Method of averaging in Clifford algebras and applications

Dmitry Shirokov

National Research University Higher School of Economics, Moscow, Russia; e-mail: dm.shirokov@gmail.com

International Conference on Mathematical Methods in Physics, April 1-5, Marrakesh, Morocco

Real Clifford algebra, notations

Let us consider the real Clifford algebra $C l_{p, q}, p+q=n$, with the identity element e and the generators $e_{a}, a=1, \ldots, n$, satisfying

$$
\begin{equation*}
e_{a} e_{b}+e_{b} e_{a}=2 \eta_{a b} e, \quad \eta=\left\|\eta_{a b}\right\|=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q}) . \tag{1}
\end{equation*}
$$

We use notation with ordered multi-indices A for the basis elements of the Clifford algebra $C_{p, q}$:

$$
\begin{equation*}
e_{A}=e_{a_{1} \ldots a_{k}}=e_{a_{1}} \cdots e_{a_{k}}, \quad 1 \leq a_{1}<\cdots<a_{k} \leq n . \tag{2}
\end{equation*}
$$

We denote the length of multi-index A by $|A|$. In the particular case of the identity element e, we have empty multi-index \varnothing of the length 0 .
We denote

$$
\begin{equation*}
e^{a}:=\eta^{a b} e_{b}=\left(e_{a}\right)^{-1}, \quad e^{A}:=\left(e_{A}\right)^{-1} . \tag{3}
\end{equation*}
$$

We call the subspace of $C_{p, q}$ of Clifford algebra elements, which are linear combinations of basis elements with multi-indices of length $|A|=k$, the subspace of grade k and denote it by $C_{p, q}^{k}$. We denote projection operator onto the subspace of grade k by $\pi_{k}, k=0,1, \ldots, n$.
We denote even subspace (subalgebra) by $C l_{p, q}^{(0)}$ and odd subspace by $C l_{p, q}^{(1)}$. We have

$$
C l_{p, q}=\bigoplus_{k=0}^{n} C l_{p, q}^{k}, \quad C l_{p, q}^{(j)}=\bigoplus_{k=j \bmod 2} C C_{p, q}^{k}, \quad j=0,1 .
$$

We denote grade involution (main involution) in Clifford algebra by

$$
\begin{equation*}
\widehat{U}:=\left.U\right|_{e_{a} \rightarrow-e_{a}}, \quad U \in C C_{p, q}, \tag{4}
\end{equation*}
$$

and reversion (anti-involution) by

$$
\begin{equation*}
\widetilde{U}:=\left.U\right|_{e_{a_{1} \ldots a_{k}} \rightarrow e_{a_{k}} \ldots e_{a_{1}}}, \quad U \in C C_{p, q} . \tag{5}
\end{equation*}
$$

Method of averaging

Reynolds operator acting on a Clifford algebra element:

$$
\begin{equation*}
R_{G}(U):=\frac{1}{|G|} \sum_{g \in G} g^{-1} U g, \quad U \in C_{p, q}, \tag{6}
\end{equation*}
$$

where $|G|$ is the number of elements in finite subgroup $G \subset C l_{p, q}^{\times}$.
围 J. D. Dixon, Computing irreducible representations of groups, Math. of comp. (1970).

囯 L. Babai, K. Friedl, Approximate representation theory of finite groups, Found. of Comp. Science, (1991).

We can take Salingaros group $G=\left\{ \pm e_{A}\right\}$ and obtain the following operator.
Theorem
Operator F is a projection $F^{2}=F$ onto the center of Clifford algebra:

$$
F(U):=\frac{1}{2^{n}} e_{A} U e^{A}=\pi_{\text {Cen }}(U)= \begin{cases}\pi_{0}(U), & \text { if } n=0 \bmod 2 ; \tag{7}\\ \pi_{0}(U)+\pi_{n}(U), & \text { if } n=1 \bmod 2 .\end{cases}
$$

围 Shirokov D., Method of Averaging in Clifford Algebras, Advances in Applied Clifford Algebras, 27:1 (2017) 149-163.
Shirokov D., Contractions on Ranks and Quaternion Types in Clifford Algebras, Vestn. Samar. Gos. Tekhn. Univ., 19:1 (2015) 117-135.

$$
\begin{aligned}
& \sum_{|A|=j \bmod 2}\left(e_{A} U e^{A}\right), \quad j=0,1, \quad \sum_{|A|=k \bmod 4}\left(e_{A} U e^{A}\right), \quad k=0,1,2,3, \\
& \sum_{|A|=m}\left(e_{A} U e^{A}\right), \quad m=1,2, \ldots, n .
\end{aligned}
$$

Theorem

$$
\begin{aligned}
F_{\text {Even }}(U):=\frac{1}{2^{n-1}} \sum_{|A|=0 \bmod 2} e_{A} U e^{A}=\pi_{0}(U)+\pi_{n}(U), \\
F_{\text {Odd }}(U):=\frac{1}{2^{n-1}} \sum_{|A|=1 \bmod 2} e_{A} U e^{A}=\pi_{0}(U)+(-1)^{n+1} \pi_{n}(U) .
\end{aligned}
$$

These operators are projections $F_{\text {Even }}^{2}=F_{\text {Even }}, F_{\text {Odd }}^{2}=F_{\text {Odd }}$. If n is odd, then $F=F_{\text {Even }}=F_{\text {Odd }}$. If n is even, then $F=\frac{1}{2}\left(F_{\text {Even }}+F_{\text {Odd }}\right)$.
If n is even, then

$$
\begin{aligned}
& \pi_{0}(U)=\frac{1}{2^{n}}\left(\sum_{|A|=0 \bmod 2} e_{A} U e^{A}+\sum_{|A|=1 \bmod 2} e_{A} U e^{A}\right)=\frac{1}{2^{n}} \sum_{A} e_{A} U e^{A}, \\
& \pi_{n}(U)=\frac{1}{2^{n}}\left(\sum_{|A|=0 \bmod 2} e_{A} U e^{A}-\sum_{|A|=1 \bmod 2} e_{A} U e^{A}\right) .
\end{aligned}
$$

Quaternion types

$$
\begin{align*}
C_{p, q}= & C C_{p, q}^{\overline{0}} \oplus C_{p, q}^{\overline{1}} \oplus C_{p, q}^{\overline{2}} \oplus C_{p, q}^{\overline{3}}, \tag{8}\\
\overline{\mathbf{k}}:=C_{p, q}^{\bar{k}}= & \bigoplus_{m=k, \bmod 4} C_{p, q}^{m}, \quad k=0,1,2,3 . \tag{9}\\
& {[\bar{k}, \overline{\mathbf{k}}] \subset \overline{\mathbf{2}}, \quad[\bar{k}, \overline{\mathbf{2}}] \subset \overline{\mathbf{k}}, \quad k=0,1,2,3 ; } \\
& {[\overline{\mathbf{0}}, \overline{\mathbf{1}}] \subset \overline{\mathbf{3}}, \quad[\overline{\mathbf{0}}, \overline{3}] \subset \overline{\mathbf{1}}, \quad[\overline{\mathbf{1}}, \overline{\mathbf{3}}] \subset \overline{\mathbf{0}} ; } \tag{10}\\
& \{\overline{\mathbf{k}}, \overline{\mathbf{k}}\} \subset \overline{\mathbf{0}}, \quad\{\overline{\mathbf{k}}, \overline{\mathbf{0}}\} \subset \overline{\mathbf{k}}, \quad k=0,1,2,3 ; \\
& \{\overline{\mathbf{1}}, \overline{\mathbf{2}}\} \subset \overline{\mathbf{3}}, \quad\{\overline{\mathbf{1}, \overline{\mathbf{3}}\} \subset \subset \overline{\mathbf{2}}, \quad\{\overline{\mathbf{2}}, \overline{\mathbf{3}}\} \subset \overline{\mathbf{1}} .} \tag{11}
\end{align*}
$$

围 Shirokov D.S., Classification of elements of Clifford algebras according to quaternionic types, Dokl. Math., 80:1 (2009).
Shirokov D.S., Quaternion typification of Clifford algebra elements, Adv. Appl. Cliff. Alg., 22(1), 243-256, (2012).
Shirokov D.S., Development of the method of quaternion typification of Clifford algebra elements, Adv. Appl. Cliff. Alg., 22(2), 483-497, (2012)顽

$$
\sum_{|A|=0 \bmod 4} e_{A} U e^{A}=\sum_{k=0}^{3} 2^{\frac{n-2}{2}} \cos \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \pi_{\bar{k}}(U)+2^{n-2}\left(\pi_{0}(U)+\pi_{n}(U)\right)
$$

$$
\sum_{|A|=1 \bmod 4} e_{A} U e^{A}=\sum_{k=0}^{3}(-1)^{k+1} 2^{\frac{n-2}{2}} \sin \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \pi_{\bar{k}}(U)+2^{n-2}\left(\pi_{0}(U)+(-1)^{n+1} \pi_{n}(U)\right)
$$

$$
\sum_{|A|=2 \bmod 4} e_{A} U e^{A}=\sum_{k=0}^{3}-2^{\frac{n-2}{2}} \cos \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \pi_{\bar{k}}(U)+2^{n-2}\left(\pi_{0}(U)+\pi_{n}(U)\right)
$$

$$
\sum_{|A|=3 \bmod 4} e_{A} U e^{A}=\sum_{k=0}^{3}(-1)^{k} 2^{\frac{n-2}{2}} \sin \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \pi_{\bar{k}}(U)+2^{n-2}\left(\pi_{0}(U)+(-1)^{n+1} \pi_{n}(U)\right)
$$

$$
\text { If } n \text { is even: } \quad \pi_{\overline{0}}(U)=2^{\frac{-n-2}{2}} \sum_{k=0}^{3}(-1)^{k} \cos \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \sum_{|A|=k \bmod 4} e_{A} U e^{A}+2^{-2}\left(e U e+e_{1 \ldots n} U e^{1 \ldots n}\right)
$$

$$
\begin{aligned}
& \pi_{\overline{\mathbf{1}}}(U)=2^{\frac{-n-2}{2}} \sum_{k=0}^{3} \sin \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \sum_{|A|=k \bmod 4} e_{A} U e^{A}+2^{-2}\left(e U e-e_{1} \ldots n e^{1 \ldots n}\right), \\
& \pi_{\overline{\mathbf{2}}}(U)=2^{\frac{-n-2}{2}} \sum_{k=0}^{3}(-1)^{k} \cos \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \sum_{|A|=k \bmod 4} e_{A} U e^{A}+2^{-2}\left(e U e+e_{1 \ldots n} U e^{1 \ldots n}\right), \\
& \pi_{\overline{3}}(U)=2^{\frac{-n-2}{2}} \sum_{k=0}^{3}(-1) \sin \left(\frac{\pi k}{2}-\frac{\pi n}{4}\right) \sum_{|A|=k \bmod 4} e_{A} U e^{A}+2^{-2}\left(e U e-e_{1 \ldots n} U e^{1 \ldots n}\right)
\end{aligned}
$$

Theorem

$$
F_{m}(U)=\sum_{A:|A|=m} e_{A} U e^{A}=\sum_{k=0}^{n}(-1)^{k m}\left(\sum_{i=0}^{m}(-1)^{i} C_{k}^{i} C_{n-k}^{m-i}\right) \pi_{k}(U), \quad C_{n}^{k}=\frac{n!}{k!(n-k)!}
$$

$$
F_{1}(U)=\sum_{a} e_{a} U e^{a}=\sum_{k=0}^{n}(-1)^{k}(n-2 k) \pi_{k}(U)
$$

Lounesto P., Clifford Algebras and Spinors. Cambridge: Cambridge Univ. Press, 306 pp. (1997).

$$
\begin{align*}
\lambda_{k}:=(-1)^{k}(n-2 k), & F_{1}^{0}(U)=U, \quad F_{1}^{m}(U)=\underbrace{F_{1}\left(F _ { 1 } \left(\ldots F_{1}(U)\right.\right.}_{m}) \ldots), \tag{12}\\
\left(\begin{array}{c}
F_{1}^{0}(U) \\
F_{1}^{1}(U) \\
\ldots \\
F_{1}^{n}(U)
\end{array}\right) & =\left(\begin{array}{llll}
1 & 1 & \ldots & 1 \\
\lambda_{0} & \lambda_{1} & \ldots & \lambda_{n} \\
\ldots & \ldots & \ldots & \ldots \\
\left(\lambda_{0}\right)^{n} & \left(\lambda_{1}\right)^{n} & \ldots & \left(\lambda_{n}\right)^{n}
\end{array}\right)\left(\begin{array}{c}
\pi_{0}(U) \\
\pi_{1}(U) \\
\ldots \\
\pi_{n}(U)
\end{array}\right),
\end{align*}
$$

Theorem 1) If n is even, then $A_{(n+1) \times(n+1)}=\left\|a_{k m}\right\|, a_{k m}=\left(\lambda_{m-1}\right)^{k-1}$, is invertible, and

$$
\pi_{k}(U)=\sum_{m=0}^{n} b_{k m} F_{1}^{m}(U), \quad B=\left\|b_{k m}\right\|=A^{-1}
$$

2) If n is odd, then A is not invertible, but $D_{\frac{n+1}{2} \times \frac{n+1}{2}}=\left\|d_{k m}\right\|, d_{k m}=\left(\lambda_{m-1}\right)^{k-1}$, is invertible, and

$$
\pi_{k}(U)+\pi_{n-k}(U)=\sum_{m=0}^{\frac{n-1}{2}} g_{k m} F_{1}^{m}(U), \quad G=\left\|g_{k m}\right\|=D^{-1}
$$

围
N.G. Marchuk, D.S. Shirokov, General solutions of one class of field equations, Rep. Math. Phys., 78:3 (2016), 305-326, arXiv:1406.6665
D.S. Shirokov, Covariantly constant solutions of the Yang-Mills equations, Adv. Appl. Cliff. Alg., 28 (2018), 53, 16 pp., arXiv:1709.07836

Example: $n=2$

$$
\begin{aligned}
F_{1}^{0}(U) & =U=\pi_{0}(U)+\pi_{1}(U)+\pi_{2}(U), \\
F_{1}^{1}(U) & =2 \pi_{0}(U)-2 \pi_{2}(U), \quad F_{1}^{2}(U)=4 \pi_{0}(U)+4 \pi_{2}(U) . \\
A & =\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & -2 \\
4 & 0 & 4
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & \frac{1}{4} & \frac{1}{8} \\
1 & 0 & -\frac{1}{4} \\
0 & -\frac{1}{4} & \frac{1}{8}
\end{array}\right), \\
\pi_{0}(U) & =\frac{1}{4} F_{1}^{1}(U)+\frac{1}{8} F_{1}^{2}(U)=\frac{1}{4} e^{a} U e_{a}+\frac{1}{8} e^{a} e^{b} U e_{b} e_{a}, \\
\pi_{1}(U) & =U-\frac{1}{4} e^{a} e^{b} U e_{b} e_{a}, \quad \pi_{2}(U)=-\frac{1}{4} e^{a} U e_{a}+\frac{1}{8} e^{a} e^{b} U e_{b} e_{a} .
\end{aligned}
$$

"Commutator" equations

Theorem

Let an element $X \in C_{p, q}$ satisfy the system of 2^{n} equations with some given elements $Q_{A} \in C l(p, q)$

$$
\begin{equation*}
e_{A} X+\epsilon X e_{A}=Q_{A}, \quad \forall A \in \mathrm{I}=\{\varnothing, 1, \ldots, n, 12, \ldots, 1 \ldots n\}, \quad \epsilon \in \mathbb{R}^{\times} \tag{13}
\end{equation*}
$$

If $\epsilon=-1$ (commutator case), then this system of equations either has no solution or it has a unique solution up to element of the center:

$$
\begin{equation*}
X=-\frac{1}{2^{n}} Q_{A} e^{A}+Z, \quad Z \in \operatorname{Cen}\left(C_{p, q}\right) \tag{14}
\end{equation*}
$$

If $\epsilon \neq-1$, then this system of equations either has no solution or it has a unique solution

$$
X= \begin{cases}\frac{1}{2^{n} \epsilon}\left(Q_{A} e^{A}-\frac{1}{(\epsilon+1)} \pi_{0}\left(Q_{A} e^{A}\right)\right), & \text { if } n \text { is even } \tag{15}\\ \frac{1}{2^{n} \epsilon}\left(Q_{A} e^{A}-\frac{1}{(\epsilon+1)}\left(\pi_{0}\left(Q_{A} e^{A}\right)+\pi_{n}\left(Q_{A} e^{A}\right)\right)\right), & \text { if } n \text { is odd }\end{cases}
$$

Example: spin connection.

Let us consider a set of smooth functions $h_{a}: \mathbb{R}^{k, l} \rightarrow C C_{p, q}$

$$
\begin{equation*}
h_{a}(x)=y_{a}(x) e+y_{a}^{b}(x) e_{b}+\cdots+y_{a}^{1 \cdots n}(x) e_{1 \ldots n}=y_{a}^{A}(x) e_{A}, \tag{16}
\end{equation*}
$$

which satisfy conditions

$$
\begin{equation*}
h_{a}(x) h_{b}(x)+h_{b}(x) h_{a}(x)=2 \eta_{a b} e, \quad a, b=1, \ldots, n, \quad \forall x \in \mathbb{R}^{k, l} . \tag{17}
\end{equation*}
$$

Let us consider the system of equations for unknown $C_{\mu}: \mathbb{R}^{k, I} \rightarrow C l_{p, q}$

$$
\begin{equation*}
\partial_{\mu} h_{a}-\left[C_{\mu}, h_{a}\right]=0, \quad \mu=1, \ldots, m=k+I, \quad a=1, \ldots, n=p+q \tag{18}
\end{equation*}
$$

From the system (18), it follows that (Lemma)

$$
\begin{equation*}
\partial_{\mu} h_{A}-\left[C_{\mu}, h_{A}\right]=0, \quad \mu=1, \ldots, m, \quad \forall A . \tag{19}
\end{equation*}
$$

The system (18) has a unique solution $C_{\mu}: \mathbb{R}^{k, I} \rightarrow C_{p, q} \backslash \operatorname{Cen}\left(C C_{p, q}\right)$

$$
\begin{equation*}
C_{\mu}=\frac{1}{2^{n}}\left(\partial_{\mu} h_{A}\right) h^{A}, \quad \mu=1, \ldots, m \tag{20}
\end{equation*}
$$

In the case of odd n, the expression (20) can be represented as

$$
\begin{equation*}
C_{\mu}=\frac{1}{2^{n-1}} \sum_{|A|=1}^{\frac{n-1}{2}}\left(\partial_{\mu} h_{A}\right) h^{A}, \quad \mu=1, \ldots, m \tag{21}
\end{equation*}
$$

In the particular case $h_{a}(x)=y_{a}^{b}(x) e_{b} \in \mathbb{R}^{k, I} \rightarrow C C_{p, q}^{1}$, we obtain the standard formula for spin connection

$$
\begin{equation*}
C_{\mu}=\frac{1}{4}\left(\partial_{\mu} h_{a}\right) h^{a}: \mathbb{R}^{k, l} \rightarrow C l_{p, q}^{2} . \tag{22}
\end{equation*}
$$

Conjugate action on Clifford algebras

$$
\begin{aligned}
& \left(e_{A}\right)^{-1} U e_{A}=\sum_{B} m_{A B} \pi_{e_{B}}(U), \\
& M_{2^{n} \times 2^{n}}=\left\|m_{A B}\right\|, m_{A B}=m_{B A}=\left(e_{A}\right)^{-1} e_{B} e_{A}\left(e_{B}\right)^{-1}= \begin{cases}1, & \text { if }\left[e_{A}, e_{B}\right]=0 ; \\
-1, & \text { if }\left\{e_{A}, e_{B}\right\}=0,\end{cases} \\
& N_{2^{n-1} \times 2^{n-1}}=\left\|n_{A B}\right\|, n_{A B}=m_{A B} .
\end{aligned}
$$

Lemma

The matrices M and N are symmetric $M^{T}=M, \quad N^{T}=N$. The matrix M is invertible in the case of even $n, M^{-1}=\frac{1}{2^{n}} M$, and is not invertible in the case of odd n. The matrix N is invertible in the case of odd $n, N^{-1}=\frac{1}{2^{n-1}} N$.

If n is even: $\quad \pi_{e_{A}}(U)=\frac{1}{2^{n}} \sum_{B} m_{A B}\left(e_{B}\right)^{-1} U e_{B}$.
If n is odd: $\pi_{e_{A}}(U)+\pi_{e_{A}}(U)=\frac{1}{2^{n-1}} \sum_{|B| \leq \frac{n-1}{2}} n_{A B}\left(e_{B}\right)^{-1} U e_{B}, \quad e_{A} e_{A}^{\star}= \pm e_{1 \ldots n}$

Generalization of the method of averaging
Consider Clifford algebra $C l_{p, q}$ with 2 different sets $\gamma_{a}, \beta_{a}, a=1,2, \ldots, n$,

$$
\begin{align*}
\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}=2 \eta_{a b} e, & \beta_{a} \beta_{b}+\beta_{b} \beta_{a}=2 \eta_{a b} e . \tag{23}\\
\tau(F)=\frac{1}{2^{n}} \sum_{A} \beta_{A} F \gamma^{A}, & \sigma(G)=\frac{1}{2^{n}} \sum_{A} \gamma_{A} G \beta^{A} . \tag{24}
\end{align*}
$$

Lemma

Operator τ is a projection $\tau^{2}=\tau$. We have $\beta_{B} \tau(F)=\tau(F) \gamma_{B}, \forall B$.

Lemma

In the case of even n, we have

$$
\sigma(G) \tau(F)=\tau(F) \sigma(G)=\pi_{0}(G \tau(F))=\pi_{0}(F \sigma(G)) .
$$

In the case of odd n, we have
$\sigma(G) \tau(F)=\tau(F) \sigma(G)=\pi_{0}(G \tau(F))+\pi_{n}(G \tau(F))=\pi_{0}(F \sigma(G))+\pi_{n}(F \sigma(G))$.

Pauli's fundamental theorem

Theorem (Pauli, 1936)
Consider 2 sets of square complex matrices $\gamma_{a}, \beta_{a}, a=1,2,3,4$ of size 4

$$
\begin{equation*}
\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}=2 \delta_{a b} \mathbf{1}, \quad \beta_{a} \beta_{b}+\beta_{b} \beta_{a}=2 \delta_{a b} \mathbf{1} . \tag{25}
\end{equation*}
$$

Then there exists a unique (up to multiplication by a complex constant) complex matrix T such that $\quad \gamma_{a}=T^{-1} \beta_{a} T, \quad a=1,2,3,4$.

围 W.Pauli, Contributions mathematiques a la theorie des matrices de Dirac, Ann. Inst. Henri Poincare 6, (1936).
D. S. Shirokov, Extension of Pauli's theorem to Clifford algebras, Dokl. Math., 84:2 (2011), 699-701.
D.S. Shirokov, Calculations of elements of spin groups using generalized Pauli's theorem, Adv. Appl. Cliff. Alg., 25:1 (2015), arXiv: 1409.2449
圁 N.G. Marchuk, D.S. Shirokov, Local generalization of Pauli's theorem, 2018, 16 pp., arXiv:1201.4985

Generalization of Pauli theorem

Theorem Consider real (or complexified) Clifford algebra $C_{p, q}$ of dimension $n=p+q$. Let the following 2 sets of Clifford algebra elements $\gamma_{a}, \beta_{a}, a=1,2, \ldots, n$ satisfy conditions

$$
\begin{equation*}
\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}=2 \eta_{a b} e, \quad \beta_{a} \beta_{b}+\beta_{b} \beta_{a}=2 \eta_{a b} e \tag{26}
\end{equation*}
$$

Even case (n - even): Then both sets of elements generate bases of Clifford algebra and there exists a unique (up to multiplication by a real (complex) constant) element $T \in C_{p, q}$ such that

$$
\begin{equation*}
\gamma_{a}=T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n . \tag{27}
\end{equation*}
$$

Moreover, we can always find this element T in the form $T=\sum_{A} \beta_{A} F \gamma^{A}$, where F is any element of a set

1) $\left\{\gamma_{A},|A|=0 \bmod 2\right\}$ if $\beta_{1 \ldots n} \neq-\gamma_{1 \ldots n}$; 2) $\left\{\gamma_{A},|A|=1 \bmod 2\right\}$ if $\beta_{1 \ldots n} \neq \gamma_{1 \ldots n}$ such that corresponding T is nonzero $T \neq 0$.

Odd case (n - odd): Then, in the case of Clifford algebra $C_{p, q}$ of signature $p-q \equiv 1 \bmod 4$, elements $\gamma_{1 \ldots n}$ and $\beta_{1 \ldots n}$ equals $\pm e_{1 \ldots . .}$ and then corresponding sets generate bases of Clifford algebra or equals $\pm e$ and then corresponding sets don't generate bases.
In the case of Clifford algebra $C l_{p, q}$ of signature $p-q \equiv 3 \bmod 4$, elements $\gamma_{1 \ldots n}$ and $\beta_{1 \ldots n}$ equals $\pm e_{1 \ldots n}$, and then corresponding sets generate bases of Clifford algebra or (only for complex Clifford algebra) equals $\pm i e$ and then corresponding sets don't generate bases.
There exists a unique (up to an invertible element of Clifford algebra center) element T such that
$\begin{array}{lllll}\text { 1) } & \gamma_{a}=T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=\gamma_{1 \ldots n}, \\ \text { 2) } & \gamma_{a}=-T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=-\gamma_{1 \ldots n}, \\ \text { 3) } & \gamma_{a}=e_{1 \ldots n} T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=e_{1 \ldots n} \gamma_{1 \ldots n}, \\ \text { 4) } & \gamma_{a}=-e_{1 \ldots n} T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=-e_{1 \ldots n} \gamma_{1 \ldots n}, \\ \text { 5) } & \gamma_{a}=i e_{1 \ldots n} T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=i e_{1 \ldots n} \gamma_{1 \ldots n}, \\ \text { 6) } & \gamma_{a}=-i e_{1 \ldots n} T^{-1} \beta_{a} T, \quad \forall a=1, \ldots, n \quad \Leftrightarrow \quad \beta_{1 \ldots n}=-i e_{1 \ldots n} \gamma_{1 \ldots n .} .\end{array}$
Note, that all 6 cases can be written in the form $\gamma_{a}=\left(\beta_{1 \ldots n} \gamma^{1 \ldots n}\right) T^{-1} \beta_{a} T$.

Moreover, in the case of real Clifford algebra of signature $p-q \equiv 3 \bmod 4$, we can always find this element T in the form

$$
\begin{equation*}
\sum_{|A|=0 \bmod 2} \beta_{A} F \gamma^{A}, \tag{28}
\end{equation*}
$$

where F is any element of the set

$$
\begin{equation*}
\left\{\gamma_{A}, \quad A:|A|=0 \bmod 2\right\} \tag{29}
\end{equation*}
$$

such that corresponding T is nonzero $T \neq 0$.
In the case of real Clifford algebra of signature $p-q \equiv 1 \bmod 4$ and complexified Clifford algebra, we can always find this element T in the form (28), where F is one of the elements of the set

$$
\begin{equation*}
\left\{\gamma_{A}+\gamma_{B}, \quad|A|=0 \bmod 2, \quad|B|=0 \bmod 2\right\} \tag{30}
\end{equation*}
$$

Spin groups

We denote by M^{\times}the subset of invertible elements of the set M.
The following group is called Lipschitz group
$\Gamma_{p, q}^{ \pm}=\left\{S \in C \ell_{p, q}^{(0) \times} \cup C \ell_{p, q}^{(1) \times}: S^{-1} C \ell_{p, q}^{1} S \subset C l_{p, q}^{1}\right\}=\left\{v_{1} \cdots v_{k}: v_{1}, \ldots, v_{k} \in C l_{p, q}^{1 \times}\right\}$.
Let us consider the following subgroup of Lipschitz group
$\Gamma_{p, q}^{+}:=\left\{S \in C \ell_{p, q}^{(0) \times}: S^{-1} C l_{p, q}^{1} S \subset C C_{p, q}^{1}\right\}=\left\{v_{1} \cdots v_{2 k}: v_{1}, \ldots, v_{2 k} \in C \ell_{p, q}^{1 \times}\right\} \subset \Gamma_{p, q}^{ \pm}$
The following groups are called spin groups:

$$
\begin{align*}
& \operatorname{Pin}(p, q):=\left\{S \in \Gamma_{p, q}^{ \pm}: \widetilde{S} S= \pm e\right\}=\left\{S \in \Gamma_{p, q}^{ \pm}: \widehat{\widetilde{S}} S= \pm e\right\} \\
& \operatorname{Pin}_{+}(p, q):=\left\{S \in \Gamma_{p, q}^{ \pm}: \widehat{\widetilde{S}} S=+e\right\} \\
& \operatorname{Pin}_{-}(p, q):=\left\{S \in \Gamma_{p, q}^{ \pm}: \widetilde{S} S=+e\right\}, \tag{31}\\
& \operatorname{Spin}(p, q):=\left\{S \in \Gamma_{p, q}^{+}: \widetilde{S} S= \pm e\right\}=\left\{S \in \Gamma_{p, q}^{+}: \widehat{\widetilde{S}} S= \pm e\right\}, \\
& \operatorname{Spin}_{+}(p, q):=\left\{S \in \Gamma_{p, q}^{+}: \widetilde{S} S=+e\right\}=\left\{S \in \Gamma_{p, q}^{+}: \widetilde{\widetilde{S}} S=+e\right\} .
\end{align*}
$$

Let us consider the twisted adjoint representation

$$
\psi: C l_{p, q}^{\times} \rightarrow \operatorname{EndC} l_{p, q}, \quad S \rightarrow \psi_{S}, \quad \psi_{S}(U)=S^{-1} U \widehat{S}, U \in C l_{p, q}
$$

The following homomorphisms are surjective with the kernel $\{ \pm 1\}$:

$$
\begin{aligned}
& \psi: \operatorname{Pin}(p, q) \rightarrow \mathrm{O}(p, q), \quad \psi: \operatorname{Spin}(p, q) \rightarrow \mathrm{SO}(p, q) \\
& \psi: \operatorname{Spin}_{+}(p, q) \rightarrow \mathrm{SO}_{+}(p, q), \quad \psi: \operatorname{Pin}_{+}(p, q) \rightarrow \mathrm{O}_{+}(p, q) \\
& \psi: \operatorname{Pin}_{-}(p, q) \rightarrow \mathrm{O}_{-}(p, q)
\end{aligned}
$$

It means that

$$
\begin{equation*}
\text { for any } P=\left\|p_{b}^{a}\right\| \in \mathrm{O}(p, q) \text { there exists } \pm S \in \operatorname{Pin}(p, q): S^{-1} e_{a} \widehat{S}=p_{a}^{b} e_{b} \tag{32}
\end{equation*}
$$

and for the other groups similarly. We can say that these spin groups are two-sheeted coverings of the corresponding orthogonal groups.
Details about all 5 spin groups and 5 orthogonal groups:
I. M. Benn, R. W. Tucker, An introduction to Spinors and Geometry with Applications in Physics, Bristol, 1987.
D. Shirokov, Clifford algebras and their applications to Lie groups and spinors, Lectures, 19 Int. Conf. on Geometry, Integrability and Quantization, Bulgaria (2018), 11-53, arXiv:1709.06608

Hestenes method, the case $(p, q)=(1,3)$

For each element $P=\left\|p_{b}^{a}\right\| \in \mathrm{SO}_{+}(1,3)$ there exist two elements $\pm S \in \operatorname{Spin}_{+}(1,3)$ such that

$$
\begin{equation*}
S^{-1} e_{a} S=p_{a}^{b} e_{b} . \tag{33}
\end{equation*}
$$

The elements $\pm S$ can be found in the following way

$$
\begin{equation*}
S= \pm \frac{\widetilde{L}}{\sqrt{\widetilde{L} L}}, \quad L:=p_{\mathrm{a}}^{b} e_{b} e^{a} . \tag{34}
\end{equation*}
$$

Other methods (using exponentials and exterior exponentials):Hestenes D., Space-Time Algebra, Gordon and Breach, New York 1966.
Hestenes D., Sobczyk G., Clifford Algebra to Geometric Calculus, Reidel Publishing Company, Dordrecht Holland, 1984.Lounesto P., Clifford Algebras and Spinors, Cambridge Univ. Press, Cambridge 2001.
Doran C. and Lasenby A., Geometric Algebra for Physicists, Cambridge University Press, Cambridge 2003.
Marchuk N., Parametrisations of elements of spinor and orthogonal groups using exterior exponents, Adv. Appl. Cliff. Alg., 21:3 (2011), 583-590, arXiv:0912:5349

Theorem

Let us consider the real Clifford algebra $C_{p, q}$ with even $n=p+q$. Let $P \in \operatorname{SO}(p, q)$ be an orthogonal matrix such that

$$
\begin{equation*}
M:=\sum_{A, B} p_{A}^{B} e_{B} e^{A} \neq 0 \quad\left(\Leftrightarrow \pi_{\operatorname{Cen}}(S) \neq 0\right) . \tag{35}
\end{equation*}
$$

Then we can find the elements $\pm S \in \operatorname{Spin}(p, q)$ that correspond to $P=\left\|p_{a}^{b}\right\| \in \operatorname{SO}(p, q)$ as two-sheeted covering $S^{-1} e_{a} S=p_{a}^{b} e_{b}$ in the following way:

$$
\begin{equation*}
S= \pm \frac{\tilde{M}}{\sqrt{\alpha \tilde{M} M}}, \quad \text { where } \tilde{M} M \in \operatorname{Cen}\left(C_{p, q}\right)=C l_{p, q}^{0} \cong \mathbb{R} \tag{36}
\end{equation*}
$$

and the sign

$$
\begin{equation*}
\alpha:=\operatorname{sign}\left(p_{1 \ldots p}^{1 \ldots p}\right) e=\operatorname{sign}\left(p_{p+1 \ldots n}^{p+1 \ldots n}\right) e=\widetilde{S} S= \pm e \tag{37}
\end{equation*}
$$

depends on the component of the orthogonal group $\mathrm{SO}(p, q)$ (or the corresponding component of the group $\operatorname{Spin}(p, q))$.

Theorem

Let us consider the real Clifford algebra $C_{p, q}$ with odd $n=p+q$. Let $P \in \mathrm{O}(p, q)$ be an orthogonal matrix such that

$$
\begin{equation*}
M:=\sum_{A, B}(\operatorname{det} P)^{|A|} p_{A}^{B} e_{B} e^{A} \neq 0 \quad\left(\Leftrightarrow \pi_{\text {Cen }}(S) \neq 0\right) . \tag{38}
\end{equation*}
$$

Then we can find the elements $\pm S \in \operatorname{Pin}(p, q)$ that correspond to $P=\left\|p_{a}^{b}\right\| \in \mathrm{O}(p, q)$ as two-sheeted covering $S^{-1} e_{a} \widehat{S}=p_{a}^{b} e_{b}$ in the following way:

$$
\begin{equation*}
S= \pm \frac{\tilde{M}}{\sqrt{\alpha \tilde{M} M}} \tag{39}
\end{equation*}
$$

where

$$
\begin{array}{r}
\widetilde{M} M \in C_{p, q}^{0} \subset \operatorname{Cen}\left(C_{p, q}\right) \cong\left\{\begin{array}{lll}
\mathbb{R} \oplus \mathbb{R}, & \text { if } p-q=1 & \bmod 4 ; \\
\mathbb{C}, & \text { if } p-q=3 & \bmod 4,
\end{array}\right. \\
\alpha:= \begin{cases}\operatorname{sign}\left(p_{p+1 \ldots n}^{p+1 \ldots n}\right) e=\widetilde{S} S= \pm e, & \text { if } n=1 \bmod 4 ; \\
\operatorname{sign}\left(p_{1 \ldots p}^{1 \ldots p}\right) e=\widehat{\widetilde{S}} S= \pm e, & \text { if } n=3 \\
\bmod 4 .\end{cases} \tag{41}
\end{array}
$$

Example: $n=3$.

$$
\begin{gather*}
P \in \operatorname{SO}(3): \quad \operatorname{det} P=1, \quad S \in \operatorname{Spin}(3): \quad \alpha=\widehat{\widetilde{S}} S=\tilde{S} S=+e, \\
M=\sum_{A, B}(\operatorname{det} P)^{|A|} p_{A}^{B} e_{B} e^{A}=e+p_{a}^{b} e_{b} e^{a}+p_{a_{12} b_{2}}^{b_{1} b_{2}} e_{b_{1} b_{2} b_{2} a_{1} a_{2}}+e_{123} e^{123}, \\
M=2\left(e+p_{a}^{b} e_{b} e^{a}\right)=2\left(e+\beta_{a} e^{a}\right), \quad S= \pm \frac{\widetilde{M}}{\sqrt{\widetilde{M} M}} . \tag{42}
\end{gather*}
$$

Doran C. and Lasenby A., Geometric Algebra for Physicists, Cambridge University Press, Cambridge 2003.

Generalization to the case of arbitrary $n=p+q$ for the rotor $S \in \operatorname{Spin}_{+}(p, q)$:

$$
\begin{equation*}
\widetilde{S} e_{a} S=\beta_{a}=p_{a}^{b} e_{b}, \quad S= \pm \frac{\tilde{M}}{\sqrt{\widetilde{M} M}}, \quad M=\beta_{A} e^{A}=p_{A}^{B} e_{B} e^{A} . \tag{43}
\end{equation*}
$$

D.S.Shirokov, Calculation of elements of spin groups using method of averaging in Clifford's geometric algebra, arXiv:1901.09405.

Thank you for your attention!

