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1. Introduction

In the large stream of works on network analysis one of the branches deals with the
centrality indices. Until recently classic centrality measures disregard very important issues in
network analysis. First, parameters of nodes have not been taken into account, though in the
fundamental work (Newman, 2003) it was stated in an explicit way. Indeed, assume that we borrow
$1 min from some large bank, but cannot return the debt in time. Naturally, the bank will not be
happy, but if it is really large bank, it will not be crushed. If the bank is small, it might lead to
bankruptcy. This example shows that such parameter of banks as total assets should be taken into
account.

Second, suppose Mrs. A and B borrow from a small bank $500 thous each. If any of them
do not return the debt in time, the bank will survive. However, if both of them will not return debt,
the bank will announce bankruptcy. This shows how important might be the influence of a group
of nodes to the node in a network.

Third, sequential borrowing of one bank from another bank might create the situation when
the bank at the end of borrower's path can start the falling domino reaction process and finally
destroy the first bank of the path. This last shortage of the classic indices is taken into account
partly by such indices as eigenvector, PageRank and few others.

To overcome the abovementioned shortages new indices were proposed in (Aleskerov et
al., 2014; 2016; 2017), so-called Short- and Long-Range Interaction Centralities (SRIC and LRIC).
However, to evaluate these indices it is necessary to reconstruct the graph in a very specific way
leading to rather artificial constructions hardly explained in an explicit form. To escape this
problem we propose new classes of centrality indices in networks.

The structure of the text is as follows. In the next Section 2 we propose new centrality
indices. In Sections 3 and 4 we discuss some simple examples to explain new indices construction.
Then in Section 5 we consider another way to construct a total influence of nodes.

2. New Centrality Indices

Let G° = (V,W?) be a weighted directed graph, where V be a set of vertices, |[V| = n, and
WP be a set of edges with weights wjoi. For each vertex i € V the quota g; is defined. The maximum
number of vertices which can simultaneously influence a node is defined as k.

a) Copeland in-degree index CI° on the initial graph G°

Copeland in-degree index CI® = (CI) for each vertex i is defined as the sum of weights
Wj% of the incoming edges from connected vertices j, i.e. CI°(i) = }; wj‘}.

Consider an example which we extensively use below. Let us consider the network shown
on Fig. 1.
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Fig. 1
The adjacency matrix is given in Table 1.

Table 1. Adjacency matrix W°
vl v2 v3 v4 V5

vl 0 0 2 0 3

V2 0 0 0 0 0

v3 0 1 0 0 0

v4 0 0 2 0 0

V5 0 2 0 0 0
2

Then we obtain the following values for CI? (Table 2).

Table 2. CI°-index

vl v2 v3 v4 v5
cI® 0 3 4 0 3

b) Bundle index BI° = (BI?)

To take into account the parameters of the vertices we first define for each vertex i € V the
quota q;. We define as well the notion of group influence of vertices to one vertex. For this we
introduce the maximum number k of vertices which can simultaneously influence a node, i.e., the
cardinality of the set influencing the node should not exceed k. We call these sets critical groups
or critical sets.

Then BI° = (BI) index is constructed as follows. For each set of vertices

SSV\{i}, IS| <k, Vj €S, w) #0,
the sum of weights }: ;e wj"l- of incoming edges from node j € S to node i is compared to the quota
q;, and the value BI?(S) is calculated as

So, the BI?(S) is equal to 1, if the sum is not less than the quota, and it is equal to O,
otherwise. The BI°(i) index for the vertex i is defined as the sum of the BI?(S) on all considered
subsets S, i.e.

BI°(i)=Xs BI?(S).



Thus, for each node i € V, the value of the Bundle index BI°(i) is equal to the number of
the subsets of incoming edges from not more than k vertices, with the sum of weights not less than
the quota g;.

Let us in our example go through all sets influencing vertices in the network. If g = 1, then
for the vertex v, the following critical groups influence this vertex
— {v3} with the sum of weights being equal to 1,

— {v<} with the sum of weights 2, and
— {v3, vs} with the sum of weights 3.

Then BI°(v,) = 3. Similarly, BI°(v;) = 3, and BI°(vs) = 1. Since no critical group
dominates v, and v,, then BI°(v,)= BI°(v,) = 0. The values of BI°(i) are given in Table 3.

Table 3. BI°-index

vl V2 v3 v4 v5
BI°(D) 0 3 3 0 1

¢) Pivotal index PI® = (PI)

The Pivotal index PI° = (PI?) differs from the BI°-index in the following way. Instead of
the number of sets of edges, the number of pivotal nodes is calculated. The node j,, € S is called
pivotal for the node i € V in the set S < V\{i} with the quota gq;, if

Yjeswj = q;, but ZjES\{jp} wji< qi,
i.e. the sum of the weights of the incoming edges to node i € V from nodes of the set S < V\{i}, is
greater or equal to the quota g;, but upon excluding the node j,, from the set S, the sum of the
weights becomes less than the quota.

The PI° index is constructed as follows. For each of the subsets of the nodes S € V\{i},
S| < k,Vj €S, wj} # 0, the number of the pivotal nodes PI(S) is calculated. The PI°(i) index is
defined as the sum PI?(S) on all considered subsets S of cardinality not more than k of the vertices
of the incoming edges to the node i, i.e.

PI°(i)=Xs PI?(S).

Consider our example. For the node v, the critical sets influencing the node are {vs}, {vs},
and {vs, vs}. In both groups, {vs} and {vs}, both nodes are pivotal. But it is not the case in the set
{vs,vs}. Hence, PI°(v,)= 2. Then we obtain

Table 4. PI°-index

vl | v2 | v3 | v4 | V5
PI°() | O 2 2 0 1

d) Now we can construct the total influence on the node i, or the centrality measure of
level O,

TI%=ay,CI® + ao,BI® + ag3PI°.



We call it TI° emphasizing that there are 0 intermediate nodes between analyzed vertices.

Then for our example with ay; = @y, = ag3 = gwe obtain for the case g = 1.

Table 5. Total influence T1°, q=1
vl v2 v3 v4 Vo

cI® 0 |3 4 0 |3
BI° 0 |3 3 0 |1
PI° 0 |2 2 0 |1

TI° 0 |267 ] 3 0 |1.67

Then we evaluate the indices in the normalized form, namely

005 = cI1o@)

0 =500
BT0(1) = BI°()
B = 5500
BTO() = PI%(D) )
P =550,

Then we evaluate the total influence TT1°(i) = ag,CI°(i) + g, BI°(i) + a3 P1°(i). The
results with the same values of ay; = ay, = ap3 = % are presented in Table 6.

Table 6. Normalized indices

vl V2 v3 v4 v5
CI° 0 |03 0.4 0 |03
BI° 0 |043 043 0 |0.14
PI° 0 |04 0.4 0 |02
TI® 0 |0.373 | 0.406 0 |0.211

e) Indirect influence

Now we take into account indirect influences. First, we construct the adjacency matrix in
the following way. Consider all paths from node j to node i of the length d = 2 (one intermediate
node, two edges in the path) and evaluate maxima of the weights wj‘}

—_ 0 0
Pik,i = max(Wj,k1' Wkl,i)’

— 0 0
ijzi - max(wj,kz’ sz,i)’

_ 0 0
ijti = max(wj‘kt, Wkt’i).

Then we put
170\ — .
w'(ji) = mln(ijli,ijZi,...,ijti),

and construct the adjacency matrix W? for d = 2.

For our example we obtain P, 3, = 2, as maximum of w{; =2, and w3, =1, P;5, = 3, as
maximum of wy s = 3 and wZ , = 2, so indirect influence via one intermediate node, the minimum

1 —mi —

Wiz =mMin (Py3,,P5,) = 2.



Table 7. Adjacency matrix W? for indirect influence with d = 2

vl V2 v3 v4 vb
vi| O 2 0 0 0
v2| O 0 0 0 0
v3| O 0 0 0 0
vd| O 2 0 0 0
vo| O 0 0 0 0

For this matrix and q = 1 there are three critical sets influencing v, — {v,}, {v,} and
{v,, v,}. Then the corresponding indices which we denote as CI'(i), BI*(i), and PI*(i) are
presented in Table 8.

Table 8. The indices for indirect influence on the adjacency matrix W?, d =2

vl v2 v3 v4 v5
crt 0 4 0 0 0
BI' 0 3 0 0 0
pIt 0 2 0 0 0

As the total direct influence can be called the Total Influence of level 0, since there are 0
intermediate nodes between the considered nodes, the total indirect influences can be called Total
Influence of level 1, 2, etc., for different numbers of intermediate nodes, i.e.,

TI'()=a;,CI* (i) + a;,BI*(i) + a3 PI(i),
where a1 + a1, + @13 = 1.

Finally, we can construct total influence as the linear combination of total direct and indirect
influences of levels 0, ..., [ as
TI(Q) = TI°(i) + BLTI* (D) +... +B,TI (i),
where By + 1 +...+5;, = 1.
For our example with g = 1 we obtain the following values for TI1* and T1 with a;;= a;,=

Aq3= % B1= Bo= % presented in Table 9.

Table 9. The indicesford=1,2,andq=1
vl V2 v3 V5

<
NS

CI®
crt
BI°
BI!
PI°
PIt
TI® .67
TI! 0 |3 0 0

Then TI(v,) =TI(v,) =0, TI(v,) =2.84, TI(v;) =1.5, TI(vs) = 0.84.
In other words, the most influential central node is v,, next is v, and the third one is vs.
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Consider now another distribution of weights. We assume that
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In this case we give more weight to the Bundle index, i.e. to the number of critical groups,
influencing the nodes. The results are given in Table 10.

Table 10. The TI indices with alternative weights, d =1, 2;q=1

vl | v2 v3|vd |v5
TI°| 0 |275]| 2| 0 |15
TI*| 0 |3 0|l]010

Then TI(v,) =TI(v,) =0, TI(v,) = 2.88, TI(v3) =1, TI(vs) = 0.75. Again, the most
important node is v,.

f) The example with the quota q; = 2

If in our example we choose the quota g; to be equal to 2, one can check that we obtain the
following results.

Table 11. The indices on the initial matrix W°, q =2

vli|v2|v3|vd | vVv5
cI® 0(3[4|0)3
BI° 0|2 |13]0]1
PI° 0|22 ]0]1

Remark. In fact, we can define several levels of Copeland in-degree Index and construct
first total in-degree index for all levels 1, ..., I, i.e.

CI(0) =y, CI°() + v, CI*(D+ ... +y,CI (D).
Similarly, we can construct total Bundle Index and total Pivotal Index for all levels as
BI(i) = 8,BI°(i) + 8;BI*(i)+ ... +8,BI(i);
PI(i) = goPI°(i) + & PI*(i)+ ... +&PI'(Q).
Then we can evaluate the total influence as
TI'(i)) =w,CI(0) + w,BI(i) + w3 PI(i),
where w; + 0w, + w3 = 1.
Let us evaluate centrality indices for this case. We put y,= y;= % 8= 6= % €0= €= 2
Then we obtain the following values for the indices CI, BI, and PI.



Table 12. The indices CI, BI, and PI,q=1

vli | v2 | v3 | v4 | V5
ci°f 0 |3 4 0 |3
cl*t|{ 0 |4 0 0 |0
Cl 0 |35 |2 0 |15
BI°| 0 |3 3 0 |1
BI*'| 0 |3 0 0 |0
BI 0 |3 15 0 |05
pPI°| 0 |2 2 0 |1
pPIlt| 0 |2 0 0 |0
PI 0 |2 1 0 |05

Now put w;= w,= w3= % Then we obtain
TI'(vy) =TI'(v,) = 0;
TI' (vy) = § 3.5+ § 3+ § 2=279;

TI' (vs) = § 2+ § 0.5 + § 1=117;

TI'(vs) =315+ 0.5+305=0.83.
Again, the most influential node is v,, then v5, and vs.
If we change the weights as w;=0.1, w, = 0.1, and w;= 0.8, i.e. we consider most important
component being pivotal nodes, then we obtain the following values:
TI'(v))=TI'(vy) = 0;
TI'(v,)=0.1-3.5+0.1-3+0.8-2 = 2.25;
TI'(v3) =0.1-2+0.1-0.5+0.8-1=1.05;
TI'(vg) =0.1-1.5+0.1-:0.5+0.8:0.5=0.6.
The most influential node is the same, v,, then v, and vs.

Remark. We would like to emphasize that any function can be used on each step of
aggregation, not necessary min or max or summation, it might be other more complicated functions.

3. Another example of network with 5 vertices

Consider the network of 5 vertices (Fig. 2) with the adjacency matrix of the network given in Table
13.




Table 13. Adjacency matrix W° for the network with 5 vertices
vl |v2|v3|Vv4 | V5

vij 0O | 5]6 3]0
v2| 0] 0] 0|74
v3|] 0 0]0[5]0
viil 0| 0]O0O[O0]O

vo| | 0] 0]4]07]0

The indices CI°, BI°, and PI° for the network with matrix W° for the quota q = 3 have the
following values presented in Table 14.

Table 14. The indices for the quotaq =3

vl |v2|v3|vd | V5
cl° 0| 5 |10|15| 4
BI°| 0|1 |3 |71
Pl 0|1|2]3]1

The normalized values of the indices CI°, BI°, and PI° are given in Table 15.

Table 15. The normalized values of the indices, g =3

vl V2 v3 v4 V5
CI°| 0 |0.15 |0.29 |0.44 |0.12
BI°| 0 |0.08 |0.25 |0.58 | 0.08
PI°| 0 |0.14 |0.29 | 043 |0.14

Note that for the vertex v, all indices are equal to zero, since there are no incoming arcs to
this vertex.
Now consider indirect influence with the length of the path d = 2.

Table 16. Adjacency matrix W1 for the length of the path d = 2

vl | v2 | v3 | v4 | V5
vi| O 0 0
v2| 0 0 4
v3| O 0 0
vd| O 0 0
vb| 0 0 0

For the quota g = 3 the indices are as follows.

(G2l [elle)}le)lep]
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Table 17. The indices for the matrix W, d=2,q=3

vl |v2|v3|vd|Vv5
ci’r {004 11
BI* | 0| 0| 1]3
pIt | 0|0 | 1|2

The normalized values of the indices are given in Table 18.

= o
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Table 18. The normalized indices for the matrix W, d=2,q=3

vl V2 v3 v4 v5

ci*| 0 0 |[020 | 055 0.25
BIit| O 0 | 020 | 060 | 0.20
PIt| O 0 [ 025|050 | 0.25

For the indirect influence with the length of the path d = 3 the adjacency matrix is presented
in Table 19.

Table 19. Adjacency matrix W ?2 for the length of the path d = 3

vli | v2 | v3 | v4 | V5
vl 0 0 5 0 0
V2 0 0 0 5 0
v3 0 0 0 0 0
v4 0 0 0 0 0
v5 0 0 0 0 0

And the indices for the quota q = 3 are presented in Table 20.

Table 20. The indices on the matrix W?,d=3,q=3

vl |v2|v3|vd | V5
cCl?’, 0| 0|5 |50
BI?’ 0] 0|1 |1]0
Pl 00| 1|10

The normalized values of the indices are given in Table 21.

Table 21. The normalized indices for the matrix W?2,d=3,q=3

vli | v2 | v3 | v4 | V5
Cr*| 0 0 |05 (05| O
BI?| O 0 |05 |05 0
P12 | O 0 |05 |05 0

Note, that only vertices v; and v, have non-zero influence, which are obtained from the
arcs from the vertices v; and v,, respectively.
Now we evaluate the total influence indices for different sets of values of coefficients .
For each set of a;; coefficients, denote them as Al, A2, A3, and A4, defined as
Al a;;= 1/3 forall i=0,1,2;j=1,2,3;
A2: a;;=0.8,i=0,1,2;0;;=0.1fori=0,1,2; j=2,3;
A3:0;;=08,i=0,1,2; a;;=0.1fori=0,1,2; j=1,3;
A4:0;3=08,i=0,1,2; a;;=0.1fori=0,1,2; j=1,2.

We present the values of T1°, TT*, and T1? indices in Table 22.

11



Table 22. The indices T1°, TT*, and T1? for different sets of a coefficients, q = 3

TI® Tt TT?
vl| v2 v3 vd | v6 |vl|v2| v3 vd | vb |vl|v2]|v3|v4 |V5
Al| 0 /012028048011 ]0 |0 (0.22|055](023| 0|0 |05{05|0
A2 0 /014|029(045|012| 0 | 0 [0.21|055(025| 0|0 |05{05]|0
A3 0|01 |026(055[{009| 0|0 (021{059(021|0|01|05{05|0
A4 0 /014|028 (045|013| 0 |0 (024|052(025| 0|0 |05{05|0

Next we evaluate only for the set A3, i.e. for the values a;;= 0.8, i=0,1,2; a;; = 0.1

fori=0,1,2; j=1, 3 the total influence TT with different values of the 8 coefficients. These results
are presented in Table 23.

Table 23. Index TT for different values of B coefficients, q = 3

vl V2 v3 v4 v5
Bl 30:31:32:1/3 0 0.03 |0.32 | 055 |0.10

B2 | B,=0.7, ;= $,=0.15 0 ]0.07 |0.29 |055 [0.10
B3 | Bo=8,=0.153,=0.7 0 |0.01 [0.26 |0.57 |0.16
B4 | By=;=0.15 5,=0.7 0 [001 |042 |052 |0.05

Below in Table 24 we present classic indices for this network.

Table 24. Classic indices for the network
vl V2 v3 v4 v5

In-degree 0 5 10 15 4
Out-degree 14 16 15 15 8
Betweenness | 0 2 1 0 1

Closeness 0.067 | 0.083 | 0.077 | 0.077 | 0.053
PageRank 0.097 | 0.126 | 0.248 | 0.393 | 0.136
Eigenvector 0.939 | 0.976 [0.901 |1 0.53

One can see that the values of the In-degree index coincide with CI°, the most influential
node is v, with respect to PageRank, Eigenvector and T1.

12



4. Example of networks with 10 vertices

Now consider the network with 10 vertices (see Fig. 3).

Fig. 3

The adjacency matrix of the network is presented in Table 25.

Table 25. Adjacency matrix W for the network of 10 vertices

vl V2 v3 v4 vb v6 v7 v8 v9 | v10
vl 0 |[500 [100 |O 400 (O 0 0 0 0
V2 0 |0 40 0 0 100 | O 0 60 0
v3 0 |0 0 0 0 150 | O 0 0 0
v4 0 |0 10 0 0 50 0 0 0 0
v5 0 |0 0 0 0 700 | 200 | 200 (O 0
v6 0 |0 0 0 0 0 0 0 0 0
v7 0 |0 0 150 | O 0 0 0 600 | 250
v8 0 |0 0 0 0 0 0 0 0 150
v9 0 |0 0 0 0 0 0 0 0 0
vio| O |0 0 0 0 0 0 0 0 0

The quota will be constructed in the following way. For each vertex, the half of the sum of
the weights of all incoming arcs will be evaluated and then 1 will be added. Then one can construct
the indices CI°, BI?, and PI° (see Table 26) as well as these indices in the normalized form (see
Table 27). The indices are calculated with the maximum size of coalition k = 3.

Table 26. The indices CI°, BI®, and PI° on the initial matrix W°, g =50% + 1

vi| v2 | v3 | v4 | Vb V6 v7 | v8 | v9 |v10
CI° |0 |500 | 150 | 150 | 400 | 1000 | 200 | 200 | 660 | 400
BI° |0 |1 4 1 1 7 1 1 2 2
pPI° (0 |1 4 1 1 7 1 1 2 2

13



Table 27. The normalized indices CI°, BI°, and PI° on matrix W°, q = 50% + 1

vl| v2 v3 v4 vb v6 \'Z4 v8 v9 | v10
CcI° |0 [0.14|0.04|0.04|0.11|0.27 | 0.05|0.05|0.18 | 0.11
BI° |0 |0.05|0.2 |0.05|0.05[0.35|0.05[005|01 |01
PI° |0 |0.05|0.2 [0.05|0.05|0.35|0.05|005|01 |0.1

Now the adjacency matrix W1 is constructed for the length of path d = 2.

Table 28. Adjacency matrix W1, d =2

vi|iv2| v3 | v4d | vb | v6e | vi | v8 | v9 |Vv10
vli [0 |0 [500 |0 0 150 | 400 | 400 | 500 | O
v2 |0 |0 |O 0 0 150 | 0 0 0 0
v3 [0 |0 |O 0 0 0 0 0 0 0
v4 |0 |0 |O 0 0 150 | 0 0 0 0
v5s [0 |0 |O 200 | O 0 0 0 600 | 200
v6 [0 |0 |O 0 0 0 0 0 0 0
vi [0 |0 [150 |0 0 150 | 0 0 0 0
vB [0 |0 |O 0 0 0 0 0 0 0
v9 [0 |0 |O 0 0 0 0 0 0 0
vio|0 |0 |O 0 0 0 0 0 0 0

Let the quota be formed in the same way, then the indices are as follows.

Table 29. The indices on the indirect influence matrix W1, d =2, g =50% + 1

vi|v2 | v3 |vd |Vvb | v6 | v7 | V8 v9 | v10
cl*{o |0 650 | 200 | O 600 | 400 | 400 | 1100 | 200
BI'|0 |0 2 1 0 4 1 1 2 1
PI* |0 |0 2 1 0 12 1 1 2 1

Table 30. The normalized indices on the indirect influence matrix W1, d =2, =50% + 1

vli| v2 | v3 vd | v5 | V6 v7 v8 v9 | v10
cit|o |0 0.180.06 |0 0.17 | 0.11 | 0.11 | 0.31 | 0.06
BI*|0 |0 0.1710.08 |0 0.33 | 0.08 | 0.08 | 0.17 | 0.08
pPIt |0 |0 0.1 |[005]0 06 |0.05|0.05|0.1 |0.05

And for the length of path d = 3, the adjacency matrix W ?2 is presented in Table 31.

Table 31. Adjacency matrix W2, d =3

vl V2 v3 v4 vb V6 v7 v8 v9 | v10
vl 0 0 |0 400 0 |500 0 0 |600 |400
V2 0 0 |0 0 0 |0 0 0 |0 0
v3 0 0 |0 0 0 |0 0 0 |0 0
v4 0 0 |0 0 0 |0 0 0 |0 0
v5 0 0O |200 |0 0 | 200 0 0 |0 0
v6 0 0 |0 0 0 |0 0 0 |0 0
V7 0 0 |0 0 0 |150 0 0 |0 0
v8 0 0 |0 0 0 |0 0 0 |0 0
v9 0 0 |0 0 0 |0 0 0 |0 0
vio| O 0 |0 0 0 |0 0 0 |0 0

14



The indices for the indirect influence with the length of the path d = 3 are presented in
Table 32.

Table 32. The indices on the indirect influence matrix W?2,d =3, q=50% + 1

vi|v2|v3 |v4 |v5|v6 |[v7|v8|Vv9 |VvI10
CI> | 0| 0 [200|400|0 |850|0 |0 |600|400
BI? | 0|0 |1 1 0 |4 0 |0 |1 1
Pl 001 1 0 |4 0 |0 |1 1

The normalized indices are presented on Table 33.

Table 33. The normalized indices on the indirect influence matrix W2, d =3, q =50% + 1

vl |v2 |v3 vd |v5 |v6 v7 |v8 | V9 v10
ci1? | 0| 0 |008[016|0 03| 0 0 [0.24 |0.16
BI? | 0| 0 |013]|0.13|0 0.5 0 0 [0.13]0.13
PI2 0| 0 |013]0.13]|0 0.5 0 0 [0.13]0.13

Next to evaluate the total influence indices we consider two sets of coefficients, A,
A= 0.2; door= g3 = 0.4;

aq1= 0.2; dqi2= A3 = 0.4;
ar1= 0.2; Aprp=Up3 = 0.4,
and we can construct the TT index using o= 0.2; 1= = 0.4.

The results are presented in Table 34.

Table 34. TT indices for set of coefficients A, for d = 1, 2, 3, and total influence, q = 50% + 1

vl | v2 v3 v4 vb v6 v7 v8 v9 v10
TI° |0 |0.07|0.17|0.05|0.06 | 0.33 | 0.05|0.05|0.12 | 0.1
TI* |0 |0 0.14 1006 |0 0.41 | 0.08 | 0.08 | 0.17 | 0.06
TI2|0 |0 01201310 047 |0 0 0.15 | 0.13
TI |0 |0.01|0.14|0.09|0.01|0.42 |0.04|{0.04|0.15|0.1

Another set of coefficients, A', is given below

dp1= 08, dpo= A3 = 01,
aqi1-= 08, dq12= A3 = 01,
(121: 08, (X22: (l23 = 01,

Bo=0.8; B1=f, =0.1.

The corresponding results are given in Table 35.

Table 35. TT indices for set of coefficients A", for d = 1, 2, 3, and total influence, q = 50% + 1

vl V2 v3 v4 v5 v6 v7 v8 V9 v10
TI° 0 0.12 | 0.07 |0.04 |0.1 0.29 |0.05 |0.05 |0.16 |0.11

TI*| 0 |0 0.17 006 |0 023 |01 |01 0.27 | 0.06
TI?| 0 |0 0.09 016 |O 038 |0 0 0.22 |0.16
TI 0 |01 |008 |0.06 [0.08 [0.29 |0.05 |0.05 |0.18 |0.11
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in-degree values.

1 and for q = 25% as well.

In the first version, A, we prescribe more importance to the critical sets of nodes and pivotal
nodes influencing a node, while in the second version, A', we put more importance to the standard

Now we can compare the obtained results with the classic centrality measures and the
indices SRIC and LRIC. Note, the TT indices are presented for above considered quota g = 50% +

Table 36. Classic and TT indices

vl V2 v3 v4 v5 v6 v7 v8 v9 v10
In-degree 0 500 150 150 400 1000 200 200 660 400
Out-degree 1000 200 150 60 1100 0 1000 150 0 0
Closeness 0.00015 | 0.00051 | 0.00158 | 0.00071 | 0.00019 | 0.0111 | 0.00028 | 0.00158 | 0.0111 | 0.0111
Betweenness | O 1 0 3 5 0 6 0 0 0
Page Rank 0.06 0.08 0.09 0.07 0.08 0.25 0.07 0.07 0.11 0.13
Eigenvector | 0.67 0.46 0.21 0.11 1.00 0.81 0.45 0.23 0.31 0.15
SRIC, 0 0.152 0 0 0.121 0.356 0.019 0.019 0.212 0.121
g=25%
LRIC 0 0.087 0 0 0.087 0.217 0.091 0.091 0.238 0.190
maxmin,
g=25%
TI for A, 0 0.01 0.14 0.09 0.01 0.42 0.04 0.04 0.15 0.1
g =50%+1
TI for A, 0 0.1 0.08 0.06 0.08 0.29 0.05 0.05 0.18 0.11
g = 50%+1
TI for A, 0 0.01 0.13 0.08 0.01 0.44 0.04 0.04 0.15 0.09
g =25%
TI for A, 0 0.09 0.09 0.05 0.08 0.3 0.05 0.05 0.18 0.11
g=25%

for LRIC with g = 25% the order is

for TT (for the set A) with g = 25%

We see that the eigenvector centrality orders the first 5 most important nodes as
Vg > Vg > Uy > Uy > Vs,

v9>v6>v10>v7~178,

Vg > Vg > Uz > Vqg > Vg,

and for TT (for the set A) with q = 50% +1, the ordering is the same,

5. Another method to construct centrality indices

Vg > Vg > Uz > Vqg > Vy.

As we mentioned above, the approach presented in this work allows to construct many new
indices depending on our understanding what features are important in the problem under study.
To illustrate this we present the centrality index constructed as a linear combination of the
eigenvector centrality and PI-index. We use the example of the network considered in the previous
Section.
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The values of the eigenvector of the nodes are
v,=0.67, v,=0.46, v3=0.21, v,=0.11, v:=1.00,
16=0.81, v,=0.45, v5=0.23, v4=0.31, v;,=0.15.

In Table 37 the matrix of pivotal nodes for each node is presented, the coalitions are
constructed as before. i.e. on the basis on critical groups with total influence exceeding the quota
which is equal to 50% +1 of the value of all incoming arcs.

Table 37. Matrix of pivotal nodes
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Below, the normalized values of PI index are given.

Table 38. Normalized values of PI index (PI°), g = 50% + 1

vl

V2 v3 \VZ! vb V6 V7

v8

v9

v10

570

0

005 | 0.2 0.05 | 0.05 | 0.35 | 0.05

0.05

0.1

0.1

We consider the following linear combination TI(v;) = 0.5- EV(v;) +0.5- PI(v;), where

EV (v;) is the eigenvector centrality for v;, PI(v;) is the pivotal index for v;. Then

TI(v,) = 0.5-0.67 + 0.5:0 = 0.34;
TI(v,) = 0.5:0.46 + 0.5:0.05 = 0.26;
TI(vs) = 0.5:0.21 + 0.5:0.2 = 0.21;
TI(v,) = 0.5:0.11 + 0.5-0.05 = 0.08;
TI(vg) = 0.5- 1.00 + 0.5-0.05 = 0.53;
TI(ve) = 0.5:0.81 + 0.5:0.35 = 0.58;
TI(v,) = 0.5:0.45 + 0.5:0.05 = 0.25;
TI(vg) = 0.5:0.23 + 0.5:0.05 = 0.14;
TI(vy) = 0.5:0.31 + 0.5:0.1 = 0.21;
TI(vy,) = 0.5:0.15 + 0.5-0.1 = 0.13.

Now consider another linear combination of parameters T1'(v;) =0.1- EV (v;) +0.9- PI(v;)

TI'(v,) = 0.1-0.67 + 0.9-0 = 0.07;
TI'(v,) = 0.1-0.46 + 0.9:0.05 = 0.09;
TI'(vs) = 0.1:0.21 + 0.9:0.2 = 0.2;
TI'(v,) = 0.1:0.11 + 0.9-0.05 = 0.06;
TI'(vg) = 0.1 1.00 + 0.9-0.05 = 0.15:
TI'(vg) = 0.1-0.81 + 0.9:0.35 = 0.4;
TI'(v,) = 0.1-0.45 + 0.9-0.05 = 0.09;
TI'(vg) = 0.1-0.23 + 0.9:0.05 = 0.07;
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TI'(vo) = 0.1-0.31 + 0.9-0.1 = 0.12;
TI'(vy,) = 0.1-0.15 + 0.9-0.1 = 0.11.

The orderings of the first five most important nodes for these two cases are
Tl :vg > vs > vy >V, > Uy,
TI": vg > v3 > Vg > Vg > Vq.

6. Conclusion

We have introduced a class of new centrality indices which take into account a parameter
of a node, direct and indirect (with fixed length of the path) connections of nodes, and a group
influence of nodes to a node. Total influence is evaluated as a linear combination of its components,
however, other rules can be used as well.

There are two parts of the model with high computational complexity. First, it is the
construction of the matrix in which the critical sets influencing nodes are defined. One of the ways
to decrease complexity is to consider the sets of fixed cardinality, say, not more than 5. Second,
the construction of the paths naturally increases the complexity of the model. Here we can limit
ourselves with only some selected paths, e.g. those in which the weight on edges exceed the quota
on, say, not less than 10%. There are many other ways to decrease complexity depending on the
problem in hand.
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