Introduction to stochastic differential equations - 7 Links between SDEs and PDEs

Alexander Veretennikov ${ }^{1}$ Spring 2020

May 26, 2020
${ }^{1}$ National Research University HSE, Moscow State University, Russia online mini-course

$$
\begin{aligned}
& \text { Parabolic equations } L=\frac{\partial_{f}(t, x) \partial^{2}}{\partial \partial x^{\prime} \partial X^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial X^{\prime}}
\end{aligned}
$$

SDEs introduction

Let us inspect the links between solution $X_{t}=X_{t}^{0, x}$ and parabolic PDEs.

Example (7.1)

Let $u(t, x) \in C_{b}^{1,2}\left([0, T] \times R^{d}\right)$ be a solution of the heat equation

$$
\begin{array}{r}
u_{t}(t, x)+L u(t, x)=0, \quad 0 \leq t \leq T, \\
u(T, x)=g(x),
\end{array}
$$

with $g \in C_{b}^{2}\left(R^{d}\right)$. Then for any $0 \leq t \leq T$ the value $u(t, x)$ can be represented in the form

$$
u(t, x)=E g\left(X_{T}^{t, x}\right) \equiv E_{x} g\left(X_{T}^{t, x}\right)
$$

Let us apply Ito's formula to $u\left(s, X_{s}^{t_{0}, x}\right)$ for $0 \leq t_{0} \leq s \leq T$ (since $u(T, x)=g(x) \equiv E g\left(X_{T}^{T, x}\right)$):

$$
\begin{aligned}
& d u\left(s, X_{s}^{t_{0}, x}\right)=\sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& \quad+\left[u_{s}\left(s, X_{s}^{t_{0}, x}\right)+L u\left(s, X_{s}^{t_{0}, x}\right)\right] d s .
\end{aligned}
$$

In the integral form with $t_{0}+s=T$,

$$
\begin{aligned}
u\left(T, X_{s}^{t_{0}, x}\right)= & u\left(t_{0}, x\right)+\int_{t_{0}}^{T} \sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& +\int_{t_{0}}^{T}\left[u_{s}(s, x)+L u\left(s, X_{s}^{t_{0}, x}\right)\right] d s .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example 7.1, Proof, ctd. } L=\frac{a_{j}(t, x) \partial^{2}}{2 \partial x^{\prime} \partial x^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}, x_{i}^{b, x}=x+\int_{6}^{b}\left(s, x_{s}^{b, x}\right) d s+\int_{6}^{\prime} \sigma\left(s, x_{s}^{s, x}\right) d w_{s}
\end{aligned}
$$

SDEs introduction

Let us now take expectations from both sides of this equality:

$$
E u\left(T, X_{T}^{t_{0}, x}\right)=u\left(t_{0}, x\right)
$$

because

$$
\begin{aligned}
& E \int_{t_{0}}^{T} \sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s}=0 \\
& \&\left[u_{s}(s, x)+L u\left(s, X_{s}^{t_{0}, x}\right)\right]=0
\end{aligned}
$$

Remark

The condition $g \in C_{b}^{2}\left(R^{d}\right)$ follows automatically from $u(t, x) \in C_{b}^{1,2}\left([0, T] \times R^{d}\right)$. Both of them can be relaxed.

$$
\begin{aligned}
& \text { Relaxed Example 7.1 } L=\frac{a_{j}(t, x) \partial^{2}}{2 \partial x^{2} \partial x^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}
\end{aligned}
$$

SDEs introduction

$$
\begin{array}{r}
u_{t}(t, x)+L u(t, x)=0, \quad 0 \leq t \leq T \\
\\
u(T, x)=g(x)
\end{array}
$$

with $g \in C_{b}\left(R^{d}\right)$. Then for any $0 \leq t \leq T$ the value $u(t, x)$ can be represented in the form

$$
u(t, x)=E g\left(X_{T}^{t, x}\right)
$$

The conditions of boundedness of g and u with its derivatives may be further considerably relaxed, too.

Proof of Example 7.2 $L=\frac{a_{j}(t, x) \partial^{2}}{2 \partial x^{2} \partial x^{\top}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}$
NB: while $\mathrm{a}=\sigma \sigma^{*}$, we may recover the symmetric positive-definite square root of the matrix $a(x)$ via the Cauchy - Dunford formula (see textbooks)

SDEs introduction

Note that the differential form of Ito's equation remains valid,

$$
\begin{aligned}
& d u\left(s, X_{s}^{t_{0}, x}\right)=\sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& \quad+\left[u_{s}\left(s, X_{s}^{t_{0}, x}\right)+L u\left(s, X_{s}^{t_{0}, x}\right)\right] d s .
\end{aligned}
$$

Yet, now we cannot simply integrate it to T, because the derivatives are assumed only on the semi-open interval $[0, T)$.
Let $t_{0} \geq 0$. Denote $T_{n}:=T-\frac{1}{n}$. Then, for n such that $t_{0}<T_{n}$ we have,

$$
\begin{aligned}
u\left(T_{n}, X_{T_{n}}^{t_{0}, x}\right)= & u\left(t_{0}, x\right)+\int_{t_{0}}^{T_{n}} \sigma^{*} \nabla u\left(s, x+W_{s}\right) d W_{s} \\
& +\int_{t_{0}}^{T_{n}}\left[u_{s}(s, x)+L u\left(s, x+W_{s}\right)\right] d s
\end{aligned}
$$

Proof of Example 7.2, ctd. $L=\frac{a_{f}(t, x) \partial^{2}}{2 \partial x^{\prime} \partial x^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}$ $X_{t}^{t_{0}, x}=x+\int_{t_{0}}^{t} b\left(s, X_{s}^{t_{0}, x}\right) d s+\int_{t_{0}}^{t} \sigma\left(s, X_{s}^{t_{0}, x}\right) d W_{s}$

$$
\begin{aligned}
u\left(T_{n}, X_{T_{n}}^{t_{0}, x}\right) & =u\left(t_{0}, x\right)+\int_{t_{0}}^{T_{n}} \sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& +\int_{t_{0}}^{T_{n}}\left[u_{s}(s, x)+L u\left(t_{0}+s, X_{s}^{t_{0}, x}\right)\right] d s
\end{aligned}
$$

Let us take expectations here: since

$$
\left[u_{s}(s, x)+L u\left(s, x+W_{s}\right)\right]=0
$$

and because

$$
E \int_{t_{0}}^{T_{n}} \sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s}=0
$$

we get

$$
E u\left(T_{n}, X_{T_{n}}^{t_{0}, x}\right)=u\left(t_{0}, x\right)
$$

$$
\begin{aligned}
& \text { Proof of Example 7.2, ctd. } L=\frac{1}{2} \frac{1,(t(x))^{2}}{\partial x \partial o x}+\frac{b^{\prime}(t, x) \theta^{2}}{\partial x^{2}}
\end{aligned}
$$

Equivalently,

$$
u\left(t_{0}, x\right)=E u\left(T_{n}, X_{T_{n}}^{t_{0}, x}\right) .
$$

Here we can pass to the limit as $T_{n} \uparrow T$ in the r.h.s.: since the function u is continuous and bounded up to T, and because X is continuous in time, we get by Lebesgue's bounded convergence theorem that again

$$
u\left(t_{0}, x\right)=E u\left(T, X_{T}^{t_{0}, x}\right) \equiv E g\left(X_{T}^{t_{0}, x}\right),
$$

as required. Recall that here $t_{0} \geq 0$.

Example 7.3 $L=\frac{1}{2} \frac{a_{j}(t, x) \partial^{2}}{\partial x^{\prime} \partial x^{i}}+\frac{b^{i}(t, x) \partial}{\partial x^{i}}$
Non-zero right-hand side (rhs); $X_{t}^{t_{0}, x}=x+\int_{t_{0}}^{t} b\left(s, X_{s}^{t_{0}, x}\right) d s+\int_{t_{0}}^{t} \sigma\left(s, X_{s}^{t_{0}, x}\right) d W_{s}$

SDEs introduction

Now let us consider the equation with a non-zero r.h.s.

Example (7.3)

Let $u(t, x) \in C_{b}^{1,2}\left([0, T] \times R^{d}\right)$ be a solution of the heat equation

$$
\begin{array}{r}
u_{t}(t, x)+L u(t, x)=-f(t, x), \quad 0 \leq t \leq T \\
u(T, x)=g(x)
\end{array}
$$

with $g \in C_{b}^{2}\left(R^{d}\right), f(t, x) \in C_{b}\left([0, T] \times R^{d}\right)$. Then for any $0 \leq t \leq T$ the value $u(t, x)$ can be represented in the form

$$
u\left(t_{0}, x\right)=E\left[\int_{t_{0}}^{T} f\left(s, X_{s}^{t_{0}, x}\right) d s+g\left(X_{T}^{t_{0}, x}\right)\right]
$$

Proof of Example 7.3 $L=\frac{1}{2} \frac{a_{j}(t, x) \partial^{2}}{\partial x^{\prime} \partial x^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}$ $X_{t}^{t_{0}, x}=x+\int_{t_{0}}^{t} b\left(s, X_{s}^{t_{0}, x}\right) d s+\int_{t_{0}}^{t} \sigma\left(s, X_{s}^{t_{0}, x}\right) d W_{s}$

SDEs introduction

Recall Ito's formula,

$$
\begin{aligned}
& d u\left(s, X_{s}^{t_{0}, x}\right)=\sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& \quad+\left[u_{s}\left(s, X_{s}^{t_{0}, x}\right)+L u\left(s, X_{s}^{t_{0}, x}\right)\right] d s .
\end{aligned}
$$

Now it can be rewritten as follows,

$$
\begin{aligned}
& d u\left(s, X_{s}^{t_{0}, x}\right)=\sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
&-f\left(s, X_{s}^{t_{0}, x}\right) d s,
\end{aligned}
$$

or, in the integral form,

$$
\begin{aligned}
u\left(T, X_{T}^{t_{0}, x}\right)=u\left(t_{0}, x\right)+\int_{t_{0}}^{T} & \sigma^{*} \nabla u\left(s, X_{s}^{t_{0}, x}\right) d W_{s} \\
& -\int_{t_{0}}^{T} f\left(s, X_{s}^{t_{0}, x}\right) d s
\end{aligned}
$$

SDEs introduction

Elliptic equation

Taking expectations from both sides we get,

$$
\begin{aligned}
u\left(t_{0}, x\right)= & E u\left(T, X_{T}^{t_{0}, x}\right)+E \int_{t_{0}}^{T} f\left(s, X_{s}^{t_{0}, x}\right) d s \\
& =E g\left(X_{T}^{t_{0}, x}\right)+E \int_{t_{0}}^{T} f\left(s, X_{s}^{t_{0}, x}\right) d s
\end{aligned}
$$

as required.

Remark

Conditions of the Example may also be relaxed, as earlier, assuming derivatives only in the semi-open cylinder $\left([0, T) \times R^{d}\right)$ along with continuity of u only in the closed cylinder $\left([0, T] \times R^{d}\right)$. Yet, it is not all that may be relaxed here.

The issue is that for heat equations with a non-zero r.h.s. it is not often that solutions are classical, that is, from $C_{b}^{1,2}$

How to verify that solution $u \in C_{b}^{1,2}$?

In PDE theory often solutions are only with Sobolev derivatives!

$$
\begin{array}{r}
u_{t}(t, x)+L u(t, x)=-f(t, x), \quad 0 \leq t \leq T, \\
u(T, x)=g(x) .
\end{array}
$$

In general there is no option to differentiate explicit formulae for solutions as for the classical heat equation. However, there is another way, to use L_{2} (or L_{p}) directional derivatives of SDEs. In principle, this approach is available if the coefficients have sufficiently many derivatives with respect to x. We do not show the details here. Without additional derivatives of coefficients, probabilists are not aware how to show existence of derivatives of expressions like $E\left[\int_{t_{0}}^{T} f\left(s, X_{s}^{t_{0}, x}\right) d s+g\left(X_{T}^{t_{0}, x}\right)\right]$ by purely probabilistic tools (i.e., without PDE techniques).

Example 7.4 $L=\frac{1}{2} \frac{a_{j}(t, x) \partial^{2}}{\partial x^{\prime} \partial x^{\prime}}+\frac{b^{\prime}(t, x) \partial}{\partial x^{\prime}}$

Homework! Here c is a constant, but it may be made variable.

SDEs introduction

Similarly a PDE "with a potential" can be considered.

Example (7.4)

Let $u(t, x) \in C_{b}^{1,2}\left([0, T] \times R^{d}\right)$ be a solution of the heat equation with a potential

$$
\begin{array}{r}
u_{t}(t, x)+L u(t, x)-c u(t, x)=-f(t, x), \quad 0 \leq t \leq T \\
u(T, x)=g(x)
\end{array}
$$

with $g \in C_{b}^{2}\left(R^{d}\right), f(t, x) \in C_{b}\left([0, T] \times R^{d}\right)$. Then for any $0 \leq t \leq T$ the value $u(t, x)$ can be represented in the form

$$
\begin{aligned}
u(t, x)=E & \int_{t}^{T} e^{-c s} f\left(s, X_{s}^{t, x}\right) d s \\
& +E e^{-c(T-t)} g\left(X_{T}^{t, x}\right)
\end{aligned}
$$

Example 7.5 $L=\frac{1}{2} \frac{a_{j i}(x) \partial^{2}}{\partial x^{\prime} \partial x^{\prime}}+\frac{b^{i}(x) \partial}{\partial x^{i}}$

Elliptic equation, zero right hand side, $a(x)$ uniformly nondegenerate

SDEs introduction

Elliptic equation

Poisson equation

Let D be a bounded domain (by definition open one and connected; condition to be connected can be dropped, it is just for simplicity) in R^{d}. Consider the elliptic equation

$$
L u(x)=0, x \in D,\left.\quad \& \quad u\right|_{\Gamma}=\phi(x)
$$

where $\Gamma=\partial D$ is the boundary of D. Denote $D^{c}:=R^{d} \backslash D$. Let

$$
\tau:=\inf \left(t \geq 0: X_{t}^{0, x} \in D^{c}\right)
$$

Example (7.5)

Let $u(x) \in C_{b}^{2}(\bar{D})$ be a solution of the elliptic equation above with $\phi \in C(\bar{D}), a(x)$ uniformly nondegenerate. Then

$$
u(x)=E \phi\left(X_{\tau}^{0, x}\right), \quad x \in D
$$

Proof of Example 7.5; $\quad L=\frac{1}{2} \frac{a_{j}(x) \partial^{2}}{\partial x^{\prime} \partial x^{\prime}}+\frac{b^{\prime}(x) \partial}{\partial x^{\prime}}$ $L u(x)=0, x \in D,\left.\& u\right|_{\Gamma}=\phi(x) ; X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}, t \geq 0$

Let us apply Ito's formula to $u\left(X_{t}\right)$:

$$
d u\left(X_{t}\right)=\sigma^{*} \nabla u\left(X_{t}\right) d W_{t}+L u\left(X_{t}\right) d t
$$

In the integral form we have (assuming $u \in C_{b}^{2}\left(R^{d}\right)$),

$$
u\left(X_{t}\right)-u(x)=\int_{0}^{t} \sigma^{*} \nabla u\left(X_{s}\right) d W_{s}+\int_{0}^{t} L u\left(X_{s}\right) d s .
$$

However, it is not what we need because, in fact, we know nothing about u outside \bar{D}, or, at most, outside some its neighbourhood. So, we have to use stopping time τ. It follows from the nondegeneracy of $a(\cdot)$ that $\tau<\infty$ a.s. and, more than that, $\sup _{x \in D} E_{\tau}<\infty$. (Recall that domain D is bounded.)

Proof of Example 7.5, ctd.
 $$
L=\frac{1}{2} \frac{a_{j}(x) \partial^{2}}{\partial x^{I} \partial x^{\prime}}+\frac{b^{i}(x) \partial}{\partial x^{i}}
$$

Recall that $D \subset B_{R}$ is bounded, and that $\tau:=\inf \left(t \geq 0: X_{t} \notin D\right)$

SDEs

Lemma

Let b and σ be bounded, $\sigma \sigma^{*}$ uniformly nondegenerate. Then

$$
\sup _{x \in D} E_{x} \tau<\infty
$$

Proof consists of three easy steps. As we know, for a Markov process it suffices to show that there exists $T>0$ such that

$$
\inf _{x \in D} P_{x}\left(\exists t \in[0, T] \text { such that } X_{t} \notin D\right)>0
$$

I. Firstly, let us reduce the problem to the case with $b \equiv 0$. This can be done via Girsanov's measure transformation theorem. We will run the whole proof for $D=B_{R}$.

Proof of Lemma; $\tilde{W}_{t}=W_{t}+\int_{0}^{t} \tilde{b}\left(X_{s}\right) d s, t \leq T$ $\tilde{b}=\sigma^{-1} b$

SDEs introduction

Elliptic equation

Poisson equation

We have, with some (any) $T>0$ and $P^{\rho}(A)=E \rho_{T} 1(A)$,

$$
\rho_{T}=\exp \left(-\int_{0}^{T} \tilde{b}\left(X_{s}\right) d W_{s}-\frac{1}{2} \int_{0}^{T} \tilde{b}^{2}\left(X_{s}\right) d s\right)
$$

due to the Cauchy - Buniakovskii - Schwarz inequality

$$
\begin{array}{r}
P_{x}\left(\sup _{t \leq T}\left|X_{t}\right|>R\right)=E_{x}^{\rho} \rho^{-1} 1\left(\sup _{t \leq T}\left|X_{t}\right|>R\right) \\
\geq\left(E_{x}^{\rho} \rho_{T}\right)^{-1}\left(E_{x}^{\rho} 1\left(\sup _{t \leq T}\left|X_{t}\right|>R\right)\right)^{2}
\end{array}
$$

Here (as $+\frac{1}{2} \int_{0}^{T} \tilde{b}^{2}\left(X_{s}\right) d s \leq-\frac{1}{2} \int_{0}^{T} \tilde{b}^{2}\left(X_{s}\right) d s+\|\tilde{b}\|^{2} T$),

$$
\sup _{x \in D} E_{x}^{\rho} \rho_{T}=\sup _{x \in D} E_{x}^{\rho} \exp \left(-\int_{0}^{T} \tilde{b}\left(X_{s}\right) d \tilde{W}_{s}+\frac{1}{2} \int_{0}^{T} \tilde{b}^{2}\left(X_{s}\right) d s\right)<\infty
$$

So, to prove Lemma it remains to show that for some $T>0$

$$
\left.\inf _{x \in D} E_{X}^{\rho} 1 \sup _{t \leq T}\left|X_{t}\right|>R\right)>0
$$

Proof of Lemma, ctd. Let $\sigma_{t}=\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)\right)^{1 / 2}$

 Wanted: $\exists T>0$ such that $\inf _{x \in B_{R}} E_{x}^{\rho} 1\left(\sup _{t \leq T}\left|X_{t}\right|>R\right)>0$SDEs introduction

Note that under P^{ρ} the process X_{t} satisfies the equation without a drift removed by Girsanov, with a new WP \tilde{W} :

$$
X_{t}=x+\int_{0}^{t} \sigma\left(X_{s}\right) d \tilde{W}_{s}, t \geq 0
$$

II. Now, consider the equation on one component of X_{t}, say, on X_{t}^{1},

$$
\begin{array}{r}
d X_{t}^{1}=\sigma_{1 j}\left(X_{t}\right) d \tilde{W}_{t}^{j}=\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)\right)^{1 / 2} d \bar{W}_{t} \\
\text { where } \quad \bar{W}_{t}:=\int_{0}^{t} \frac{\sum_{i} \sigma_{1 i}\left(X_{t}\right) d \tilde{W}_{t}^{i}}{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)\right)^{1 / 2}}
\end{array}
$$

The equation on X_{t}^{1} can be rewritten as

$$
d X_{t}^{1}=\sigma_{t} d \bar{W}_{t}
$$

Proof of Lemma, ctd

Lévy characterisation of WP via the compensator

SDEs introduction

It is known ${ }^{2}$ that a continuous martingale M_{t} is a WP iff its compensator $\langle M\rangle_{t}=t$. In our case \bar{W}_{t} is a continuous martingale, and

$$
\langle\bar{W}\rangle_{t}=\sum_{i} \int_{0}^{t} \frac{\sigma_{1 i}^{2}\left(X_{s}\right) d s}{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{s}\right)\right)}=t
$$

so, \bar{W}_{t} is a WP, as required. Moreover, the diffusion coefficient of X_{t}^{1} is nondegenerate: with $\lambda^{*}=(1,0, \ldots 0)$,

$$
\sigma_{t}^{2}=\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)=\lambda^{*} \sigma \sigma^{*}\left(X_{t}\right) \lambda \geq: c_{1}>0
$$

due to the assumption of the uniform nondegeneracy of $\sigma \sigma^{*}$. We will now show that $E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \rightarrow \infty, t \rightarrow \infty$.

[^0]
Proof of Lemma, ctd

Wanted: $\exists T>0$ such that $\inf _{x \in B_{R}} E_{x}^{\rho} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|>R\right)>0$

SDEs introduction
III. The last step: we show that for T large enough

$$
\inf _{x \in D} E_{x}^{\rho} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|>R\right)>0
$$

We have,

$$
E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq E\left|X_{T}^{1}\right|^{2}=x^{2}+\int_{0}^{T} E \sigma_{s}^{2} d s \geq c_{1} T
$$

On the other hand,

$$
\begin{array}{r}
E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2}=E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq R^{2}\right) \\
+E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2}<R^{2}\right) \\
\leq E \sup _{t \leq T}\left|X_{t}^{1}\right|^{2} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq R^{2}\right)+R^{2} \\
\leq\left(E \sup _{t \leq T}\left|X_{t}^{1}\right|^{4}\right)^{1 / 2}\left(P\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq R^{2}\right)\right)^{1 / 2}+R^{2} .
\end{array}
$$

> Proof of Lemma, ctd $\inf _{x \in B_{R}} E_{x}^{\rho} 1\left(\sup _{t \leq T}\left|X_{t}^{1}\right|>R\right)>0$ $Y_{t}=\int_{0}^{t} \sigma_{s} d W_{s} ; d Y_{t}^{4}=4 Y_{t}^{3} \sigma_{t} d \tilde{W}_{t}+6 Y_{t}^{2} d t ; E Y_{t}^{4}=6 \int_{0}^{t} E Y_{s}^{2} d s ; E Y_{s}^{2} \leq c_{2} s$

SDEs introduction

We estimate $E \sup _{t \leq T}\left|X_{t}^{1}\right|^{4}$ via Doob's inequality for continuous martingales $\left(E \sup _{t \leq T}\left|M_{t}\right|^{p} \leq C(p) E M_{T}^{p}, p>1\right)$:
$E \sup _{t \leq T}\left|X_{t}^{1}\right|^{4} \leq 2^{3} x^{4}+24 C(4)\left(\int_{0}^{T} E Y_{s}^{2} d s\right) \leq 2^{3}\left(R^{4}+3 C(4) c_{2} T^{2}\right)$, since $E Y_{t}^{4}=6 \int_{0}^{t} E Y_{s}^{2} d s \leq 3 c_{2} t^{2}$. Thus, from

$$
c_{1} T \leq\left(E \sup _{t \leq T}\left|X_{t}^{1}\right|^{4}\right)^{1 / 2}\left(P\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq R^{2}\right)\right)^{1 / 2}+R^{2}
$$

we find, for $T>R^{2} / c_{1}$,

$$
\begin{aligned}
&\left(P\left(\sup _{t \leq T}\left|X_{t}^{1}\right|^{2} \geq R^{2}\right)\right)^{1 / 2} \geq \frac{c_{1} T-R^{2}}{\left(E \sup _{t \leq T}\left|X_{t}^{1}\right|^{4}\right)^{1 / 2}} \\
& \geq \frac{c_{1} T-R^{2}}{\left(8\left(R^{4}+3 C(4) c_{2} T^{2}\right)\right)^{1 / 2}}=c>0, \quad \text { as required. }
\end{aligned}
$$

Proof of Example 7.5, ctd. $L=\frac{1}{2} \frac{a a_{j}(x) \partial^{2}}{\partial x^{2} \partial x^{\prime}}+\frac{b^{\prime}(x) \partial}{\partial x^{\prime}}$ $u\left(X_{i}\right)-u(X)=\int_{0}^{t} \sigma^{*} \nabla u\left(X_{s}\right) d W_{s}+\int_{0}^{t} L u\left(X_{X}\right) d s-"$ "ast equation", $\& L u=0$

SDEs introduction

Resume our Example 7.5! It is also true that the Ihs in the last equation equals the rhs if we integrate from 0 to $t \wedge \tau$:

$$
u\left(x+X_{t \wedge \tau}\right)-u(x)=\int_{0}^{t \wedge \tau} \sigma^{*} \nabla u\left(X_{s}\right) d W_{s}
$$

Let us take expectations:

$$
E u\left(X_{t \wedge \tau}\right)-u(x)=E \int_{0}^{t \wedge \tau} \sigma^{*} \nabla u\left(X_{s}\right) d W_{s}=0
$$

Since $u \in C_{b}^{2}(\bar{D})$, we obtain as $t \rightarrow \infty$,

$$
u(x)=E_{x} u\left(X_{\tau}\right)
$$

as required, where E_{X} stands to recall that the expectation is computed given the initial data $X_{0}=x$.

Remark of unbounded domains

$$
X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}, t \geq 0 ; \quad a(x)=\sigma \sigma^{*}(x)
$$

SDEs introduction

Remark

Similar representations can be established for unbounded domains, in particular, for the complement B_{R}^{C} of any ball B_{R} under the assumption that, due to certain conditions,

$$
E_{x} \tau<\infty
$$

where

$$
\tau:=\inf \left(t \geq 0: X_{t} \in B_{R}\right)
$$

This will be explored in the lectures about recurrence and ergodic properties.

Example 7.6, Poisson equation

Now $b \& \sigma$ do not depend on time; $L=\frac{1}{2} \frac{a_{j}(x) \partial^{2}}{\partial x^{i} \partial x^{j}}+\frac{b^{i}(x) \partial}{\partial x^{i}}, a(x)=\sigma \sigma^{*}(x)$

SDEs introduction

Let D be a bounded domain in R^{d}. Consider the Poisson equation

$$
L u(x)=-\psi(x), x \in D,\left.\quad \& \quad u(x)\right|_{\Gamma}=\phi(x)
$$

where $\Gamma=\partial D$ is the boundary of D. Recall that $D^{c}:=R^{d} \backslash D, \tau:=\inf \left(t \geq 0: X_{t} \in D^{c}\right)$.

Example (7.6)

Let $u(x) \in C_{b}^{2}(\bar{D})$ be a solution of the Poisson equation with $\phi \in C(\Gamma), \psi \in C(\bar{D})$. Then $u(x)$ in D can be represented as

$$
u(x)=E_{x}\left[\int_{0}^{\tau} \psi\left(X_{s}\right) d s+\phi\left(X_{\tau}\right)\right]
$$

$$
\begin{aligned}
& \text { Proof } L=\frac{1}{2} \frac{a_{i j}(x) \partial^{2}}{\partial x^{i} \partial x^{j}}+\frac{b^{i}(x) \partial}{\partial x^{i}} \\
& x_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}, t \geq 0 ; \quad a(x)=\sigma \sigma^{*}(x)
\end{aligned}
$$

By Ito's formula, on the set $t<\tau$ we have,

$$
\begin{aligned}
d u\left(X_{t}\right) & =\sigma^{*} \nabla u\left(X_{t}\right) d W_{t}+L u\left(X_{t}\right) d t \\
& =\sigma^{*} \nabla u\left(X_{t}\right) d W_{t}-\psi\left(X_{t}\right) d t
\end{aligned}
$$

So, in the integral form with a stopping time,

$$
\begin{aligned}
u\left(X_{t \wedge \tau}\right)-u(x)=\int_{0}^{t \wedge \tau} & \sigma^{*} \nabla u\left(X_{s}\right) d W_{s} \\
& -\int_{0}^{t \wedge \tau} \psi\left(X_{s}\right) d s
\end{aligned}
$$

Taking expectations, we get

$$
E_{x} u\left(X_{t \wedge \tau}\right)-u(x)=-E_{x} \int_{0}^{t \wedge \tau} \psi\left(X_{s}\right) d s
$$

$X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}, t \geq 0 ; \quad a(x)=\sigma \sigma^{*}(x)$

Since ${ }^{3} \sup _{x} E_{x} \tau<\infty$ and letting $t \rightarrow \infty$, we have due to continuity of u, X and the integral wrt t and by virtue of Lebesgue's dominated convergence theorem,

$$
E_{x} u\left(X_{\tau}\right)-u(x)=-E_{x} \int_{0}^{\tau} \psi\left(X_{s}\right) d s
$$

or, equivalently,

$$
u(x)=E_{x} \psi\left(X_{\tau}\right)+E_{x} \int_{0}^{\tau} \psi\left(X_{s}\right) d s
$$

as required.

[^1]
Example 7.7 $L=\frac{1}{2} \frac{a_{j}(x) \partial^{2}}{\partial x^{\prime} \partial x^{j}}+\frac{b^{i}(x) \partial}{\partial x^{i}}$

Poisson equation with a potential $c(\cdot) ; d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, t \geq 0$

SDEs introduction

Let D be a bounded domain in R^{d}. Consider the Poisson equation with a (variable) potential $0 \leq c(x) \in C(\bar{D})$

$$
L u(x)-c(x) u(x)=-\psi(x), x \in D,\left.\quad \& \quad u(x)\right|_{\Gamma}=\phi(x) .
$$

Denote $\kappa(t):=\int_{0}^{t} c\left(X_{s}\right) d s$. Recall that $D^{c}:=R^{d} \backslash D$, $\tau:=\inf \left(t \geq 0: X_{t} \in D^{c}\right)$.

Example (7.7)

Let $u(x) \in C_{b}^{2}(\bar{D})$ be a solution of the Poisson equation with $\phi \in C(\Gamma), \psi \in C(\bar{D})$. Then $u(x)$ in D can be represented as

$$
u(x)=E_{X}\left[\int_{0}^{\tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s+e^{-\kappa(\tau)} \phi\left(X_{\tau}\right)\right] .
$$

Proof of Example 7.7 $L=\frac{1}{2} \frac{a_{j}(x) \partial^{2}}{\partial x^{\prime} \partial X^{\prime}}+\frac{b^{\prime}(x) \partial}{\partial X^{\prime}}$ $\kappa(t):=\int_{0}^{t} c\left(X_{s}\right) d s ; \quad X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}, t \geq 0$

SDEs introduction

By Ito's formula,

$$
\begin{array}{r}
d e^{-\kappa(t)} u\left(X_{t}\right)=e^{-\kappa(t)} \sigma^{*} \nabla u\left(X_{t}\right) d W_{t} \\
+e^{-\kappa(t)}\left[L u\left(X_{t}\right)-c\left(X_{t}\right) u\left(X_{t}\right)\right] d t \\
=e^{-\kappa(t)} \sigma^{*} \nabla u\left(X_{t}\right) d W_{t}-e^{-\kappa(t)} \psi\left(X_{t}\right) d t .
\end{array}
$$

So, in the integral form with a stopping time,

$$
\begin{aligned}
e^{-\kappa(t \wedge \tau)} u\left(X_{t \wedge \tau}\right)-u(x)=\int_{0}^{t \wedge \tau} & e^{-\kappa(s)} \sigma^{*} \nabla u\left(X_{s}\right) d W_{s} \\
& -\int_{0}^{t \wedge \tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s
\end{aligned}
$$

Taking expectations, we get

$$
E_{x} e^{-\kappa(t \wedge \tau)} u\left(X_{t \wedge \tau}\right)-u(x)=-E \int_{0}^{t \wedge \tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s
$$

Proof of Example 7.7, ctd. $L=\frac{1}{2} \frac{a(x) \theta^{2}}{\partial x \partial x}+\frac{b^{\prime}(x) \theta}{\partial x^{2}}$ $\kappa(t):=\int_{0}^{t} c\left(X_{s}\right) d s ; X_{t}=x+\int_{0}^{t} b\left(X_{0}\right) d s+\int_{0}^{t} \sigma\left(X_{0}\right) d W_{s, t} t \geq 0$

SDEs introduction

Elliptic
equation

From the equation

$$
E_{x} e^{-\kappa(t \wedge \tau)} u\left(X_{t \wedge \tau}\right)-u(x)=-E \int_{0}^{t \wedge \tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s
$$

by letting $t \rightarrow \infty$, we obtain due to continuity of all terms in t, because of $\sup _{x} E \tau<\infty$, and by virtue of the Lebesgue dominated convergence theorem,

$$
E_{X} e^{-\kappa(\tau)} u\left(X_{\tau}\right)-u(x)=-E \int_{0}^{\tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s
$$

or, equivalently,

$$
u(x)=E_{x} e^{-\kappa(\tau)} u\left(X_{\tau}\right)+E_{X} \int_{0}^{\tau} e^{-\kappa(s)} \psi\left(X_{s}\right) d s
$$

as required. Note that the condition $c \geq 0$ was essential

Lévy characterisation of WP, particular case

 Recall the lemma inside the example 7.5SDEs introduction

Recall that in the lemma we dealt with the process X_{t} satisfying under the probability measure $\tilde{P}=P^{\rho}$ the equation

$$
X_{t}=x+\int_{0}^{t} \sigma\left(X_{s}\right) d \tilde{W}_{s}, t \geq 0
$$

Then the equation on X_{t}^{1} reads,

$$
\begin{aligned}
& d X_{t}^{1}=\sigma_{1 j}\left(X_{t}\right) d \tilde{W}_{t}^{j}=\underbrace{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)\right)^{1 / 2}}_{=: \sigma_{t}} d \bar{W}_{t} \\
& \text { where } \quad \bar{W}_{t}:=\int_{0}^{t} \frac{\sum_{i} \sigma_{1 i}\left(X_{t}\right) d \tilde{W}_{t}^{i}}{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{t}\right)\right)^{1 / 2}}
\end{aligned}
$$

We pretend that \bar{W}_{t} is a WP \& the equation on X_{t}^{1} reads,

$$
d X_{t}^{1}=\sigma_{t} d \bar{W}_{t}
$$

Lévy characterisation of WP, particular case, proof

SDEs

Recall that \bar{W}_{t} is a continuous martingale,

We want to show that \bar{W}_{t} is, in fact, a Wiener process.
Consider a conditional expectation (conditional characteristic function) for $r<t$,

$$
\begin{aligned}
& \phi(\lambda):=E\left(\exp \left(i \lambda\left(\bar{W}_{t}-\bar{W}_{r}\right)\right) \mid \mathcal{F}_{r}\right) \\
& =E_{X_{r}} \exp \left(i \lambda \int_{r}^{t} \frac{\sum_{i} \sigma_{1 i}\left(X_{s}\right) d \tilde{W}_{s}^{i}}{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{s}\right)\right)^{1 / 2}}\right),
\end{aligned}
$$

the latter equality due to the Markov property of the process X. It suffices to show $\phi(\lambda)=\exp \left(-\lambda^{2}(t-r) / 2\right)$.

Lévy characterisation of WP, particular case, proof, ctd

Denote

$$
f_{s}^{i}:=\frac{\sum_{i} \sigma_{1 i}\left(X_{s}\right)}{\left(\sum_{j} \sigma_{1 j}^{2}\left(X_{s}\right)\right)^{1 / 2}} ; \text { note that } \sum_{i}\left(f_{s}^{i}\right)^{2}=1
$$

By Ito's formula we have,

$$
\begin{aligned}
& d \psi_{t}=d \exp \left(i \lambda\left(\bar{W}_{t}-\bar{W}_{r}\right)\right)=d \exp \left(i \lambda \int_{r}^{t} \sum_{i} f_{s}^{i} d \tilde{W}_{s}^{i}\right) \\
& =\exp \left(i \lambda\left(\bar{W}_{t}-\bar{W}_{r}\right)\right)(i \lambda \sum_{i} f_{t}^{i} d \tilde{W}_{t}^{i}-\frac{\lambda^{2}}{2} \underbrace{\sum_{i}\left(f_{t}^{i}\right)^{2}}_{=1} d t)
\end{aligned}
$$

hence,
$E_{X_{r}} \psi_{t}=1-\frac{\lambda^{2}}{2} \int_{r}^{t} E_{X_{r}} \psi_{s} d s \Longrightarrow \phi(\lambda)=E_{X_{r}} \psi_{t}=e^{-\lambda^{2}(t-r) / 2}, Q E D$

[^0]: ${ }^{2}$ A separate topic, suitable for the homework or a seminar talk

[^1]: ${ }^{3} \mathrm{~A}$ homework!

