

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ National Research University Higher School of Economics Perm, Russian Federation

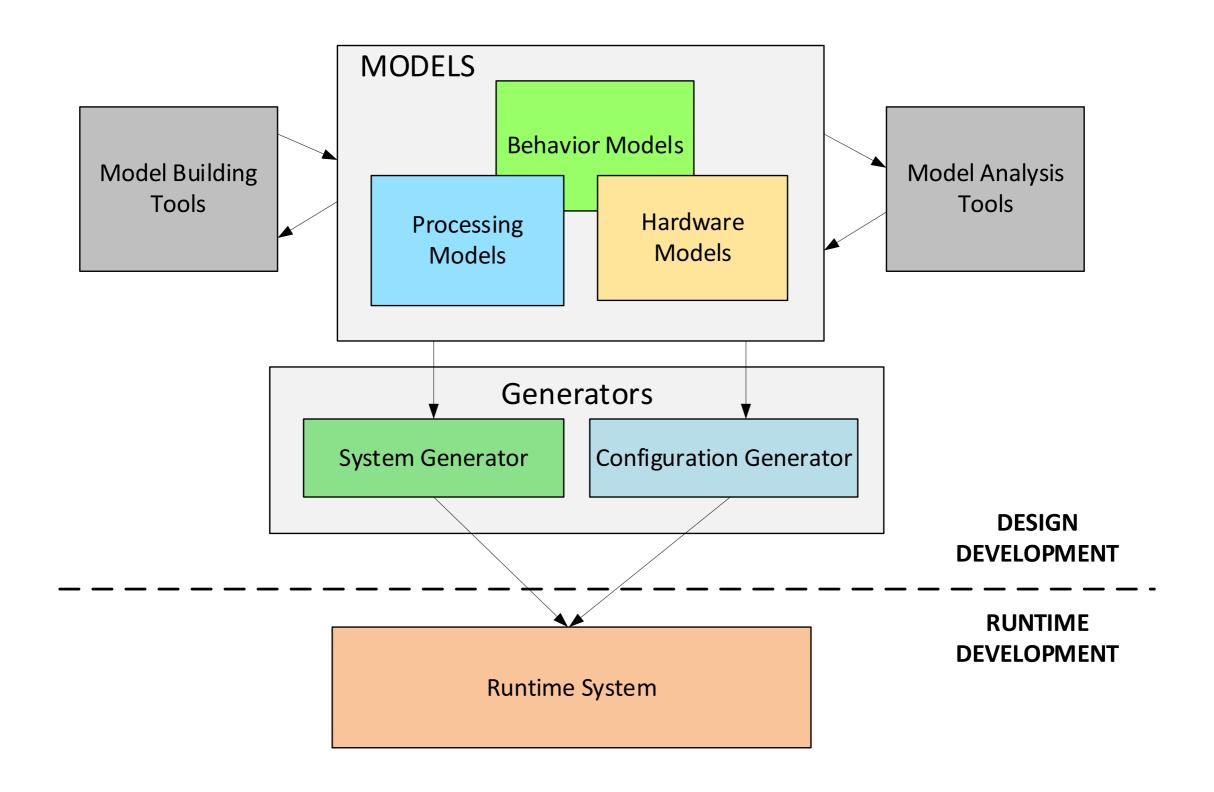
HP-GRAPH: DEFINITION AND APPROACHES TO OPTIMIZING ALGORITHMS FOR GRAPHS

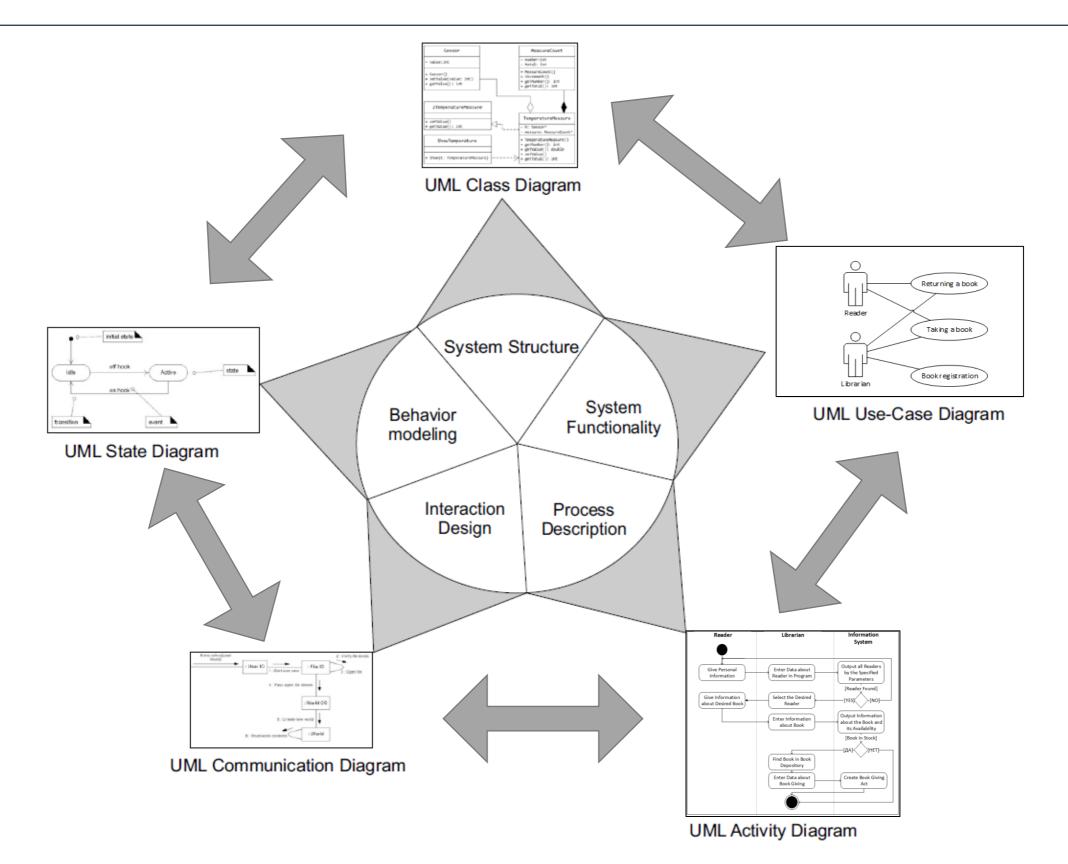
Nikolai M. Suvorov

Lyudmila N. Lyadova

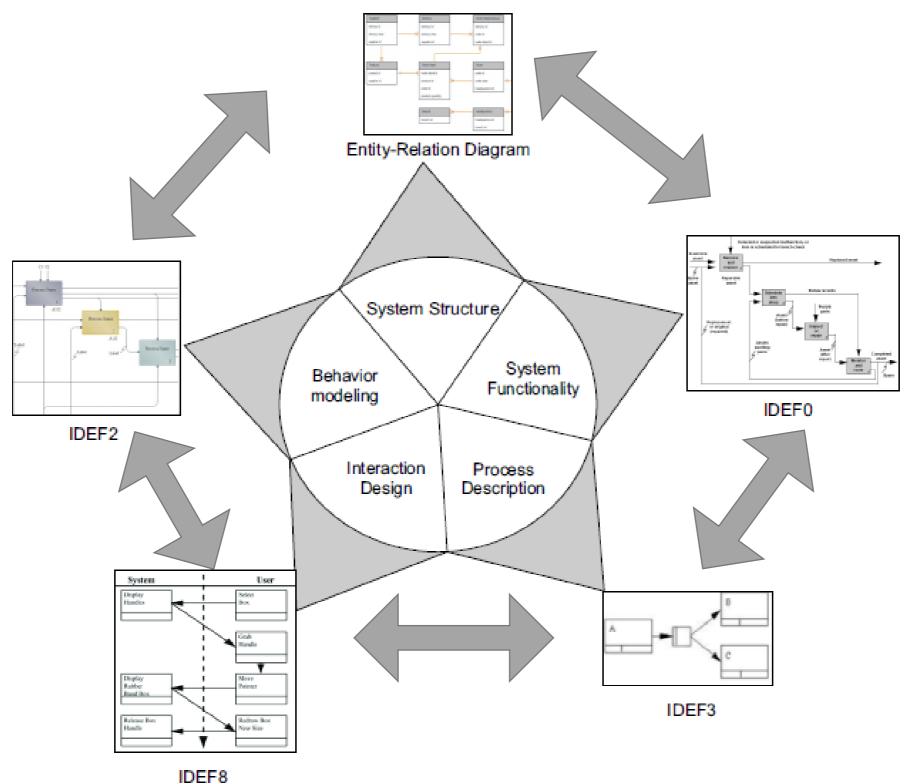
ITA, 2020

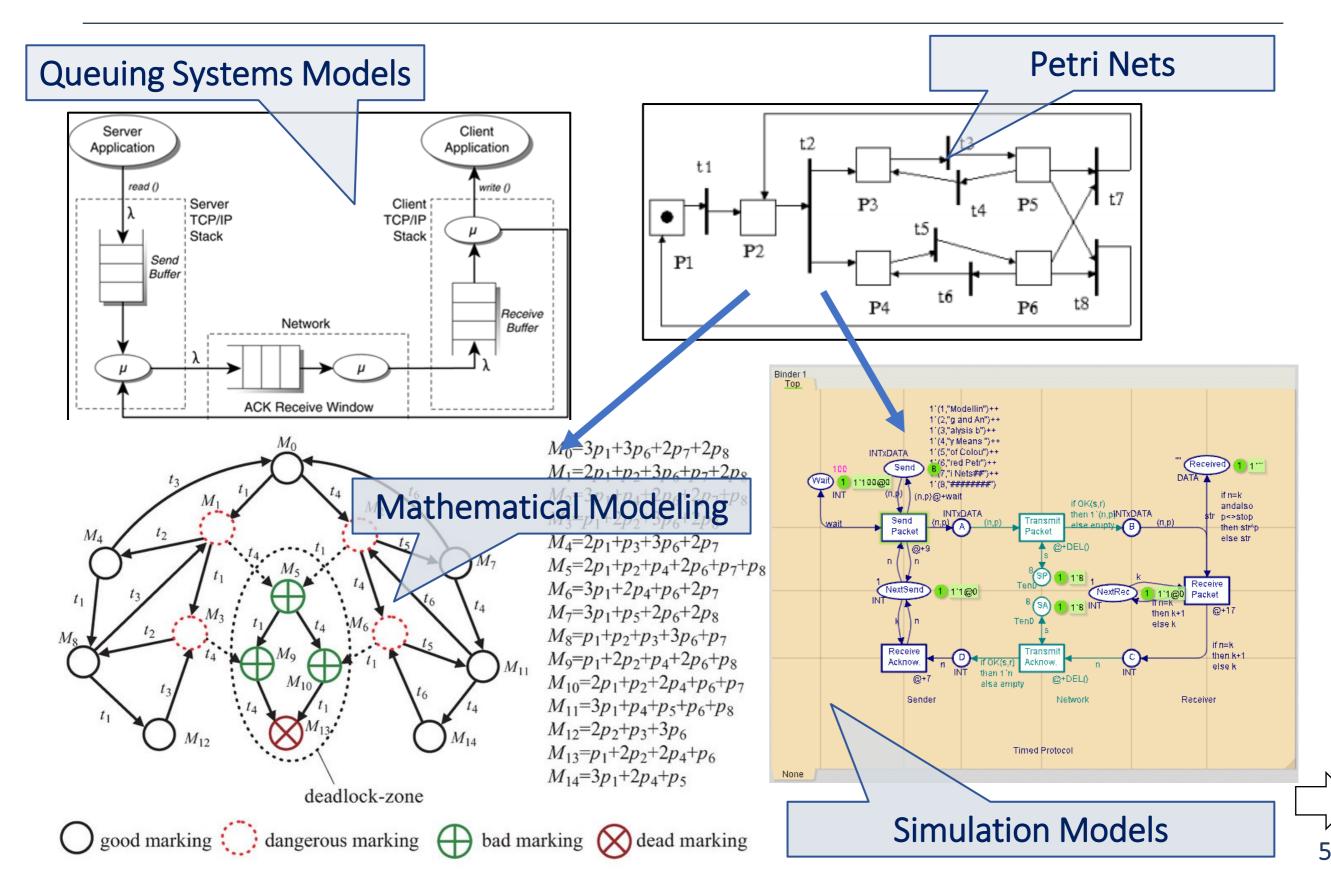
RESEARCH RELEVANCE: MULTI-MODELING APPROACH

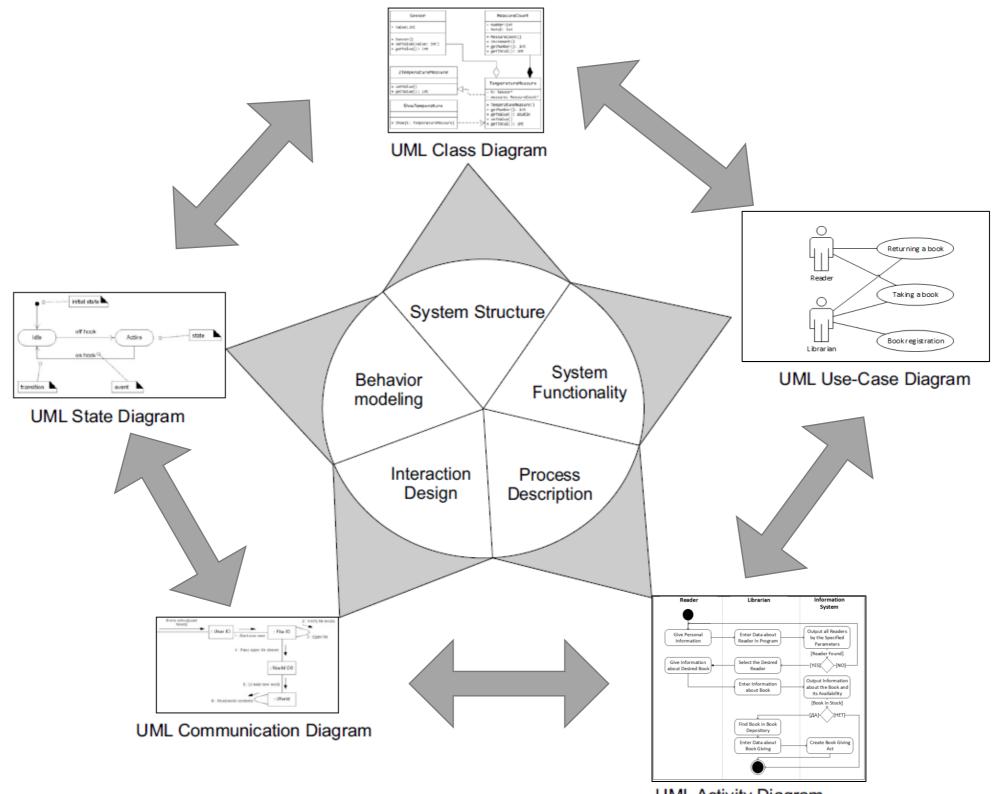




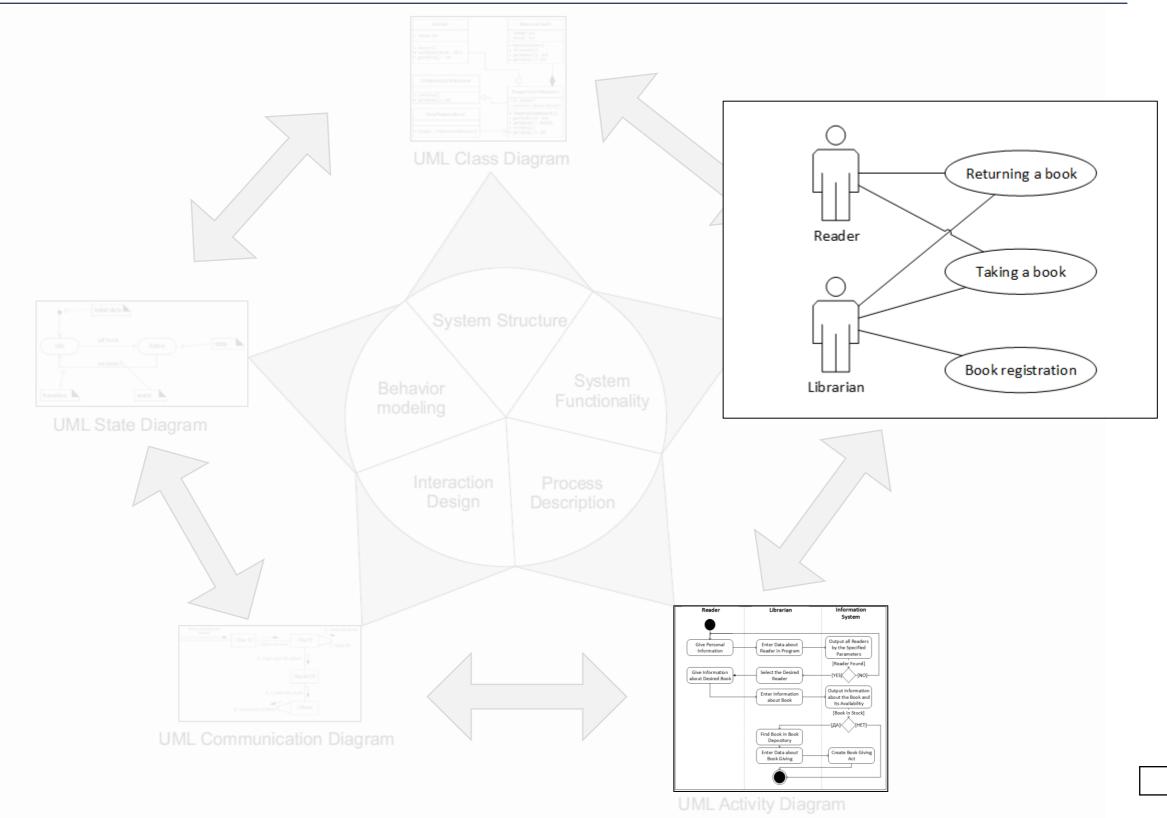
\ر 3

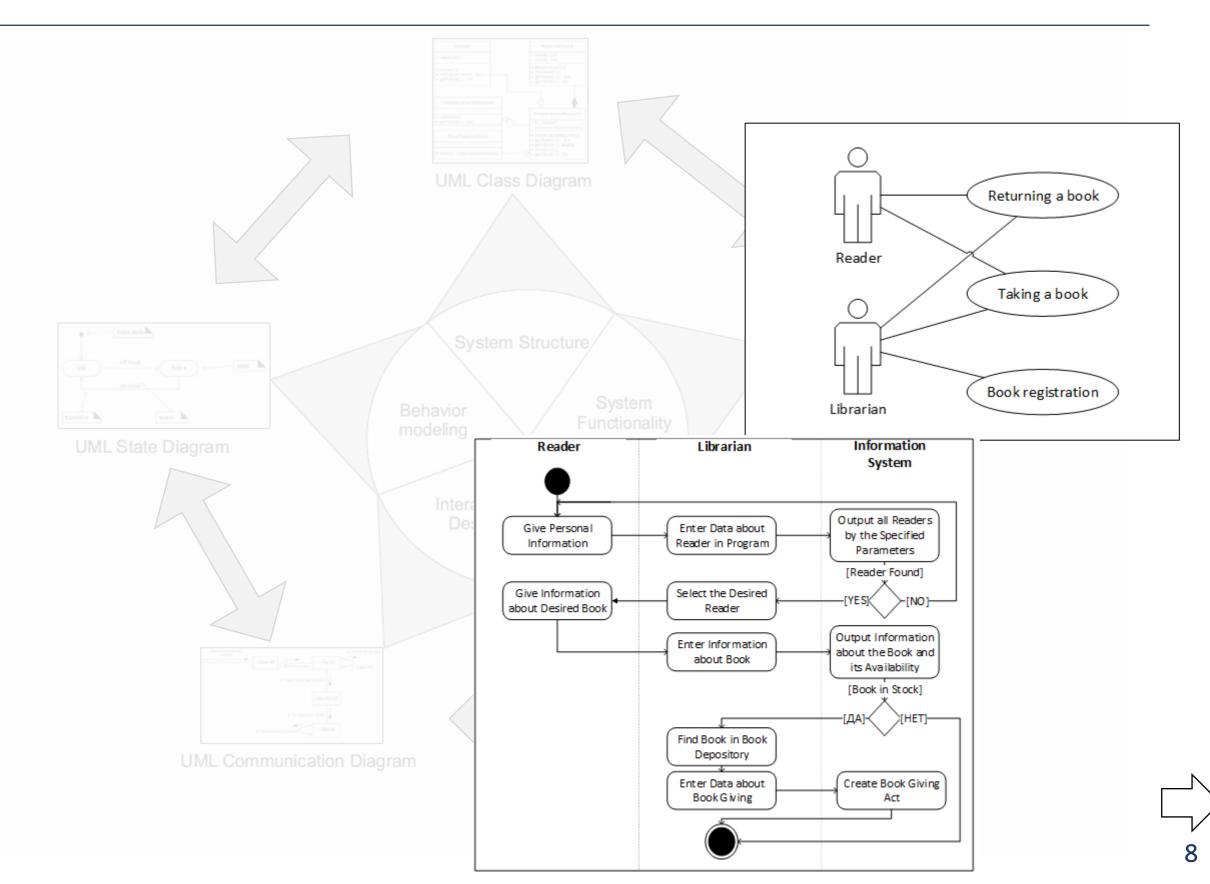


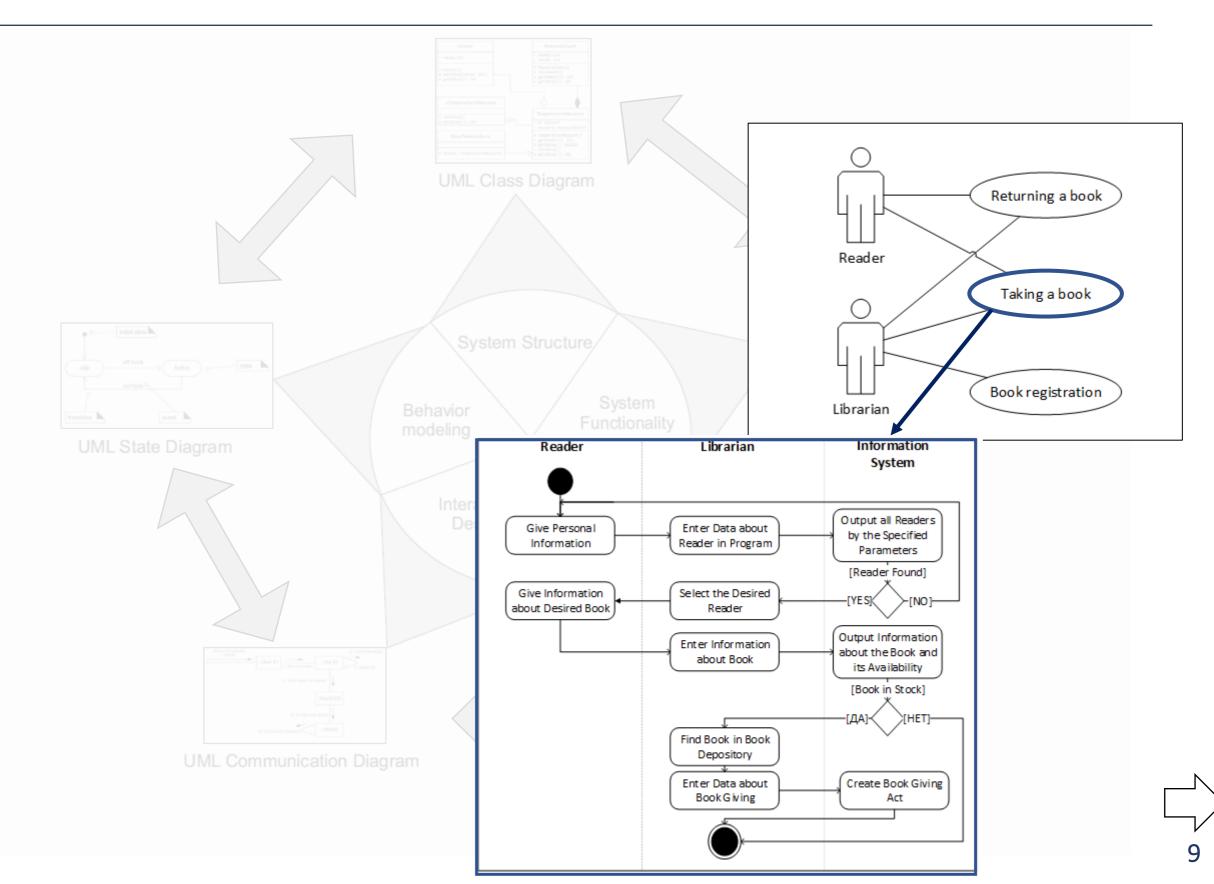


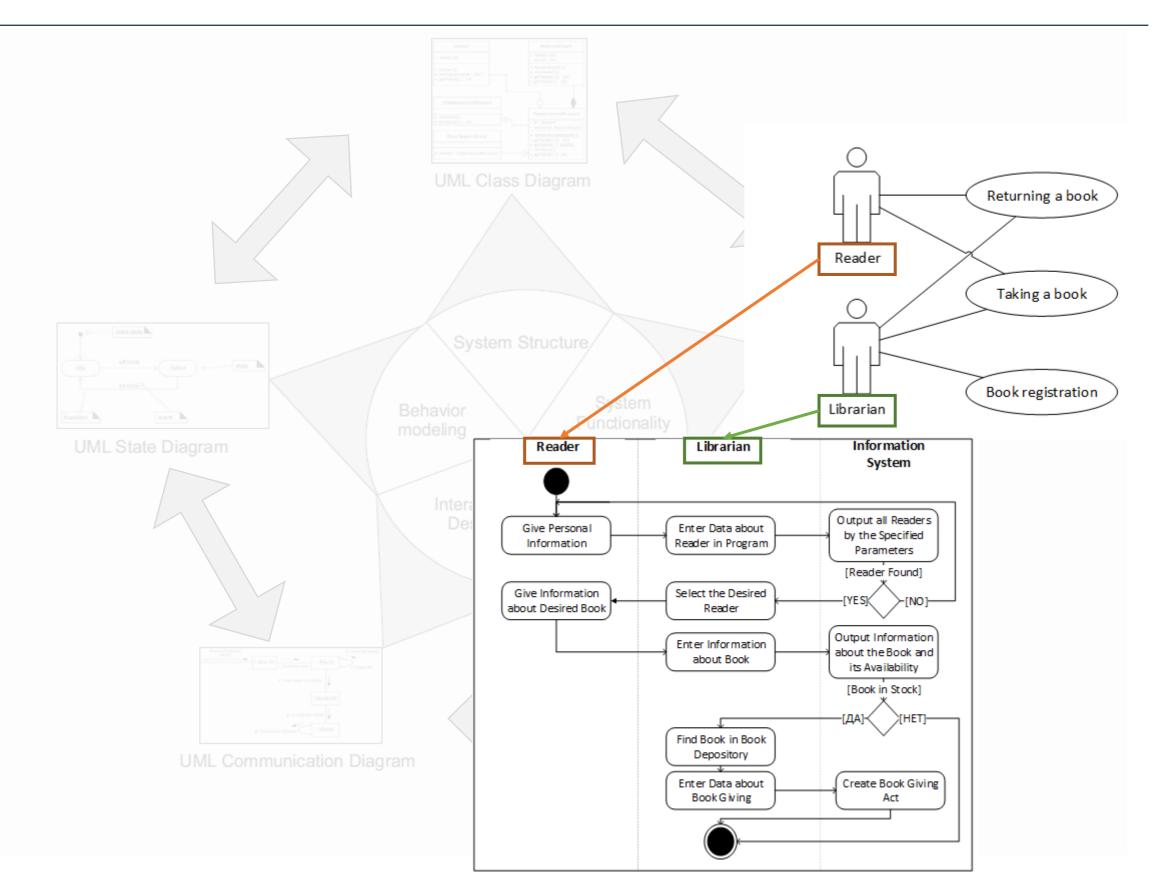


UML Activity Diagram

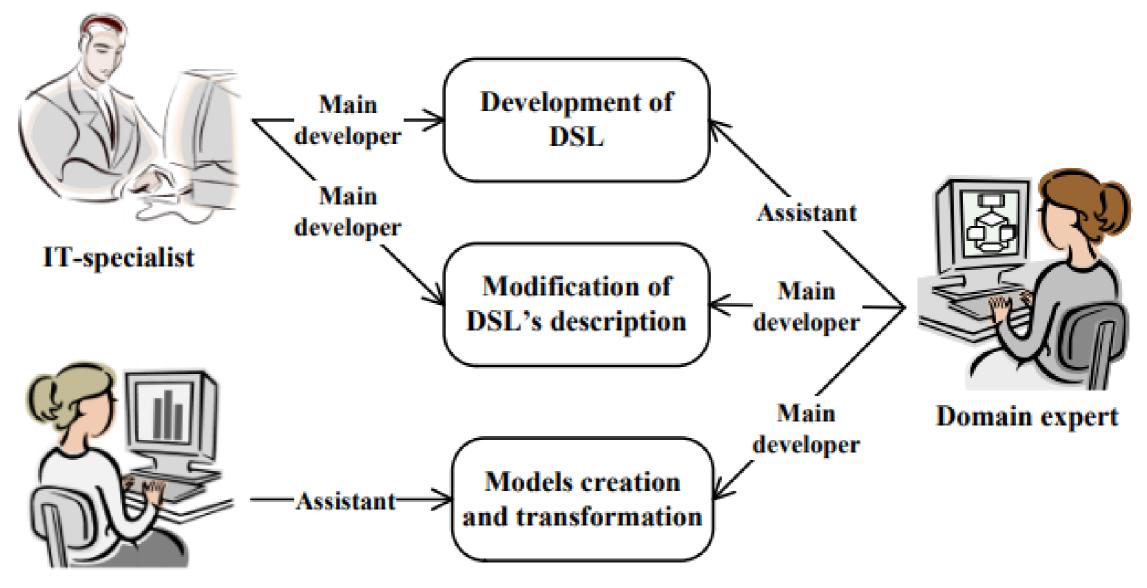








RESEARCH RELEVANCE: LANGUAGE FOCUSED APPROACH



End-user

--/ 11

RESEARCH RELEVANCE: RELATED WORKS

Graph model should:

Allow us to *formalize the description of all elements*, included in visual languages

Allow us to *implement* general modeling principles

Provide a possibility to *implement transformations* of various types of models Optimize the algorithms that should be implemented for modeling and solving tasks with models

RESEARCH PURPOSE AND TASKS

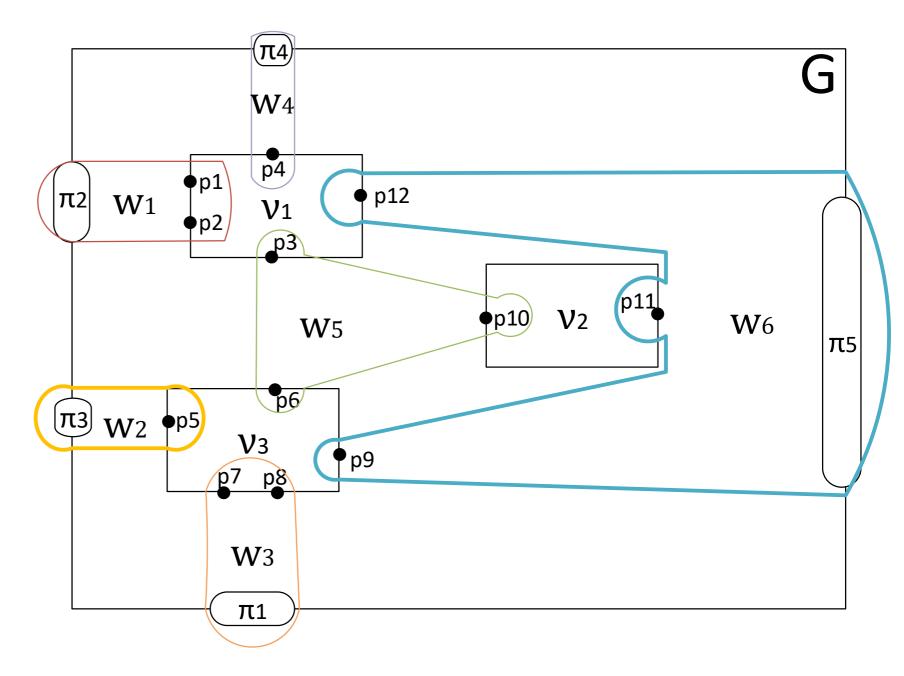
Purpose:

Defining a *new graph formalism* that can be used as a basis for a DSM platform development, providing a possibility to perform multi-level and multi-aspect modeling.

Tasks:

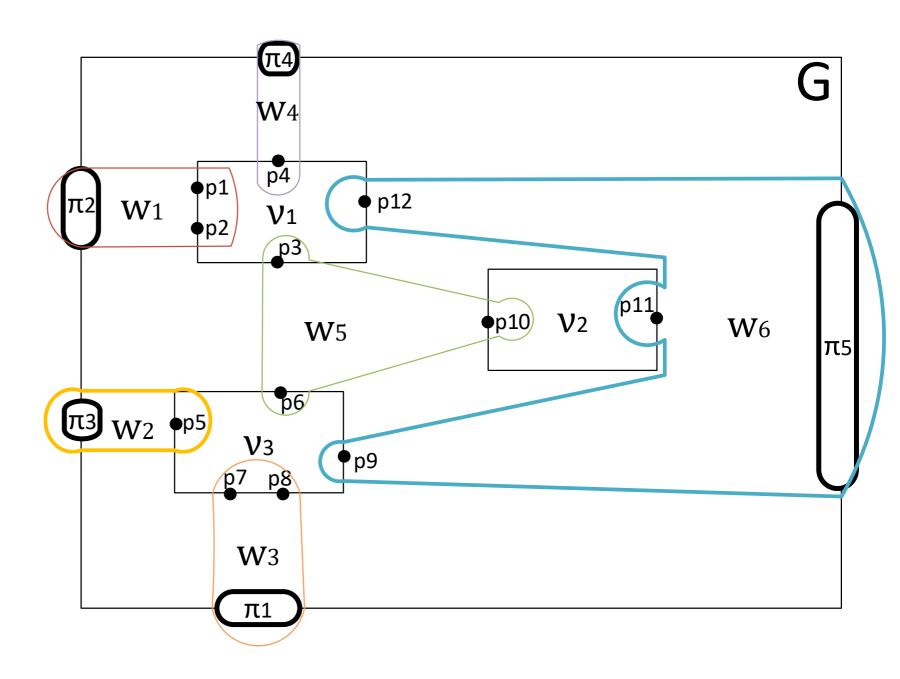
- Analysis of different types of graphs to determine how well they meet the mentioned requirements.
- Development of a new graph formalism and evaluating and comparing it with existing ones.
- Development of algorithms for the new graph formalism.
- Development of a visual editor object model.
- Development of a program, demonstrating the practical significance of the selected graph formalism.

- HP-graph is an ordered triple G = (P, V, W):
- $P = \{\pi_1, \dots, \pi_n\}$ is a set of external poles of the graph.
- V = {v₁,...,v_m} is a nonempty set of mutually disjoint vertices, consisting of internal poles.
- W = {w₁,...,w_l} is a set of hyperedges, consisting of poles.
- Pol is a set of all poles of the graph



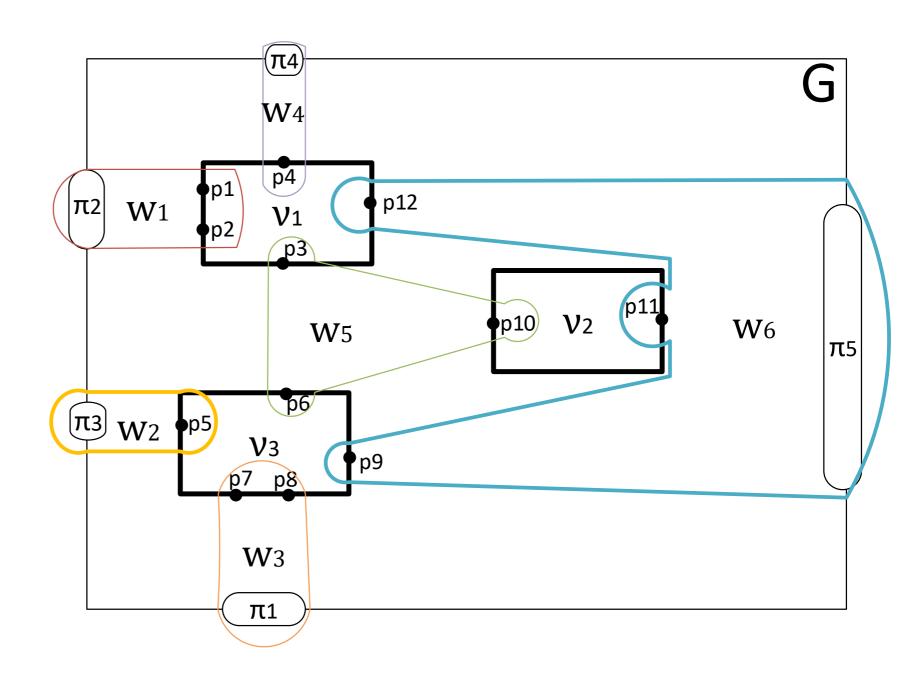
HP-graph is an ordered triple G = (P, V, W):

- *P* = {π₁,...,π_n} is a set of external poles of the graph.
- V = {v₁,...,v_m} is a nonempty set of mutually disjoint vertices, consisting of internal poles.
- W = {w₁,...,w_l} is a set of hyperedges, consisting of poles.
- Pol is a set of all poles of the graph



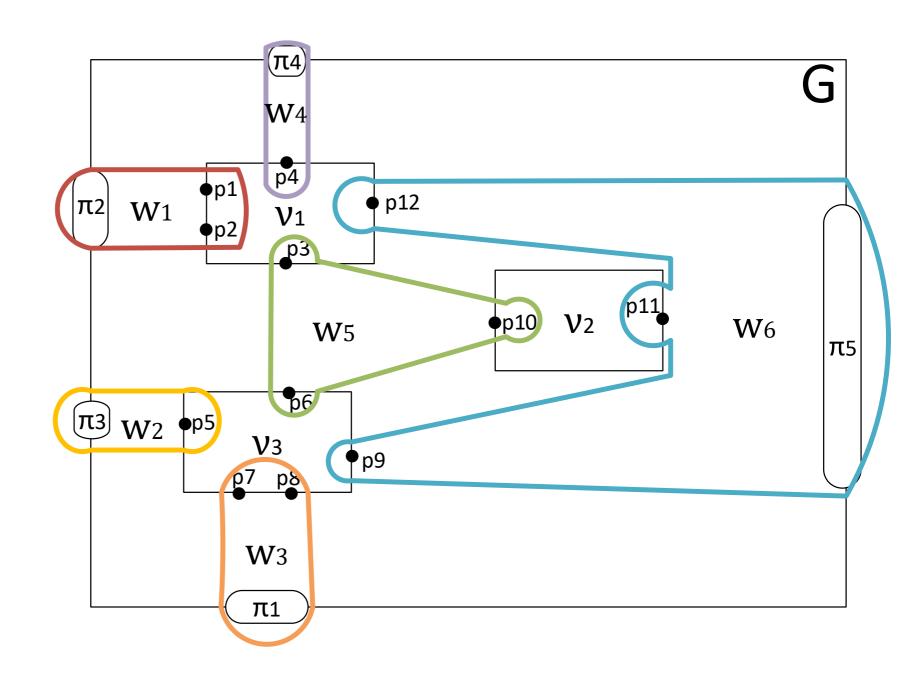
HP-graph is an ordered triple G = (P, V, W):

- $P = \{\pi_1, \dots, \pi_n\}$ is a set of external poles of the graph.
- V = {v₁,...,v_m} is a nonempty set of mutually disjoint vertices, consisting of internal poles.
- W = {w₁,...,w_l} is a set of hyperedges, consisting of poles.
- Pol is a set of all poles of the graph



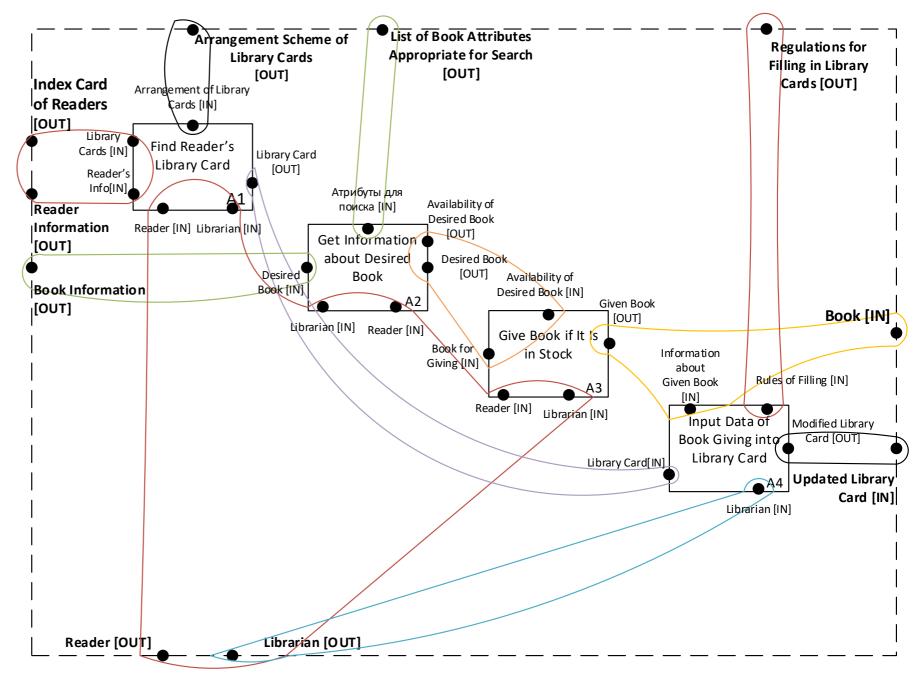
HP-graph is an ordered triple G = (P, V, W):

- *P* = {π₁,...,π_n} is a set of external poles of the graph.
- V = {v₁,...,v_m} is a nonempty set of mutually disjoint vertices, consisting of internal poles.
- W = {w₁,...,w_l} is a set of hyperedges, consisting of poles.
- Pol is a set of all poles of the graph



GRAPH MODEL DEFINITION: INPUT AND OUTPUT POLES

- All the *poles* can be input or output (or both)
- Each vertex of the graph v ∈ V is also represented by a set of input (I(v)) and output (O(v)) poles
- Each edge must contain at least one input pole and one output pole

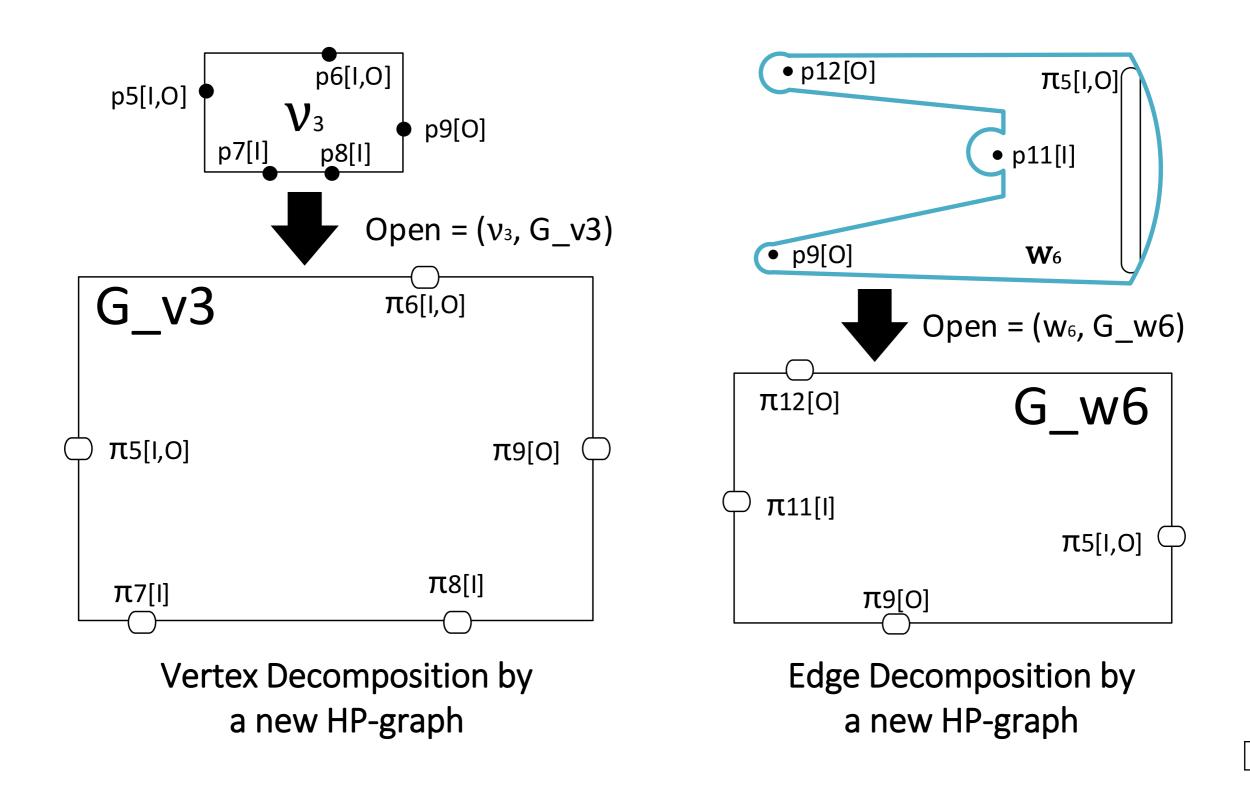


Business Process of Giving Book

GRAPH MODEL DEFINITION: BASIC OPERATIONS OF GRAPH EDITOR

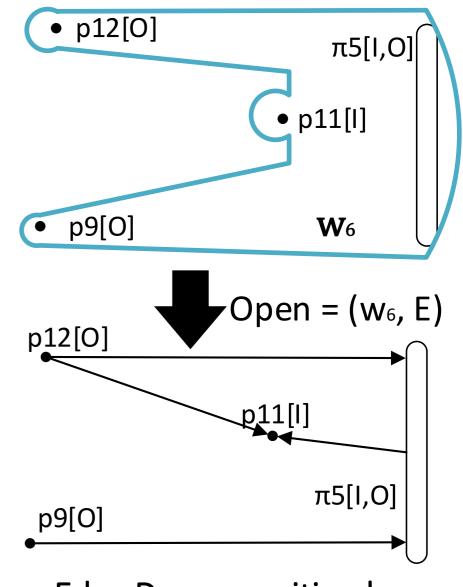
Addition Operations	Removal Operations
 v + p1 – Addition of the inner pole to the vertex 	 v - p1 - Removal of the inner pole from the node
2. G + v – Addition of the vertex to the graph	 G – v – Removal of the node from the graph
3. $G + w - Addition of the edge to the graph$	
	3. G – w – Removal of the edge from the
4. w + p1 – Addition of the inner pole to the edge	graph
	4. $w - p1 - Removal of the inner pole from the$
5. w + p2 – Addition of the outer pole to the edge	edge
	5. w – p2 – Removal of the external pole from
6. G + p2 – Addition of the outer pole to the graph	the edge
	6. G – p2 – Removal of the outer pole from the graph

GRAPH MODEL DEFINITION: DECOMPOSITION BY A NEW GRAPH



GRAPH MODEL DEFINITION: DECOMPOSITION BY A NEW GRAPH

- Every edge can be opened by ordinary links between poles.
- For every edge $w \in W$, a set of links is defined: $E_w = \{e_1, \dots, e_n\} \subset I(w) \times O(w)$, where every link is a pair (p, r) provided that $p \in I(w)$, $r \in O(w)$.
- As E_w ⊂ I(w) × O(w), some input and output poles can be unconnected such as poles p9[O] and p11[/]



Edge Decomposition by ordinary links

COMPARING GRAPH MODELS

Graph model	Representation in the HP-graph $G' = (P', V, W)$
Oriented Graph	$V = P' = V'$, where $\forall v' \in V'$: $[v' = 1]$
G = (V, E)	$E = W'$, where $\forall w' \in W'$: $[w' = 2]$)
Hypergraph $G = (X, E)$	$X = P' = V'$, where $\forall v' \in V'$: $[v' = 1]$ E = W'
Hi-graph	${x \mid x \in X \& x = 1} = P' = V', \text{ where } \forall v' \in V': [v' = 1]$
G = (X, E)	$E \cup {x \mid x \in X \& x > 1} = W'$
Metagraph	$V = P' = V'$, where $\forall v' \in V'$: $[v' = 1]$
G = (V, MV, E)	$E \cup MV = W'$
P-graph G = (<i>P</i> , <i>V</i> , <i>W</i>)	$P = P'$ $V = V'$ $W = W', \text{ where } \forall w' \in W': [w' = 2]$

EXAMPLES OF USING: ALGORITHMS

- As is seen, the decomposition of edges and vertices is almost equal, therefore, it is possible to define a common opening algorithm for these structures.
- Let us define a set of structures $Str = V \cup W$.
- Hence, str ∈ Str is a structure which can be either a vertex or an edge.
- For every structure *str* several decoding operations can be defined:

 $Open_{str} \subset str \times G_{all}$

Procedure DecomposeStructure

G = new HPGraph();foreach $p \in str$: if $(p \in l(str))$: $l(G) = l(G) \cup p;$ if $(p \in O(str))$: $O(G) = O(G) \cup p;$ $Open_{str} = Open_{str} \cup (str, G)$

EXAMPLES OF USING: ALGORITHMS

Let us define a subgraph of an HP-graph:

A subgraph of the HP graph G = (P, V, W)is an HP-graph G' = (P', V', W) that is part of the graph G and fulfills the condition $Open' \subset Open$.

A subgraph can contain vertices called *incomplete* (partials) whose sets of poles can only be part of the sets of poles of the vertices of the original graph.

Transformation can be divided into 2 parts:

- Removal of a subgraph, isomorphic to a pattern
- Addition of a replacement graph to the original graph

Function DeleteGraph(HostG, G_L)

```
G' = Find\_Isomorphic\_Subgraph(HostG, G_L);

partials = \{\}

foreach w' \in W(G'):

W(HostG) = W(HostG) \setminus \{w'\};

foreach v' \in V(G'):

if (v' \in V(HostG)):

V(HostG) = V(HostG) \setminus \{v'\};

else:

partials = partials \cup \{v'\};

foreach p' \in P(G'):

if (\neg \exists w \in W(HostG)[p' \in w]):

P(HostG) = P(HostG) \setminus p';

return partials;
```

__/ 24

EXAMPLES OF USING: ALGORITHMS

Let us define a subgraph of an HP-graph:

A subgraph of the HP graph G = (P, V, W)is an HP-graph G' = (P', V', W) that is part of the graph G and fulfills the condition $Open' \subset Open$.

A subgraph can contain vertices called *incomplete* (partials) whose sets of poles can only be part of the sets of poles of the vertices of the original graph.

Transformation can be divided into 2 parts:

- Removal of a subgraph, isomorphic to a pattern
- Addition of a replacement graph to the original graph

Procedure AddGraph(HostG, G_R, partials)

```
foreach p \in P(G_R):

if p \notin P(HostG):

P(HostG) = P(HostG) \cup \{p\};

foreach v \in V(G_R):

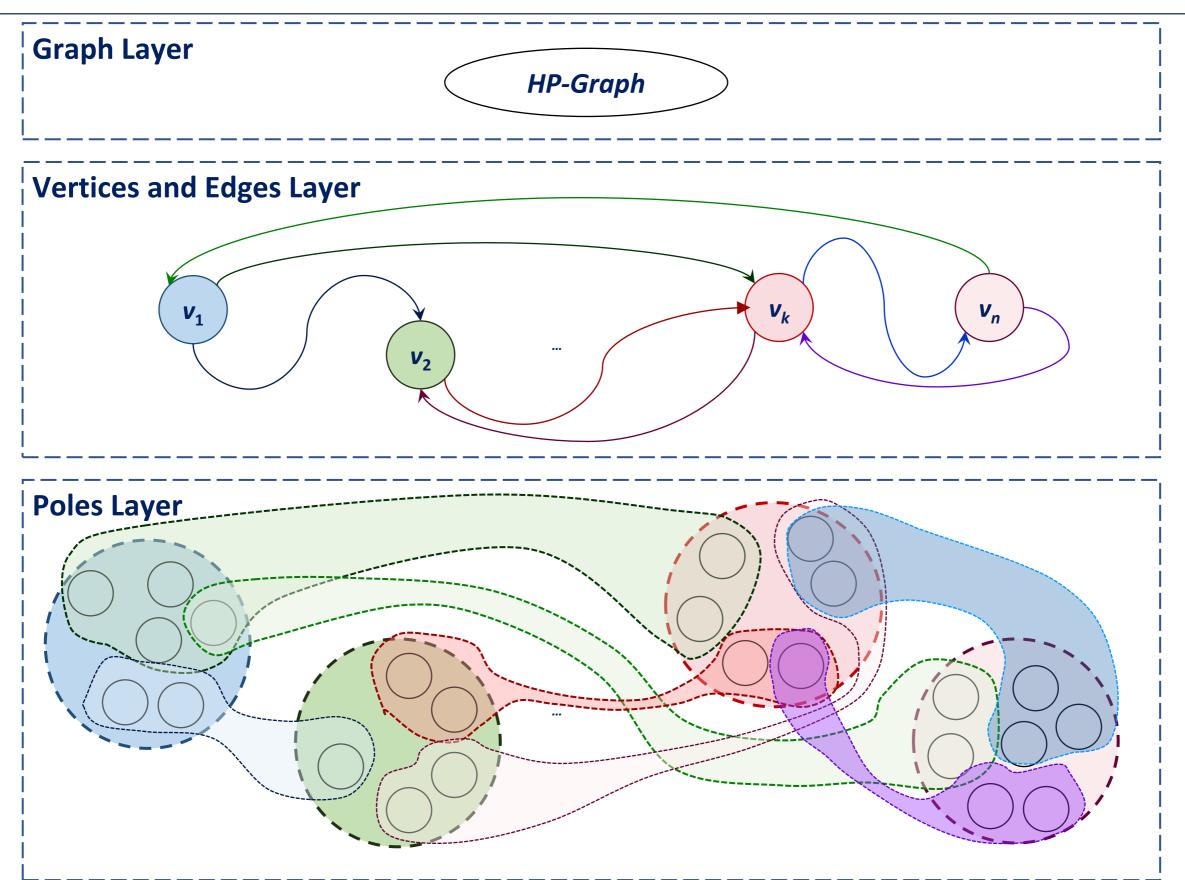
if (v \notin Partials):

V(HostG) = V(HostG) \cup \{v\};

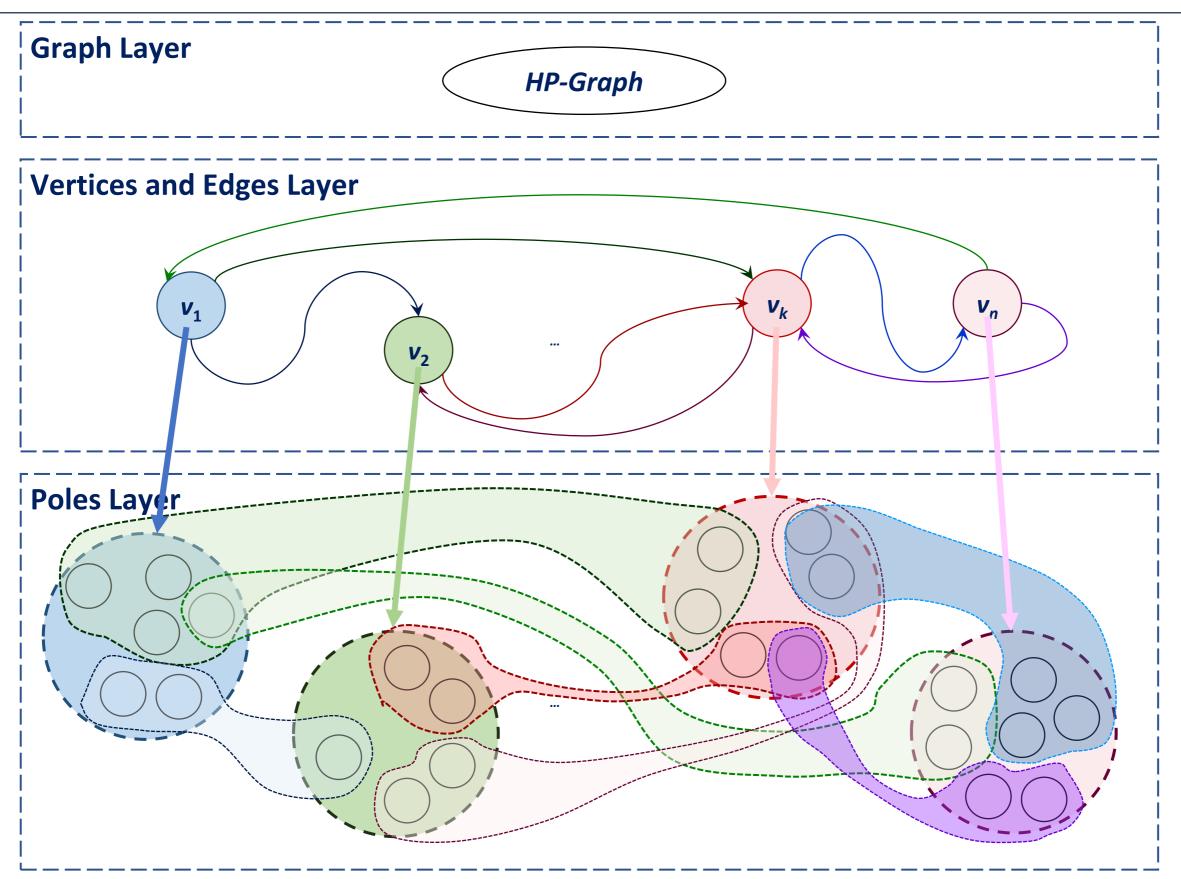
foreach w \in W(G_R):

W(HostG) = W(HostG) \cup \{w\};
```

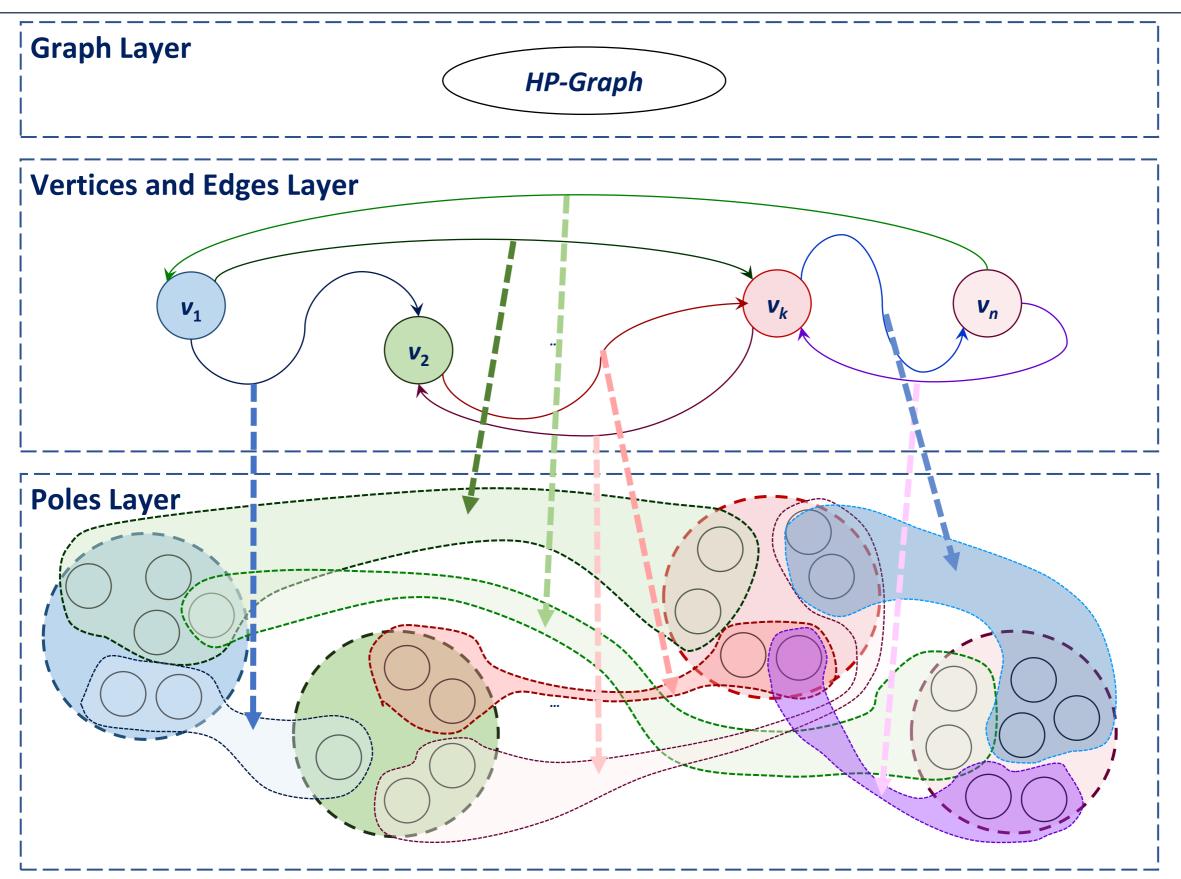

LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS



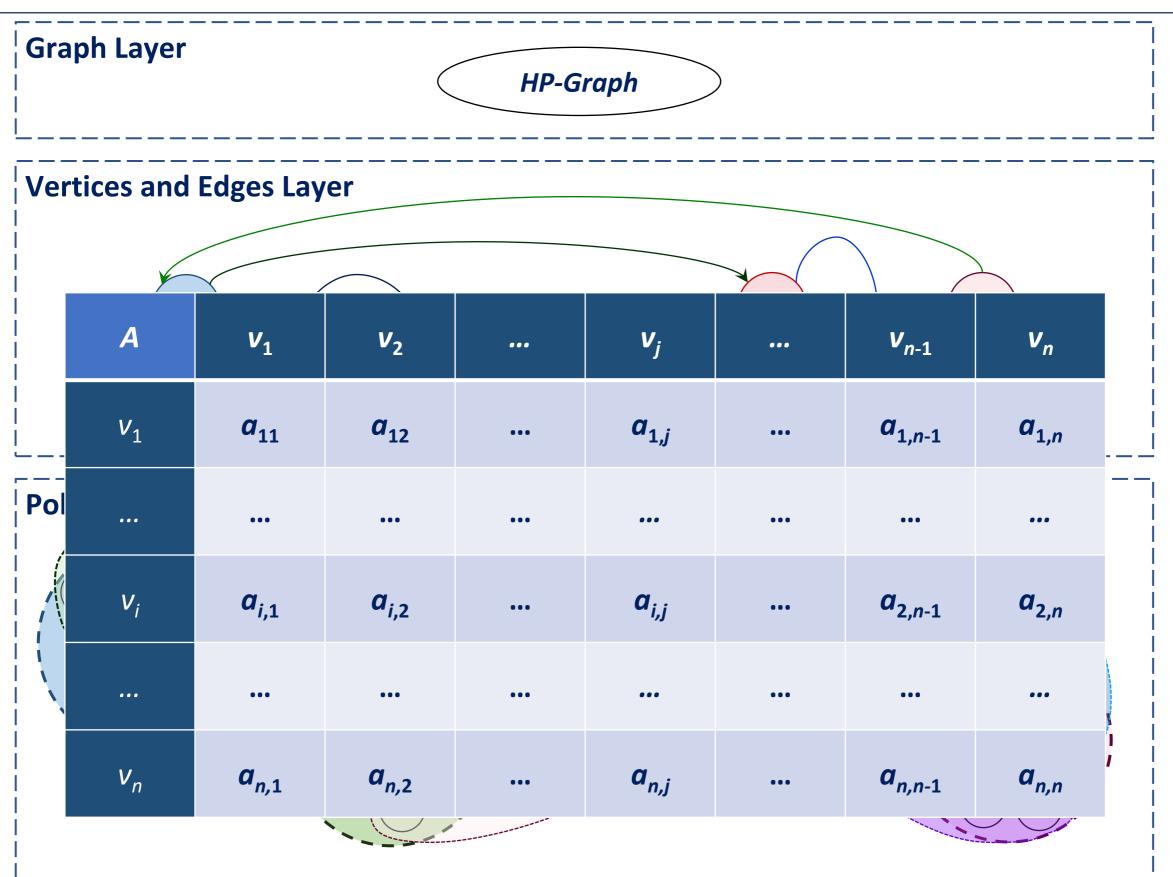
LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS



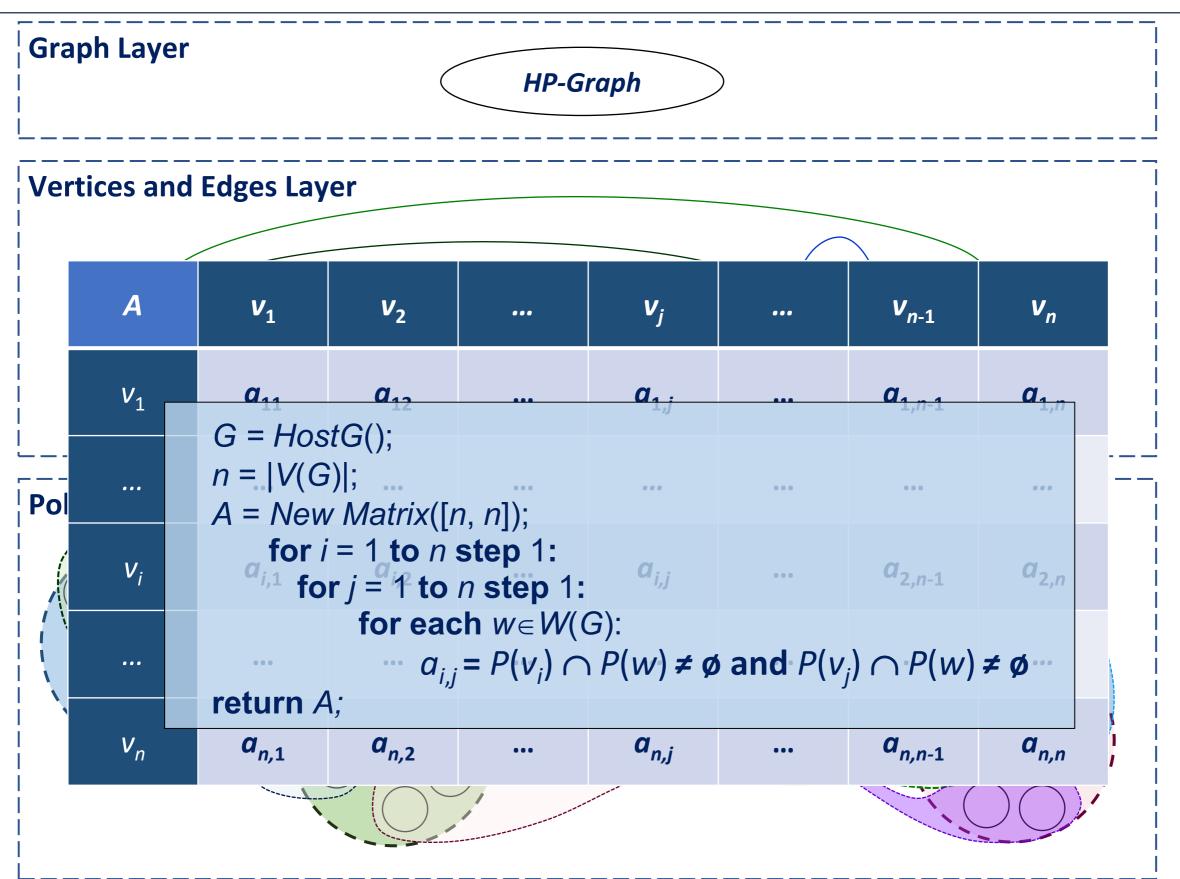
LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS



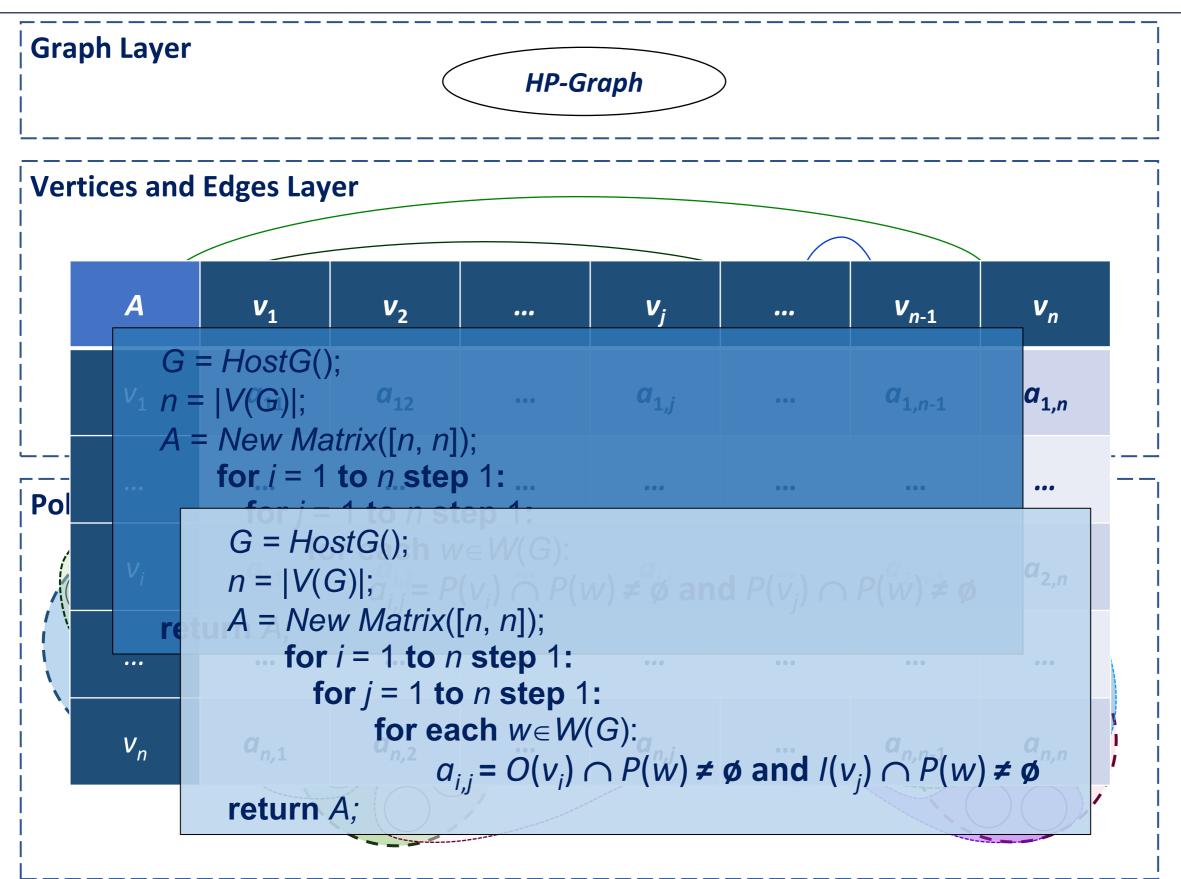
LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS



LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS



LAYER STRUCTURE FOR OPTIMIZING ALGORITHMS

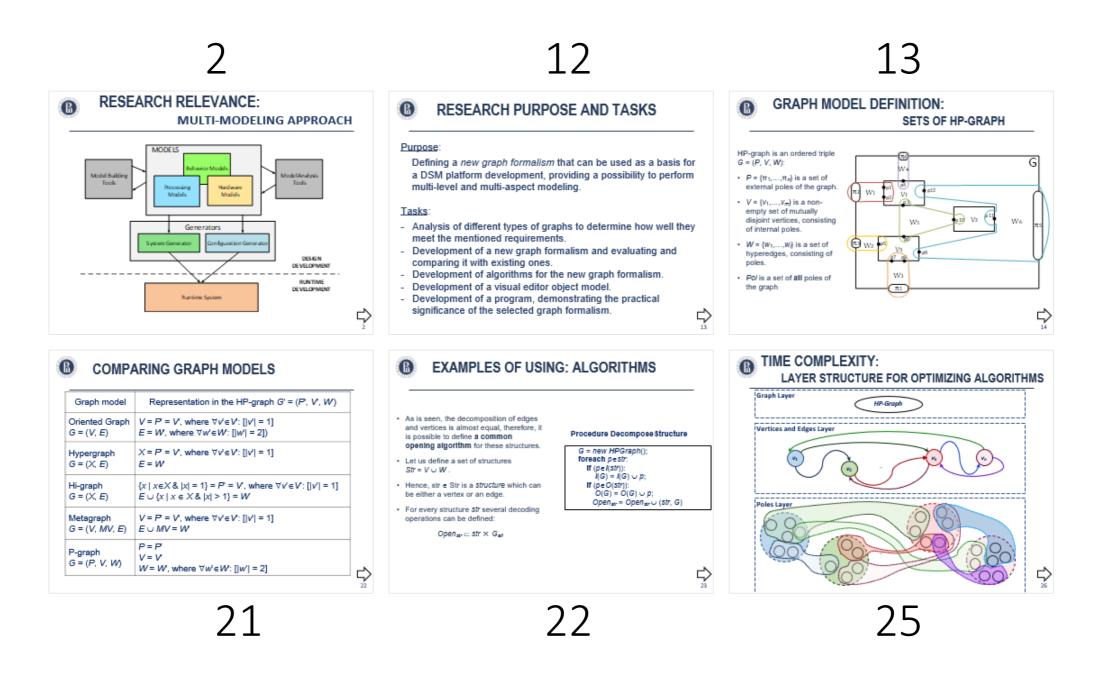


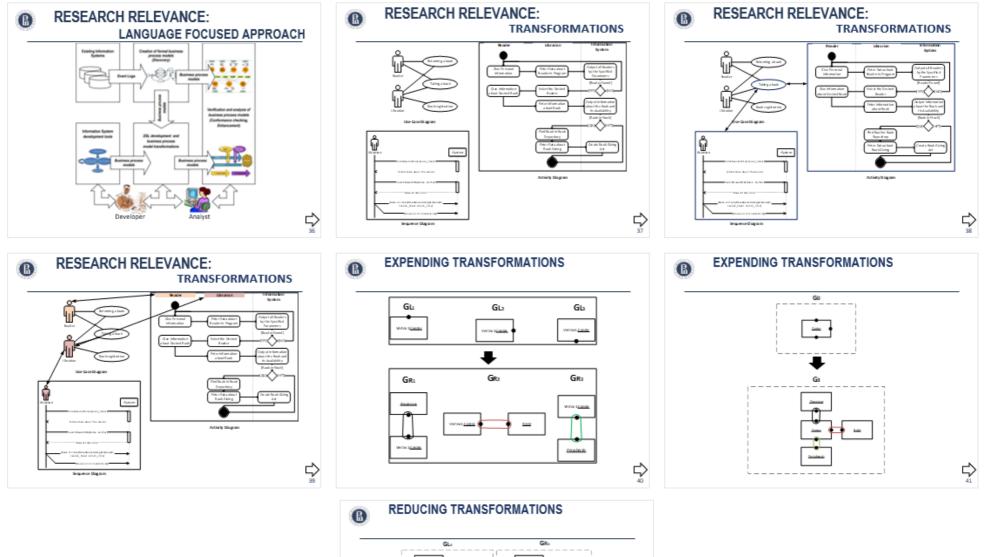
- The definition of the mathematical apparatus underlying the visual model editor was given above.
- Algorithms for decoding vertices and edges, as well as algorithms for performing transformations, were described.
- The HP-graph unites expressive possibilities of various types of graphs, therefore, algorithms that are designed for these types of graphs can also be implemented for HP graphs.
- The time complexity of model transformation algorithms can be reduced.

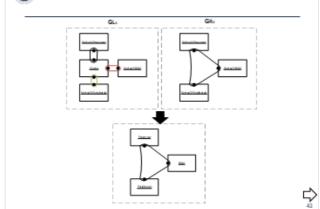
The paper proves that HP-graph allows the creation of a flexible visual model editor based on this graph formalism for a DSM-platform. Representing both vertices and links as sets of poles simplifies the object model of DSM editor and visual model editing algorithms.

THANKS FOR ATTENTION!

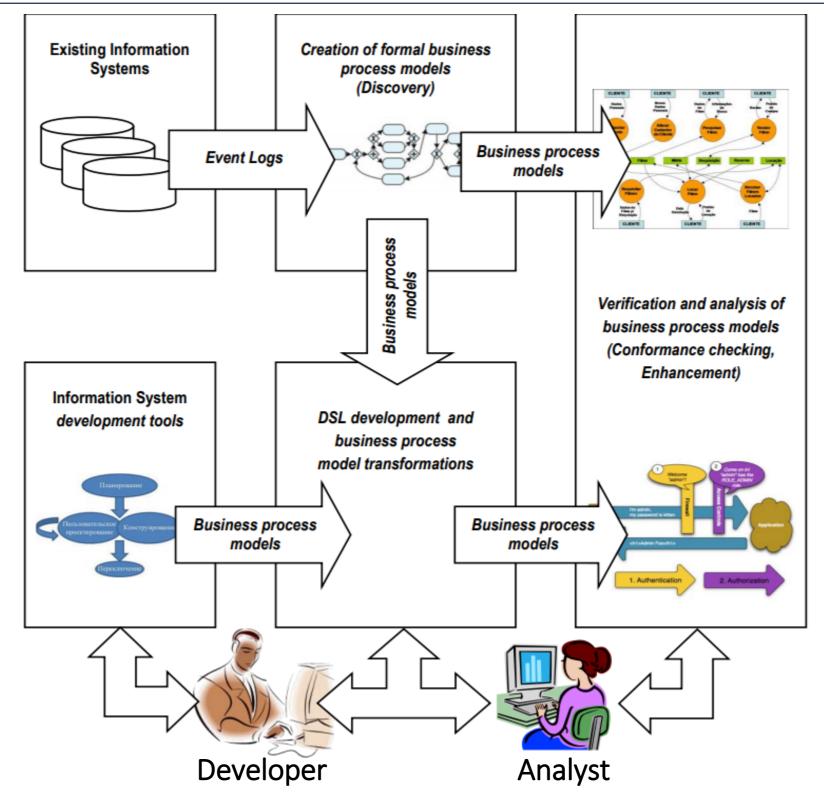
Suvorov Nikolai Mikhailovich E-mail: *SuvorovNM@gmail.com* Lyadova Lyudmila Nickolaevna E-mail: *LNLyadova@gmail.com*

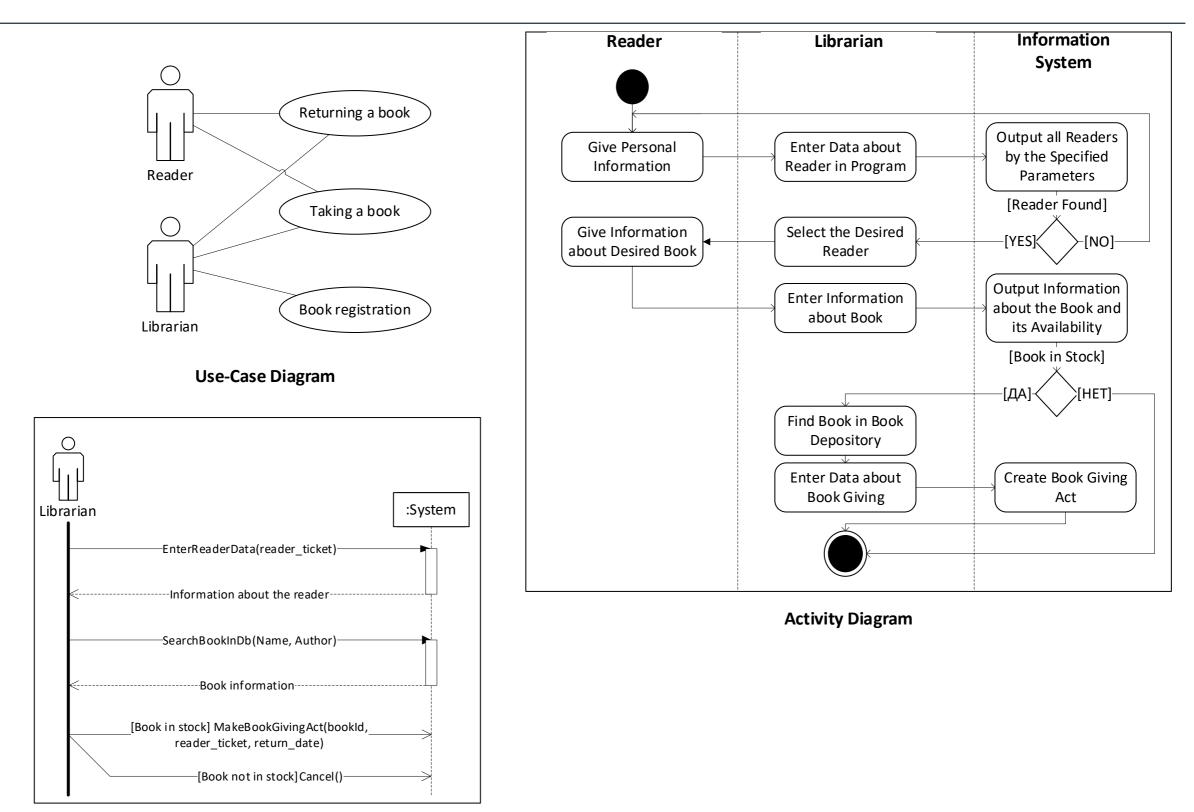




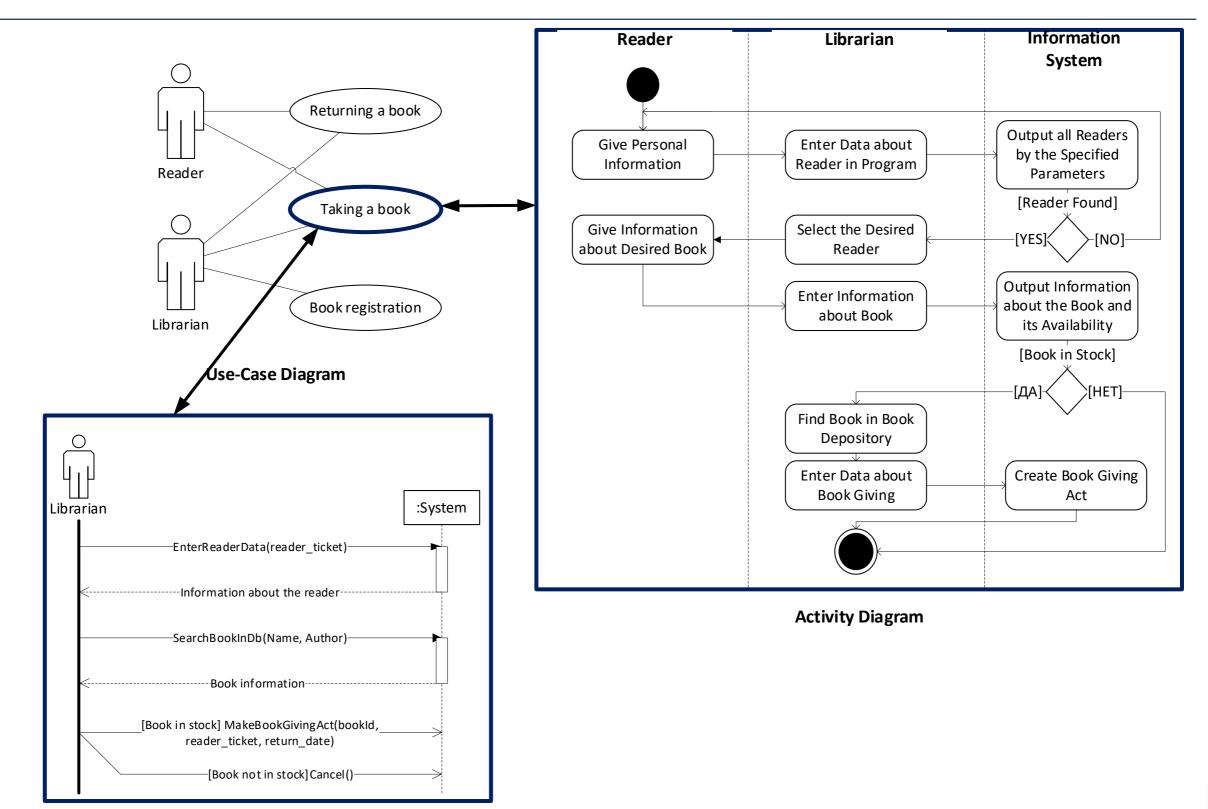


RESEARCH RELEVANCE: LANGUAGE FOCUSED APPROACH

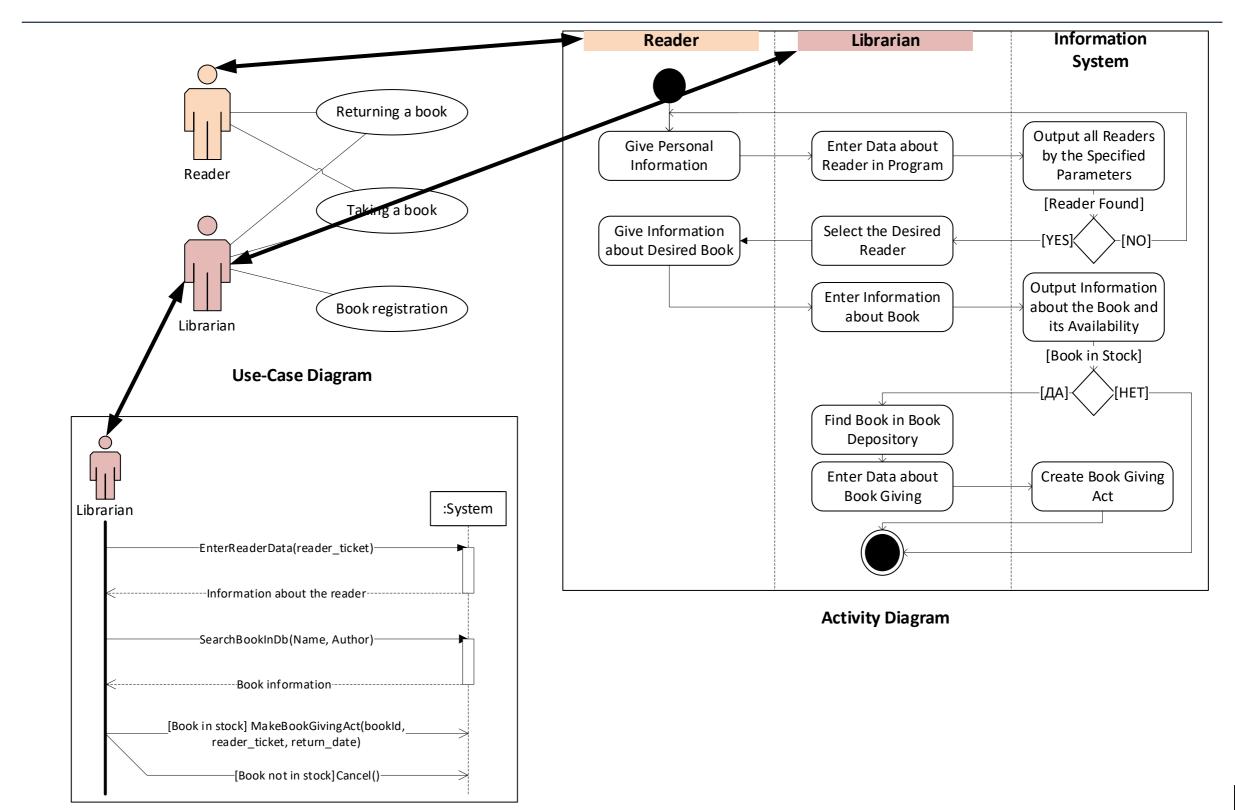




Sequence Diagram

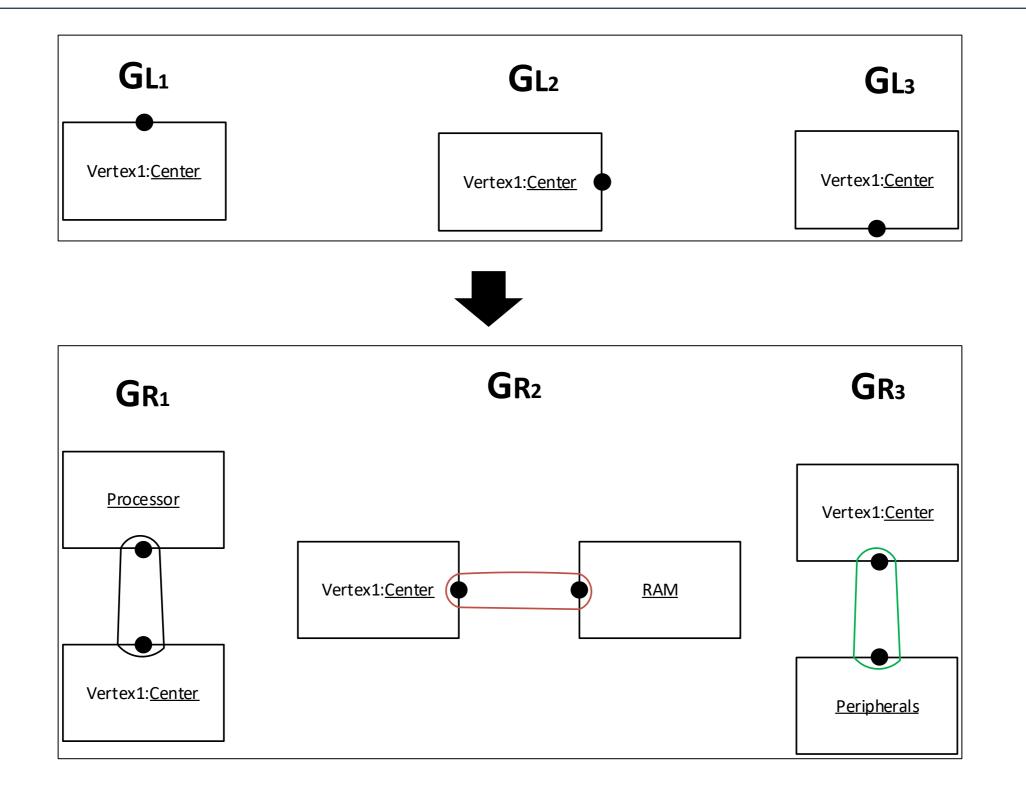


Sequence Diagram

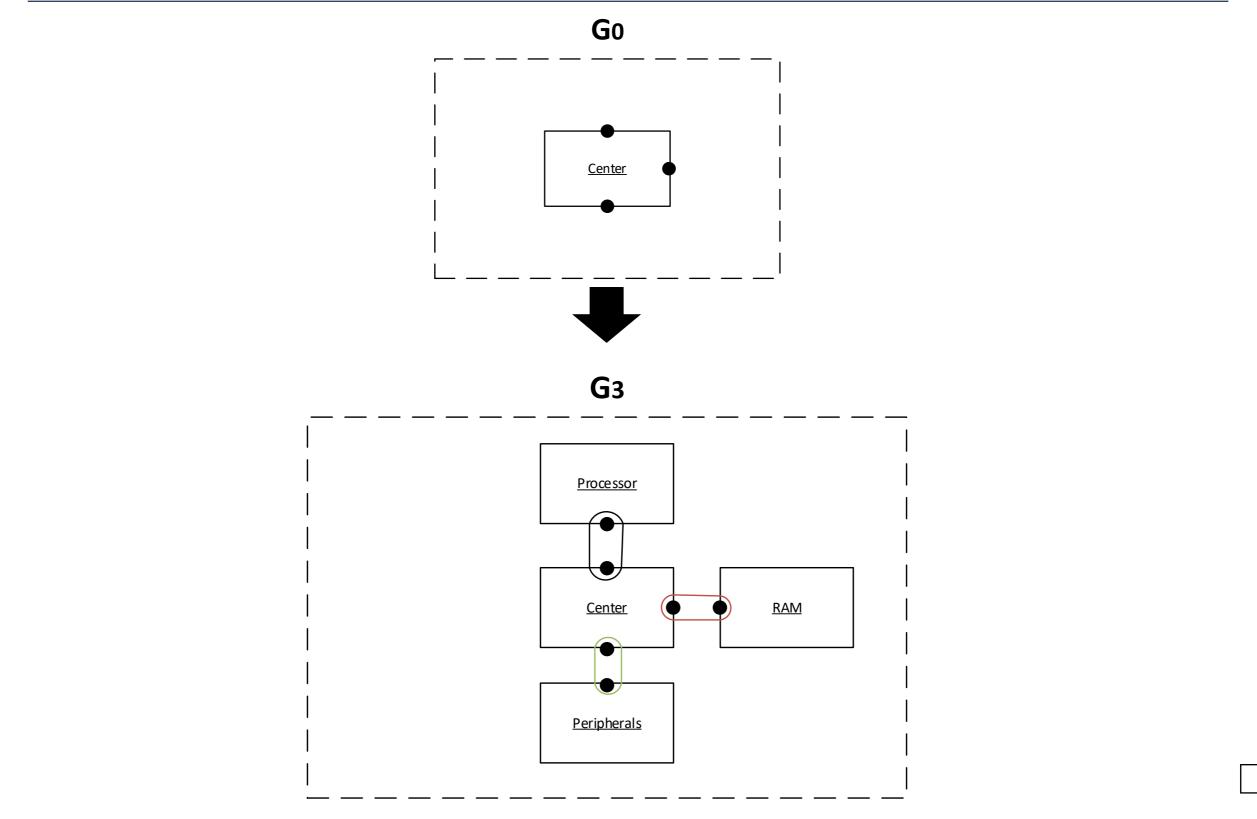


Sequence Diagram

EXPENDING TRANSFORMATIONS



EXPENDING TRANSFORMATIONS



REDUCING TRANSFORMATIONS

