rational function.

First counterexamples: Ufnarovski, 1978 (transcendental) and Shearer, 1980 (algebraic).

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.

Automaton algebras

Let X be a finite generating set of an algebra A. Consider a multiplicative ordering ' $<$ ' of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.

Theorem (Kleene) A language L is regular if and only if it can be obtained from finite languages by applying a finite number of regular operations, that is, Kleene star, union, concatenation, intersection, and complement.
Suppose $A=F / I$. Let G be a minimal (noncommutative) Groebner basis of I, so that $N=X^{*} \backslash X^{*}(\operatorname{lm} G) X^{*}$. We have A is automaton $\Longleftrightarrow \operatorname{Im} G$ is regular
In particular, finitely presented monomial algebras are automaton.

Automaton algebras

Theorem (Ufnarovski). If A is graded and automaton, then $H_{A}(z)$ is a rational function.

Example. Let $A=\left\langle x, y \mid x^{2}-x y\right\rangle$. For the deglex ordering with $x>y$, we the Groebner basis of the relations is $g=\left\{x y^{n} x-x y^{n+1} \mid n \geq 0\right\}$. Then
$N=\left\{1, y^{a} x y^{b} \mid a, b \geq 0\right\}=\{1\} \cup y^{*} x y^{*}$ is regular, $H_{A}(z)=(1-z)^{-2}$.
Problem 1. How to generalize this theorem to algebras with irrational Hilbert series?

Problem 2. How to generalize Govorov theorem to non-associative and non-binary algebras?

Formal language theory: Chomski's hierarchy

Cf. [Naom Chomski, 1956].

Grammar	Languages	Automaton	Example
Type-0	Recuresively	Turing	$\{$ All terminating
	enumerable	machine	computer programs
Type-1	Context-sensitive	Linear bounded	$\left\{x^{n} y^{n} z^{n} \mid n \geq 0\right\}$
Type-2	Context-free	Pushdown	$\left\{x^{n} y^{n} \mid n \geq\right\}$
Type-3	Regular	Finite	$\left\{a c^{n} b \mid n \geq 0\right\}$

A part of the hierarchy for of languages

Languages	Automaton	Generating functions
cf	Pushdown	(arbitrary)
Unambiguous cf		Algebraic
Deterministic of	Deterministic pushdown	
Regular	Finite	Rational
Slender regular	Of special kind	$p(x) /\left(1-x^{N}\right)$

Rationality in the linear growth case

An algebra has linear growth, if GK- $\operatorname{dim} A \leq 1$, that is, for some $c>0$ we have $h_{A}(n)=\operatorname{dim} A_{n}<c$.

Example

Let $A=\langle x, y| x^{2}, y x y, x y^{2^{t}} x$ for all $\left.t \geq 0\right\rangle$. Then $A_{n}=k\left\{y^{n}, x y^{n-1}, y^{n-1} x, x y^{n-2} x\right\}$ for $n \neq 2^{t}+2$ or $A_{n}=k\left\{y^{n}, x y^{n-1}, y^{n-1} x\right\}$ otherwise.
We have $H_{A}(z)=1+2 z+4 z^{2} /(1-z)-z^{2} \sum_{t \geq 0} z^{2^{t}}$.

Problem (Govorov conjecture for algebras of linear growth, GALG)

Suppose that an algebra A of linear growth is finitely presented. Is $H_{A}(z)$ a rational function?

For such algebras, $H_{A}(z)$ is rational iff $h_{A}(n)$ is eventually periodic, that is, $\exists n_{0}, T>0$ such that $h_{A}(n)=h_{A}(n+T)$ for all $n>n_{0}$.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)
A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.

The finite characteristic case

Theorem

Suppose that the field k has a finite characteristic. Then both Govorov conjecture for algebra of linear growth and Ufnarovski conjecture for graded algebras hold if and only if k is an algebraic extension of its prime subfield.
'If' part: essentially, the case of finite field.
'Only if' part (counterexamples to GALG): based on the connections with the dynamical Mordell-Lang conjecture and the set of zeroes of linear recurrent sequences.

The case of infinite field

What about the case char $k=0$?

Example (Fermat algebras)

For $\alpha, \beta \in k^{\times}$, let $A=A_{\alpha, \beta}$ be generated by a, b, c, x, y, z subject to 26 relations $x c-\alpha c x, y b-\beta c y$ and others. Then $h_{A}(n+3)$ is 10 or 11 according to whether the Fermat equality $\alpha^{n}+\beta^{n}=1$ holds. So, it has no nonzero solution in k^{\times}for each $n \geq 3$ if and only if $h_{A}(i)=10$ for all $i \geq 6$ and each $A=A_{\alpha, \beta}$.

Theorem

Let $g \geq 5$ be an integer. If the field k is infinite, then there are infinitely many (periodic) sequences h_{A} for g-generated quadratic k-algebras of linear growth. If If, in addition, k contains all primitive roots of unity, then both the length d of the initial non-periodic segment and the period T of h_{A} can be arbitrary large.

Algebras and languages of linear growth

Theorem [Justin, 1971; Belov, Borisenko, Latyshev, 1997; Holt, Owens, Thomas, 2008] Each finitely generated semigroup of linear growth is a finite union of a finite set and sets of the form $a\langle c\rangle b$, where $\langle c\rangle$ is a monogenic semigroup. Equivalently, if a (non-graded) algebra A of linear growth is generated by a finite set S, then there are $U, V, W \subset S^{*}$ such that each normal word in A has the form

$$
w=a c^{n} b, \text { where } a \in U, b \in V, c \in W, n \geq 0 .
$$

Languages of linear growth are called slender. Theorem [Paun, Salomaa, 1995]. Each regular slender language is a finite disjoint union of a finite set and sets of the from $a c^{*} b$ (where $a, b, c \in X^{*}$).

Normal words in f.p. algebras of linear growth

F.p. algebras and monoids of linear growth

Let A be an algebra of linear growth.

Corollary

Suppose that the algebra A is graded finitely presented and the basic field is finite. Then there are a generating set $1 \in S \subset A$ and an ordering such that for some $Q \subset S^{3}$ the set of normal words in A is

$$
\left\{a c^{n} b \mid n \geq 0,(a, b, c) \in Q\right\}
$$

Corollary

Let S be a homogeneous finitely presented monoid. Then S has linear growth if and only if it is the finite disjoint union of a finite set and sets of the form $a\langle c\rangle b$, where $\langle c\rangle$ is a free monogenic semigroup.

Context free languages: main definitions

Recall that a context-free grammar G is quadruple of finite sets V (variables), X (terminals, or letters),
$G \subset V \times(V \cup X)^{*}$ (rules of the form $A \rightarrow \alpha$) and an element $S \in V$ (a start variable).
Compact notation: $A \rightarrow \alpha_{1}|\ldots| \alpha_{k}$ in place of $A \rightarrow \alpha_{1}, \ldots, A \rightarrow \alpha_{k}$.
A language $L \subset X^{*}$ is context-free if it there is G such that $L=\{w \mid S \xrightarrow{*} w\}$, that is, for each $w \in L$ there is a derivation $S \rightarrow a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{k}=w$.
The cf grammar G and the language L are called

- unambiguous, if for each $w \in L$ the leftmost derivation $S \xrightarrow{*} w$ is unique;
- deterministic, if it is unambiguous and the source of each step $a_{i-1} \rightarrow a_{i}$ is uniquely defined by the initial segment of a_{i};
- regular, if all rules are of the form $A \rightarrow 1$ or $A \rightarrow x_{i} B$ (where $A, B \in P$).

Generating series of languages

Let l_{i} be the number of the words of L having length i, and let $\gamma_{L}(z)=\sum_{i=0}^{\infty} l_{i} z^{i}$.

Theorem (Chomsky-Schützenberger)

Suppose that a cf grammar G as above is unambiguous. Then $\gamma_{L}(z)$ is an algebraic function. If, moreover, G is regular, then $\gamma_{L}(z)$ is a rational function.

In both cases, there are effective algorithms to produce a system of algebraic (or linear) equations which defines $\gamma_{L}(z)$. Then one can apply the standard elimination technique based on Groebner bases.

Homological approach

Homologically unambiguous algebras (joint work with R. La Scala and S. Tiwary).
Question. Suppose that $A=F / I$ is a monomial algebra, where the ideal I is generated by an (unambiguous) cf subword-free language $L \subset X^{*}$. How to describe the language N and the Hilbert series $H_{A}(z)=\gamma(z)$?

Suppose that A has finite global dimension (say, d). Then there exist a free resolution

$$
0 \rightarrow k L_{d-1} \otimes A \rightarrow \ldots \rightarrow k L_{1} \otimes A \rightarrow k L_{0} \otimes A \rightarrow A \rightarrow k \rightarrow 0 .
$$

The languages L_{k} are called chain languages (Anick, 1986). Here $L_{0}=X, L_{1}=L$, and the elements of L_{k} are (minimal) intersections of k elements of L :

Are chains context free?

Proposition. If L is regular, then the chain language L_{k} is regular for each k.
Mansson (2002) has provided an algorithm to construct recursively the languages L_{k} by a regular L (in terms of finite automata).
Question. Suppose L is (unambiguous) cf-language. Does this imply that each chain language L_{k} is (unambiguous) cf?
Example. Let $X=\{x, y, z\}$ and
$L=\left\{x^{n} y^{n} z \mid n \geq 2\right\} \cup\left\{x y^{n} z^{n} \mid n \geq 2\right\}$. Then $L_{1}=L$ is an unambiguous of language generated by the grammar with

$$
P=\left\{S \rightarrow A z\left|x B, A \rightarrow x^{2} y^{2}\right| x A y, B \rightarrow y^{2} z^{2} \mid y B z\right\} .
$$

Still, $L_{2}=\left\{x^{n} y^{n} z^{n} \mid n \geq 2\right\}$ is not context-free. Here gl. $\operatorname{dim} A=3$ and

$$
H=\left(1-n t+\gamma\left(L_{1}\right)-\gamma\left(L_{2}\right)\right)^{-1}
$$

is a rational function.

Unambiguous algebras

Definition

Let A be a monomial algebra with the relations $L \subset\left(X^{+}\right)^{2}$. We call A a homologically unambiguous monomial algebra, briefly an unambiguous algebra, if all chain languages $L_{k}(A)(k \geq 1)$ are unambiguous cf-languages.

Proposition (algebraic). Let A be an unambiguous algebra having finite global dimension. Then the Hilbert series $\mathrm{HS}(A)$ is an algebraic function.
Proposition (algorithmic). Given unambiguous of grammars for $L_{1}=L, L_{2}, \ldots, L_{d-1}$, there is an algorithm to construct a system of algebraic equations defining $H_{A}(z)$.

Unambiguous monomial examples

Example 1. Fix $X=\{x, y, z, c\}$ and $Y=\{a, b\}$. We put $Z=X \cup Y$ and $F=k\langle Z\rangle$. Consider the Lukasiewicz cf-grammar $G=(V, Y, P, S)$ where $V=\{S\}$ and $P=\{S \rightarrow a \mid b S S\}$. The corresponding cf-language $L=L(G)$ consists of the algebraic expressions in Polish notation (e.g., $a, b a a, b a b a a$). Put $A=F /(L)$, where

$$
L=\left\{x^{2} y, x^{2} z, x y^{2}, x y z, x z y, x z^{2}\right\} \cup y z^{2} L c
$$

Then gl. $\operatorname{dim} A=4$ with
$L_{2}=\left\{x^{2} y^{2}, x^{2} y z, x^{2} z y, x^{2} z^{2}\right\} \cup\left\{x y z^{2}, x y^{2} z^{2}, x z y z^{2}\right\} L c$ and $L_{3}=\left\{x^{2} y^{2} z^{2}, x^{2} z y z^{2}\right\} L c$. Then $H_{A}(t)=$
$\left(1-6 t+\frac{13}{2} t^{3}-\frac{9}{2} t^{4}-t^{5}+t^{6}-t^{3}(1-t)\left(1-2 t^{2}\right) \frac{\sqrt{1-4 t^{2}}}{2}\right)^{-1}$.

Finitely presented case: toy example

Toy example. Let $A=k\left\langle x, y \mid y x y-y^{2} x\right\rangle$. Under the lex-deg ordering with $x>y$, the Groebner basis is $G=\left\{y^{n} x^{n} y-y^{n+1} x^{n} \mid n \geq 1\right\}$. Then the associated monomial algebra $B=k\langle x, y \| \mathrm{m}(G)\rangle$ is unambiguous with

$$
L_{1}=L=\left\{y^{n} x^{n} y \mid n \geq 1\right\}
$$

and

$$
L_{k}=y^{n_{1}} x^{n_{1}} \ldots y^{n_{k}} x^{n_{k}} y
$$

Moreover, $H_{A}(z)=H_{B}(z)=\left(1-2 z+z^{3}\right)^{-1}$ is rational. Question (Mansson, Nordbeck, 2002). Are all algebras defined by a single homogeneous relation automaton? Question. Are all algebras defined by a single homogeneous relation unambiguous?

Finitely presented case: examples

Example 4. Fix $X=\left\{a^{\prime}, b^{\prime}, x, y\right\}, Y=\{a, b, e\}$ and put $Z=X \cup Y, F=k\langle Z\rangle$. Let $I \subset F$ be generated by
(i) $a^{\prime} x-x a^{\prime}, b^{\prime} x-x e$;
(ii) $a^{\prime} a-a a^{\prime}, a^{\prime} b-a b^{\prime}, b^{\prime} a-b a^{\prime}, b^{\prime} b-b b^{\prime}, a^{\prime} e-a b, b^{\prime} e-b^{2}$;
(iii) $a y-y^{2}, b y-y^{2}, a^{\prime} y-y^{2}, b^{\prime} y-y^{2}$;
(iv) $x y$.

Let G be the minimal Groebner basis of I for deg-lex with $a^{\prime} \succ b^{\prime} \succ a \succ b \succ e \succ x \succ y$, and let $L=\operatorname{lm}(G)$. Let $M=(D e)^{*}$ where D is the Dick language on a, b. Note that M is unambiguous defined by the grammar $G=(V, Y, P, S)$, where $V=\{S, T\}$ and

$$
P=\{S \rightarrow 1|T e S, T \rightarrow 1| a T b T\}
$$

Then L is the union of the leading terms of (i)-(iii) and the language $x M y$.

Then the associated monomial algebra $B=F /(L)$ is unambiguous with gl. $\operatorname{dim} B=3$ and

$$
L_{2}(B)=\left\{a^{\prime}, b^{\prime}\right\}\{a, b\} y \cup\left\{a^{\prime}, b^{\prime}\right\} x M y
$$

Then the function $E=H_{B}(t)^{-1}$ satisfies a system

$$
\left\{\begin{aligned}
E & =1-7 t+E_{1}-E_{2} \\
E_{1} & =12 t^{2}+t^{2} S \\
E_{2} & =4 t^{3}+2 t^{3} S \\
S & =t S T+1 \\
T & =t^{2} T^{2}+1
\end{aligned}\right.
$$

We obtain

$$
H_{A}(t)=H_{B}(t)=\left(1-7 t+\frac{25}{2} t^{2}-5 t^{3}+t^{2} \frac{\sqrt{1-4 t^{2}}}{2}\right)^{-1}
$$

Multioperator algebras

We fix a field k.
Multioperator algebra is a vector space with a set of multilinear operations on it.

Example

$A=k[x]$ (polynomials on x),
binary operations: $(f, g) \mapsto f \cdot g,\{f, g\}=f g^{\prime}-g f^{\prime}$,
$f * g(z)=\int_{0}^{z} f^{\prime}(w) g(w) d w$,
unary operation: $f \mapsto f^{\prime}$, etc.
Examples of identities:
$(f \cdot g) \cdot h \equiv f \cdot(g \cdot h)$ (associativity),
$\{f, g\} \equiv-\{g, f\}$ (anti-commutativity),
$(a * b) * c \equiv a *(b * c+c * b)$ (Zinbiel identity).
A variety of multioperator algebras is defined by a set of basic operations (signature) and a set of identities.

Operads and varieties

Let V be a variety of multioperator algebras.
A corresponding (symmetric) operad $\mathcal{P}=\mathcal{P}^{V}$ is the set of all composite multilinear operations on algebras in V.
We have $\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \ldots$,
where $\mathcal{P}{ }_{n} \subset F^{V}\left(x_{1}, x_{2}, \ldots\right)$ is the set of n-linear generic polynomials in x_{1}, \ldots, x_{n} inside the relatively free algebra $F^{V}=F^{V}\left(x_{1}, x_{2}, \ldots\right)$.
Operations on \mathcal{P} :

- compositions: $\mathcal{P}_{m} \circ_{t} \mathcal{P}_{n} \rightarrow \mathcal{P}_{m+n-1}, t=1, \ldots, m$;
- action of the symmetric group S_{n} on \mathcal{P}_{n} (for symmetric operads)
with obvious compatibility conditions.
One can recover \mathcal{P} and V by each other:
$\mathcal{P} \rightsquigarrow V=V^{\mathcal{P}}$ and $V \rightsquigarrow \mathcal{P}=\mathcal{P}^{V}$.

Selection from the history of operads

Operads were introduced by in [May, 1970].
Second born in 1990s after works by Getsler, Jones, Kapranov, Ginzburg, Stasheff, Markl, and others, with applications in topology and mathematical physics.
Selected bibliography
© J.-L. Loday, J. Stasheff, and A. Voronov, Operads: proceedings of renaissance conferences, Contemporary mathematics, 202 (1997)
(c) M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, 96, AMS, Providence, RI, 2002
(3) J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012
(1) M. Bremner and V. Dotsenko, Algebraic operads: an algorithmic companion, CRC Press, 2016 See also:

- A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, 122, AMS, Providence, RI, 2005

A list of some common operads

Contents of Zinbiel's Encyclopedia of types of algebras 2010

sample	6	As	7			
Com	8	Lie	9	L-dend	40	Lie-adm
Pois	10	none	11	PreLiePerm	42	Altern
Leib	12	Zinb	13	Param1rel	44	MagFine
Dend	14	Dias	15	GenMag	46	NAP
PreLie	16	Perm	17	Moufang	48	Malcev
Dipt	18	Dipt!	19	Novikov	50	DoubleLie
2 as	20	$2 a s$!	21	DiPreLie	52	Akivis
Tridend	22	Trias	23	Sabinin	54	Jordan triples
PostLie	24	ComTrias	25	$t-A s^{(3)}$	56	$p-A s^{(3)}$
CTD	26	$C T D^{\text {! }}$	27	LTS	58	Lie-Yamaguti
Gerst	28	BV	29	Interchange	60	HyperCom
Mag	30	Nil_{2}	31	A_{∞}	62	C_{∞}
ComMag	32	ComMag!	33	L_{∞}	64	Dend $_{\infty}$
Quadri	34	Quadri ${ }^{\text {! }}$	35	\mathbb{P}_{∞}	66	Brace
Dup	36	Dup!	37	MB	68	2Pois
$A s^{(2)}$	38	$A s^{\langle 2\rangle}$	39	$\Xi^{ \pm}$	70	your own

Generating series of some operads

The operad As is a non-symmetric associativity operad. It is generated by $\mu:(x, y) \mapsto x \cdot y$ subject to $\left.\mu\left(x_{1}, \mu\left(x_{2}, x_{3}\right)\right) \equiv \mu\left(\mu\left(x_{1}, x_{2}\right), x_{3}\right)\right)$, or
$-\cdot(-\cdot)=(-\cdot-) \cdot-$. We have $\operatorname{As}(n)=k\left\{x_{1} \ldots x_{n}\right\}$,
$G_{\text {As }}(z)=\frac{z}{1-z}$.
Its symmetrization $\mathcal{A} s s o c$ is a symmetric operad generated by $\mu:(x, y) \mapsto x \cdot y$ and $\nu:(x, y) \mapsto y \cdot x$ subject to $\left.\mu\left(x_{1}, \nu\left(x_{2}, x_{3}\right)\right) \equiv \mu\left(\mu\left(x_{1}, x_{3}\right), x_{2}\right)\right)$ and others (6 linearly independent identities).
Then

$$
\operatorname{dim} \mathcal{A} \operatorname{ssoc}(n)=n!, E_{\mathcal{A} s s o c}(z)=\frac{z}{1-z}=G_{\mathrm{As}}(z) .
$$

For other common operads:

$$
E_{\mathcal{C o m}}=e^{z}-1, E_{\mathcal{L i e}}=-\ln (1-z) .
$$

Operads with finite Gröbner bases: a question

Non-symmetric operads As of associative algebras, of q-associative algebras, Dend of dendriform algebras, and others have has finite Gröbner bases (see the book by Dotsenko and Bremner). What does this imply about their generating series?
Analogy. [Govorov, 1972] If A is a graded associative algebra with finite Gröbner basis, then its Hilbert series is a rational function, $H_{A}(z)=p(z) / q(z)$.
Addition. [Ufnarovsky, 1989] Because A is automaton.

Operads with finite Gröbner bases: answers

The elements of a (free) operad and a free algebra over an are spanned by the words in Polish notations (recall the Lukasiewicz langauge), e.g., $\mu\left(x_{1}, \mu\left(x_{2}, x_{3}\right)\right) \mapsto \mu x_{1} \mu x_{2} x_{3}$ and $\mu\left(x_{1}, \mu\left(x_{2}, x_{3}\right)\right) \mapsto \mu x_{1} \mu x_{2} x_{3}$. For non-symmetric operads and f.g. algebras, they are defined over finite alphabets.

Theorem (P.)

Let P be a non-symmetric operad with finite Groebner basis (e.g., an f.p. monomial operad) and let A be an algebras with finite Groebner basis over such an operad. Then both the set of normal words N_{P} and N_{A} of P and of A are detreministic of langauges.

Corollary[Drensky and Holtkamp, 2008] Each finitely presented monomial algebra over a free finitely generated (non-symmetric) operads have algebraic Hilbert series. Corollary[Khoroshkin and P., 2015] The ordinary generating series $G_{P}(z)$ of a non-symmetric operad with a finite Gröbner basis is an algebraic function.

Bibliography

- D. P., Algebras of linear growth and the dynamical Mordell-Lang conjecture, Advances in Math., 2019
- R. La Scala, D. P., S. Tiwari, Noncommutative algebras, context-free grammars and algebraic Hilbert series, to appear in J. of Symbolic Computation
- A. Khoroshkin, D. P., On generating series of finitely presented operads, J. of Algebra, 2015
- D. P., In preparation

Thank you!

Unambiguous monomial examples

Example 2. Fix $X=\{x, y, z, c, d\}$ and $Y=\{a, b\}$. We put $Z=X \cup Y$ and $F=k\langle Z\rangle$. Consider the Lukasiewicz cf-grammar $G=(V, Y, P, S)$ where $V=\{S\}$ and $P=\{S \rightarrow a \mid b S S\}$. The corresponding cf-language $L=L(G)$ consists of the algebraic expressions in Polish notation (e.g., $a, b a a, b a b a a$). Put $A=F /(L)$, where

$$
L=c L\left\{x^{2} y, x y z, x z x\right\} \cup\left\{x y^{2}, y^{2} z, z^{2} y\right\} L d
$$

Then $L_{2}=c L\left\{x^{2} y^{2}, x^{2} y^{2} z, x y z^{2} y, x z x y^{2}\right\} L d$ and $L_{3}=\emptyset$, so that gl. $\operatorname{dim} A=3$. Then $H_{A}(t)$ is the inverse of the root of

$$
E^{2}+\left(-6 t^{7}-2 t^{6}+3 t^{5}+t^{4}-6 t^{3}+14 t-2\right) E+9 t^{14}+6 t^{13}+t^{12}
$$

This is confirmed by its correct power series expansion

$$
H_{A}(t)=1+7 t+49 t^{2}+343 t^{3}+2401 t^{4}+16801 t^{5}+117565 t^{6}+\ldots
$$

Monomial examples: infinite global dimension

Example 3. Let $X=\{x\}, Y=\{a, b\}, Z=X \cup Y$ and $F=k\langle Z\rangle$. Consider the Dyck language D on the alphabet Y. Let

$$
\gamma=\gamma(D)=\frac{1-\sqrt{1-4 t^{2}}}{2 t^{2}}
$$

Put $L=x D x \subset Z^{*}$. and $A=F /(L)$. For any $n \geq 1$, the (unambiguous) n-chain language of A is clearly

$$
L_{n}=x(D x)^{n} .
$$

We conclude that gl. $\operatorname{dim}(A)=\infty$ and $\gamma\left(L_{n}\right)=t^{n+1} \gamma^{n}$.
Finally, $\operatorname{HS}(A)^{-1}=1-\sum_{i=0}^{\infty}(-1)^{i} \gamma\left(L_{i}\right)$
$=1-3 t+t^{2} \frac{\gamma}{(1-t \gamma)}=\frac{1-6 t+6 t^{2}-(1-4 t) \sqrt{1-4 t^{2}}}{1-2 t-\sqrt{1-4 t^{2}}}$.

More general classes

Theorem. Let $M \subset Y^{+}$be an unambiguous context-free language and let $R_{0} \subset X^{*}, R_{1}, R_{1}^{\prime}, \ldots, R_{k}, R_{k}^{\prime} \subset X^{+}$be regular languages such that their disjoint union

$$
R_{0} \cup R_{1} \cup R_{1}^{\prime} \cup \cdots \cup R_{k} \cup R_{k}^{\prime}
$$

is subword free. Then the monomial algebra

$$
A=\langle X \cup Y| R_{0} \cup R_{1} M R_{1}^{\prime} \cup \cdots \cup R_{k} M R_{k}^{\prime}
$$

is homologically unambiguous.

Operads vs varieties

A phrase-book

variety	- operad
subvariety	- quotient operad
signature	- set of generators
identities	- relations
free algebra	- free algebra
(exponential) codimension series	- (exponential) generating function
T-space	- right ideal
T-ideal	- ideal
Specht properties	- Noether properties

