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Abstract The cell formation problem (CFP) consists in an optimal grouping of the
given machines and parts into cells, so that machines in every cell process as much
as possible parts from this cell (intra-cell operations) and as less as possible parts
from other cells (inter-cell operations). The grouping efficacy is the objective function
for the CFP which simultaneously maximizes the number of intra-cell operations and
minimizes the number of inter-cell operations. Currently there are no exact approaches
(known to the authors) suggested for solving the CFP with the grouping efficacy objec-
tive. The only exact model which solves the CFP in a restricted formulation is due
to Elbenani and Ferland (Cell formation problem solved exactly with the dinkelbach
algorithm. Montreal. Quebec. CIRRELT-2012-07, 1–14, 2012). The restriction con-
sists in fixing the number of production cells. The main difficulty of the CFP is the
fractional objective function—the grouping efficacy. In this paper we address this issue
for the CFP in its common formulation with a variable number of cells. Our compu-
tational experiments are made for the most popular set of 35 benchmark instances.
For the 14 of these instances using CPLEX software we prove that the best known
solutions are exact global optimums.

I. Bychkov · M. Batsyn (B) · P. M. Pardalos
Laboratory of Algorithms and Technologies for Network Analysis, National Research University
Higher School of Economics, 136 Rodionova, Nizhniy Novgorod 603093, Russian Federation
e-mail: mbatsyn@hse.ru

I. Bychkov
e-mail: il.bychkov@gmail.com

P. M. Pardalos
Center of Applied Optimization, University of Florida, 401 Weil Hall, P.O. Box 116595,
Gainesville, FL 32611-6595, USA
e-mail: pardalos@ufl.edu

123



2204 I. Bychkov et al.

Keywords Cell formation problem · Exact model · Grouping efficacy ·
Fractional objective function

1 Introduction

The cell formation problem (CFP) consists in an optimal grouping of the given
machines and parts into cells so that the grouping efficacy is maximized. The input for
this problem is given by m machines, p parts, and a rectangular machine-part matrix
[ai j ], where ai j = 1 if part j is processed by machine i . The grouping efficacy is given
by the following formula:

τ = nin
1

n1 + nin
0

.

The CFP is NP-hard since it can be reduced from the clustering problem [11].
As a result there appeared many heuristic approaches to the CFP giving solutions of
high quality in a reasonable time [12,13,24]. Quality of the CFP solutions is usually
determined by using the grouping efficacy measure [17]:

τ = nin
1

n1 + nin
0

,

where n1 is the number of ones in the machine-part matrix, nin
1 and nin

0 are the numbers
of ones and zeroes inside the cells. This function is fractional and this is one of the
main difficulties of the CFP. To our knowledge currently only one exact model is
suggested for the CFP, but in a restricted formulation—Elbenani and Ferland [10].
The restriction of this model consists in fixing the number of production cells. In this
paper we suggest the first exact model for the CFP in its common formulation with
a variable number of cells. Our computational experiments are made for the most
popular set of 35 benchmark instances. For the 14 of these instances using CPLEX
software we prove that current best known solutions are exact global optimums.

2 Problem formulation

The CFP is defined by its machine-part matrix. As an example in Table 1 the machine-
part matrix of the CFP instance from Waghodekar and Sahu [29] is presented. This
CFP instance has five machines and seven parts. Its optimal solution with the grouping
efficacy τ = 16/(20 + 3) ≈ 0.6957 is presented in Table 2. This solution has two
cells, the first cell contains machine 1 together with parts 1, 6, 7 and the second one
contains machines 2, 3, 4, 5 together with parts 2, 3, 4, 5.

Since the grouping efficacy is a fractional objective function, we look over all the
possible values of the denominator (specifically nin

0 , because n1 is constant). We solve
the CFP separately for every value of nin

0 adding a constraint requiring the number
of zeroes inside cells to be equal to the chosen constant nin

0 . This way the original
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Table 1 Machine-part 5 × 7
matrix for the CFP instance from
Waghodekar and Sahu [29]

1 2 3 4 5 6 7

1 1 0 0 0 1 1 1

2 0 1 1 1 1 0 0

3 0 0 1 1 1 1 0

4 1 1 1 1 0 0 0

5 0 1 0 1 1 1 0

Table 2 Optimal solution for
the CFP instance from
Waghodekar and Sahu [29]

Bold values indicates the
solution

1 6 7 2 3 4 5

1 1 1 1 0 0 0 1

2 0 0 0 1 1 1 1

3 0 1 0 0 1 1 1

4 1 0 0 1 1 1 0

5 0 1 0 1 0 1 1

objective function transforms into the linear function max nin
1 and we have to solve

several such linear integer problems, one for every fixed value nin
0 . Then the optimal

solution for the CFP is the optimal solution of the problem which has the greatest
grouping efficacy among these linear integer problems.

Our exact model of the CFP can be described using boolean variables xik and y jk .
Variable xik is equal to 1 if machine i belongs to cell k and is equal to 0 otherwise.
Similarly variable y jk is equal to 1 if part j belongs to cell k and is equal to 0 otherwise.
Machines index i takes values from 1 to m and parts index j—from 1 to p. Cells index
k takes values from 1 to c = min(m, p) because every cell should contain at least one
machine and one part and so the number of cells cannot be greater than m and p. The
number of ones inside cells is equal to

∑c
k=1

∑m
i=1

∑p
j=1 ai j xik y jk , and the number

of zeroes inside cells is equal to
∑c

k=1
∑m

i=1
∑p

j=1(1 − ai j )xik y jk . We linearize the
product xik y jk in a standard way introducing new boolean variables zi jk = xik y jk and
additional linear constraints (2)–(4). The suggested model is as follows.

max
m∑

i=1

p∑

j=1

c∑

k=1

ai j zi jk (1)

subject to

zi jk ≤ xik ∀i = 1, . . . , m, ∀ j = 1, . . . , p, ∀k = 1, . . . , c (2)

zi jk ≤ y jk ∀i = 1, . . . , m, ∀ j = 1, . . . , p, ∀k = 1, . . . , c (3)

zi jk ≥ xik + y jk − 1 ∀i = 1, . . . , m, ∀ j = 1, . . . , p, ∀k = 1, . . . , c (4)
c∑

k=1

xik = 1 ∀i = 1, . . . , m (5)

c∑

k=1

y jk = 1 ∀ j = 1, . . . , p (6)
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m∑

i=1

p∑

j=1

zi jk ≥
m∑

i=1

xik ∀k = 1, . . . , c (7)

m∑

i=1

p∑

j=1

zi jk ≥
p∑

j=1

y jk ∀k = 1, . . . , c (8)

m∑

i=1

p∑

j=1

c∑

k=1

(1 − ai j )zi jk = nin
0 (9)

xik, y jk, zi jk ∈ {0, 1} ∀i = 1, . . . , m, ∀ j = 1, . . . , p, ∀k = 1, . . . , c (10)

Constraints (2)–(4) guarantee that zi jk = xik y jk . Constraints (5), (6) require that
every machine and every part is assigned to exactly one cell. Constraints (7), (8)
require that there are no cells which have only machines without parts or only parts
without machines. Constraint (9) fixes the total number of zeroes inside cells to be
equal to the chosen constant nin

0 .
We solve model (1)–(10) for all possible values of nin

0 using CPLEX 12 solver. To
limit the maximum possible number of zeroes inside cells a heuristic solution can be
used. Proposition 1 provides an upper bound on the number of zeroes inside cells.

Proposition 1 Let τ be the grouping efficacy value for some feasible CFP solution.
Then nin

0 in the optimal solution is not greater than
⌊ 1−τ

τ
n1

⌋
.

Proof Since τ is the value of the objective function of a feasible CFP solution, then it
is not greater than the optimal value τ ∗

τ ≤ τ ∗ = nin
1

n1 + nin
0

Therefore,

nin
0 ≤ nin

1 − τn1

τ

Since nin
1 ≤ n1 and nin

0 is integer, we have the required upper bound

nin
0 ≤

⌊
1 − τ

τ
n1

⌋

Note that when the considered feasible solution is optimal (τ = τ ∗) and it contains all
the ones inside the cells (nin

1 = n1) then nin
0 is exactly equal to this upper bound. �	

The greater the value of τ we have, the tighter is the upper bound for the number of
zeroes inside cells. So in this paper, we use the grouping efficacy τ of the best known
solution to reduce the number of boolean linear problems (1)–(10) needed to be solved
in our approach. Note that in general case, the lower bound on nin

0 is trivial: nin
0 ≥ 0.
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This bound is reached for example on a solution with no zeroes inside cells and no
ones outside cells which has 100 % efficacy.

Another way to improve the model is to add bounds on the number of ones inside
cells again using the grouping efficacy of the best known heuristic solution. Such
bounds allow CPLEX to prune branches more efficiently. An upper bound on nin

1 is
trivial: nin

1 ≤ n1. It is reached on an ideal solution with 100 % efficacy. A lower bound
for nin

1 is provided in proposition 2.

Proposition 2 Let τ be the grouping efficacy value for some feasible CFP solution.
Then nin

1 in the optimal solution is not less than 
τ(n1 + nin
0 )�.

Proof Since τ is the value of the objective function of a feasible CFP solution, then it
is not greater than the optimal value τ ∗

τ ≤ τ ∗ = nin
1

n1 + nin
0

Since nin
1 is integer, we have the required lower bound

nin
1 ≥

⌈
τ(n1 + nin

0 )
⌉

In our model, we fix nin
0 and thus it is a constant which can be used in the expression

for the lower bound on nin
1 . �	

Using proposition 2, we can add the following inequalities to our model

⌈
τ(n1 + nin

0 )
⌉

≤
m∑

i=1

p∑

j=1

c∑

k=1

ai j zi jk ≤ n1 (11)

As an example, let us consider two smallest instances from the literature: 5×7 CFP
instance from King and Nakornchai [15] and 5×7 CFP instance from Waghodekar and
Sahu [29]. For the first instance, the best known heuristic solution has τ = 82.35 %
and the upper bound on nin

0 is [(1 − 0.8235)/0.8235 · 16] = 3. For the second instance
τ = 69.57 % and the upper bound is [(1 − 0.6957)/0.6957 · 20] = 8. The efficacy
values obtained by solving model (1)–(11) with all possible values of nin

0 for these
two instances are shown in Table 3. Thus the globally optimal solution for instance 1
has three zeroes inside cells and the efficacy 82.35 %, and for instance 2—also three
zeroes inside cells and the efficacy 69.57 %.

Table 3 Solutions for all possible values of nin
0

# Size Zeroes inside

0 1 2 3 4 5 6 7 8

1 5 × 7 78.57 80.00 81.25 82.35

2 5 × 7 60.00 61.90 63.64 69.57 62.50 68.00 63.54 55.56 60.71
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Table 4 Computational results

# Source Size Efficacy (%) Time (s) Zeroes in

1 King and Nakornchai [15] 5 × 7 82.35 0.63 3

2 Waghodekar and Sahu [29] 5 × 7 69.57 2.29 3

3 Seifoddini [25] 5 × 18 79.59 5.69 3

4 Kusiak [19] 6 × 8 76.92 1.86 4

5 Kusiak and Chow [20] 7 × 11 60.87 9.14 0

6 Boctor [2] 7 × 11 70.83 5.15 3

7 Seifoddini and Wolfe [26] 8 × 12 69.44 13.37 1

8 Chandrasekharan and Rajagopalan [6] 8 × 20 85.25 18.33 0

9 Chandrasekharan and Rajagopalan [7] 8 × 20 58.72 208.36 18

10 Mosier and Taube [22] 10 × 10 75.00 6.25 4

11 Chan and Milner [5] 10 × 15 92.00 2.93 4

12 Askin and Subramanian [1] 14 × 23 72.06 259.19 10

13 Stanfel [28] 14 × 24 71.83 179.21 10

14 McCormick et al. [21] 16 × 24 51.61a 20,829.38a 8

15 Srinivasan et al. [27] 16 × 30 69.00a 13,719.99a 13

16 King [14] 16 × 43 57.53a 24,930.93a 20

17 Carrie [4] 18 × 24 57.73a 13,250.01a 8

18 Mosier and Taube [23] 20 × 20 38.71a 43,531.77a 44

19 Kumar et al. [16] 20 × 23 46.72a 33,020.13a 9

20 Carrie [4] 20 × 35 77.85a 11,626.98a 22

21 Boe and Cheng [3] 20 × 35 46.75a 33,322.08a 1

22 Chandrasekharan and Rajagopalan [9] 24 × 40 100.00 1.64 0

23 Chandrasekharan and Rajagopalan [9] 24 × 40 85.11a 6,916.24a 11

24 Chandrasekharan and Rajagopalan [9] 24 × 40 56.49a 14,408.88a 0

25 Chandrasekharan and Rajagopalan [9] 24 × 40 46.56a 34,524.47a 0

26 Chandrasekharan and Rajagopalan [9] 24 × 40 43.51a 41,140.94a 0

27 Chandrasekharan and Rajagopalan [9] 24 × 40 41.22a 44,126.76a 0

28 McCormick et al. [21] 27 × 27 54.02a 22,627.28a 31

29 Carrie [4] 28 × 46 24.65a 71,671.08a 4

30 Kumar and Vannelli [18] 30 × 41 48.44a 22,594.20a 0

31 Stanfel [28] 30 × 50 50.65a 31,080.82a 0

32 Stanfel [28] 30 × 50 38.32a 48,977.01a 0

33 King and Nakornchai [15] 30 × 90 39.41a 99,435.64a 29

34 McCormick et al. [21] 37 × 53 59.60a 47,744.04a 17

35 Chandrasekharan and Rajagopalan [8] 40 × 100 84.03a 24,167.76a 37
a Some of the subproblems have not been solved to optimality within time limit of 300 s
Bold values indicates the optimal values
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3 Computational results

For the computational experiments, we use the set of the most popular 35 CFP instances
from the literature [13,24]. The first 13 problems and the 22nd problem could be solved
exactly in quite a little computational time (Table 4). For all of these instances, the
solutions found by our model are equal to the best known solutions. Thus, for the
14 instances, the global optimality of the best known solutions is proved. Solving
the remaining instances requires too much memory and computational time. For such
instances when we add inequalities (11) CPLEX solver cannot find any solution within
10 h. So for these instances we use our model without inequalities (11), run CPLEX
with 300 s time limit for every subproblem, and report the best found value of grouping
efficacy. All the computations are performed on an Intel Core i7 processor running at
2.2 GHz with 8 GB RAM.

4 Conclusion

There are a lot of papers devoted to the CFP with the grouping efficacy as an objective
function, but almost all of them present different heuristic algorithms. This is probably
connected with the complexity of this problem caused by its fractional objective and
large amount of feasible solutions even for small numbers of machines and parts. In
this paper we have suggested an exact approach which allows us to replace the original
fractional programming problem with several integer programming problems. We have
also provided two propositions which help to reduce the number of the IP problems
to be solved and to improve the IP model itself. As a result we are able to solve 14 of
the 35 most popular benchmark instances with sizes from 5 × 7 to 24 × 40.

Acknowledgments The authors are partially supported by LATNA Laboratory, NRU HSE, RF govern-
ment grant, ag. 11.G34.31.0057.
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