IPC13

13th International Polychaete Conference
Long Beach, California

RMS Queen Mary • 4–9 August 2019

Program & Abstracts
65) Composition and diversity of polychaete assemblages in the continental shelf of the southern Mexican Pacific
Pablo Hernández-Alcántara 1, Francisco F. Velasco-López 2, Vivianne Solís-Weiss 3, & León F. Álvarez-Sánchez 3
1 Unidad Académica de Ecología y Biodiversidad Acuática, Universidad Nacional Autónoma de México; 2 Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México; 3 Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México
For this study, 38 stations between 42 and 109 m depth were ordered along 14 transects perpendicular to the coastline of the continental shelf in the southern Mexican Pacific, with the aim to study the spatial variations of the composition and diversity of the local polychaete populations present. A total of 3741 specimens from 82 species and 27 families were identified. Density and species richness values showed ample variability (2–417 ind./0.1 m²; 1–24 spp./sta.) and exponentially decreased with depth (R² = 0.45 and 0.54, respectively). However, the average distinctness diversity increased with depth (Delta+ = 70.3-100) due to the fact that most of the species belonged to different genera, which suggests greater morphological diversity of polychaetes. Linopherus kristiani (1359 ind. 0.1 m⁻²), mainly occurring at the middle and outer shelf, and Paraprionospio pinnata (1338 ind. 0.1 m⁻²), mostly located in shallow depths, were clearly the dominant species. Besides these polychaetes, the faunal assemblages were significantly structured (p = 0.951) by Aglaophamus verrilli, Cossura brunnea, Hermundura riojai, Magelona mariana and M. pacifica. The spatial changes in number of species and taxonomic distinctness were slightly correlated with depth (p = 0.4 and 0.2) and sand percentage (p = 0.35 and 0.2), and density values with depth (p = 0.3) and phosphate levels (p = 0.26).

66) Spatial and bathymetric trends in polychaete assemblages from deep-sea of the southern Gulf of California, eastern Pacific
Araceli Jaquelin Mercado-Santiago 1, Pablo Hernández-Alcántara 2, & Vivianne Solís-Weiss 3
1 Facultad de Ciencias, Universidad Nacional Autónoma de México; 2 Unidad Académica de Ecología y Biodiversidad Acuática, Universidad Nacional Autónoma de México; 3 Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México
The polychaete assemblages from the deep sea of the southern Gulf of California were characterized in terms of faunal composition, species richness and distributional patterns. During the spring season of 2012 and 2013, 15 stations located between 238 and 2900 m depth were sampled. A total of 85 species belonging to 59 genera and 26 families of polychaetes were identified. The families Onuphidae (11 spp.), Spionidae (10 spp.) and Cirratulidae (8 spp.) were the richest in species, while the families Pararionidae (119.04 ind./0.1 m²), Spionidae (95.23 ind./0.1 m²), Lumbrineridae (73.80 ind./0.1 m²) and Pilargidae (69.04 ind./0.1 m²) were the most abundant, representing 51.9% of fauna. The number of individuals and species displayed an inverse parabolic distribution with depth, with the lowest values (4.76–42.86 ind./0.1 m²; 2–6 spp.) at middle depths (651–915 m). Three faunal assemblages defined by the bathymetric levels were detected (RANSIM = 0.405, p=0.04): 1) Prionospio ehleri-Subadyte mexicana-Syllis alternata, located at stations lower than 348 m; 2) Aricida sp. A-Ninoe jessicae located between 651 and 915 m depth; and 3) Aglaophamus paucilamellata-Aricidea (Acmira) simplex-Anctyrosyllis groenlandica distributed at more than 1335 m depth.

67) Polychaetes from underwater marine caves near Marseille (France, Mediterranean)
Alexander Tzetlin 1, Anna Zhadan 1, Elena Vortsepneva 1, Laurent Vanbostal 1, Thierry Perez 2, Alexander Ereskovsky 2, & Pierre Chevaldonna 2
1 M.V. Lomonosov Moscow State University; 2 IMBE, Aix-Marseille Université
We investigated polychaetous annelids from soft sediment in three underwater marine caves located near Marseille and La Ciotat (Calanques National Park - NW Mediterranean): 3PP Cave, Jarre III Cave, Pérès Cave. To different degrees, these caves mimic deep-sea environmental conditions and they are famous by presence of carnivorous sponges of the family Cladorhizidae. We processed samples by using meiobenthic procedures (130-µm sieve). The samples obtained in 2007 were compared with those collected in 2018-2019. We identified representatives of 29 families: 24 families in the 3PP Cave, 23 in Jarre III Cave, 9 in Pérès cave. Oweniidae and Fabriciidae are newly reported from marine caves. The specific composition of polychaeta fauna of the caves is peculiar and differs from surrounding biotopes. The lists of families for 2007 and 2018-2019 years are similar; it means the cave polychaeta fauna is stable over time. The further studies will include identifications of polychaetes to species level, molecular genetic analysis and comparisons of cave fauna with one from deep-water Mediterranean trenches.

68) Comprehensive study of the head region and tentacle apparatus in Owenia borealis (Annelida: Oweniidae)
Elena Temereva 1, Alexander Tzetlin 1, & Vyacheslav Dyachuk 1
1 M.V. Lomonosov Moscow State University; 2 National Scientific Center of Marine Biology, Vladivostok
The organization of tentacle apparatus in bilaterians may help to understand the morphology of the last common bilaterian ancestor (LCBA). The main question is if LCBA possessed tentacle apparatus or not. Oweniidae is clade of annelids with "basal

Abstracts: Poster Presentations
Revision of three nereidid species complexes (Nereididae): reinstatement of two genera, and description of one new genus and six new species
Tulio F. Villalobos-Guerrero
Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur
Nereidids are carnivorous annelids commonly found in intertidal areas or at the sea floor. The metabolism of these species is characterized by a stream of water passing through the pharynx, which may be augmented by the presence of branchial organ. A remarkable new deep-sea nereidid with branchiae
Tulio F. Villalobos-Guerrero & Greg W. Rouse
Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur; Scripps Institution of Oceanography
A remarkable new deep-sea nereidid with branchiae
Tulio F. Villalobos-Guerrero & Greg W. Rouse
A remarkable new deep-sea nereidid with branchiae
Tulio F. Villalobos-Guerrero & Greg W. Rouse
Developmental stages of notochaetae and anterior segments in notochaete larvae during metamorphosis in Chrysopeatalum species (Chrysopeatalidae: Annelida)
Charlotte Watson
Museum & Art Gallery of the Northern Territory
Chrysopeatalum species display an adult morphology of notochaetal paleae and two pairs of tentacular cirri on segments 1 and 11. Nectochaete larvae exhibit a primary spinose notochaetal morphology after settlement from the plankton which is
Abstracts: Poster Presentations