1. Convert the binary number 1011_{2} to decimal.
(Answer: 11)
2. Find the remainder when $14 \cdot(34-8)$ is divided by 9 . Write your answer as a nonnegative integer from 0 to 8 .
(Answer: 4)
3. There is a new hotel in a city. Each guest brings $\$ 40$ income per day, and daily expenses for taxes and rent are $\$ 300$. Find the smallest number of guests per day for which the hotel will earn at least $\$ 1000$ per day.
(Answer: 33)
4. What is the label (a, b, c or d) of the graph of the linear function $y=\frac{x}{2}+2$?
(Answer: b)

5. Given the parabola $y=x^{2}-4 x-3$,
a) find the y-coordinate of its intersection with the y-axis;
(Answer: -3)
b) find the x-coordinate of its vertex.
(Answer: 2)
6. If $\log _{2} \frac{x}{\sqrt{x+5}}+\log _{2} \sqrt{x+5}=3$, what is the value of x ?
(Answer: 8)
7. Solve the system of linear equations:

$$
\left\{\begin{array}{l}
2 y-2 x=-3 x+2 \\
x+3 y=2 y+4
\end{array}\right.
$$

$$
\begin{aligned}
& x= \\
& y= \\
& \text { (Answer: } x=6, y=-2 \text {) }
\end{aligned}
$$

8. Solve the inequality $\frac{5}{-x+2}>2$. Choose the right answer:
a) $\left(-\frac{1}{2} ; 2\right)$,
b) $\left(-2 ; \frac{1}{2}\right) \cup(2 ;+\infty)$,
c) $\left(-\infty ;-\frac{1}{2}\right) \cup(2 ;+\infty)$,
d) $\left(-2 ; \frac{1}{2}\right)$
(Answer: a)
9. The complete graph of the function $y=f(x)$ is shown in the $x y$-plane below.

Find x such that the value $f(x)$ is the smallest possible.
What is the preimage of $y=2$?

(Answer: 1; 3)
10. The graph of the function $f(x)$ is shown in the $x y$-plane below. What is the y-coordinate of the point where the graph of the function $g(x)=f(x-2)+5$ intersects the y-axis?

(Answer: 3)
11. Given $f(x)=2 x^{2}-3 x+1$, find $f^{\prime}(2)$.
(Answer: 5)
12. Calculate the binary number that equals $110111_{2}+11100_{2}-10100_{2}$. Write your answer as a binary number.
(Answer: 111111)
13. \mathbf{X} and \mathbf{Y} are two stations which are 225 kilometers apart. A train started at a certain time from \mathbf{X} and travelled towards \mathbf{Y}. At the same time another train started from \mathbf{Y} and travelled
towards X. It moved 5 meters per second faster than the first train. The trains met after 75 minutes. Find the speed of the first train in kilometers per hour. Note that 1 kilometer $=1000$ meters.
(Answer: 81)
14. Two years ago John made a deposit in a bank that pays 10% of interest once a year. Today he has $\$ 605$ at the account. How many dollars did John deposit two years ago?
(Answer: 500)
15. A robot is placed in the maze below in A1 position. It is programmed to move in four directions \uparrow (up), \downarrow (down), \rightarrow (right) and \leftarrow (left). If the robot can't make a move in a programmed direction, then it stays in the same place to make the next move. Where will the robot stop after executing the program $\downarrow \leftarrow \downarrow \rightarrow \downarrow \rightarrow \uparrow \rightarrow \rightarrow \rightarrow \leftarrow \uparrow \downarrow \downarrow$? Give your answer as a pair of a letter and a number, e.g. B4.

(Answer: E4)
16. There are two operations:

A: multiply a given number by 3 ;
B: add 5 to a given number.
How to get 74 from 1 in the minimal number of steps using operations \mathbf{A} and \mathbf{B} ? Write your answer as a sequence of symbols \mathbf{A} and \mathbf{B}. (Example: ABB turns 1 to 13).
(Answer: BABAB)
17. Find the minimal non-negative integer s such that at least one of the following conditions holds for all non-negative integers x, y :

$$
x \leqslant s ; \quad y<s ; \quad 5 x+4 y \neq 63 .
$$

(Answer: 7)
18. John goes up the stairs. He can hop either one step or two steps at a time. How many ways are there to get to the 8 th step? E.g. there are 2 ways to get to the second step: to make two single steps or to hop to the second at once.
(Answer: 34)
19. For a positive real x, find $x^{4}+\frac{1}{x^{4}}$ whenever $x+\frac{1}{x}=5$.
(Answer: 527)
20. A polynomial $P(x)$ with integer coefficients satisfies the following:

$$
P(5)=25, P(7)=49, P(9)=81 .
$$

Find the minimal possible value of $|P(10)|$.
(Answer: 5)

