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a b s t r a c t 

The Cell Formation Problem has been studied as an optimization problem in manufacturing for more 

than 90 years. It consists of grouping machines and parts into manufacturing cells in order to maximize 

loading of cells and minimize movement of parts from one cell to another. Many heuristic algorithms 

have been proposed which are doing well even for large-sized instances. However, only a few authors 

have aimed to develop exact methods and most of these methods have some major restrictions such as 

a fixed number of production cells for example. In this paper we suggest a new mixed-integer linear 

programming model for solving the cell formation problem with a variable number of manufacturing 

cells. The popular grouping efficacy measure is used as an objective function. To deal with its fractional 

nature we apply the Dinkelbach approach. Our computational experiments are performed on two testsets: 

the first consists of 35 well-known instances from the literature and the second contains 32 instances less 

popular. We solve these instances using CPLEX software. Optimal solutions have been found for 63 of the 

67 considered problem instances and several new solutions unknown before have been obtained. The 

computational times are greatly decreased comparing to the state-of-art approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The Cell Formation Problem as a part of Group Technology (GT)

was introduced by Burbidge (1961) and Mitrofanov (1966) . In the

most general formulation it is designed to reduce production costs

by grouping machines and parts into manufacturing cells (produc-

tion shops). The goal of such kind of grouping is to set up man-

ufacturing process in a way that maximizes loading of machines

within the cells and minimizes movement of parts from one cell

to another. In classical formulation the problem is defined by a bi-

nary matrix A with m rows representing machines and p columns

representing parts. In this machine-part matrix a i j = 1 if part j is

processed on machine i . The objective is to form production cells,

which consist of machines and parts together, optimizing some

production metrics such as machine loading and intercell move-

ment. 

As an example of input data we will consider the instance of

Waghodekar and Sahu (1984) shown in Table 1 . This instance con-

sists of 5 machines and 7 parts. The ones in a machine-part matrix

are called operations . In Table 2 a solution with 2 manufacturing

cells is presented. The first manufacturing cell contains machines
∗ Corresponding author. 

E-mail addresses: ibychkov@hse.ru (I. Bychkov), mbatsyn@hse.ru (M. Batsyn). 

l

 

p  

f  

https://doi.org/10.1016/j.cor.2017.11.009 

0305-0548/© 2017 Elsevier Ltd. All rights reserved. 
 1 , m 4 with parts p 1 , p 7 and the second manufacturing cell con-

ains machines m 2 , m 3 , m 5 with parts p 2 , p 3 , p 4 , p 5 , p 6 . Some parts

ave to be moved from one cell to another for processing (e.g. part

 6 needs to be processed on machine m 1 , so it should be trans-

orted from its cell 2 to cell 1). The operations lying outside cells

re called exceptional elements or exceptions . There can be also non-

peration elements inside cells ( a ij = 0). These elements reduce

achine load and are called voids . So the goal is to minimize the

umber of exceptions and the number of voids at the same time. 

.1. Related work 

Many different approaches are proposed for solving the cell for-

ation problem. The majority of them provide heuristic solutions

nd only a few exact methods have been suggested. 

Krushinsky and Goldengorin (1984) provided two MINpCUT ex-

ct models based on the well-known k-cut graph partition prob-

em. The objective function considered in this research is mini-

ization of the exceptional elements number for a fixed number

f cells. Unfortunately this objective function does not address the

oad inside cells. 

Elbenani and Ferland (2012) presented a mixed-integer linear

rogramming model which maximizes the most popular objective

or the cell formation problem - the grouping efficacy, introduced

https://doi.org/10.1016/j.cor.2017.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.11.009&domain=pdf
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Table 1 

Machine-part 5 × 7 matrix from Waghodekar and 

Sahu (1984) . 

p 1 p 2 p 3 p 4 p 5 p 6 p 7 

m 1 1 0 0 0 1 1 1 

m 2 0 1 1 1 1 0 0 

m 3 0 0 1 1 1 1 0 

m 4 1 1 1 1 0 0 0 

m 5 0 1 0 1 1 1 0 

Table 2 

Solution with 2 production cells. 

p 7 p 1 p 6 p 5 p 4 p 3 p 2 

m 1 1 1 1 1 0 0 0 

m 4 0 1 0 0 1 1 1 

m 2 0 0 0 1 1 1 1 

m 3 0 0 1 1 1 1 0 

m 5 0 0 1 1 1 0 1 
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Table 3 

Testset A - instances. 

ID Source m p 

A1 King and Nakornchai (1982) - Fig. 1a 5 7 

A2 Waghodekar and Sahu (1984) - Problem 2 5 7 

A3 Seifoddini (1989b ) 5 18 

A4 Kusiak and Cho (1992) 6 8 

A5 Kusiak and Chow (1987) 7 11 

A6 Boctor (1991) - Example 1 7 11 

A7 Seifoddini and Wolfe (1986) 8 12 

A8 Chandrasekaran and Rajagopalan (1986a ) 8 20 

A9 Chandrasekaran and Rajagopalan (1986b ) 8 20 

A10 Mosier and Taube (1985a ) 10 10 

A11 Chan and Milner (1982) 15 10 

A12 Askin and Subramanian (1987) 14 24 

A13 Stanfel (1985) 14 24 

A14 McCormick et al. (1972) 16 24 

A15 Srinivasan et al. (1990) 16 30 

A16 King (1980) 16 43 

A17 Carrie (1973) 18 24 

A18 Mosier and Taube (1985b ) 20 20 

A19 Kumar et al. (1986) 23 20 

A20 Carrie (1973) 20 35 

A21 Boe and Cheng (1991) 20 35 

A22 Chandrasekharan and Rajagopalan (1989) - Dataset 1 24 40 

A23 Chandrasekharan and Rajagopalan (1989) - Dataset 2 24 40 

A24 Chandrasekharan and Rajagopalan (1989) - Dataset 3 24 40 

A25 Chandrasekharan and Rajagopalan (1989) - Dataset 5 24 40 

A26 Chandrasekharan and Rajagopalan (1989) - Dataset 6 24 40 

A27 Chandrasekharan and Rajagopalan (1989) - Dataset 7 24 40 

A28 McCormick et al. (1972) 27 27 

A29 Carrie (1973) 28 46 

A30 Kumar and Vannelli (1987) 30 41 

A31 Stanfel (1985) - Fig. 5 30 50 

A32 Stanfel (1985) - Fig. 6 30 50 

A33 King and Nakornchai (1982) 30 90 

A34 McCormick et al. (1972) 37 53 

A35 Chandrasekharan and Rajagopalan (1987) 40 100 
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y Kumar and Chandrasekharan (1990) . These authors suggested to

pply Dinkelbach algorithm since the grouping efficacy is a frac-

ional objective function. Their model allows solving the cell for-

ation problem only if the number of production cells is prede-

ned. Thus the suggested approach cannot guarantee global opti-

ality of the obtained solutions with respect to a variable number

f production cells. In many cases the computational times for this

odel are quite long or memory limitations are exceeded and the

ptimal solutions cannot be found. 

Brusco (2015) introduced two approaches for solving the cell

ormation problem with the grouping efficacy objective. The first

s a mixed-integer linear programming model which is based on

 general two-mode clustering formulation with some simplifying

ssumptions (e.g. the numbers of clusters by rows and columns are

qual). This model looks interesting, but requires too much time to

e solved for many even medium-sized instances. The second ap-

roach is a branch-and-bound algorithm combined with a reloca-

ion heuristic to obtain an initial solution. The branch and bound

pproach is able to solve about two times more problem instances

nd the computational times are greatly improved as well. Gener-

lly it runs fine on well-structured (with grouping efficacy value

 0.65–0.7) medium-sized problems. Two major assumptions are

ade for both of these approaches: singletons are permitted (man-

facturing cells containing only one machine or one part) that is

uite a common practice; residual cells are permitted (cells con-

aining only machines without parts, or only parts without ma-

hines). Also the number of production cells is predefined for the

oth approaches, but for some test instances several values for the

umber of cells are considered in computational experiments. 

Another model is provided in our earlier paper ( Bychkov et al.,

014 ). There we present a mixed-integer linear programming for-

ulation for the cell formation problem with a variable number of

roduction cells. It deals well with small-sized instances, but nev-

rtheless the number of variables and constraints is huge - O( m 

2 p ).

his does not allow obtaining solutions even for some moderate-

ized test instances and in some cases this model runs too slowly. 

Some authors used biclustering approaches to solve the cell

ormation problem. Boutsinas (2013) applied simultaneous clus-

ering for both dimensions (machines and parts) and minimized

he number of voids plus the number of exceptional elements.

inheiro et al. (2016) reduced the cell formation problem to an-

ther biclustering problem - bicluster graph editing problem and

uggested an exact method and a linear programming model

hich provides good computational results for the grouping effi-

acy objective. 
.2. Contributions of this research 

In this paper we develop a fast compact model providing opti-

al solutions for the cell formation problem with a variable num-

er of manufacturing cells and the grouping efficacy objective. Un-

ike the majority of linear programming models our model does

ot contain a direct assignment of machines or parts to cells.

e use machine-machine and part-machine assignments instead

f the widely used machine-part-cell assignment. This leads to

 compact and elegant formulation considering only constraints

hich ensure a block-diagonal structure of solutions. It allows us

o drastically reduce the number of variables and constraints in our

rogramming model and obtain globally optimal solutions even for

ome large-sized problem instances. 

Computational experiments show that our model outperforms

ll known exact methods. We have solved 63 of 67 problem in-

tances to the global optimum with respect to a variable number

f production cells. We have also found several new solutions un-

nown before. 

We would like to highlight that many researchers in the field

se the 35 GT instances dataset provided by Gonçalves and Re-

ende (2004) . These instances are taken from different cell for-

ation research papers (references to the original sources are

hown in Table 3 ). Some problem instances in this 35 GT dataset

ave errors and differ from the ones presented in the original pa-

ers. Many researchers including Elbenani and Ferland (2012) and

inheiro et al. (2016) have performed their computational exper-

ments using these data from Gonçalves and Resende (2004) . We

ave reviewed all the original sources, comparing and forming the

orrected version of this popular dataset. We have also collected

any other problem instances less popular and formed a new
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dataset. All data can be downloaded from website opt-hub.com or

researchgate.net (full urls can be found in references). 

The paper is organized as follows. In Section 2 we pro-

vide the formulation of the cell formation problem. Then in

Section 3 we present our new mixed-integer linear programming

model. Sections 4 contains the information about datasets we used

for our experiments and the computational results and compar-

isons to other exact approaches are given in Section 5 . The con-

clusion is provided in Section 6 . 

2. Problem formulation 

Cellular manufacturing systems apply are aimed to process sim-

ilar parts within the same production cell, balance machines work-

load and minimize parts movement from one cell to another dur-

ing the production process. The most popular objective for the

cell formation problem is the grouping efficacy introduced by

Kumar and Chandrasekharan (1990) : 

τ = 

n 

in 
1 

n 1 + n 

in 
0 

where 

n 1 – the total number of operations (ones) in the machine-part

matrix, 

n in 
1 

– the number of operations performed inside cells, 

n in 
0 

– the number of voids (zeros inside cells). 

In comparison to the other objectives the grouping efficacy

function addresses the best block-diagonal structure of the cell for-

mation problem solutions ( Sarker, 2001 ). 

In the literature several constraints related to the minimal size

of a cell could be found. The following are the three most popular

considerations: 

• Allowing residual cells (cells containing only machines or

parts). 
• Allowing singletons (cells with one machine and several parts

or vice versa) and prohibiting residual cells. 
• Allowing only cells with at least 2 machines and 2 parts. 

The most popular option is allowing singletons and prohibiting

residual cells. In this section for the classical formulation we as-

sume that singletons can appear in solutions and residual cells are

prohibited. In our new model and in computational experiments

we consider the first two options. 

A straightforward integer fractional programming (IFP) model

for the cell formation problem with the grouping efficacy objec-

tive function allowing singletons and prohibiting residual cells is

given below. We use the following notation: m is the number of

machines, p is the number of parts, a ij equals to 1 if machine i

processes part j and c is the maximal possible number of produc-

tion cells. Since each production cell has to contain at least one

machine and at least one part we set c = min (m, p) . 

(IFP model): 

Decision variables: 

x ik = 

{
1 , if machine i belongs to cell k, 

0 , otherwise 

y jk = 

{
1 , if part j belongs to cell k, 

0 , otherwise 

max 

∑ m 

i =1 

∑ p 
j=1 

∑ c 
k =1 a i j x ik y jk ∑ m 

i =1 

∑ p 
j=1 

a i j + 

∑ m 

i =1 

∑ p 
j=1 

∑ c 
k =1 (1 − a i j ) x ik y jk 

(1)

Subject to: 

c ∑ 

k =1 

x ik = 1 i = 1 , . . . , m (2)
c 
 

k =1 

y jk = 1 j = 1 , . . . , p (3)

m 

 

i =1 

x ik ≤ m ·
p ∑ 

j=1 

y jk k = 1 , . . . , c (4)

p 
 

j=1 

y jk ≤ p ·
m ∑ 

i =1 

x ik k = 1 , . . . , c (5)

Objective function (1) is the grouping efficacy measure where

he numerator is the number of ones inside cells ( n in 
1 

) and two

ums in the denominator are the total number of ones ( n 1 ) and the

umber of zeros inside cells ( n in 
0 

) respectively. Constraints (2) and

3) require that each machine and each part is assigned to exactly

ne production cell. The following two inequalities (4) and (5) pro-

ibit residual cells (without machines or parts). The left part of

4) is the total number of machines assigned to the particular cell

this sum is not greater than m ) and the right part is the total

umber of parts assigned to that cell (multiplied by m ). It means

hat if we have at least one machine assigned to some cell there

hould be at least one part assigned to this cell. This model allows

s to have any number of cells in the optimal solution. For exam-

le if optimal solution has only two cells then variables x ik and y jk 
ill be zero for all k except only two values of k . 

. MILP model 

.1. Objective linearization 

In our paper Bychkov et al. (2014) we have proposed a mixed-

nteger linear programming model for the cell formation problem

hich is very similar to the one described in the previous section.

ne of the most important points there was linearization of the

rouping efficacy objective. Our previous idea was to linearize the

rouping efficacy objective function by fixing the value of denom-

nator n 1 + n in 
0 

and considering a range of all possible numbers of

oids n in 
0 

. The lower bound for n in 
0 

equals to 0 because generally

here can be a solution without any voids. The upper bound is

omputed using the following proposition. 

roposition 1 ( Bychkov et al., 2014 ) . The number of voids in the

ptimal solution satisfies the following inequality: 

 

in 
0 ≤

⌊ 

1 − τ

τ
n 1 

⌋ 

here τ is the grouping efficacy value of any feasible solution. 

So if we know a feasible solution we can limit the range of

ossible values for the number of voids. Unfortunately, the perfor-

ance of this approach strongly depends on the feasible solution

e use for obtaining our bounds. This way solving problem in-

tances where grouping efficacy value is low takes too much com-

utational resources (since the number of subtasks is too large)

nd sometimes we are unable to solve even medium-sized cell for-

ation instances. 

In this paper together with using our new mixed-integer linear

odel we use another way of linearization – Dinkelbach (1967) al-

orithm. The parametric approach introduced by Dinkelbach is one

f the most general and popular strategies for fractional program-

ing. It reduces the solution of a fractional programming problem

o the solution of a sequence of simpler problems. If we consider

 fractional programming model with the following objective func-

ion: 

(x ) = 

P (x ) 

D (x ) 
, (6)

http://opt-hub.com/problems/cfp
https://researchgate.net/publication/316648108_Test_instances_and_solutions_for_the_cell_formation_problem
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Fig. 1. Testset A - No residual cells. Running times comparison. 
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hen Dinkelbach procedure is the following: 

• Step 1 Take some feasible solution x 0 , compute λ1 = 

P(x 0 ) 

D (x 0 ) 
and

let k = 1 
• Step 2 Solve the original problem with objective function Q ( x )

replaced with F (λk ) = P (x ) − λk D (x ) → max and let x k be the

optimal solution 

• Step 3 If F ( λk ) is equal to 0 (or less than some predefined tol-

erance) then stop the procedure and return x k as the optimal

solution. 

Else k = k + 1 , λk = 

P(x k ) 

D (x k ) 
and goto step 2. 

Elbenani and Ferland (2012) have also used Dinkelbach ap-

roach for linearization of grouping efficacy measure. Although

heir computational times are quite high and the results are given

nly for the particular fixed number of production cells. 

.2. Suggested two-index model 

Due to a large number of variables and constraints in three-

ndex model ( Bychkov et al., 2014 ) CPLEX spends too much com-

utational resources solving even small-sized instances (we have

olved only 14 of 35 problem instances). Here we introduce a two-

ndex mixed-integer linear programming model for the cell forma-

ion problem. The key idea of this model is removing machine-

art-cell relation as it has been done in many works before. In-

tead of mapping elements to cells we use a simple fact that ma-

hines within the same production cell have the same set of parts

ssigned to that cell. The two-index model combines well with the

inkelbach algorithm and shows impressing performance even on

arge-sized problem instances. 

Two-index model: 

 ik = 

{
1 , if machines i and k are in the same cell, 
0 , otherwise 

 i j = 

{
1 , if machine i and part j are in the same cell, 
0 , otherwise 

ax 

m ∑ 

i =1 

p ∑ 

j=1 

a i j y i j − λ ·
(

m ∑ 

i =1 

p ∑ 

j=1 

(1 − a i j ) y i j + 

m ∑ 

i =1 

p ∑ 

j=1 

a i j 

)
(7)

ubject to: 

 x ik − y i j − y k j ≥ −1 i, k = 1 , . . . , m j = 1 , . . . , p (8)

 i j − y k j − x ik ≥ −1 i, k = 1 , . . . , m j = 1 , . . . , p (9)

 k j − y i j − x i j ≥ −1 i, k = 1 , . . . , m j = 1 , . . . , p (10)

p 
 

j=1 

y i j ≥ 1 i = 1 , . . . , m (11)

m 

 

i =1 

y i j ≥ 1 j = 1 , . . . , p (12)

Technically matrix [ x ik ] here can be replaced by the one with

art-part relations, however the number of machines in problem

nstances is usually lower than the number of parts (for large-sized

nstances the difference is significant). As a result we have m 

2 vari-

bles from matrix [ x ik ] and mp variables from matrix [ y ij ]. 

Objective function (7) is the grouping efficacy measure lin-

arized using Dinkelbach method. Constraints (8) –(10) set relations

etween machines and parts to ensure the solution can be trans-

ormed into the block-diagonal form (which means its feasibility).
he last two inequalities (11) and (12) are optional and prohibit

esidual cells. 

We start with setting λ equal to the best known efficacy

alue for the considered cell formation problem instance. Then

e sequentially solve several two-index problems according to the

inkelbach algorithm and update λ value with the solutions found

ntil our objective function is above 0. 

. Test instances 

For our computational experiments we have used two datasets,

estset A and Testset B . 

Testset A - Classic . The first dataset is a classical 35 GT prob-

em set taken from Gonçalves and Resende (2004) . It contains 35

est instances with sizes from 5 × 7 up to 40 × 100 (machines ×
arts notation). This dataset is very popular among cell formation

esearchers and there are lots of computational results obtained by

ifferent methods (heuristics and metaheuristics generally). As we

ighlighted before some problem instances in this dataset have in-

onsistencies with the original papers they are published in. We

ave compared these instances to the original ones and corrected

he dataset. 

Testset B - Extra . Another dataset named Testset B consists

f other instances taken from different papers. We have looked

hrough many papers on the cell formation problem and formed

his new set. There are 32 test instances with sizes from 6 × 6 to

0 × 150. A couple of instances from this set have been adopted to

he classical formulation of the cell formation problem. 

Since the number of machines determines the size of our model

the number of decision variables and constraints) we consider 3

lasses of problem instances. 
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Fig. 2. Testset A - Allowed residual cells. Running times comparison. 

Table 4 

Testsets instances size. 

Small Medium Large 

Testset A 9 8 18 

Testset B 11 13 8 

 

 

 

 

 

 

 

 

 

 

Table 5 

Testset B - instances. 

ID Source m p 

B1 Adil et al. (1996) 6 6 

B2 Pa Rkin and Li (1997) 6 7 

B3 Brown and Sumichrast (2001) 6 11 

B4 Chan and Milner (1982) 7 5 

B5 Kusiak and Chow (1987) 7 8 

B6 Zolfaghari and Liang (2002) 7 8 

B7 Won and Kim (1997) 7 10 

B8 Sarker and Khan (2001) 8 8 

B9 Nair (1999) 8 10 

B10 Islam and Sarker (20 0 0) 8 10 

B11 Kumar et al. (1986) 9 15 

B12 Ham et al. (1985) 10 8 

B13 Viswanathan (1996) 10 12 

B14 Shargal et al. (1995) 10 38 

B15 Won and Kim (1997) 11 10 

B16 Seifoddini (1988) 11 22 

B17 Moon and Chi (1992) 12 19 

B18 Li (2003) 14 14 

B19 Chan and Milner (1982) - Fig. 3a 15 10 

B20 Yang and Yang (2008) - Fig. 6b 15 15 

B21 Yang and Yang (2008) - Fig. 6c 15 15 

B22 Yang and Yang (2008) - Fig. 6d 15 15 

B23 Harhalakis et al. (1994) 17 20 

B24 Seifoddini and Djassemi (1991) 18 24 

B25 Sandbothe (1998) 20 10 

B26 Nagi et al. (1990) 20 51 

B27 Won and Kim (1997) 26 28 

B28 Yang and Yang (2008) - Fig. 7 28 35 

B29 Seifoddini and Djassemi (1996) 35 15 

B30 Seifoddini and Djassemi (1996) 41 50 

B31 Yang and Yang (2008) - Fig. 12 46 105 

B32 Zolfaghari and Liang (1997) 50 150 

5

5

 

l  

m  

w  

h

 

l  

s  

h  

2  

s

 

h

 

f  

p  

s  

C  

3

 

c  

n

• Small (less than 10 machines). 
• Medium (from 10 to 20 machines). 
• Large (20 machines or greater). 

For our data we can conclude that Testset A has 2 times more

large instances, but less medium and small instances (see Table 4 ).

5. Computational results 

For our computational experiments we consider two most pop-

ular versions of cell size constraints: 

1. Residual cells are prohibited, singletons are allowed (each cell

has at least 1 machine and 1 part). 

2. Residual cells are allowed (cells with only machines or only

parts can appear in the final solution). 

Several state-of-art exact approaches have been chosen for

comparisons. As a platform for our computations we have used a

system with Intel Xeon processor running at 3.4 GHz with 16GB

RAM and CPLEX 12.4.0 installed. Due to high-quality initial solu-

tions the Dinkelbach algorithm makes only one or, in rare cases,

two iterations. 
.1. Testset A 

.1.1. Experiments 

The instances from Table 3 have been studied widely in the

iterature. We report results separately for the formulation where

inimal cell size is 1 × 1 ( Table 7 and Fig. 1 ) and the formulation

ith residual cells allowed ( Table 8 and Fig. 2 ). In the first case we

ave selected two approaches for the results comparison: 

1. The MILP model by Elbenani and Ferland (2012) . 

2. The MILP model by Bychkov et al. (2014) . 

Elbenani and Ferland (2012) considered a simplified formu-

ation of the cell formation problem solving every problem in-

tance only for one fixed number of production cells. These authors

ave performed computational experiments on an AMD processor

.2 GHz with 4GB RAM. For Testset A we use the best efficacy re-

ults from the literature as initial values for λ parameter. 

In case of unrestricted cell sizes (residual cells are allowed) we

ave compared our results to the following approaches: 

1. The branch-and-bound algorithm by Brusco (2015) . 

2. The ILP model by Pinheiro et al. (2016) . 

3. The iterative exact method by Pinheiro et al. (2016) . 

Brusco (2015) considers several values for the number of cells

or some problem instances, so in this case we compare our com-

utational time with these times summed up for every test in-

tance. As hardware platforms Brusco (2015) reports 3.4 GHz Intel

ore i7-2600 with 8GB RAM and Pinheiro et al. (2016) the same

.4 GHz Intel Core i7-2600 with 32 GB RAM. 

Since Elbenani and Ferland (2012) and Brusco (2015) do not

onsider all possible numbers of production cells we show the

umber of cells in brackets for these approaches. 
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Table 6 

Computational experiments on the data provided by Gonçalves and Resende (2004) . 

# Time, s Efficacy 

Pinheiro et al. (2016) Two-index Pinheiro et al. (2016) Two-index 

A1 0.01 0.01 0.7500 0.7500 

A7 0.03 0.01 0.6944 0.6944 

A14 144.91 4.99 0.5333 0.5333 

A15 0.54 0.17 0.6992 0.6992 

A17 42.32 3.51 0.5773 0.5773 

A20 14.55 0.11 0.7938 0.7938 

A21 305.48 15.08 0.5879 0.5879 

A25 48743.90 678.53 0.5329 0.5329 

A30 41.53 8.58 0.6304 0.6304 

Table 7 

Testset A - computational results (residual cells are prohibited, singletons are allowed). 

# Time, s Efficacy 

Elbenani and Ferland (2012) Bychkov et al. (2014) Elbenani and Ferland (2012) Bychkov et al. (2014) Two-index model 

A1 2.3 0.63 0.00 0.8235(2) 0.8235 0.8235 

A2 1.6 2.29 0.00 0.6957(2) 0.6957 0.6957 

A3 3.1 5.69 0.00 0.7959(2) 0.7959 0.7959 

A4 2.0 1.86 0.09 0.7692(2) 0.7692 0.7692 

A5 30.6 9.14 0.17 0.6087(5) 0.6087 0.6087 

A6 4.3 5.15 0.01 0.7083(4) 0.7083 0.7083 

A7 9.6 13.37 0.02 0.6944(4) 0.6944 0.6944 

A8 3.1 18.33 0.01 0.8525(3) 0.8525 0.8525 

A9 3.5 208.36 0.45 0.5872(2) 0.5872 0.5872 

A10 1.1 6.25 0.00 0.7500(5) 0.7500 0.7500 

A11 1.6 2.93 0.02 0.9200(3) 0.9200 0.9200 

A12 2188.7 259.19 0.19 0.7206(7) 0.7206 0.7206 

A13 593.2 179.21 0.23 0.7183(7) 0.7183 0.7183 

A14 15130.5 ∗ 4.24 0.5326(8) ∗ 0.5326 

A15 252.5 ∗ 0.25 0.6953(6) E ∗ 0.6899 

A16 183232.5 ∗ 4.80 0.5753(8) ∗ 0.5753 

A17 2345.6 ∗ 3.82 0.5773(9) ∗ 0.5773 

A18 ∗ ∗ 32243.10 ∗ ∗ 0.4345 

A19 131357.5 ∗ 245.59 0.5081(7) ∗ 0.5081 

A20 31.1 ∗ 0.22 0.7791(5) ∗ 0.7791 

A21 14583.6 ∗ 24.34 0.5798(5) ∗ 0.5798 

A22 11.3 1.64 0.14 1.0 0 0 0(7) 1.0 0 0 0 1.0 0 0 0 

A23 230.7 ∗ 0.12 0.8511(7) ∗ 0.8511 

A24 1101.1 ∗ 0.16 0.7351(7) ∗ 0.7351 

A25 ∗ ∗ 1026.96 ∗ ∗ 0.5329 

A26 ∗ ∗ 178182.24 ∗ ∗ 0.4895 

A27 ∗ ∗ ∗ ∗ ∗ ∗

A28 958714.1 ∗ 1964.00 0.5482(5) ∗ 0.5482 

A29 ∗ ∗ ∗ ∗ ∗ ∗

A30 378300.0 ∗ 8.72 0.6331(14) ∗ 0.6331 

A31 ∗ ∗ 136.00 0.6012(13) E ∗ 0.5977 

A32 ∗ ∗ ∗ ∗ ∗ ∗

A33 ∗ ∗ ∗ ∗ ∗ 0.4800 

A34 268007.6 ∗ 16323.71 0.6064(3) ∗ 0.6064 

A35 7365.3 ∗ 1.34 0.8403(10) ∗ 0.8403 
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.1.2. Results 

The results for Testset A are summarized in Tables 7 and 8 .

or each algorithm we report the grouping efficacy value and the

unning time in seconds. Since our testset is larger than the one

sed by Brusco (2015) the missing results are marked as “–”. For

ome problems exact solutions have not been obtained because

PLEX runs too long or takes too much memory. These instances

re marked as “∗”. 

Table 7 shows the results for the case where we pro-

ibit cells without machines or parts. Our previous model from

ychkov et al. (2014) also considers a variable number of produc-

ion cells, but due to its complexity and not very effective lin-

arization technique it is able to solve only 14 test problems of

5. The model suggested by Elbenani and Ferland (2012) solved

7 problem instances but only for the one fixed number of pro-

uction cells for each problem instance. Our new model provides

lobal optimal solutions (with respect to any possible number of
ells) for 31 of 35 problem instances. For problem instance A33 we

ave found a new solution with grouping efficacy 0.48 unknown

efore. 

For 17 instances: A14–A21, A23–A26, A28, A30, A31, A34 and

35 we are the first to prove the global optimality of the best

nown solutions with respect to a variable number of production

ells. 

Running times bar chars for Table 7 are presented in Fig. 1 .

ere we have used logarithmic scale with base 10 for Y axis

running time). Our new model shows really good performance,

t works from 7 to 43,383 times faster than the model from

lbenani and Ferland (2012) and from 11 to 1833 times faster than

he model from Bychkov et al. (2014) . We must underline that al-

hough we use a better hardware platform than Elbenani and Fer-

and (2012) , our problem formulation is more complicated than a

ormulation with a fixed number of cells. 
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Table 8 

Testset A - computational results (residual cells are allowed). 

# Time, s Efficacy 

Brusco (2015) Pinheiro et al. (2016) Pinheiro et al. (2016) Two-index Brusco (2015) Pinheiro et al. (2016) Two-index 

A1 0.01 0.16 0.01 0.01 0.8235(2,3,4) 0.7500 E 0.8235 

A2 0.01 0.07 0.01 0.01 0.6957(2,3,4) 0.6956 0.6957 

A3 0.02 0.09 0.03 0.01 0.8085(2,3,4) 0.8085 0.8085 

A4 0.01 0.02 0.01 0.01 0.7916(2,3,4) 0.7917 0.7917 

A5 0.6 0.29 0.06 0.17 0.6087(2,3,4,5,6) 0.6087 0.6087 

A6 0.04 0.14 0.01 0.01 0.7083(2,3,4,5) 0.7083 0.7083 

A7 0.08 0.18 0.03 0.01 0.6944(2,3,4,5) 0.6944 E 0.6944 

A8 0.01 2.06 0.04 0.01 0.8525(2,3,4) 0.8525 0.8525 

A9 35.86 81.46 4.94 0.45 0.5872(2,3,4) 0.5872 0.5872 

A10 0.06 0.03 0.01 0.01 0.7500(2,3,4,5,6) 0.7500 0.7500 

A11 0.01 0.01 0.02 0.02 0.9200(2,3,4) 0.9200 0.9200 

A12 633.91 0.49 0.09 0.03 0.7424(6,7,8) 0.7424 0.7424 

A13 2631.76 0.49 0.11 0.03 0.7285(6,7,8) 0.7286 0.7286 

A14 24716.34 600.98 144.91 4.88 0.5385(8) 0.5333 E 0.5385 

A15 1279.93 7.24 0.54 0.16 0.6992(5,6,7) 0.6992 E 0.6992 

A16 – 1156.23 125.62 4.24 – 0.5804 0.5804 

A17 20840.55 87.13 42.32 3.84 0.5773(9) 0.5773 E 0.5773 

A18 – ∗ ∗ 52810.10 – ∗ 0.4397 

A19 1375608.66 23928.70 1771.99 249.52 0.5081(7) 0.5081 0.5081 

A20 4830.00 1.78 14.55 0.09 0.7888(5,6,7) 0.7938 E 0.7888 

A21 – 2145.24 305.48 22.60 – 0.5879 E 0.5860 

A22 0.01 0.02 0.15 0.14 1.0 0 0 0(7) 1.0 0 0 0 1.0 0 0 0 

A23 42.29 10.08 0.44 0.14 0.8511(7) 0.8511 0.8511 

A24 208158.02 17.46 0.78 0.20 0.7351(7) 0.7351 0.7351 

A25 – 371233.00 48743.90 759.70 – 0.5329 E 0.5329 

A26 – ∗ ∗ 134418.65 – ∗ 0.4895 

A27 – ∗ ∗ ∗ – ∗ ∗

A28 – ∗ ∗ 46361.97 – ∗ 0.5482 

A29 – ∗ ∗ ∗ – ∗ ∗

A30 – 183.71 41.53 8.00 – 0.6304 E 0.6331 

A31 – 13807.50 2622.06 64.82 – 0.5977 0.5977 

A32 – ∗ ∗ 234055.90 – ∗ 0.5084 

A33 – ∗ ∗ ∗ – ∗ 0.4829 

A34 – ∗ ∗ 14212.57 – ∗ 0.6131 

A35 – 325.53 18.22 1.61 – 0.8403 0.8403 
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The results for the formulation with no constraints on cell

sizes are summarized in Table 8 . The model suggested by

Pinheiro et al. (2016) solved 27 problem instances to the global

optimum. Our approach has obtained exact solutions for 32 of 35

test instances. In addition for problem instances A18, A33 and A34

we have found new solutions unknown before. 

Running times bar charts for Table 8 are presented in Fig. 2 .

Here we have chosen the ILP model from Pinheiro et al. (2016) for

comparison since it has a better performance than the exact itera-

tive method of the same authors. In Fig. 2 we have also used loga-

rithmic scale with base 10 for the first and second plots (instances

with running times less than 60 s and less than 50 0 0 s). For

the last plot (instances with running times less than 1,50 0,0 0 0 s)

we have used logarithmic scale with base 100. We can see that

the two-index model runs up to 1 million times faster than the

branch-and-bound algorithm by Brusco (2015) and up to 161 times

faster than the ILP model by Pinheiro et al. (2016) . 

5.1.3. Inconsistencies 

The classical dataset of 35 GT problems from Gonçalves and Re-

sende (2004) have been used for many years by the cell formation

researchers for computational experiments and results comparison.

Unfortunately, the dataset contains several inconsistencies with

the original sources: papers from King and Nakornchai (1982) to

Chandrasekharan and Rajagopalan (1987) (see Table 3 ). Many re-

searchers have used corrupted instances and sometimes add some

new inconsistencies. Therefore obtaining results for these problems

and comparing it to results of other approaches becomes a really

difficult task. One of the goals of this paper is to provide correct
ata for the cell formation researchers. In this paper we mark us-

ge of inconsistent data with superscript E . 

We have not been able to obtain results reported in

lbenani and Ferland (2012) for problem instances A15 and A31

sing both possible data sets - dataset from Gonçalves and Re-

ende (2004) and our corrected version. Probably some other data

ave been used. 

Several instances provided by Gonçalves and Resende (2004) ,

hich are different from its original sources (papers from King and

akornchai, 1982 to Chandrasekharan and Rajagopalan, 1987 , see

able 3 ), have been also used by Pinheiro et al. (2016) . These in-

tances are A1, A7, A14, A15, A17, A20, A21, A25 and A30. For a

air comparison we have also run our model using the same input

ata (see Table 6 ). Our experiments have confirmed all the results

btained by Pinheiro et al. (2016) . Also we can conclude that the

unning times of our model have not changed much on these input

ata. 

.2. Testet B results 

Since the test instances from Table 5 are less popular in re-

earch papers our goal is just to obtain optimal solutions for

his set. We have used our multi-start local search heuristic

 Bychkov et al., 2013 ) to get good solutions which are then passed

s initial values for λ parameter (we pick the best solution found

y the heuristic within 30 s). 

The results for Testset B are shown in Table 9 . Here we have

ound optimal solutions for 31 of 32 test problems. Another result

s an excellent performance of our multi-start local search heuristic

lgorithm: only one of 32 instances solved by the heuristic differs
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Table 9 

Testset B - computational results. 

# Time Efficacy 

Two-index (no residual cells) Two-index (allow residual cells) Heuristic bound Two-index (no residual cells) Two-index (allow residual cells) 

B1 0.01 0.01 0.8095 0.8095 0.8095 

B2 0.01 0.01 0.7222 0.7222 0.7222 

B3 0.25 0.03 0.6071 0.6071 0.6071 

B4 0.01 0.01 0.8889 0.8889 0.8889 

B5 0.01 0.01 0.7500 0.7500 0.7500 

B6 0.01 0.01 0.7391 0.7391 0.7391 

B7 0.01 0.01 0.8148 0.8148 0.8148 

B8 0.01 0.01 0.7222 0.7222 0.7222 

B9 0.01 0.01 0.7576 0.7576 0.7576 

B10 0.01 0.01 0.90 0 0 0.90 0 0 0.90 0 0 

B11 0.01 0.02 0.7273 0.7273 0.7297 

B12 0.01 0.01 0.8276 0.8276 0.8276 

B13 0.36 0.80 0.5962 0.5962 0.6042 

B14 0.25 0.30 0.6405 0.6405 0.6405 

B15 0.01 0.01 0.8333 0.8333 0.8333 

B16 0.16 0.06 0.7391 0.7391 0.74 4 4 

B17 0.98 0.26 0.6552 0.6552 0.6842 

B18 1.82 1.65 0.6027 0.6129 0.6129 

B19 0.03 0.06 0.80 0 0 0.80 0 0 0.8113 

B20 0.05 0.03 0.8710 0.8710 0.8710 

B21 0.03 0.04 0.8333 0.8333 0.8333 

B22 0.05 0.01 0.7258 0.7258 0.7258 

B23 0.05 0.06 0.8111 0.8111 0.8111 

B24 4.79 7.80 0.5673 0.5673 0.5728 

B25 0.20 0.10 0.7600 0.7600 0.80 0 0 

B26 13.81 25.75 0.6068 0.6068 0.6078 

B27 0.25 0.28 0.7248 0.7248 0.7248 

B28 0.83 1.04 0.6729 0.6729 0.6729 

B29 33.82 51.76 0.5730 0.5730 0.5745 

B30 4.76 8.67 0.7308 0.7308 0.7325 

B31 19.69 17.50 0.6799 0.6799 0.6799 

B32 ∗ ∗ 0.6193 ∗ ∗
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rom the exact solution (instance B18). Due to the high computa-

ional complexity we are unable to solve the largest problem in the

et – problem B32 (50 × 150). 

. Conclusion 

The cell formation problem is a well known combinatorial op-

imization problem with a high computational complexity. A very

ew authors have suggested exact approaches for the most popular

roblem formulation with the grouping efficacy objective function.

he majority of these works assume that the number of production

ells is predefined. In this paper we suggest a new compact and

ffective integer linear programming model for the cell formation

roblem with a variable number of production cells. The model

s based on the machine-machine and part-machine relations in-

tead of the widely used machine-part-cell relation. It allows us to

rastically reduce the number of variables and constraints in the

esulting integer linear program. Computational experiments show

hat our new model outperforms the state-of-art exact methods.

e have solved 63 of 67 problem instances to the global optimum

ith respect to a variable number of production cells. We have

lso found several new solutions unknown before. Unfortunately

any problem instances from the cell formation datasets have in-

onsistencies with the original papers. This makes it really diffi-

ult to perform computational experiments and compare results to

ther approaches in the field. We have extracted and checked over

7 problem instances. All these data are available for download-

ng from website opt-hub.com or researchgate.net and we hope it

ill help the researchers in this area. The suggested model can be

lso used for solving biclustering problems and this is one of the

irections of our future work. 
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