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1. Introduction 

In the large stream of works on network analysis one of the branches deals with the 

centrality indices. Until recently classic centrality measures disregard very important issues in 

network analysis. First, parameters of nodes have not been taken into account, though in the 

fundamental work (Newman, 2003) it was stated in an explicit way. Indeed, assume that we borrow 

$1 mln from some large bank, but cannot return the debt in time. Naturally, the bank will not be 

happy, but if it is really large bank, it will not be crushed. If the bank is small, it might lead to 

bankruptcy. This example shows that such parameter of banks as total assets should be taken into 

account. 

Second, suppose Mrs. A and B borrow from a small bank $500 thous each. If any of them 

do not return the debt in time, the bank will survive. However, if both of them will not return debt, 

the bank will announce bankruptcy. This shows how important might be the influence of a group 

of nodes to the node in a network. 

Third, sequential borrowing of one bank from another bank might create the situation when 

the bank at the end of borrower's path can start the falling domino reaction process and finally 

destroy the first bank of the path. This last shortage of the classic indices is taken into account 

partly by such indices as eigenvector, PageRank and few others. 

To overcome the abovementioned shortages new indices were proposed in (Aleskerov et 

al., 2014; 2016; 2017), so-called Short- and Long-Range Interaction Centralities (SRIC and LRIC). 

However, to evaluate these indices it is necessary to reconstruct the graph in a very specific way 

leading to rather artificial constructions hardly explained in an explicit form. To escape this 

problem we propose new classes of centrality indices in networks. 

The structure of the text is as follows. In the next Section 2 we propose new centrality 

indices. In Sections 3 and 4 we discuss some simple examples to explain new indices construction. 

Then in Section 5 we consider another way to construct a total influence of nodes. 

2. New Centrality Indices 

Let 𝐺0 = (𝑉, 𝑊0) be a weighted directed graph, where 𝑉 be a set of vertices, |𝑉| = 𝑛, and 

𝑊0 be a set of edges with weights 𝑤𝑗𝑖
0. For each vertex 𝑖 ∈ 𝑉 the quota 𝑞𝑖 is defined. The maximum 

number of vertices which can simultaneously influence a node is defined as 𝑘. 

a) Copeland in-degree index 𝐶𝐼0 on the initial graph 𝐺0 

Copeland in-degree index 𝐶𝐼0 = (𝐶𝐼𝑖
0) for each vertex 𝑖 is defined as the sum of weights 

𝑤𝑗𝑖
0 of the incoming edges from connected vertices 𝑗, i.e. 𝐶𝐼0(𝑖) = ∑ 𝑤𝑗𝑖

0
𝑗 . 

Consider an example which we extensively use below. Let us consider the network shown 

on Fig. 1.  
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Fig. 1 

The adjacency matrix is given in Table 1. 

Table 1. Adjacency matrix 𝑊0 

 v1 v2 v3 v4 v5 

v1 0 0 2 0 3 

v2 0 0 0 0 0 

v3 0 1 0 0 0 

v4 0 0 2 0 0 

v5 0 2 0 0 0 

Then we obtain the following values for 𝐶𝐼𝑖
0 (Table 2). 

Table 2. 𝐶𝐼0-index 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 3 4 0 3 

b) Bundle index 𝐵𝐼0 = (𝐵𝐼𝑖
0) 

To take into account the parameters of the vertices we first define for each vertex 𝑖 ∈ 𝑉 the 

quota 𝑞𝑖. We define as well the notion of group influence of vertices to one vertex. For this we 

introduce the maximum number 𝑘 of vertices which can simultaneously influence a node, i.e., the 

cardinality of the set influencing the node should not exceed 𝑘. We call these sets critical groups 

or critical sets. 

Then 𝐵𝐼0 = (𝐵𝐼𝑖
0) index is constructed as follows. For each set of vertices  

𝑆 ⊆ 𝑉\{𝑖}, |𝑆| ≤ 𝑘, ∀𝑗 ∈ 𝑆, 𝑤𝑗𝑖
0 ≠ 0, 

the sum of weights ∑ 𝑤𝑗𝑖
0

𝑗∈𝑆  of incoming edges from node 𝑗 ∈ 𝑆 to node 𝑖 is compared to the quota 

𝑞𝑖, and the value 𝐵𝐼𝑖
0(𝑆) is calculated as  

𝐵𝐼𝑖
0(𝑆) = {

1, 𝑖𝑓 ∑ 𝑤𝑗𝑖
0

𝑗∈𝑆

≥ 𝑞𝑖 ,

0, 𝑒𝑙𝑠𝑒.

 

So, the 𝐵𝐼𝑖
0(𝑆) is equal to 1, if the sum is not less than the quota, and it is equal to 0, 

otherwise. The 𝐵𝐼0(𝑖) index for the vertex 𝑖 is defined as the sum of the 𝐵𝐼𝑖
0(𝑆) on all considered 

subsets 𝑆, i.e. 

𝐵𝐼0(𝑖)=∑ 𝐵𝐼𝑖
0(𝑆)𝑆 . 
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Thus, for each node 𝑖 ∈ 𝑉, the value of the Bundle index 𝐵𝐼0(𝑖) is equal to the number of 

the subsets of incoming edges from not more than 𝑘 vertices, with the sum of weights not less than 

the quota 𝑞𝑖. 

Let us in our example go through all sets influencing vertices in the network. If 𝑞 = 1, then 

for the vertex 𝑣2 the following critical groups influence this vertex  

– {𝑣3} with the sum of weights being equal to 1, 

– {𝑣5} with the sum of weights 2, and 

– {𝑣3, 𝑣5} with the sum of weights 3. 

Then 𝐵𝐼0(𝑣2) = 3. Similarly, 𝐵𝐼0(𝑣3) = 3, and 𝐵𝐼0(𝑣5) = 1. Since no critical group 

dominates 𝑣1 and 𝑣4, then 𝐵𝐼0(𝑣1)= 𝐵𝐼0(𝑣4) = 0. The values of 𝐵𝐼0(𝑖) are given in Table 3. 

Table 3. 𝐵𝐼0-index 

 v1 v2 v3 v4 v5 

𝐵𝐼0(𝑖) 0 3 3 0 1 

c) Pivotal index 𝑃𝐼0 = (𝑃𝐼𝑖
0) 

The Pivotal index 𝑃𝐼0 = (𝑃𝐼𝑖
0) differs from the 𝐵𝐼0-index in the following way. Instead of 

the number of sets of edges, the number of pivotal nodes is calculated. The node 𝑗𝑝 ∈ 𝑆 is called 

pivotal for the node 𝑖 ∈ 𝑉 in the set 𝑆 ⊆ 𝑉\{𝑖} with the quota 𝑞𝑖, if 

∑ 𝑤𝑗𝑖
0

𝑗∈𝑆 ≥ 𝑞𝑖, but ∑ 𝑤𝑗𝑖
0

𝑗∈𝑆\{𝑗𝑝} < 𝑞𝑖, 

i.e. the sum of the weights of the incoming edges to node 𝑖 ∈ 𝑉 from nodes of the set 𝑆 ⊆ 𝑉\{𝑖}, is 

greater or equal to the quota 𝑞𝑖, but upon excluding the node 𝑗𝑝 from the set 𝑆, the sum of the 

weights becomes less than the quota. 

The 𝑃𝐼0 index is constructed as follows. For each of the subsets of the nodes 𝑆 ⊆ 𝑉\{𝑖}, 

|𝑆| ≤ 𝑘,∀𝑗 ∈ 𝑆, 𝑤𝑗𝑖
0 ≠ 0, the number of the pivotal nodes 𝑃𝐼𝑖

0(𝑆) is calculated. The 𝑃𝐼0(𝑖) index is 

defined as the sum 𝑃𝐼𝑖
0(𝑆) on all considered subsets 𝑆 of cardinality not more than 𝑘 of the vertices 

of the incoming edges to the node 𝑖, i.e. 

𝑃𝐼0(𝑖)=∑ 𝑃𝐼𝑖
0(𝑆)𝑆 . 

Consider our example. For the node 𝑣2 the critical sets influencing the node are {𝑣3}, {𝑣5}, 

and {𝑣3, 𝑣5}. In both groups, {𝑣3} and {𝑣5}, both nodes are pivotal. But it is not the case in the set 

{𝑣3, 𝑣5}. Hence, 𝑃𝐼0(𝑣2)= 2. Then we obtain 

Table 4. 𝑃𝐼0-index 

 v1 v2 v3 v4 v5 

𝑃𝐼0(𝑖) 0 2 2 0 1 

d) Now we can construct the total influence on the node 𝑖, or the centrality measure of  

level 0, 

𝑇𝐼0=𝛼01𝐶𝐼0 + 𝛼02𝐵𝐼0 + 𝛼03𝑃𝐼0. 
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We call it 𝑇𝐼0 emphasizing that there are 0 intermediate nodes between analyzed vertices. 

Then for our example with 𝛼01 = 𝛼02 = 𝛼03 =
1

3
 we obtain for the case 𝑞 = 1.  

Table 5. Total influence 𝑇𝐼0, q = 1 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 3 4 0 3 

𝐵𝐼0 0 3 3 0 1 

𝑃𝐼0 0 2 2 0 1 

𝑇𝐼0 0 2.67 3 0 1.67 

Then we evaluate the indices in the normalized form, namely 

𝐶𝐼̃0(𝑖) = 
𝐶𝐼0(𝑖)

∑ 𝐶𝐼0(𝑗)𝑗
 , 

𝐵𝐼̃0(𝑖) = 
𝐵𝐼0(𝑖)

∑ 𝐵𝐼0(𝑗)𝑗
 , 

𝑃𝐼̃0(𝑖) = 
𝑃𝐼0(𝑖)

∑ 𝑃𝐼0(𝑗)𝑗
⋅ 

Then we evaluate the total influence 𝑇𝐼̃0(𝑖) = 𝛼01𝐶𝐼̃0(𝑖) + 𝛼02𝐵𝐼̃0(𝑖) + 𝛼03𝑃𝐼̃0(𝑖). The 

results with the same values of 𝛼01 = 𝛼02 = 𝛼03 =
1

3
  are presented in Table 6. 

Table 6. Normalized indices 

 v1 v2 v3 v4 v5 

𝐶𝐼̃0 0 0.3 0.4 0 0.3 

𝐵𝐼̃0 0 0.43 0.43 0 0.14 

𝑃𝐼̃0 0 0.4 0.4 0 0.2 

𝑇𝐼̃0 0 0.373 0.406 0 0.211 

e) Indirect influence 

Now we take into account indirect influences. First, we construct the adjacency matrix in 

the following way. Consider all paths from node 𝑗 to node 𝑖 of the length d = 2 (one intermediate 

node, two edges in the path) and evaluate maxima of the weights 𝑤𝑗𝑖
0 

𝑃𝑗𝑘1𝑖 = 𝑚𝑎𝑥(𝑤𝑗,𝑘1

0 , 𝑤𝑘1,𝑖
0 ), 

𝑃𝑗𝑘2𝑖 = 𝑚𝑎𝑥(𝑤𝑗,𝑘2

0 , 𝑤𝑘2,𝑖
0 ), 

… 

𝑃𝑗𝑘𝑡𝑖 = 𝑚𝑎𝑥(𝑤𝑗,𝑘𝑡

0 , 𝑤𝑘𝑡,𝑖
0 ). 

Then we put 

𝑤1(𝑗𝑖) = 𝑚𝑖𝑛(𝑃𝑗𝑘1𝑖, 𝑃𝑗𝑘2𝑖, . . . , 𝑃𝑗𝑘𝑡𝑖), 

and construct the adjacency matrix 𝑊1 for d = 2. 

For our example we obtain 𝑃1,3,2 = 2, as maximum of 𝑤1,3
1  = 2, and 𝑤3,2

1  = 1, 𝑃1,5,2 = 3, as 

maximum of 𝑤1,5
1  = 3 and 𝑤5,2

1  = 2, so indirect influence via one intermediate node, the minimum 

𝑤1,2
1  = min (𝑃1,3,2,𝑃1,5,2) = 2. 
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Table 7. Adjacency matrix 𝑊1 for indirect influence with d = 2 

 v1 v2 v3 v4 v5 

v1 0 2 0 0 0 

v2 0 0 0 0 0 

v3 0 0 0 0 0 

v4 0 2 0 0 0 

v5 0 0 0 0 0 

For this matrix and 𝑞 = 1 there are three critical sets influencing 𝑣2 – {𝑣1}, {𝑣4} and 

{𝑣1, 𝑣4}. Then the corresponding indices which we denote as 𝐶𝐼1(𝑖), 𝐵𝐼1(𝑖), and 𝑃𝐼1(𝑖) are 

presented in Table 8. 

Table 8. The indices for indirect influence on the adjacency matrix 𝑊1, d = 2 

 v1 v2 v3 v4 v5 

𝐶𝐼1 0 4 0 0 0 

𝐵𝐼1 0 3 0 0 0 

𝑃𝐼1 0 2 0 0 0 

As the total direct influence can be called the Total Influence of level 0, since there are 0 

intermediate nodes between the considered nodes, the total indirect influences can be called Total 

Influence of level 1, 2, etc., for different numbers of intermediate nodes, i.e., 

𝑇𝐼1(𝑖)=𝛼11𝐶𝐼1(𝑖) + 𝛼12𝐵𝐼1(𝑖) + 𝛼13𝑃𝐼1(𝑖), 

where 𝛼11 + 𝛼12 + 𝛼13  = 1. 

Finally, we can construct total influence as the linear combination of total direct and indirect 

influences of levels 0, …, 𝑙 as 

𝑇𝐼(𝑖) =𝛽0𝑇𝐼0(𝑖) + 𝛽1𝑇𝐼1(𝑖)+. . . +𝛽𝑙𝑇𝐼𝑙(𝑖), 

where 𝛽0 + 𝛽1+. . . +𝛽𝑙 = 1. 

For our example with 𝑞 = 1 we obtain the following values for 𝑇𝐼1 and 𝑇𝐼 with 𝛼11= 𝛼12= 

𝛼13= 
1

3
, 𝛽1= 𝛽2= 

1

2
 presented in Table 9. 

Table 9. The indices for d = 1, 2, and q = 1 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 3 4 0 3 

𝐶𝐼1 0 4 0 0 0 

𝐵𝐼0 0 3 3 0 1 

𝐵𝐼1 0 3 0 0 0 

𝑃𝐼0 0 2 2 0 1 

𝑃𝐼1 0 2 0 0 0 

𝑇𝐼0 0 2.67 3 0 1.67 

𝑇𝐼1 0 3 0 0 0 

Then 𝑇𝐼(𝑣1) = 𝑇𝐼(𝑣4) = 0,  𝑇𝐼(𝑣2) = 2.84, 𝑇𝐼(𝑣3) =1.5, 𝑇𝐼(𝑣5) = 0.84. 

In other words, the most influential central node is 𝑣2, next is 𝑣3, and the third one is 𝑣5. 
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Consider now another distribution of weights. We assume that 

α11= α13= 
1

4
 , α12= 

1

2
 ; 

α21= α23= 
1

4
 , α22= 

1

2
 ; 

β
1
= β

2
= 

1

2
 . 

In this case we give more weight to the Bundle index, i.e. to the number of critical groups, 

influencing the nodes. The results are given in Table 10. 

Table 10. The 𝑇𝐼 indices with alternative weights, d = 1, 2; q = 1 

 v1 v2 v3 v4 v5 

𝑇𝐼0 0 2.75 2 0 1.5 

𝑇𝐼1 0 3 0 0 0 

Then 𝑇𝐼(𝑣1) = 𝑇𝐼(𝑣4) = 0, 𝑇𝐼(𝑣2) = 2.88, 𝑇𝐼(𝑣3) =1, 𝑇𝐼(𝑣5) = 0.75. Again, the most 

important node is 𝑣2. 

f) The example with the quota 𝑞𝑖  = 2 

If in our example we choose the quota 𝑞𝑖 to be equal to 2, one can check that we obtain the 

following results. 

Table 11. The indices on the initial matrix 𝑊0, q = 2 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 3 4 0 3 

𝐵𝐼0 0 2 3 0 1 

𝑃𝐼0 0 2 2 0 1 

Remark. In fact, we can define several levels of Copeland in-degree Index and construct 

first total in-degree index for all levels 1, …, l, i.e.  

𝐶𝐼(𝑖) = γ
0

𝐶𝐼0(𝑖) + γ
1

𝐶𝐼1(𝑖)+ . . . +γ
𝑙
𝐶𝐼𝑙(𝑖). 

Similarly, we can construct total Bundle Index and total Pivotal Index for all levels as 

𝐵𝐼(𝑖) = 𝛿0𝐵𝐼0(𝑖) + δ1𝐵𝐼1(𝑖)+ . . . +δ𝑙𝐵𝐼𝑙(𝑖); 

𝑃𝐼(𝑖) = ε0𝑃𝐼0(𝑖) + ε1𝑃𝐼1(𝑖)+ . . . +ε𝑙𝑃𝐼𝑙(𝑖). 

Then we can evaluate the total influence as  

𝑇𝐼′(𝑖)  =ω1𝐶𝐼(𝑖) + ω2𝐵𝐼(𝑖) + ω3𝑃𝐼(𝑖), 

where ω1 + ω2 + ω3 = 1. 

Let us evaluate centrality indices for this case. We put γ0= γ1= 
1

2
, δ0= δ1= 

1

2
, ε0= ε1= 

1

2
. 

Then we obtain the following values for the indices 𝐶𝐼, 𝐵𝐼, and 𝑃𝐼. 
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Table 12. The indices 𝐶𝐼, 𝐵𝐼, and 𝑃𝐼, q = 1 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 3 4 0 3 

𝐶𝐼1 0 4 0 0 0 

𝐶𝐼 0 3.5 2 0 1.5 

𝐵𝐼0 0 3 3 0 1 

𝐵𝐼1 0 3 0 0 0 

𝐵𝐼 0 3 1.5 0 0.5 

𝑃𝐼0 0 2 2 0 1 

𝑃𝐼1 0 2 0 0 0 

𝑃𝐼 0 2 1 0 0.5 

Now put ω1= ω2= ω3= 
1

2
. Then we obtain 

𝑇𝐼′(𝑣1) = 𝑇𝐼′(𝑣4) = 0; 

𝑇𝐼′(𝑣2) = 
1

3
⋅3.5 + 

1

3
⋅3 + 

1

3
⋅2 = 2.79; 

𝑇𝐼′(𝑣3) = 
1

3
⋅2 + 

1

3
⋅0.5 + 

1

3
⋅1 = 1.17; 

𝑇𝐼′(𝑣5) = 
1

3
⋅1.5 + 

1

3
⋅0.5 + 

1

3
⋅0.5 = 0.83. 

Again, the most influential node is 𝑣2, then 𝑣3, and v5. 

If we change the weights as ω1= 0.1, ω2 = 0.1, and ω3= 0.8, i.e. we consider most important 

component being pivotal nodes, then we obtain the following values:  

𝑇𝐼′(𝑣1)= 𝑇𝐼′(𝑣4) = 0; 

𝑇𝐼′(𝑣2) = 0.1⋅3.5 + 0.1⋅3 + 0.8⋅2 = 2.25; 

𝑇𝐼′(𝑣3) = 0.1 ⋅2 + 0.1 ⋅0.5 + 0.8⋅1 = 1.05; 

𝑇𝐼′(𝑣5) = 0.1⋅1.5 + 0.1 ⋅0.5 + 0.8⋅0.5 = 0.6. 

The most influential node is the same, 𝑣2, then 𝑣3, and 𝑣5. 

Remark. We would like to emphasize that any function can be used on each step of 

aggregation, not necessary min or max or summation, it might be other more complicated functions. 

3. Another example of network with 5 vertices 

Consider the network of 5 vertices (Fig. 2) with the adjacency matrix of the network given in Table 

13. 

 

Fig. 2 
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Table 13. Adjacency matrix 𝑊0 for the network with 5 vertices 

 v1 v2 v3 v4 v5 

v1 0 5 6 3 0 

v2 0 0 0 7 4 

v3 0 0 0 5 0 

v4 0 0 0 0 0 

v5 0 0 4 0 0 

The indices 𝐶𝐼0, 𝐵𝐼0, and 𝑃𝐼0 for the network with matrix 𝑊0 for the quota q = 3 have the 

following values presented in Table 14. 

Table 14. The indices for the quota q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼0 0 5 10 15 4 

𝐵𝐼0 0 1 3 7 1 

𝑃𝐼0 0 1 2 3 1 

The normalized values of the indices  𝐶𝐼̃0, 𝐵𝐼̃0, and 𝑃𝐼̃0 are given in Table 15. 

Table 15. The normalized values of the indices, q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼̃0 0 0.15 0.29 0.44 0.12 

𝐵𝐼̃0 0 0.08 0.25 0.58 0.08 

𝑃𝐼̃0 0 0.14 0.29 0.43 0.14 

Note that for the vertex 𝑣1 all indices are equal to zero, since there are no incoming arcs to 

this vertex.  

Now consider indirect influence with the length of the path d = 2. 

Table 16. Adjacency matrix 𝑊1 for the length of the path d = 2 

 v1 v2 v3 v4 v5 

v1 0 0 0 6 5 

v2 0 0 4 0 0 

v3 0 0 0 0 0 

v4 0 0 0 0 0 

v5 0 0 0 5 0 

For the quota q = 3 the indices are as follows. 

Table 17. The indices for the matrix 𝑊1, d = 2, q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼1 0 0 4 11 5 

𝐵𝐼1 0 0 1 3 1 

𝑃𝐼1 0 0 1 2 1 

The normalized values of the indices are given in Table 18. 
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Table 18. The normalized indices for the matrix 𝑊1, d = 2, q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼̃1 0 0 0.20 0.55 0.25 

𝐵𝐼̃1 0 0 0.20 0.60 0.20 

𝑃𝐼̃1 0 0 0.25 0.50 0.25 

For the indirect influence with the length of the path d = 3 the adjacency matrix is presented 

in Table 19. 

Table 19. Adjacency matrix 𝑊2 for the length of the path d = 3 

 v1 v2 v3 v4 v5 

v1 0 0 5 0 0 

v2 0 0 0 5 0 

v3 0 0 0 0 0 

v4 0 0 0 0 0 

v5 0 0 0 0 0 

And the indices for the quota q = 3 are presented in Table 20. 

Table 20. The indices on the matrix 𝑊2, d = 3, q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼2 0 0 5 5 0 

𝐵𝐼2 0 0 1 1 0 

𝑃𝐼2 0 0 1 1 0 

The normalized values of the indices are given in Table 21. 

Table 21. The normalized indices for the matrix 𝑊2, d = 3, q = 3 

 v1 v2 v3 v4 v5 

𝐶𝐼̃2 0 0 0.5 0.5 0 

𝐵𝐼̃2 0 0 0.5 0.5 0 

𝑃𝐼̃2 0 0 0.5 0.5 0 

Note, that only vertices 𝑣3 and 𝑣4 have non-zero influence, which are obtained from the 

arcs from the vertices 𝑣1 and 𝑣2, respectively. 

Now we evaluate the total influence indices for different sets of values of coefficients 𝛼.  

For each set of 𝛼𝑖𝑗 coefficients, denote them as A1, A2, A3, and A4, defined as  

A1: 𝛼𝑖𝑗= 1 3⁄   for all 𝑖= 0,1,2; 𝑗 = 1, 2, 3; 

A2: 𝛼𝑖1= 0.8, 𝑖= 0,1,2; α𝑖𝑗= 0.1 for 𝑖 = 0, 1, 2; 𝑗= 2, 3; 

A3: α𝑖2= 0.8, 𝑖= 0, 1,2; 𝛼𝑖𝑗= 0.1 for 𝑖 = 0, 1, 2; 𝑗= 1, 3; 

A4: α𝑖3= 0.8, 𝑖= 0, 1,2; 𝛼𝑖𝑗= 0.1 for 𝑖 = 0, 1, 2; 𝑗= 1,2. 

We present the values of 𝑇𝐼̃0, 𝑇𝐼̃1, and 𝑇𝐼̃2 indices in Table 22. 



12 
 

 

Table 22. The indices 𝑇𝐼̃0, 𝑇𝐼̃1, and 𝑇𝐼̃2 for different sets of 𝛼 coefficients, q = 3 

 𝑇𝐼̃0 𝑇𝐼̃1 𝑇𝐼̃2 

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 

A1 0 0.12 0.28 0.48 0.11 0 0 0.22 0.55 0.23 0 0 0.5 0.5 0 

A2 0 0.14 0.29 0.45 0.12 0 0 0.21 0.55 0.25 0 0 0.5 0.5 0 

A3 0 0.1 0.26 0.55 0.09 0 0 0.21 0.59 0.21 0 0 0.5 0.5 0 

A4 0 0.14 0.28 0.45 0.13 0 0 0.24 0.52 0.25 0 0 0.5 0.5 0 

Next we evaluate only for the set A3, i.e. for the values 𝛼𝑖2= 0.8, 𝑖 = 0, 1,2; 𝛼𝑖𝑗 = 0.1  

for 𝑖 = 0, 1,2; 𝑗= 1, 3 the total influence 𝑇𝐼̃ with different values of the 𝛽 coefficients. These results 

are presented in Table 23. 

Table 23. Index 𝑇𝐼̃ for different values of 𝛽 coefficients, q = 3 

  v1 v2 v3 v4 v5 

B1 𝛽0= 𝛽1= 𝛽2=1
3⁄  0 0.03 0.32 0.55 0.10 

B2 𝛽0= 0.7, 𝛽1= 𝛽2= 0.15 0 0.07 0.29 0.55 0.10 

B3 𝛽0= 𝛽2= 0.15 𝛽1= 0.7 0 0.01 0.26 0.57 0.16 

B4 𝛽0= 𝛽1= 0.15 𝛽2= 0.7 0 0.01 0.42 0.52 0.05 

Below in Table 24 we present classic indices for this network.  

Table 24. Classic indices for the network 

 v1 v2 v3 v4 v5 

In-degree 0 5 10 15 4 

Out-degree 14 16 15 15 8 

Betweenness 0 2 1 0 1 

Closeness 0.067 0.083 0.077 0.077 0.053 

PageRank 0.097 0.126 0.248 0.393 0.136 

Eigenvector 0.939 0.976 0.901 1 0.53 

One can see that the values of the In-degree index coincide with 𝐶𝐼0, the most influential 

node is 𝑣4 with respect to PageRank, Eigenvector and 𝑇𝐼̃. 
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4. Example of networks with 10 vertices 

Now consider the network with 10 vertices (see Fig. 3). 

 

Fig. 3 

The adjacency matrix of the network is presented in Table 25. 

Table 25. Adjacency matrix 𝑊0 for the network of 10 vertices 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

v1 0 500 100 0 400 0 0 0 0 0 

v2 0 0 40 0 0 100 0 0 60 0 

v3 0 0 0 0 0 150 0 0 0 0 

v4 0 0 10 0 0 50 0 0 0 0 

v5 0 0 0 0 0 700 200 200 0 0 

v6 0 0 0 0 0 0 0 0 0 0 

v7 0 0 0 150 0 0 0 0 600 250 

v8 0 0 0 0 0 0 0 0 0 150 

v9 0 0 0 0 0 0 0 0 0 0 

v10 0 0 0 0 0 0 0 0 0 0 

The quota will be constructed in the following way. For each vertex, the half of the sum of 

the weights of all incoming arcs will be evaluated and then 1 will be added. Then one can construct 

the indices 𝐶𝐼0, 𝐵𝐼0, and 𝑃𝐼0 (see Table 26) as well as these indices in the normalized form (see 

Table 27). The indices are calculated with the maximum size of coalition 𝑘 = 3. 

Table 26. The indices 𝐶𝐼0, 𝐵𝐼0, and 𝑃𝐼0 on the initial matrix 𝑊0, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼0 0 500 150 150 400 1000 200 200 660 400 

𝐵𝐼0 0 1 4 1 1 7 1 1 2 2 

𝑃𝐼0 0 1 4 1 1 7 1 1 2 2 
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Table 27. The normalized indices 𝐶𝐼̃0, 𝐵𝐼̃0, and 𝑃𝐼̃0 on matrix 𝑊0, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼̃0 0 0.14 0.04 0.04 0.11 0.27 0.05 0.05 0.18 0.11 

𝐵𝐼̃0 0 0.05 0.2 0.05 0.05 0.35 0.05 0.05 0.1 0.1 

𝑃𝐼̃0 0 0.05 0.2 0.05 0.05 0.35 0.05 0.05 0.1 0.1 

Now the adjacency matrix 𝑊1 is constructed for the length of path d = 2. 

Table 28. Adjacency matrix 𝑊1, d = 2 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

v1 0 0 500 0 0 150 400 400 500 0 

v2 0 0 0 0 0 150 0 0 0 0 

v3 0 0 0 0 0 0 0 0 0 0 

v4 0 0 0 0 0 150 0 0 0 0 

v5 0 0 0 200 0 0 0 0 600 200 

v6 0 0 0 0 0 0 0 0 0 0 

v7 0 0 150 0 0 150 0 0 0 0 

v8 0 0 0 0 0 0 0 0 0 0 

v9 0 0 0 0 0 0 0 0 0 0 

v10 0 0 0 0 0 0 0 0 0 0 

Let the quota be formed in the same way, then the indices are as follows. 

Table 29. The indices on the indirect influence matrix 𝑊1, d = 2, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼1 0 0 650 200 0 600 400 400 1100 200 

𝐵𝐼1 0 0 2 1 0 4 1 1 2 1 

𝑃𝐼1 0 0 2 1 0 12 1 1 2 1 

Table 30. The normalized indices on the indirect influence matrix 𝑊1, d = 2, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼̃1 0 0 0.18 0.06 0 0.17 0.11 0.11 0.31 0.06 

𝐵𝐼̃1 0 0 0.17 0.08 0 0.33 0.08 0.08 0.17 0.08 

𝑃𝐼̃1 0 0 0.1 0.05 0 0.6 0.05 0.05 0.1 0.05 

And for the length of path d = 3, the adjacency matrix 𝑊2 is presented in Table 31.  

Table 31. Adjacency matrix 𝑊2, d = 3 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

v1 0 0 0 400 0 500 0 0 600 400 

v2 0 0 0 0 0 0 0 0 0 0 

v3 0 0 0 0 0 0 0 0 0 0 

v4 0 0 0 0 0 0 0 0 0 0 

v5 0 0 200 0 0 200 0 0 0 0 

v6 0 0 0 0 0 0 0 0 0 0 

v7 0 0 0 0 0 150 0 0 0 0 

v8 0 0 0 0 0 0 0 0 0 0 

v9 0 0 0 0 0 0 0 0 0 0 

v10 0 0 0 0 0 0 0 0 0 0 
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The indices for the indirect influence with the length of the path d = 3 are presented in  

Table 32. 

Table 32. The indices on the indirect influence matrix 𝑊2, d = 3, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼2 0 0 200 400 0 850 0 0 600 400 

𝐵𝐼2 0 0 1 1 0 4 0 0 1 1 

𝑃𝐼2 0 0 1 1 0 4 0 0 1 1 

The normalized indices are presented on Table 33. 

Table 33. The normalized indices on the indirect influence matrix 𝑊2, d = 3, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝐶𝐼̃2 0 0 0.08 0.16 0 0.35 0 0 0.24 0.16 

𝐵𝐼̃2 0 0 0.13 0.13 0 0.5 0 0 0.13 0.13 

𝑃𝐼̃2 0 0 0.13 0.13 0 0.5 0 0 0.13 0.13 

Next to evaluate the total influence indices we consider two sets of coefficients, A, 

𝛼01= 0.2;  𝛼02= 𝛼03 = 0.4; 

𝛼11= 0.2;  𝛼12= 𝛼13 = 0.4; 

𝛼21= 0.2;  𝛼22= 𝛼23 = 0.4, 

and we can construct the 𝑇𝐼̃ index using 𝛽0= 0.2; 𝛽1= 𝛽2 = 0.4. 

The results are presented in Table 34. 

Table 34. 𝑇𝐼̃ indices for set of coefficients A, for d = 1, 2, 3, and total influence, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝑇𝐼̃0 0 0.07 0.17 0.05 0.06 0.33 0.05 0.05 0.12 0.1 

𝑇𝐼̃1 0 0 0.14 0.06 0 0.41 0.08 0.08 0.17 0.06 

𝑇𝐼̃2 0 0 0.12 0.13 0 0.47 0 0 0.15 0.13 

𝑇𝐼̃ 0 0.01 0.14 0.09 0.01 0.42 0.04 0.04 0.15 0.1 

Another set of coefficients, A', is given below 

𝛼01= 0.8;  𝛼02= 𝛼03 = 0.1; 

𝛼11= 0.8;  𝛼12= 𝛼13 = 0.1; 

𝛼21= 0.8;  𝛼22= 𝛼23 = 0.1; 

𝛽0= 0.8; 𝛽1= 𝛽2 = 0.1. 

The corresponding results are given in Table 35. 

Table 35. 𝑇𝐼̃ indices for set of coefficients A', for d = 1, 2, 3, and total influence, q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝑇𝐼̃0 0 0.12 0.07 0.04 0.1 0.29 0.05 0.05 0.16 0.11 

𝑇𝐼̃1 0 0 0.17 0.06 0 0.23 0.1 0.1 0.27 0.06 

𝑇𝐼̃2 0 0 0.09 0.16 0 0.38 0 0 0.22 0.16 

𝑇𝐼̃ 0 0.1 0.08 0.06 0.08 0.29 0.05 0.05 0.18 0.11 
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In the first version, A, we prescribe more importance to the critical sets of nodes and pivotal 

nodes influencing a node, while in the second version, A', we put more importance to the standard 

in-degree values. 

Now we can compare the obtained results with the classic centrality measures and the 

indices SRIC and LRIC. Note, the 𝑇𝐼̃ indices are presented for above considered quota q = 50% + 

1 and for q = 25% as well. 

Table 36. Classic and 𝑇𝐼̃ indices 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

In-degree 0 500 150 150 400 1000 200 200 660 400 

Out-degree 1000 200 150 60 1100 0 1000 150 0 0 

Closeness  0.00015 0.00051 0.00158 0.00071 0.00019 0.0111 0.00028 0.00158 0.0111 0.0111 

Betweenness 0 1 0 3 5 0 6 0 0 0 

Page Rank 0.06 0.08 0.09 0.07 0.08 0.25 0.07 0.07 0.11 0.13 

Eigenvector 0.67 0.46 0.21 0.11 1.00 0.81 0.45 0.23 0.31 0.15 

SRIC,  

q = 25% 

0 0.152 0 0 0.121 0.356 0.019 0.019 0.212 0.121 

LRIC 

maxmin,  

q = 25% 

0 0.087 0 0 0.087 0.217 0.091 0.091 0.238 0.190 

𝑇𝐼̃ for A,  

q = 50%+1 

0 0.01 0.14 0.09 0.01 0.42 0.04 0.04 0.15 0.1 

𝑇𝐼̃ for A',  

q = 50%+1 

0 0.1 0.08 0.06 0.08 0.29 0.05 0.05 0.18 0.11 

𝑇𝐼̃ for A,  

q = 25% 

0 0.01 0.13 0.08 0.01 0.44 0.04 0.04 0.15 0.09 

𝑇𝐼̃ for A',  

q = 25% 

0 0.09 0.09 0.05 0.08 0.3 0.05 0.05 0.18 0.11 

We see that the eigenvector centrality orders the first 5 most important nodes as  

𝑣5 ≻ 𝑣6 ≻ 𝑣1 ≻ 𝑣2 ≻ 𝑣7, 

for LRIC with q = 25% the order is  

𝑣9 ≻ 𝑣6 ≻ 𝑣10 ≻ 𝑣7 ∼ 𝑣8, 

for 𝑇𝐼̃ (for the set A) with q = 25%  

𝑣6 ≻ 𝑣9 ≻ 𝑣3 ≻ 𝑣10 ≻ 𝑣4, 

and for 𝑇𝐼̃ (for the set A) with q = 50% +1, the ordering is the same,  

𝑣6 ≻ 𝑣9 ≻ 𝑣3 ≻ 𝑣10 ≻ 𝑣4. 

5. Another method to construct centrality indices 

As we mentioned above, the approach presented in this work allows to construct many new 

indices depending on our understanding what features are important in the problem under study. 

To illustrate this we present the centrality index constructed as a linear combination of the 

eigenvector centrality and 𝑃𝐼-index. We use the example of the network considered in the previous 

Section.  
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The values of the eigenvector of the nodes are 

𝑣1=0.67,  𝑣2=0.46, 𝑣3=0.21, 𝑣4=0.11, 𝑣5=1.00, 

𝑣6=0.81, 𝑣7=0.45, 𝑣8=0.23, 𝑣9=0.31, 𝑣10=0.15. 

In Table 37 the matrix of pivotal nodes for each node is presented, the coalitions are 

constructed as before. i.e. on the basis on critical groups with total influence exceeding the quota 

which is equal to 50% +1 of the value of all incoming arcs.  

Table 37. Matrix of pivotal nodes 

𝑊𝑃 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

v1 0 1 4 0 1 0 0 0 0 0 

v2 0 0 0 0 0 0 0 0 0 0 

v3 0 0 0 0 0 0 0 0 0 0 

v4 0 0 0 0 0 0 0 0 0 0 

v5 0 0 0 0 0 7 1 1 0 0 

v6 0 0 0 0 0 0 0 0 0 0 

v7 0 0 0 1 0 0 0 0 2 2 

v8 0 0 0 0 0 0 0 0 0 0 

v9 0 0 0 0 0 0 0 0 0 0 

v10 0 0 0 0 0 0 0 0 0 0 

Below, the normalized values of 𝑃𝐼 index are given. 

Table 38. Normalized values of 𝑃𝐼 index (𝑃𝐼̃0), q = 50% + 1 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

𝑃𝐼̃0 0 0.05 0.2 0.05 0.05 0.35 0.05 0.05 0.1 0.1 

We consider the following linear combination 𝑇𝐼(𝑣𝑖) = 0.5⋅ 𝐸𝑉(𝑣𝑖) +0.5⋅ 𝑃𝐼(𝑣𝑖), where 

𝐸𝑉(𝑣𝑖) is the eigenvector centrality for 𝑣𝑖, 𝑃𝐼(𝑣𝑖) is the pivotal index for 𝑣𝑖. Then 

𝑇𝐼(𝑣1) = 0.5⋅0.67 + 0.5⋅0 = 0.34; 

𝑇𝐼(𝑣2) = 0.5⋅0.46 + 0.5⋅0.05 = 0.26; 

𝑇𝐼(𝑣3) = 0.5⋅0.21 + 0.5⋅0.2 = 0.21; 

𝑇𝐼(𝑣4) = 0.5⋅0.11 + 0.5⋅0.05 = 0.08; 

𝑇𝐼(𝑣5) = 0.5⋅ 1.00 + 0.5⋅0.05 = 0.53; 

𝑇𝐼(𝑣6) = 0.5⋅0.81 + 0.5⋅0.35 = 0.58; 

𝑇𝐼(𝑣7) = 0.5⋅0.45 + 0.5⋅0.05 = 0.25; 

𝑇𝐼(𝑣8) = 0.5⋅0.23 + 0.5⋅0.05 = 0.14; 

𝑇𝐼(𝑣9) = 0.5⋅0.31 + 0.5⋅0.1 = 0.21; 

𝑇𝐼(𝑣10) = 0.5⋅0.15 + 0.5⋅0.1 = 0.13. 

Now consider another linear combination of parameters 𝑇𝐼′(𝑣𝑖) = 0.1⋅ 𝐸𝑉(𝑣𝑖) +0.9⋅ 𝑃𝐼(𝑣𝑖) 

𝑇𝐼′(𝑣1) = 0.1⋅0.67 + 0.9⋅0 = 0.07; 

𝑇𝐼′(𝑣2) = 0.1⋅0.46 + 0.9⋅0.05 = 0.09; 

𝑇𝐼′(𝑣3) = 0.1⋅0.21 + 0.9⋅0.2 = 0.2; 

𝑇𝐼′(𝑣4) = 0.1⋅0.11 + 0.9⋅0.05 = 0.06; 

𝑇𝐼′(𝑣5) = 0.1⋅ 1.00 + 0.9⋅0.05 = 0.15; 

𝑇𝐼′(𝑣6) = 0.1⋅0.81 + 0.9⋅0.35 = 0.4; 

𝑇𝐼′(𝑣7) = 0.1⋅0.45 + 0.9⋅0.05 = 0.09; 

𝑇𝐼′(𝑣8) = 0.1⋅0.23 + 0.9⋅0.05 = 0.07; 
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𝑇𝐼′(𝑣9) = 0.1⋅0.31 + 0.9⋅0.1 = 0.12; 

𝑇𝐼′(𝑣10) = 0.1⋅0.15 + 0.9⋅0.1 = 0.11. 

The orderings of the first five most important nodes for these two cases are  

𝑇𝐼 : 𝑣6 ≻ 𝑣5 ≻ 𝑣1 ≻ 𝑣2 ≻ 𝑣7; 

𝑇𝐼′: 𝑣6 ≻ 𝑣3 ≻ 𝑣5 ≻ 𝑣9 ≻ 𝑣10. 

6. Conclusion 

We have introduced a class of new centrality indices which take into account a parameter 

of a node, direct and indirect (with fixed length of the path) connections of nodes, and a group 

influence of nodes to a node. Total influence is evaluated as a linear combination of its components, 

however, other rules can be used as well. 

There are two parts of the model with high computational complexity. First, it is the 

construction of the matrix in which the critical sets influencing nodes are defined. One of the ways 

to decrease complexity is to consider the sets of fixed cardinality, say, not more than 5. Second, 

the construction of the paths naturally increases the complexity of the model. Here we can limit 

ourselves with only some selected paths, e.g. those in which the weight on edges exceed the quota 

on, say, not less than 10%. There are many other ways to decrease complexity depending on the 

problem in hand. 
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экономики»; Институт проблем управления РАН.

 
Якуба В.И., Национальный исследовательский университет «Высшая школа экономики»; 

Институт проблем управления РАН.

Препринты Национального исследовательского университета
«Высшая школа экономики» размещаются по адресу: http://www.hse.ru/org/hse/wp
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