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Parabolic equations L =
aij (t ,x)∂2

2∂x i∂x j + bi (t ,x)∂
∂x i

X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs, t ≥ t0

Let us inspect the links between solution Xt = X 0,x
t and

parabolic PDEs.

Example (7.1)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation

ut (t , x) + Lu(t , x) = 0, 0 ≤ t ≤ T ,
u(T , x) = g(x),

with g ∈ C2
b(Rd ). Then for any 0 ≤ t ≤ T the value u(t , x)

can be represented in the form

u(t , x) = Eg(X t ,x
T ) ≡ Exg(X t ,x

T ).
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Let us apply Ito’s formula to u(s,X t0,x
s ) for 0 ≤ t0 ≤ s ≤ T

(since u(T , x) = g(x) ≡ Eg(X T ,x
T )):

du(s,X t0,x
s ) = σ∗∇u(s,X t0,x

s )dWs

+[us(s,X t0,x
s ) + Lu(s,X t0,x

s )]ds.

In the integral form with t0 + s = T ,

u(T ,X t0,x
s ) = u(t0, x) +

∫ T

t0
σ∗∇u(s,X t0,x

s )dWs

+

∫ T

t0
[us(s, x) + Lu(s,X t0,x

s )]ds.
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Example 7.1, Proof, ctd. L =
aij (t ,x)∂2

2∂x i∂x j + bi (t ,x)∂
∂x i

X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

Let us now take expectations from both sides of this
equality:

Eu(T ,X t0,x
T ) = u(t0, x),

because

E
∫ T

t0
σ∗∇u(s,X t0,x

s )dWs = 0,

& [us(s, x) + Lu(s,X t0,x
s )] = 0.

Remark

The condition g ∈ C2
b(Rd ) follows automatically from

u(t , x) ∈ C1,2
b ([0,T ]× Rd ). Both of them can be relaxed.
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Relaxed Example 7.1 L =
aij (t ,x)∂2

2∂x i∂x j + bi (t ,x)∂
∂x i

X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

Example (7.2)

Let u(t , x) ∈ C1,2
b ([0,T )× Rd )

⋂
Cb([0,T ]× Rd ) be a

solution of the heat equation

ut (t , x) + Lu(t , x) = 0, 0 ≤ t ≤ T ,
u(T , x) = g(x),

with g ∈ Cb(Rd ). Then for any 0 ≤ t ≤ T the value u(t , x)
can be represented in the form

u(t , x) = Eg(X t ,x
T ).

The conditions of boundedness of g and u with its
derivatives may be further considerably relaxed, too.
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Proof of Example 7.2 L =
aij (t ,x)∂2

2∂x i∂x j + bi (t ,x)∂
∂x i

NB: while a = σσ∗, we may recover the symmetric positive-definite square
root of the matrix a(x) via the Cauchy – Dunford formula (see textbooks)

Note that the differential form of Ito’s equation remains valid,

du(s,X t0,x
s ) = σ∗∇u(s,X t0,x

s )dWs

+[us(s,X t0,x
s ) + Lu(s,X t0,x

s )]ds.

Yet, now we cannot simply integrate it to T , because the
derivatives are assumed only on the semi-open interval
[0,T ).
Let t0 ≥ 0. Denote Tn := T − 1

n . Then, for n such that
t0 < Tn we have,

u(Tn,X
t0,x
Tn

) = u(t0, x) +

∫ Tn

t0
σ∗∇u(s, x + Ws)dWs

+

∫ Tn

t0
[us(s, x) + Lu(s, x + Ws)]ds.
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Proof of Example 7.2, ctd. L =
aij (t ,x)∂2

2∂x i∂x j + bi (t ,x)∂
∂x i

X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

u(Tn,X
t0,x
Tn

) = u(t0, x) +

∫ Tn

t0
σ∗∇u(s,X t0,x

s )dWs

+

∫ Tn

t0
[us(s, x) + Lu(t0 + s,X t0,x

s )]ds.

Let us take expectations here: since

[us(s, x) + Lu(s, x + Ws)] = 0

and because

E
∫ Tn

t0
σ∗∇u(s,X t0,x

s )dWs = 0,

we get

Eu(Tn,X
t0,x
Tn

) = u(t0, x).
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Proof of Example 7.2, ctd. L = 1
2

aij (t,x)∂2

∂x i∂x j + bi (t,x)∂
∂x i

Eu(Tn,X
t0,x
Tn

) = u(t0, x);X
t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

Equivalently,

u(t0, x) = Eu(Tn,X
t0,x
Tn

).

Here we can pass to the limit as Tn ↑ T in the r.h.s.: since
the function u is continuous and bounded up to T , and
because X is continuous in time, we get by Lebesgue’s
bounded convergence theorem that again

u(t0, x) = Eu(T ,X t0,x
T ) ≡ Eg(X t0,x

T ),

as required. Recall that here t0 ≥ 0.
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Example 7.3 L = 1
2

aij (t ,x)∂2

∂x i∂x j + bi (t ,x)∂
∂x i

Non-zero right-hand side (rhs);X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

Now let us consider the equation with a non-zero r.h.s.

Example (7.3)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation

ut (t , x) + Lu(t , x) = −f (t , x), 0 ≤ t ≤ T ,
u(T , x) = g(x),

with g ∈ C2
b(Rd ), f (t , x) ∈ Cb([0,T ]× Rd ). Then for any

0 ≤ t ≤ T the value u(t , x) can be represented in the form

u(t0, x) = E

[∫ T

t0
f (s,X t0,x

s )ds + g(X t0,x
T )

]
.
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Proof of Example 7.3 L = 1
2

aij (t ,x)∂2

∂x i∂x j + bi (t ,x)∂
∂x i

X t0,x
t =x+

∫ t
t0

b(s,X t0,x
s )ds+

∫ t
t0
σ(s,X t0,x

s )dWs

Recall Ito’s formula,

du(s,X t0,x
s ) = σ∗∇u(s,X t0,x

s )dWs

+[us(s,X t0,x
s ) + Lu(s,X t0,x

s )]ds.

Now it can be rewritten as follows,

du(s,X t0,x
s ) = σ∗∇u(s,X t0,x

s )dWs

−f (s,X t0,x
s )ds,

or, in the integral form,

u(T ,X t0,x
T ) = u(t0, x) +

∫ T

t0
σ∗∇u(s,X t0,x

s )dWs

−
∫ T

t0
f (s,X t0,x

s )ds.
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Proof of Example 7.3, ctd. L = 1
2

aij (t,x)∂2

∂x i∂x j + bi (t,x)∂
∂x i

Taking expectations from both sides we get,

u(t0, x) = Eu(T ,X t0,x
T ) + E

∫ T

t0
f (s,X t0,x

s )ds

= Eg(X t0,x
T ) + E

∫ T

t0
f (s,X t0,x

s )ds,

as required.

Remark

Conditions of the Example may also be relaxed, as earlier,
assuming derivatives only in the semi-open cylinder
([0,T )× Rd ) along with continuity of u only in the closed
cylinder ([0,T ]× Rd ). Yet, it is not all that may be relaxed here.

The issue is that for heat equations with a non-zero r.h.s. it
is not often that solutions are classical, that is, from C1,2

b .
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How to verify that solution u ∈ C1,2
b ?

In PDE theory often solutions are only with Sobolev derivatives!

ut (t , x) + Lu(t , x) = −f (t , x), 0 ≤ t ≤ T ,
u(T , x) = g(x).

In general there is no option to differentiate explicit formulae
for solutions as for the classical heat equation. However,
there is another way, to use L2 (or Lp) directional derivatives
of SDEs. In principle, this approach is available if the
coefficients have sufficiently many derivatives with respect
to x. We do not show the details here. Without additional
derivatives of coefficients, probabilists are not aware how to
show existence of derivatives of expressions like
E
[∫ T

t0
f (s,X t0,x

s )ds + g(X t0,x
T )

]
by purely probabilistic tools

(i.e., without PDE techniques).
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Example 7.4 L = 1
2

aij (t ,x)∂2

∂x i∂x j + bi (t ,x)∂
∂x i

Homework! Here c is a constant, but it may be made variable.

Similarly a PDE "with a potential" can be considered.

Example (7.4)

Let u(t , x) ∈ C1,2
b ([0,T ]× Rd ) be a solution of the heat

equation with a potential

ut (t , x) + Lu(t , x)− cu(t , x) = −f (t , x), 0 ≤ t ≤ T ,
u(T , x) = g(x),

with g ∈ C2
b(Rd ), f (t , x) ∈ Cb([0,T ]× Rd ). Then for any

0 ≤ t ≤ T the value u(t , x) can be represented in the form

u(t , x) = E
∫ T

t
e−csf (s,X t ,x

s )ds

+Ee−c(T−t)g(X t ,x
T ).
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Example 7.5 L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

Elliptic equation, zero right hand side, a(x) uniformly nondegenerate

Let D be a bounded domain (by definition open one and
connected; condition to be connected can be dropped, it is
just for simplicity) in Rd . Consider the elliptic equation

Lu(x) = 0, x ∈ D, & u|Γ = φ(x),

where Γ = ∂D is the boundary of D. Denote Dc := Rd \ D.
Let

τ := inf(t ≥ 0 : X 0,x
t ∈ Dc).

Example (7.5)

Let u(x) ∈ C2
b(D̄) be a solution of the elliptic equation above

with φ ∈ C(D̄), a(x) uniformly nondegenerate. Then

u(x) = Eφ(X 0,x
τ ), x ∈ D.
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Proof of Example 7.5; L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

Lu(x) = 0, x ∈ D, & u|Γ = φ(x); Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dWs, t ≥ 0

Let us apply Ito’s formula to u(Xt ):

du(Xt ) = σ∗∇u(Xt )dWt + Lu(Xt )dt .

In the integral form we have (assuming u ∈ C2
b(Rd )),

u(Xt )− u(x) =

∫ t

0
σ∗∇u(Xs)dWs +

∫ t

0
Lu(Xs)ds.

However, it is not what we need because, in fact, we know
nothing about u outside D̄, or, at most, outside some its
neighbourhood. So, we have to use stopping time τ . It
follows from the nondegeneracy of a(·) that τ <∞ a.s. and,
more than that, supx∈D Eτ <∞. (Recall that domain D is
bounded.)
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Proof of Example 7.5, ctd. L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

Recall that D ⊂ BR is bounded, and that τ := inf(t ≥ 0 : Xt 6∈ D)

Lemma

Let b and σ be bounded, σσ∗ uniformly nondegenerate.
Then

sup
x∈D

Exτ <∞.

Proof consists of three easy steps. As we know, for a
Markov process it suffices to show that there exists T > 0
such that

inf
x∈D

Px (∃t ∈ [0,T ] such that Xt 6∈ D) > 0.

I. Firstly, let us reduce the problem to the case with b ≡ 0.
This can be done via Girsanov’s measure transformation
theorem. We will run the whole proof for D = BR.



SDEs
introduction

Elliptic
equation

Poisson
equation

Proof of Lemma; W̃t = Wt +
∫ t

0 b̃(Xs)ds, t ≤ T
b̃ = σ−1b

We have, with some (any) T > 0 and Pρ(A) = EρT 1(A),

ρT = exp(−
∫ T

0
b̃(Xs)dWs −

1
2

∫ T

0
b̃2(Xs)ds),

due to the Cauchy – Buniakovskii – Schwarz inequality

Px (sup
t≤T
|Xt | > R) = Eρ

x ρ
−11(sup

t≤T
|Xt | > R)

≥ (Eρ
x ρT )−1(Eρ

x 1(sup
t≤T
|Xt | > R))2.

Here (as + 1
2

∫ T
0 b̃2(Xs)ds ≤ − 1

2

∫ T
0 b̃2(Xs)ds + ‖b̃‖2T ),

sup
x∈D

Eρ
x ρT = sup

x∈D
Eρ

x exp(−
∫ T

0
b̃(Xs)dW̃s +

1
2

∫ T

0
b̃2(Xs)ds)<∞

So, to prove Lemma it remains to show that for some T > 0

inf
x∈D

Eρ
x 1(sup

t≤T
|Xt | > R) > 0.
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Proof of Lemma, ctd. Let σt = (
∑

j σ
2
1j(Xt))

1/2

Wanted: ∃T > 0 such that infx∈BR Eρ
x 1(supt≤T |Xt | > R) > 0

Note that under Pρ the process Xt satisfies the equation
without a drift removed by Girsanov, with a new WP W̃ :

Xt = x +

∫ t

0
σ(Xs)dW̃s, t ≥ 0.

II. Now, consider the equation on one component of Xt , say,
on X 1

t ,

dX 1
t = σ1j(Xt )dW̃ j

t = (
∑

j

σ2
1j(Xt ))1/2dW̄t ,

where W̄t :=

∫ t

0

∑
i σ1i(Xt )dW̃ i

t

(
∑

j σ
2
1j(Xt ))1/2

The equation on X 1
t can be rewritten as

dX 1
t = σtdW̄t .
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Proof of Lemma, ctd
Lévy characterisation of WP via the compensator

It is known2 that a continuous martingale Mt is a WP iff its
compensator 〈M〉t = t . In our case W̄t is a continuous
martingale, and

〈W̄ 〉t =
∑

i

∫ t

0

σ2
1i(Xs)ds

(
∑

j σ
2
1j(Xs))

= t ,

so, W̄t is a WP, as required. Moreover, the diffusion
coefficient of X 1

t is nondegenerate: with λ∗ = (1,0, . . .0),

σ2
t =

∑
j

σ2
1j(Xt ) = λ∗σσ∗(Xt )λ ≥: c1 > 0,

due to the assumption of the uniform nondegeneracy of
σσ∗. We will now show that E supt≤T |X 1

t |2 →∞, t →∞.
2A separate topic, suitable for the homework or a seminar talk



SDEs
introduction

Elliptic
equation

Poisson
equation

Proof of Lemma, ctd
Wanted: ∃T > 0 such that infx∈BR Eρ

x 1(supt≤T |X 1
t | > R) > 0

III. The last step: we show that for T large enough

inf
x∈D

Eρ
x 1(sup

t≤T
|X 1

t | > R) > 0.

We have,

E sup
t≤T
|X 1

t |2 ≥ E |X 1
T |2 = x2 +

∫ T

0
Eσ2

s ds ≥ c1T .

On the other hand,

E sup
t≤T
|X 1

t |2 = E sup
t≤T
|X 1

t |21(sup
t≤T
|X 1

t |2 ≥ R2)

+E sup
t≤T
|X 1

t |21(sup
t≤T
|X 1

t |2 < R2)

≤ E sup
t≤T
|X 1

t |21(sup
t≤T
|X 1

t |2 ≥ R2) + R2

≤ (E sup
t≤T
|X 1

t |4)1/2(P(sup
t≤T
|X 1

t |2 ≥ R2))1/2 + R2.
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Proof of Lemma, ctd infx∈BR Eρ
x 1(supt≤T |X 1

t | > R) > 0
Yt =

∫ t
0 σsdW̃s; dY 4

t = 4Y 3
t σtdW̃t + 6Y 2

t dt ; EY 4
t = 6

∫ t
0 EY 2

s ds; EY 2
s ≤ c2s

We estimate E supt≤T |X 1
t |4 via Doob’s inequality for

continuous martingales (E supt≤T |Mt |p ≤ C(p)EMp
T , p > 1):

E sup
t≤T
|X 1

t |4≤23x4+24C(4)(

∫ T

0
EY 2

s ds)≤23(R4+3C(4)c2T 2),

since EY 4
t = 6

∫ t
0 EY 2

s ds ≤ 3c2t2. Thus, from

c1T ≤ (E sup
t≤T
|X 1

t |4)1/2(P(sup
t≤T
|X 1

t |2 ≥ R2))1/2 + R2,

we find, for T > R2/c1,

(P(sup
t≤T
|X 1

t |2 ≥ R2))1/2 ≥ c1T − R2

(E supt≤T |X 1
t |4)1/2

≥ c1T − R2

(8(R4+3C(4)c2T 2))1/2 = c > 0, as required.
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Proof of Example 7.5, ctd. L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

u(Xt)− u(x) =
∫ t

0 σ
∗∇u(Xs)dWs +

∫ t
0 Lu(Xs)ds – "last equation", & Lu = 0

Resume our Example 7.5! It is also true that the lhs in the
last equation equals the rhs if we integrate from 0 to t ∧ τ :

u(x + Xt∧τ )− u(x) =

∫ t∧τ

0
σ∗∇u(Xs)dWs.

Let us take expectations:

Eu(Xt∧τ )− u(x) = E
∫ t∧τ

0
σ∗∇u(Xs)dWs = 0.

Since u ∈ C2
b(D̄), we obtain as t →∞,

u(x) = Exu(Xτ ),

as required, where Ex stands to recall that the expectation
is computed given the initial data X0 = x .
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Remark of unbounded domains
Xt = x +

∫ t
0 b(Xs)ds +

∫ t
0 σ(Xs)dWs, t ≥ 0; a(x) = σσ∗(x)

Remark

Similar representations can be established for unbounded
domains, in particular, for the complement Bc

R of any ball BR
under the assumption that, due to certain conditions,

Exτ <∞,

where
τ := inf(t ≥ 0 : Xt ∈ BR).

This will be explored in the lectures about recurrence and
ergodic properties.
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Example 7.6, Poisson equation
Now b &σ do not depend on time; L = 1

2
aij (x)∂2

∂x i∂x j + bi (x)∂

∂x i , a(x) = σσ∗(x)

Let D be a bounded domain in Rd . Consider the Poisson
equation

Lu(x) = −ψ(x), x ∈ D, & u(x)|Γ = φ(x),

where Γ = ∂D is the boundary of D. Recall that
Dc := Rd \ D, τ := inf(t ≥ 0 : Xt ∈ Dc).

Example (7.6)

Let u(x) ∈ C2
b(D̄) be a solution of the Poisson equation with

φ ∈ C(Γ), ψ ∈ C(D̄). Then u(x) in D can be represented as

u(x) = Ex [

∫ τ

0
ψ(Xs)ds + φ(Xτ )].
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Proof L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dWs, t ≥ 0; a(x) = σσ∗(x)

By Ito’s formula, on the set t < τ we have,

du(Xt ) = σ∗∇u(Xt )dWt + Lu(Xt )dt
= σ∗∇u(Xt )dWt − ψ(Xt )dt .

So, in the integral form with a stopping time,

u(Xt∧τ )− u(x) =

∫ t∧τ

0
σ∗∇u(Xs)dWs

−
∫ t∧τ

0
ψ(Xs)ds.

Taking expectations, we get

Exu(Xt∧τ )− u(x) = −Ex

∫ t∧τ

0
ψ(Xs)ds.
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Proof of Example 7.6, ctd. L = 1
2

aij (x)∂2

∂x i∂x j + bi (x)∂
∂x i

Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dWs, t ≥ 0; a(x) = σσ∗(x)

Since3 supx Exτ <∞ and letting t →∞, we have due to
continuity of u, X and the integral wrt t and by virtue of
Lebesgue’s dominated convergence theorem,

Exu(Xτ )− u(x) = −Ex

∫ τ

0
ψ(Xs)ds,

or, equivalently,

u(x) = Exψ(Xτ ) + Ex

∫ τ

0
ψ(Xs)ds,

as required.

3A homework!
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Example 7.7 L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

Poisson equation with a potential c(·); dXt = b(Xt)dt + σ(Xt)dWt , t ≥ 0

Let D be a bounded domain in Rd . Consider the Poisson
equation with a (variable) potential 0 ≤ c(x) ∈ C(D̄)

Lu(x)− c(x)u(x) = −ψ(x), x ∈ D, & u(x)|Γ = φ(x).

Denote κ(t) :=
∫ t

0 c(Xs)ds. Recall that Dc := Rd \ D,
τ := inf(t ≥ 0 : Xt ∈ Dc).

Example (7.7)

Let u(x) ∈ C2
b(D̄) be a solution of the Poisson equation with

φ ∈ C(Γ), ψ ∈ C(D̄). Then u(x) in D can be represented as

u(x) = Ex [

∫ τ

0
e−κ(s)ψ(Xs)ds + e−κ(τ)φ(Xτ )].
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Proof of Example 7.7 L = 1
2

aij (x)∂2

∂x i∂x j +
bi (x)∂
∂x i

κ(t) :=
∫ t

0 c(Xs)ds; Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dWs, t ≥ 0

By Ito’s formula,

de−κ(t)u(Xt ) = e−κ(t)σ∗∇u(Xt )dWt

+e−κ(t)[Lu(Xt )− c(Xt )u(Xt )]dt

= e−κ(t)σ∗∇u(Xt )dWt − e−κ(t)ψ(Xt )dt .

So, in the integral form with a stopping time,

e−κ(t∧τ)u(Xt∧τ )− u(x) =

∫ t∧τ

0
e−κ(s)σ∗∇u(Xs)dWs

−
∫ t∧τ

0
e−κ(s)ψ(Xs)ds.

Taking expectations, we get

Exe−κ(t∧τ)u(Xt∧τ )− u(x) = −E
∫ t∧τ

0
e−κ(s)ψ(Xs)ds.
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Proof of Example 7.7, ctd. L = 1
2

aij (x)∂2

∂x i∂x j + bi (x)∂
∂x i

κ(t) :=
∫ t

0 c(Xs)ds; Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dWs, t ≥ 0

From the equation

Exe−κ(t∧τ)u(Xt∧τ )− u(x) = −E
∫ t∧τ

0
e−κ(s)ψ(Xs)ds,

by letting t →∞, we obtain due to continuity of all terms in
t , because of supx Eτ <∞, and by virtue of the Lebesgue
dominated convergence theorem,

Exe−κ(τ)u(Xτ )− u(x) = −E
∫ τ

0
e−κ(s)ψ(Xs)ds,

or, equivalently,

u(x) = Exe−κ(τ)u(Xτ ) + Ex

∫ τ

0
e−κ(s)ψ(Xs)ds,

as required. Note that the condition c ≥ 0 was essential.



SDEs
introduction

Elliptic
equation

Poisson
equation

Lévy characterisation of WP, particular case
Recall the lemma inside the example 7.5

Recall that in the lemma we dealt with the process Xt
satisfying under the probability measure P̃ = Pρ the
equation

Xt = x +

∫ t

0
σ(Xs)dW̃s, t ≥ 0.

Then the equation on X 1
t reads,

dX 1
t = σ1j(Xt )dW̃ j

t = (
∑

j

σ2
1j(Xt ))1/2

︸ ︷︷ ︸
=:σt

dW̄t ,

where W̄t :=

∫ t

0

∑
i σ1i(Xt )dW̃ i

t

(
∑

j σ
2
1j(Xt ))1/2

We pretend that W̄t is a WP & the equation on X 1
t reads,

dX 1
t = σtdW̄t .
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Lévy characterisation of WP, particular case, proof

Recall that W̄t is a continuous martingale,

W̄t :=

∫ t

0

∑
i σ1i(Xt )dW̃ i

t

(
∑

j σ
2
1j(Xt ))1/2

; let ψt := exp(iλ(W̄t − W̄r )), t > r .

We want to show that W̄t is, in fact, a Wiener process.
Consider a conditional expectation (conditional
characteristic function) for r < t ,

φ(λ) := E(exp(iλ(W̄t − W̄r ))|Fr )

= EXr exp(iλ
∫ t

r

∑
i σ1i(Xs)dW̃ i

s

(
∑

j σ
2
1j(Xs))1/2

),

the latter equality due to the Markov property of the
process X . It suffices to show φ(λ) = exp(−λ2(t − r)/2).
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Lévy characterisation of WP, particular case, proof,
ctd

Denote

f i
s :=

∑
i σ1i(Xs)

(
∑

j σ
2
1j(Xs))1/2

; note that
∑

i

(f i
s)2 = 1.

By Ito’s formula we have,

dψt = d exp(iλ(W̄t − W̄r )) = d exp(iλ
∫ t

r

∑
i

f i
sdW̃ i

s)

= exp(iλ(W̄t − W̄r ))(iλ
∑

i

f i
t dW̃ i

t −
λ2

2

∑
i

(f i
t )2

︸ ︷︷ ︸
=1

dt);

hence,

EXrψt =1−λ
2

2

∫ t

r
EXrψsds =⇒ φ(λ)=EXrψt =e−λ

2(t−r)/2, QED


	
	Elliptic equation
	Poisson equation

