ISSN 0146-4116, Automatic Control and Computer Sciences, 2016, Vol. 50, No. 7, pp. 477—485. © Allerton Press, Inc., 2016.
Original Russian Text © S.A. Shershakov, 2014, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2014, Vol. 21, No. 5, pp. 102—115.

DPMine Graphical Language for Automation of Experiments
in Process Mining

S. A. Shershakov

National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000 Russia
e-mail: sshershakov@hse.ru
Received October 1, 2014

Abstract—Process mining is a new direction in the field of modeling and analysis of processes, where
an important role is played by the use of information from event logs that describe the history of the
system behavior. Methods and approaches used in process mining are often based on various heuris-
tics, and experiments with large event logs are crucial for substantiating and comparing developed
methods and algorithms. These experiments are very time consuming, so automation of experiments
is an important task in the field of process mining. This paper presents the DPMine language devel-
oped specifically to describe and carry out process mining experiments. The basic concepts of the
DPMine language as well as principles and mechanisms of its extension are described. Ways of inte-
gration of the DPMine language as dynamically loaded components into the VI Mine modeling tool
are considered. A sample experiment of building a fuzzy model of a process from a data log stored in
a normalized database is given.

Keywords: process mining, modeling language, automation, experiments, fuzzy model
DOI: 10.3103/S014641161607018X

INTRODUCTION

This paper is about the simulation of experiments in the field of process-aware information systems
that are being intensively developed due to changes in approaches to managing business and process
systems.

Information system processes are becoming increasingly complex, and the amount of related informa-
tion is steadily increasing. As a result, the number of studies related to Big Data processing is experiencing
headlong growth [1]. We have recently seen the emergence of new specialties in the field of data and pro-
cess research, such as data analyst, process researcher, process engineer [2], etc.

In English-language sources, the new area of process research is referred to as process mining, which
consists of process retrieval (automated drawing) and analysis [3]. The suggested reference point for pro-
cess studies in this area is event logs, which are automatically generated by most process-aware information
systems. An event log is a track left by the information system during operation. Usually, this log consists
of a set of event sequences. A single event sequence is called a trace, which is a record of process execution
in one specific case. Each event in the trace marks the completion of a so called activity. An activity is a
single task or phase of the considered process.

Process mining is closely related to data mining, machine learning, and process model simulation and
analysis. The main goals and objectives of this research area are expounded in the Process Mining Mani-
festo [4]. They can be briefly summarized in the following three key problems: (1) process discovery;
(2) conformance checking; and (3) model enhancement, which takes account of variable data.

Although process mining is a relatively new area, it is already actively used to model and analyze
business processes [5] in management, software development [6, 7], process data management, and
healthcare.

The process-mining theory is based on formal models and algorithms. However, the study of specific
domain areas usually involves a large number of empirical conjectures and assumptions. This determines
the domain- and application-oriented nature of these studies, which makes it necessary to carry out a lot
of experiments to assess particular methods for applicability. These experiments can involve using not only
real system logs, but also logs synthesized by models of processes represented, e.g., as Petri nets [8, 9].

477

478 SHERSHAKOV

Process models are described by various means, such as workflow notations and workflow engines/sys-
tems. A large number of currently available notations are used to describe processes, task flows (most of
which are based on Petri nets), and systems, where these notations are implemented as tools for end users.
Some common instances of these means are business process model and notation (BPMN) [10], business
process execution language (BPEL) [11], and yet another workflow language (YAWL) [12].

To describe a process mining experiment, as well as other processes, a record of this experiment must
be made using a certain notation. This record can be an experimental model or an experimental program.
This model can be recorded in one of the foregoing languages; however, this approach has several weak
points. First of all, they result from the fact that some of available modeling languages are intended for a
specialized domain, e.g., business-process management or web-service orchestration. Other languages
are more universal but do not always make it possible to describe the experimental model in a user-friendly
concise manner.

It was proposed to automatize process mining experiments by using an approach based on the DPMine
graphical extendable modeling language [13]. The requirements that imposed the development of the new
language and related tools for its implementation included the existence of simple, transparent, flexible,
and most importantly, extendable semantics. The DPMine language was initially developed for this par-
ticular purpose and was implemented as a set of plug-ins [14] for the ProM process mining toolkit [15].
ProM is one of the most functionally ample process mining tools.

Despite the main purpose of DPMine, experimental process mining and analysis are not its only appli-
cations. The language can also be used to automatize different software-programmable processes by
means of an extendable block system. Unlike the YAWL with a purpose similar at first sight [12], the
DPMine language does not have an integral part that consists of a declared general set of blocks/tasks for
support of stream-controlling constructs, e.g., XOR/AND split/join. Instead, DPMine supports a flexi-
ble system of expanding block types that endow the language with any necessary semantics, including
standard control constructs.

This paper considers the key features of the DPMine language implemented as the DPMine/C library
in the C++ language [16]. This library is integrated with the VT Mine universal expandable modeling sys-
tem [17]. Correspondingly, VT Mine is the target environment of this language. The key solutions for actu-
alizing the expandable structure of both tools that work in close relation with one another are considered.
A sample experiment in DPMine is considered, which is conducted to automatically draw the process
model as a fuzzy map that proceeds from an event log represented as a normalized database.

The rest of the paper is structured as described below. Section 1 reviews the main concepts, compo-
nents, and principles for the implementation of DPMine. Section 2 discusses the approaches to integrat-
ing the DPMine/C library with the VI’ Mine modeling tool. Section 3 describes a case for creating a model
process mining experiment. Finally, Section 4 tallies up the works completed and formulates tasks for fur-
ther investigation.

1. BASIC LANGUAGE COMPONENTS

DPMine is a graphical language for description of processes and experiments that consist of individual
components (blocks). The system of types of these blocks is extendable, which makes it possible to use this
language to describe processes in different problem spaces [13, 14]. This section considers the main con-
ceptual elements of the DPMine language.

1.1. Models, Schemes, Blocks, Ports, Connectors

The model is the basic working language tool that describes some processes, such as task workflows.
In the final outcome of this process all or certain tasks included in the model are fulfilled. The model is
considered at different levels of abstraction (Fig. 1). At the bottom level, we have the object model that
represents the structure of complementary objects in the random access memory. The graphical model is
visually represented as an editable graphical scheme. The persistent model is used in the serialization of
the model, e.g., in the form of files.

The model includes the main scheme and attributes, such as name, version, etc. The model is actual-
ized by the basic tool, which is an application with DPMine/C library as its client. The tasks described by
the model are defined by the purpose of the basic tool. Instances of these tasks are creation, transforma-
tion, visualization, and serialization of formal models.

The language semantics is actualized via the concept of blocks, ports, connectors, and schemess. Any
expansion of the language is only via these four components.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 50 No.7 2016

DPMINE GRAPHICAL LANGUAGE 479

f %
! Graphics editor i
| |
: 1
i Graphical |
! 1
! model !
! 1
!)

DPMine
model

b]
1
1
:
| XML JSON |
1
1
1
1
|
1

Serialization subsystem

pmm—————————

(a) Model presentation levels (b) Sample scheme

Fig. 1. Model and scheme.

A block is the key language element and considered to be an elementary operation. There are different
types of blocks that can therefore be used to fulfill tasks of the basic tool, e.g., by addressing a particular
method or a plug-in, represent complex system as a single hierarchical block, actualize structures of con-
trolling the execution workflow. In addition, blocks can be used as substitution operators to transfer a cer-
tain scheme as a parameter to another scheme, etc. Blocks are integrated by executing tasks in a hierarchy
of types.

A port is a connection object that belongs to a block and possesses the characteristics of direction
(input, output, proxy ports) and data type. Ports are used to transport to and from the block objects
(resources) of a given type. Ports are divided by block type into custom ports and built-in ports.

A connectoris a directed connection object that connects two blocks via their ports; it connects the out-
put port of one block via its origin to the access port of the other block via its end. There can be several
connectors coming out of one output port but only one connector going into one access port (Fig. 1b).

A scheme is a set of related blocks connected by connectors. The scheme is the main way of actualizing
abstraction and isolating the subprocess and hierarchy. The scheme interface is a random subset of ports
1 fp of the set of all ports. This set is formed by the blocks included in this scheme. In Fig. 1b, the scheme
interface is represented by ports Ifp = {A.in, B.out, C.out} (highlighted with a dashed outline).

At the object model level, the scheme is packed in a container represented by a special scheme-type
block. This block inherits the characteristics of the basic type, i.e., bodyness block, which is the parent
block for other blocks (body) encapsulated within it. In addition to the scheme, the bodyness block is the
parent block for types, such as cycles.

The bodyness block can be considered at two levels, i.e., internally and externally. Internally, this block
is an isolated scheme with an interface linked via connectors to the proxy ports of the block that contains
this scheme. The ports are used in data exchange with external blocks. Externally, the bodyness block is a
regular block with input and output ports (they also function as internal-level proxy ports) that exchanges
data with sibling blocks at the same hierarchy level. This approach makes it possible to consider the
scheme as the single block and to exclude the contents from consideration.

1.2. Execution of Model, Scheme, Block

The DPMine model is executable. This is done by executing the main scheme, which is determined by
the composition of the blocks in the scheme and the structure of their connection. When the model is exe-
cuted, the blocks included in the model create new resources and transform already available resources,
carry out preparatory operations for visualization and saving, etc.

The model is executed by a special executive agent that connects the DPMine modeling system with
the basic tool.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol.50 No.7 2016

480 SHERSHAKOV

B : N
o) 4 ‘o8 End
Start C =O

End

Fig. 2. Petri net model for implementing the scheme from Fig. 1b.

The main model scheme is executed by executing its container block. Block execution is an operation
executed in software associated with the type that determines each block of the DPMine language. A case
of this operation is the algorithm that receives resources from the access block ports as parameters, makes
new resources based on these parameters, and places the new resources at the output ports of this block
(e.g., when a Petri net is transformed into a spanning graph of this network).

The block can be executed under the condition that all of its external dependences are satisfied. The
dependences of block B are considered satisfied given the following:

(1) B has no access ports.
(2) The block does have access ports, each of which meets the following conditions:

(2a) It does not have the mandatory connected flag, in which case the port cannot be linked by the con-
nector to the other (output) port of another block.

(2b) It is connected to the other (output) port of another block with the executed status. As required by
this status, the output ports of this block must contain data for implementing the output resource inter-
faces declared in the block type.

The status of the block with the satisfied external dependences is executable. In this case, the executive
agent is the procedure for executing the block, and the status of the latter is changed to in execution. If the
block is successfully executed, its status is changed to executed.

The bodyness block has an iterative execution algorithm. In each iteration the executive agent tries to
execute a subset of executable blocks of the set of all the blocks included in the bodyness block scheme.
During operation, the algorithm determines and uses several special status flags for the complete scheme.
For instance, the incomplete flag shows that there are some blocks that are still unexecuted after a regular
iteration. The hasExecution flag shows that at least one block was executed during a regular iteration.
Finally, the hasPending flag shows that some blocks are still in execution by the end of a regular iteration.
These blocks are called pending.

In the initial operation phase of the algorithm all the three flags are reset. The algorithm tries to execute
each block of the scheme. If the observable block has already been executed, the algorithm skips it and goes
on to the next block. If the observable block is pending, a hasPending flag is placed and the algorithm goes
on to the next block. If the observable block must be executed in the current iteration, the system checks
whether the input dependences of the block are satisfied. If yes, the block is passed on to the executive
agent for dispatching. If the iteration is finished but there is still at least one block with a status other than
executed, i.e., its execution has not started or the block is pending, the block is given an incomplete flag. In
the latter case, the algorithm carries out yet another operation if at least one block was put on execution
in the past iteration.

The scheme execution procedure can be presented as a Petri net model. For instance, the equivalent
Petri net for the scheme without selection blocks (Fig. 1b) can be drawn as shown in Fig. 2.

2. INTEGRATION OF THE DPMINE LANGUAGE
WITH THE VTMINE MODELING SYSTEM

VTMine is a graphical modeling tool with functionalities extended by dynamically loaded components
called plug-ins [17].

The VI Mine core determines the minimal necessary plug-in loading algorithms and declares inter-
faces (including some components of the user interface). All the other capabilities are completely deter-

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 50 No.7 2016

DPMINE GRAPHICAL LANGUAGE 481

Framework
PluginManager UlIManager ResourceManager
PerspectiveManager MainWindowsManager PaletteManager

I I]

Perspective MainWindowContext ViewSet View

| §

Fig. 3. Basic components of the VT Mine core.

mined by the set of plug-ins. The main models for consideration are formalisms used most often in process
mining, including graph structures, transition systems, finite state machines, Petri nets, etc. However, the
system core does not have any special support for particular classes of models. That is why VT Mine can
be used for modeling in various domains.

VTMine is written in C++: on the one hand, this makes it possible to exercise flexible control over
memory distribution; on the other hand, it becomes possible to develop fast and efficient algorithms,
which is especially important in big data processing. The application is based on the Qt cross-platform
library: the actively used subsystems of Qt include GUI used to build the user interface, the object-ori-
ented subsystem of plug-in loading that encapsulates interaction with initial formats of dynamic link
libraries of each OS individually, and the Graphics View framework high-performance subsystem of flow-
chart drawing.

2.1. Application Core Structure

The application core is a hierarchical system of basic components called managers (Fig. 3). This struc-
ture makes it possible to modify individual components of both the core and plug-ins without losing in
compatibility among different versions in the phase of load-time linking. Any component in the system
can be replaced with another component that actualizes the same interface.

The main application component is the root object Framework: it forms the framework of the application.
This object contains such top-level components and managers as logger, Plug-inManager, UIManager,
ResourceManager, etc. The framework is available in most modules and transferred as a parameter to the
access point of each plug-in, which makes it possible for such plug-ins to modify top-level components.

The plug-in control system controls the life cycle of VT Mine plug-ins. This cycle includes identifying
plug-in file containers, loading plug-ins with regard to their interconnection, registering plug-ins in the
system, using plug-ins to modify other plug-ins, and swapping plug-ins.

VTMine takes into account the interconnection among plug-ins. This means that, if plug-in P,
depends on P, (both plug-ins have unique string identifiers), then P, can only be loaded if P; is also

loaded. Consequently, if P, cannot be loaded for any reason whatsoever, P, will not be loaded either. A
particular case is circularly dependent plug-ins, neither of which is loadable.

2.2. DPMine Plug-ins

The DPMine modeling system is connected to the VI Mine application as a set of plug-ins with
DPMineBase as the basic plug-in. The structure of the basic components of the plug-in is given in Fig. 4.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol.50 No.7 2016

482 SHERSHAKOV

DPMineBase

?_‘

Executors BlockSerializers| BlockTypes IDPModelGraphical Edito: ResourceManager

| !

BlockRenderers

Fig. 4. Basic components of the DPMineBase plug-in.

=] VTMine - o IEN

File Plug-ins Test Window Help

Test Model vim.pale.. & X

>

Model Info

[> sOlite Query

qry1StepPairs

Fuzzy Map VEd

fmEditor1

Resource Saver JSON Res
Seriakizer
sFuzRest o Fne e

(1) Fuzzy Map Coupler

SQLite Query

qrylnitSet

[sQLite Query

qryFinalSet

Fig. 5. Display form of VT Mine application with a view of the DPMine model.

The resource manager registers types of resources of the DPMine language, such as the DPMine
model, and registers new doers for certain types of resources and actualizes the functionalities of these
doers.

The list of block types stores descriptions, descriptors, and other necessary information on block types
that can be used to create/execute the DPMine model. The list is dynamically expanding and can be sup-
plemented with new types using other plug-ins. The main plug-in (DPMine) registers only basic block
types such as the scheme, execution flow control blocks, and blocks for implementing constants and equa-
tions. Blocks specific to a particular domain, e.g., process mining, are registered using other plug-ins.

Serializers are dynamically expanding components that load or save blocks from a certain serialization
format, e.g., XML or JSON. The interface provided by a serialization block makes it possible to register
both new serialization formats and relations among formats and individual block types using block serial-
izers.

The graphics editor is a visual component responsible for the communication at the Ul level between
the DMPine models and the VI Mine application. The editor makes it possible to create, modify, and exe-
cute the DPMine models presented in a graphical form (Fig. 5).

In the VT Mine application, the editor is presented as a view created and added to the list of views of
the active window. For instance, this operation can be carried out by applying a doer called the graphics
editor of DPMine models to a resource like the DPMine model. This model is treated like other types of
models, such as graphs and Petri nets.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 50 No.7 2016

DPMINE GRAPHICAL LANGUAGE 483

The communication between the user and the graphical model is managed by contextual commands
for each block. For instance, special-type blocks used to visualize the model’s resources contain a doer of
some command. When fetched, this command creates a new view (in VI Mine terms) that contains a rep-
resentation of the resource (usually graphical).

The visual display of any of the model blocks is determined by several factors such as block type, cur-
rent block settings (for blocks with adjustable parameters), current block status, and selected rendering
scheme.

3. DISCOVERY OF A FUZZY PROCESS MAP
FROM AN EVENT LOG STORED IN A DB

In [18], an approach to retrieving a fuzzy map [19] from a data log presented as a relation database
(RDB) is considered. This approach is based on a sequence of SQL queries that form necessary data sets
to visualize this map.

The considered approach can be implemented as a DPMine model with the following blocks by
type/name (Fig. 5):
(1) SQLite Connection/SQLitel is the data source in the SQLite RDB;

(2) SQLite Query/qrylStepPairs, qrylnitSet, qryFinalSet are tabular data sets formed by answering the
queries for: (a) the relations among all activities in one step, (b) the set of initial vertices, and (c) the set of
terminal vertices;

(3) Fuzzy Map Coupler/fuzMap] unites the three above described data sources in a single (object)
fuzzy model;

(4) Fuzzy Map VEd/fmEditorl1 is the activation point of the graphic editor of fuzzy models, that con-
nects the object model with the graphical model;

(5) Resource saver/rsFuzzyResl is the component for saving time resources in the global resource
manager;

(6) JSON Res Serializer/jsonRes]1 serializes (saves) the resource (fuzzy model) as a JSON file.

The scheme in Fig. 5 makes it possible to use several different block execution sequences, taking
account of the requirements imposed by the semantics of executing DPMine language models.

The first block for execution is SQLite Connection/SQLitel, which gives access to the SQLite data-
base [20]. The information contained in this block, such as file name, opening parameters, and other
parameters described in the SQLite application program interface (API), is required to connect to this
DB. If all parameters of SQLite Connection/SQLitel make it possible to connect to the DB, the block in
execution carries out this connection and allows one to use the DB by the blocks involved in connection
with this.

The SQLite Query blocks are used to form SQL queries to the DB and present the results of these que-
ries as a table with data that correspond to the IDataSet interface. The model in Fig. 5 makes use of three
such blocks, namely, qrylStepPairs, qrylnitSet, qryFinalSet. They make a sampling in the source data-
base (that represents the log) to form three different datasets required to build the fuzzy model graph. The
three datasets are a sampling of one-step transitions between separate activities included in the resulting
set of data and the samplings of initial and terminal activities.

The Fuzzy Map Coupler block binds the three datasets into a single object model. The access port of
this block must have the ls (one-step transitions) prepared set of data so that the block can be successfully
executed. The other two access ports i and 7 correspond to the initial and terminal positions, are optional,
and can be ignored.

Fuzzy models are presented as a graph with activities as vertices and relations among these activities as
arcs. Thus, the execution of this block forms an output resource in the form of graph that is determined
by the adjacency list formed from the set of one-step transitions. The graph is supplemented with links
from the artificial vertex beginning at vertices from the set of initial vertices (second data set) and with links
from the set of terminal vertices to one more artificial vertex end.

The Fuzzy Map VEd block is used to visualize the derived object model. This block is based on the
component editor of graph models that is modified for fuzzy models.

The execution of the Fuzzy Map Ved/fmEditor1 block results in checking the availability of the graph-
editing component loaded as a separate plug-in in the VI Mine application. However, this component is
not mandatory for satisfying the dependences of the plug-ins that load the VI Mine blocks considered in
this section.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol.50 No.7 2016

484 SHERSHAKOV

If this component is available, the necessary initialization is carried out and the block is given the exe-
cuted status. This means that the block becomes available for interactive communication with the user,
who can find and execute the Display Editor command in the context-sensitive menu. As a result, a new
view with an embedded graphics editor will be created that will be added to the other views of the active
window of the VI Mine application.

The input of the Resource Saver/rsFuzzyRes1 block is connected right to the output of the Fuzzy Map
Coupler/fuzMapl, exactly like the Fuzzy Map Ved/fmEditorl block. This means that both consumer
blocks of the object (fuzzy) model make use of the same resource copy (model).

By default, the resources produced by the blocks of the DPMine model are in the state of composition
with the blocks that generate these resources and control their life span. Thus, except for some special
blocks, these temporary resources are deleted during the repeated execution or deletion of the model itself.
The Saver/rsFuzzyReslblock is used to save the copy of this resource of the model using the global
resource manager for further use.

The output port of Resource Saver/rsFuzzyResl is connected to the access port of JSON Res Serial-
izer/jsonRes1, which is the last block considered in this scheme. When the block is executed, an object
that actualizes the IResource interface is transferred to the access port of JSON Res Serializer/jsonRes1
and saved as a serialized JSON file.

The JSON Res Serializer/jsonRes1 serialization component is extended by the types of resources it can
serialize. This extension is similar to the extension of the serialization component of the DPMine model
blocks.

As aresult of executing the model, its main scheme (Fig. 5), and all of the model’s blocks, the database
with the event log is opened and three queries with the extraction of necessary datasets are formed. These
sets are aggregated in the object Fuzzy model (resource of VI MIne), the graphical component for visu-
alizing this model is provided, the copy of this model is saved as a permanent resource, and the model is
recorded as a serialized JSON file.

4. CONCLUSIONS

This paper describes the DPMine language concept and its implementation as the DPMine/C library.
The library is integrated with the VI Mine modeling system by means of plug-ins.

The key task to be fulfilled is the development of new types of blocks for supporting a larger number of
process mining algorithms. The VI Mine tools should be improved for creating and analyzing DPMine
models and traditional models used in process mining. It is necessary to carry out the work to support vec-
toring complex algorithm computations. Finally, there is the distinct task of integrating VI Mine with cur-
rent process mining solutions, such as ProM.

ACKNOWLEDGMENTS

This work is supported by the Basic Research Program at the National Research University Higher
School of Economics (2014).

REFERENCES

1. Manyika, J., Chui, M., Brown, B., et al., Big Data: The Next Frontier for Innovation, Competition, and Produc-
tivity, 2011.

2. Accorsi, R., Damiani, E., and van der Aalst, W., Unleashing operational process mining (Dagstuhl Seminar 13481),
Dagstuhl Rep., 2014, vol. 3, no. 11, pp. 154—192.

3. van der Aalst, W.M.P., Process Mining— Discovery, Conformance and Enhancement of Business Processes,
Springer, 2011, pp. [-XVI; 1—-352.

4. 1EEE Task Force on Process Mining: Process Mining Manifesto, Lect. Notes Bus. Inf. Process., 2011, vol. 99,
pp. 169—194.

5. Mitsyuk, A., Kalenkova, A., Shershakov, S., and van der Aalst, W., Using process mining for the analysis of an e-
trade system: A case study, Bus. Inf., 2014, vol. 3.

6. Rubin, V., Lomazova, 1., and van der Aalst, W.M., Agile development with software process mining, ICSSP, 2014.
Nanjing.

7. Rubin, V., Mitsyuk, A.A., Lomazova, I.A., and van der Aalst, W.M.P., Process mining can be applied to soft-
ware too!, Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, New York: ACM, 2014.

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 50 No.7 2016

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

DPMINE GRAPHICAL LANGUAGE 485

. Mitsyuk, A.A. and Shugurov, I.S., On process model synthesis based on event logs with noise, Model. Anal. Inf.

Sist., 2014, vol. 21, no. 4, pp. 181—198.

Shugurov, I. and Mitsyuk, A.A., Generation of a set of event logs with noise, Proceedings of the Sth Spring/Sum-
mer Young Researchers Colloquium on Software Engineering, SYRCoSE 2014, ISP RAS, 2014.

Object Management Group (OMG), Business Process Model and Notation (BPMN), Version 2.0, 2011.

Alves, A., Arkin, A., Askary, S., et al., Web Services Business Process Execution Language Version 2.0 (OASIS Stan-
dard), WS-BPEL TC OASIS, 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

Van der Aalst, W.M.P. and ter Hofstede, A.H.M., YAWL.: Yet another workflow language, Inf. Syst., 2005, vol.
30, no. 4, pp. 245-275.

Shershakov, S., DPMine: Modeling and process mining tool, Proceedings of the 7th Spring/Summer Young
Researchers Colloquium on Software Engineering. SYRCoSE 2013, ISP RAS, 2013.

Shershakov, S., DPMine/P: Modeling and process mining language and ProM plug-ins, Proceedings of the 9th
Central & Eastern European Software Engineering Conference in Russia, New York, 2013.

Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., and van der Aalst, W.M.P., ProM 6: The Process Mining
Toolkit, CEUR Workshop Proc., 2010, vol. 615, pp. 34—39.

Shershakov, S., DPMine/C: C++ library and graphical frontend for DPMine workflow language, Proc. §th
Spring/Summer Young Researchers’ Colloquium on Software Engineering, SYRCoSE 2014, ISP RAS, 2014,
pp. 96—101.

Kim, P., Bulanov, O., and Shershakov, S., Component-based VI Mine/C framework: Not only modelling, Pro-
ceedings of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering, SYRCoSE 2014, ISP
RAS, 2014, pp. 102—107.

Shershakov, S.A., VT Mine framework as applied to process mining modeling, Int. J. Comput. Commun. Eng. (in
press).

Giinther, C.W. and van der Aalst, W.M.P., Fuzzy mining: Adaptive process simplification based on multi-per-
spective metrics, Proceedings of the 5th International Conference on Business Process Management, BPM’07, Ber-
lin, Heidelberg, 2007, pp. 328—343.

http://www.sqlite.org/.

Translated by S. Kuznetsov

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol.50 No.7 2016

		2017-01-17T14:27:33+0300
	Preflight Ticket Signature

