Algebras and formal languages

Dmitri Piontkovski

National Research University Higher School of Economics, Moscow, Russia

Lens, 2019

Graded algebras

We call an associative (or non-associative, or multi-operator) algebra A graded if

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \dots$$

where $A_0=k$ is a basic field (or $A_0=0$, in non-associtive case), $\dim_k A_i < \infty$. All our algebras are graded. Hilbert function: $h_A(n)=\dim A_n$ Hilbert series: $H_A(z)=\sum_{n\geq 0} z^n \dim A_n=\sum_{n\geq 0} z^n h_A(n)$. Let $X=\{x_1,\ldots,x_n\}$ with $\deg x_i=1$, and let $F=k\langle X\rangle$ be the free associative algebra. Then the algebra A=F/I (where I is a two-sided homogeneous ideal) is standard graded. This means that A is generated by A_1 .

Rationality

An algebra A is called *finitely presented* if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)

If the relations of a finitely presented graded algebra A are monomials in generators then $H_A(z)$ is a rational function.

Corollary. If the ideal of relations of A has finite (noncommutative) Groebner basis, then $H_A(z)$ is a rational function.

Irrationality

Conjecture (Govorov)

For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.

First counterexamples: Ufnarovski, 1978 (transcendental) and Shearer, 1980 (algebraic).

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.

Automaton algebras

Let X be a finite generating set of an algebra A. Consider a multiplicative ordering '<' of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.

Theorem (Kleene) A language L is regular if and only if it can be obtained from finite languages by applying a finite number of regular operations, that is, Kleene star, union, concatenation, intersection, and complement. Suppose A=F/I. Let G be a minimal (noncommutative) Groebner basis of I, so that $N=X^*\backslash X^*(\operatorname{Im} G)X^*$. We have A is automaton $\Longleftrightarrow \operatorname{Im} G$ is regular In particular, finitely presented monomial algebras are automaton.

Automaton algebras

Theorem (Ufnarovski). If A is graded and automaton, then $H_A(z)$ is a rational function.

Example. Let $A=\langle x,y|x^2-xy\rangle$. For the deglex ordering with x>y, we the Groebner basis of the relations is $g=\{xy^nx-xy^{n+1}|n\geq 0\}$. Then $N=\{1,y^axy^b|a,b\geq 0\}=\{1\}\cup y^*xy^*$ is regular, $H_A(z)=(1-z)^{-2}$.

Problem 1. How to generalize this theorem to algebras with irrational Hilbert series?

Problem 2. How to generalize Govorov theorem to non-associative and non-binary algebras?

Formal language theory: Chomski's hierarchy

Cf. [Naom Chomski, 1956].

Grammar	Languages	Automaton	Example
Type-0	Recuresively	Turing	{ All terminating
	enumerable	machine	computer programs
Type-1	Context-sensitive	Linear bounded	$\{x^n y^n z^n n \ge 0\}$
Type-2	Context-free	Pushdown	$\{x^ny^n n\geq\}$
Type-3	Regular	Finite	$\{ac^nb n\geq 0\}$

A part of the hierarchy for cf languages			
Languages	Automaton	Generating functions	
cf	Pushdown	(arbitrary)	
Unambiguous cf		Algebraic	
Deterministic cf	Deterministic pushdown		
Regular	Finite	Rational	
Slender regular	Of special kind	$p(x)/(1-x^N)$	

Rationality in the linear growth case

An algebra has linear growth, if GK-dim $A \le 1$, that is, for some c>0 we have $h_A(n)=\dim A_n < c$.

Example

Let
$$A=\langle x,y|x^2,yxy,xy^{2^t}x$$
 for all $t\geq 0\rangle$. Then $A_n=k\{y^n,xy^{n-1},y^{n-1}x,xy^{n-2}x\}$ for $n\neq 2^t+2$ or $A_n=k\{y^n,xy^{n-1},y^{n-1}x\}$ otherwise. We have $H_A(z)=1+2z+4z^2/(1-z)-z^2\sum_{t\geq 0}z^{2^t}$.

Problem (Govorov conjecture for algebras of linear growth, GALG)

Suppose that an algebra A of linear growth is finitely presented. Is $H_A(z)$ a rational function?

For such algebras, $H_A(z)$ is rational iff $h_A(n)$ is eventually periodic, that is, $\exists n_0, T>0$ such that $h_A(n)=h_A(n+T)$ for all $n>n_0$.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)

A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.

The finite characteristic case

Theorem

Suppose that the field k has a finite characteristic. Then both Govorov conjecture for algebra of linear growth and Ufnarovski conjecture for graded algebras hold if and only if k is an algebraic extension of its prime subfield.

'If' part: essentially, the case of finite field.
'Only if' part (counterexamples to GALG): based on the connections with the dynamical Mordell–Lang conjecture and the set of zeroes of linear recurrent sequences.

The case of infinite field

What about the case char k = 0?

Example (Fermat algebras)

For $\alpha,\beta\in k^{\times}$, let $A=A_{\alpha,\beta}$ be generated by a,b,c,x,y,z subject to 26 relations $xc-\alpha cx,yb-\beta cy$ and others. Then $h_A(n+3)$ is 10 or 11 according to whether the Fermat equality $\alpha^n+\beta^n=1$ holds. So, it has no nonzero solution in k^{\times} for each $n\geq 3$ if and only if $h_A(i)=10$ for all $i\geq 6$ and each $A=A_{\alpha,\beta}$.

Theorem

Let $g \geq 5$ be an integer. If the field k is infinite, then there are infinitely many (periodic) sequences h_A for g-generated quadratic k-algebras of linear growth. If If, in addition, k contains all primitive roots of unity, then both the length d of the initial non-periodic segment and the period T of h_A can be arbitrary large.

Algebras and languages of linear growth

Theorem [Justin, 1971; Belov, Borisenko, Latyshev, 1997; Holt, Owens, Thomas, 2008] Each finitely generated semigroup of linear growth is a finite union of a finite set and sets of the form $a\langle c\rangle b$, where $\langle c\rangle$ is a monogenic semigroup. Equivalently, if a (non-graded) algebra A of linear growth is generated by a finite set S, then there are $U,V,W\subset S^*$ such that each normal word in A has the form $w=ac^nb$, where $a\in U,b\in V,c\in W,n\geq 0$.

Languages of linear growth are called slender. Theorem [Paun, Salomaa, 1995]. Each regular slender language is a finite disjoint union of a finite set and sets of the from ac^*b (where $a,b,c\in X^*$).

Normal words in f.p. algebras of linear growth

F.p. algebras and monoids of linear growth

Let A be an algebra of linear growth.

Corollary

Suppose that the algebra A is graded finitely presented and the basic field is finite. Then there are a generating set $1 \in S \subset A$ and an ordering such that for some $Q \subset S^3$ the set of normal words in A is

$$\{ac^n b | n \ge 0, (a, b, c) \in Q\}.$$

Corollary

Let S be a homogeneous finitely presented monoid. Then S has linear growth if and only if it is the finite disjoint union of a finite set and sets of the form $a\langle c\rangle b$, where $\langle c\rangle$ is a free monogenic semigroup.

Context free languages: main definitions

Recall that a context-free grammar G is quadruple of finite sets V (variables), X (terminals, or letters),

 $G\subset V imes (V\cup X)^*$ (rules of the form $A\to \alpha$) and an element $S\in V$ (a start variable).

Compact notation: $A \to \alpha_1 | \dots | \alpha_k$ in place of $A \to \alpha_1, \dots, A \to \alpha_k$.

A language $L\subset X^*$ is context-free if it there is G such that $L=\{w|S\overset{*}{\to}w\}$, that is, for each $w\in L$ there is a derivation $S\to a_1\to a_2\to\cdots\to a_k=w$.

The cf grammar G and the language L are called

- unambiguous, if for each $w \in L$ the leftmost derivation $S \stackrel{*}{\to} w$ is unique;
- deterministic, if it is unambiguous and the source of each step $a_{i-1} \to a_i$ is uniquely defined by the initial segment of a_i ;
- regular, if all rules are of the form $A \to 1$ or $A \to x_i B$ (where $A, B \in P$).

Generating series of languages

Let l_i be the number of the words of L having length i, and let $\gamma_L(z) = \sum_{i=0}^\infty l_i z^i$.

Theorem (Chomsky-Schützenberger)

Suppose that a cf grammar G as above is unambiguous. Then $\gamma_L(z)$ is an algebraic function. If, moreover, G is regular, then $\gamma_L(z)$ is a rational function.

In both cases, there are effective algorithms to produce a system of algebraic (or linear) equations which defines $\gamma_L(z)$. Then one can apply the standard elimination technique based on Groebner bases.

Homological approach

Homologically unambiguous algebras

(joint work with R. La Scala and S. Tiwary). Question. Suppose that A=F/I is a monomial algebra, where the ideal I is generated by an (unambiguous) of subword-free language $L\subset X^*$. How to describe the language N and the Hilbert series $H_A(z)=\gamma(z)$?

Suppose that A has finite global dimension (say, d). Then there exist a free resolution

$$0 \to kL_{d-1} \otimes A \to \ldots \to kL_1 \otimes A \to kL_0 \otimes A \to A \to k \to 0.$$

The languages L_k are called *chain languages* (Anick, 1986). Here $L_0=X, L_1=L$, and the elements of L_k are (minimal) intersections of k elements of L:

Are chains context free?

Proposition. If L is regular, then the chain language L_k is regular for each k.

Mansson (2002) has provided an algorithm to construct recursively the languages L_k by a regular L (in terms of finite automata).

Question. Suppose L is (unambiguous) cf-language. Does this imply that each chain language L_k is (unambiguous) cf? Example. Let $X = \{x, y, z\}$ and $L = \{x^ny^nz \mid n \geq 2\} \cup \{xy^nz^n \mid n \geq 2\}$. Then $L_1 = L$ is an unambiguous cf language generated by the grammar with

$$P = \{S \to Az \mid xB, A \to x^2y^2 \mid xAy, B \to y^2z^2 \mid yBz\}.$$

Still, $L_2 = \{x^n y^n z^n \mid n \geq 2\}$ is not context-free. Here gl. $\dim A = 3$ and

$$H = (1 - nt + \gamma(L_1) - \gamma(L_2))^{-1}$$

is a rational function.

Unambiguous algebras

Definition

Let A be a monomial algebra with the relations $L\subset (X^+)^2$. We call A a homologically unambiguous monomial algebra, briefly an unambiguous algebra, if all chain languages $L_k(A)$ $(k\geq 1)$ are unambiguous cf-languages.

Proposition (algebraic). Let A be an unambiguous algebra having finite global dimension. Then the Hilbert series $\mathrm{HS}(A)$ is an algebraic function.

Proposition (algorithmic). Given unambiguous cf grammars for $L_1=L,L_2,\ldots,L_{d-1}$, there is an algorithm to construct a system of algebraic equations defining $H_A(z)$.

Unambiguous monomial examples

Example 1. Fix $X=\{x,y,z,c\}$ and $Y=\{a,b\}$. We put $Z=X\cup Y$ and $F=k\langle Z\rangle$. Consider the Lukasiewicz cf-grammar G=(V,Y,P,S) where $V=\{S\}$ and $P=\{S\to a\mid bSS\}$. The corresponding cf-language L=L(G) consists of the algebraic expressions in Polish notation (e.g., a,baa,babaa). Put A=F/(L), where

$$L = \{x^{2}y, x^{2}z, xy^{2}, xyz, xzy, xz^{2}\} \cup yz^{2}Lc.$$

Then gl. dim A=4 with $L_2=\{x^2y^2,x^2yz,x^2zy,x^2z^2\} \cup \{xyz^2,xy^2z^2,xzyz^2\}Lc$ and $L_3=\{x^2y^2z^2,x^2zyz^2\}Lc.$ Then $H_A(t)=\left(1-6t+\frac{13}{2}t^3-\frac{9}{2}t^4-t^5+t^6-t^3(1-t)(1-2t^2)\frac{\sqrt{1-4t^2}}{2}\right)^{-1}.$

Finitely presented case: toy example

Toy example. Let $A=k\langle x,y|yxy-y^2x\rangle$. Under the lex-deg ordering with x>y, the Groebner basis is $G=\{y^nx^ny-y^{n+1}x^n|n\geq 1\}$. Then the associated monomial algebra $B=k\langle x,y|\text{Im}\,(G)\rangle$ is unambiguous with

$$L_1 = L = \{y^n x^n y | n \ge 1\}$$

and

$$L_k = y^{n_1} x^{n_1} \dots y^{n_k} x^{n_k} y.$$

Moreover, $H_A(z) = H_B(z) = (1-2z+z^3)^{-1}$ is rational. Question (Mansson, Nordbeck, 2002). Are all algebras defined by a single homogeneous relation automaton? Question. Are all algebras defined by a single homogeneous relation unambiguous?

Finitely presented case: examples

Example 4. Fix $X=\{a',b',x,y\},Y=\{a,b,e\}$ and put $Z=X\cup Y, F=k\langle Z\rangle$. Let $I\subset F$ be generated by

- (i) a'x xa', b'x xe;
- (ii) $a'a aa', a'b ab', b'a ba', b'b bb', a'e ab, b'e b^2$;
- (iii) $ay y^2, by y^2, a'y y^2, b'y y^2$;
- (iv) xy.

Let G be the minimal Groebner basis of I for deg-lex with $a'\succ b'\succ a\succ b\succ e\succ x\succ y$, and let $L=\operatorname{Im}(G)$. Let $M=(De)^*$ where D is the Dick language on a,b. Note that M is unambiguous defined by the grammar G=(V,Y,P,S), where $V=\{S,T\}$ and

$$P = \{S \to 1 \mid TeS, T \to 1 \mid aTbT\}.$$

Then L is the union of the leading terms of (i)–(iii) and the language xMy.

Then the associated monomial algebra B=F/(L) is unambiguous with gl. dim B=3 and

$$L_2(B) = \{a', b'\}\{a, b\}y \cup \{a', b'\}xMy.$$

Then the function $E = H_B(t)^{-1}$ satisfies a system

$$\begin{cases} E &= 1 - 7t + E_1 - E_2, \\ E_1 &= 12t^2 + t^2S, \\ E_2 &= 4t^3 + 2t^3S, \\ S &= tST + 1, \\ T &= t^2T^2 + 1. \end{cases}$$

We obtain

$$H_A(t) = H_B(t) = \left(1 - 7t + \frac{25}{2}t^2 - 5t^3 + t^2\frac{\sqrt{1 - 4t^2}}{2}\right)^{-1}.$$

Multioperator algebras

We fix a field k.

Multioperator algebra is a vector space with a set of multilinear operations on it.

Example

```
A=k[x] (polynomials on x), binary operations: (f,g)\mapsto f\cdot g, \{f,g\}=fg'-gf', f\ast g(z)=\int_0^z f'(w)g(w)\,dw, unary operation: f\mapsto f', etc.
```

Examples of identities:

```
\begin{array}{l} (f \cdot g) \cdot h \equiv f \cdot (g \cdot h) \text{ (associativity),} \\ \{f,g\} \equiv -\{g,f\} \text{ (anti-commutativity),} \\ (a*b)*c \equiv a*(b*c+c*b) \text{ (Zinbiel identity).} \end{array}
```

A variety of multioperator algebras is defined by a set of basic operations (*signature*) and a set of identities.

Operads and varieties

Let V be a variety of multioperator algebras.

A corresponding (symmetric) operad $\mathcal{P}=\mathcal{P}^{\ V}$ is the set of all composite multilinear operations on algebras in V.

We have $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \cup \dots$,

where $\mathcal{P}_n \subset F^V(x_1, x_2, \dots)$ is the set of n-linear generic polynomials in x_1, \dots, x_n inside the relatively free algebra $F^V = F^V(x_1, x_2, \dots)$.

Operations on ${\mathcal P}$:

- compositions: $\mathcal{P}_m \circ_t \mathcal{P}_n \to \mathcal{P}_{m+n-1}, t=1,\ldots,m$;
- action of the symmetric group S_n on \mathcal{P}_n (for symmetric operads)

with obvious compatibility conditions.

One can recover ${\mathcal P}$ and V by each other:

$$\mathcal{P} \rightsquigarrow V = V^{\mathcal{P}} \text{ and } V \rightsquigarrow \mathcal{P} = \mathcal{P}^{V}$$

Selection from the history of operads

Operads were introduced by in [May, 1970].

Second born in 1990s after works by Getsler, Jones, Kapranov, Ginzburg, Stasheff, Markl, and others, with applications in topology and mathematical physics.

Selected bibliography

- J.-L. Loday, J. Stasheff, and A. Voronov, Operads: proceedings of renaissance conferences, Contemporary mathematics, 202 (1997)
- M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, 96, AMS, Providence, RI, 2002
- J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012
- M. Bremner and V. Dotsenko, Algebraic operads: an algorithmic companion, CRC Press, 2016
 See also:
- A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, 122, AMS, Providence, RI, 2005

A list of some common operads

Contents of Zinbiel's Encyclopedia of types of algebras 2010

`	Contenies of		c. 5 – e, c.o _l	Jeana e	or types or arges.	40
	sample	6	As	7	T 1 1	4
	Com	8	Lie	9	L-dend	4
	Pois	10	none	11	PreLiePerm	4
	Leib	12	Zinb	13	Param1rel	4
	Dend	14	Dias	15	GenMag	4
	PreLie	16	Perm	17	Moufang	4
	Dipt	18	Dipt!	19	Novikov	5
	2as	20	2as!	21	DiPreLie	5
	Tridend	22	Trias	23	Sabinin	5
	PostLie	24	ComTrias	25	t - $As^{(3)}$	5
	CTD	26	$CTD^!$	27	LTS	5
	Gerst	28	BV	29	Interchange	6
	Maq	30	Nil_2	31	A_{∞}	6
	ComMag	32	ComMaq!	33	L_{∞}	6
	9				\mathbb{P}_{∞}	6
	Quadri	34	$Quadri^!$	35	MB	6
	Dup	36	Dup!	37	Ξ±	7
	$As^{(2)}$	38	$As^{\langle 2 \rangle}$	39	_	

٠.	Ŭ		
L- de	nd	40	Lie-adm
Prel	LiePerm	42	Altern
Pare	am1rel	44	MagFine
Gen.	Mag	46	NAP
Mou	fang	48	Malcev
Nov	ikov	50	DoubleLie
DiP	reLie	52	Akivis
Sabi	nin	54	Jordan triples
t- As	(3)	56	$p-As^{(3)}$
LTS	1	58	Lie-Yamaguti
Inte	rchange	60	HyperCom
A_{∞}		62	C_{∞}
L_{∞}		64	$Dend_{\infty}$
\mathbb{P}_{∞}		66	Brace
MB		68	2Pois
二士		70	VOUR OWD

Generating series of some operads

The operad As is a non-symmetric associativity operad. It is generated by $\mu:(x,y)\mapsto x\cdot y$ subject to $\mu(x_1,\mu(x_2,x_3))\equiv \mu(\mu(x_1,x_2),x_3)),$ or $-\cdot(-\cdot-)=(-\cdot-)\cdot-.$ We have $\mathrm{As}(n)=k\{x_1\dots x_n\},$ $G_{\Delta \mathbf{s}}(z)=\frac{z}{1-z}.$

Its symmetrization $\mathcal{A}ssoc$ is a symmetric operad generated by $\mu:(x,y)\mapsto x\cdot y$ and $\nu:(x,y)\mapsto y\cdot x$ subject to $\mu(x_1,\nu(x_2,x_3))\equiv \mu(\mu(x_1,x_3),x_2))$ and others (6 linearly independent identities).

Then

$$\dim \mathcal{A}ssoc(n) = n!, E_{\mathcal{A}ssoc}(z) = \frac{z}{1-z} = G_{\mathsf{As}}(z).$$

For other common operads:

$$E_{Com} = e^z - 1, E_{Cie} = -\ln(1-z).$$

Operads with finite Gröbner bases: a question

Non-symmetric operads As of associative algebras, of q-associative algebras, Dend of dendriform algebras, and others have has finite Gröbner bases (see the book by Dotsenko and Bremner). What does this imply about their generating series?

Analogy. [Govorov, 1972] If A is a graded associative algebra with finite Gröbner basis, then its Hilbert series is a rational function, $H_A(z) = p(z)/q(z)$.

Addition. [Ufnarovsky, 1989] Because A is automaton.

Operads with finite Gröbner bases: answers

The elements of a (free) operad and a free algebra over an are spanned by the words in Polish notations (recall the Lukasiewicz langauge), e.g., $\mu(x_1,\mu(x_2,x_3))\mapsto \mu x_1\mu x_2x_3$ and $\mu(x_1,\mu(x_2,x_3))\mapsto \mu x_1\mu x_2x_3$. For non-symmetric operads and f.g. algebras, they are defined over finite alphabets.

Theorem (P.)

Let P be a non-symmetric operad with finite Groebner basis (e.g., an f.p. monomial operad) and let A be an algebras with finite Groebner basis over such an operad. Then both the set of normal words N_P and N_A of P and of A are detreministic of languages.

Corollary[Drensky and Holtkamp, 2008] Each finitely presented monomial algebra over a free finitely generated (non-symmetric) operads have algebraic Hilbert series. Corollary[Khoroshkin and P., 2015] The ordinary generating series $G_P(z)$ of a non-symmetric operad with a finite Gröbner basis is an algebraic function.

Bibliography

- D. P., Algebras of linear growth and the dynamical Mordell-Lang conjecture, Advances in Math., 2019
- R. La Scala, D. P., S. Tiwari, Noncommutative algebras, context-free grammars and algebraic Hilbert series, to appear in J. of Symbolic Computation
- A. Khoroshkin, D. P., *On generating series of finitely presented operads*, J. of Algebra, 2015
- D. P., In preparation

Thank you!

Unambiguous monomial examples

Example 2. Fix $X=\{x,y,z,c,d\}$ and $Y=\{a,b\}$. We put $Z=X\cup Y$ and $F=k\langle Z\rangle$. Consider the Lukasiewicz cf-grammar G=(V,Y,P,S) where $V=\{S\}$ and $P=\{S\rightarrow a\mid bSS\}$. The corresponding cf-language L=L(G) consists of the algebraic expressions in Polish notation (e.g., a,baa,babaa). Put A=F/(L), where

$$L = cL\{x^{2}y, xyz, xzx\} \cup \{xy^{2}, y^{2}z, z^{2}y\}Ld.$$

Then $L_2=cL\{x^2y^2,x^2y^2z,xyz^2y,xzxy^2\}Ld$ and $L_3=\emptyset$, so that gl. dim A=3. Then $H_A(t)$ is the inverse of the root of

$$E^{2} + (-6t^{7} - 2t^{6} + 3t^{5} + t^{4} - 6t^{3} + 14t - 2)E + 9t^{14} + 6t^{13} + t^{12}.$$

This is confirmed by its correct power series expansion

$$H_A(t) = 1 + 7t + 49t^2 + 343t^3 + 2401t^4 + 16801t^5 + 117565t^6 + \dots$$

Monomial examples: infinite global dimension

Example 3. Let $X=\{x\}, Y=\{a,b\}, Z=X\cup Y$ and $F=k\langle Z\rangle$. Consider the Dyck language D on the alphabet Y. Let

$$\gamma = \gamma(D) = \frac{1 - \sqrt{1 - 4t^2}}{2t^2}.$$

Put $L=xDx\subset Z^*$. and A=F/(L). For any $n\geq 1$, the (unambiguous) n-chain language of A is clearly

$$L_n = x(Dx)^n$$
.

We conclude that gl. dim $(A)=\infty$ and $\gamma(L_n)=t^{n+1}\gamma^n$. Finally, $\mathrm{HS}(A)^{-1}=1-\sum_{i=0}^\infty (-1)^i\gamma(L_i)$

$$=1-3t+t^2\frac{\gamma}{(1-t\gamma)}=\frac{1-6t+6t^2-(1-4t)\sqrt{1-4t^2}}{1-2t-\sqrt{1-4t^2}}.$$

More general classes

Theorem. Let $M \subset Y^+$ be an unambiguous context-free language and let $R_0 \subset X^*, R_1, R'_1, \ldots, R_k, R'_k \subset X^+$ be regular languages such that their disjoint union

$$R_0 \cup R_1 \cup R'_1 \cup \cdots \cup R_k \cup R'_k$$

is subword free. Then the monomial algebra

$$A = \langle X \cup Y | R_0 \cup R_1 M R_1' \cup \dots \cup R_k M R_k'$$

is homologically unambiguous.

Operads vs varieties

A phrase-book

```
variety — operad
subvariety — quotient operad
signature — set of generators
identities — relations
free algebra — free algebra
(exponential) codimension series — (exponential) generating function
T-space — right ideal
T-ideal — ideal
Specht properties — Noether properties
```