
Uncertainty Estimation via Stochastic Batch
Normalization

Andrei Atanov1, Arsenii Ashukha2, Dmitry Molchanov1,2, Kirill Neklyudov1,2,
and Dmitry Vetrov1,2

1 National Research University Higher School of Economics, Samsung-HSE
Laboratory, Moscow, Russia

andrewatanov@yandex.ru dmolch111@gmail.com, k.necludov@gmail.com
2 Samsung AI Center in Moscow, Moscow, Russia

ars.ashuha@gmail.com, vetrovd@yandex.ru

Abstract. In this work, we investigate Batch Normalization technique
and propose its probabilistic interpretation. We propose a probabilistic
model and show that Batch Normalization maximizes the lower bound
of its marginal log-likelihood. Then, according to the new probabilistic
model, we design an algorithm which acts consistently during train and
test. However, inference becomes computationally inefficient. To reduce
memory and computational cost, we propose Stochastic Batch Normal-
ization – an efficient approximation of proper inference procedure. This
method provides us with a scalable uncertainty estimation technique. We
demonstrate the performance of Stochastic Batch Normalization on pop-
ular architectures (including deep convolutional architectures: VGG-like
and ResNets) for MNIST and CIFAR-10 datasets.

Keywords: Uncertainty estimation · Deep Learning · Batch Normaliza-
tion.

1 Introduction

Deep Neural Networks have demonstrated state-of-the-art performance on many
problems and are successfully integrated in real-life scenarios: semantic segmen-
tation, object detection and scene recognition, to name but a few. Usually the
quality of a model is measured in terms of accuracy, however, accurate uncer-
tainty estimation is also crucial for real-life decision-making applications, such as
self-driving systems and medical diagnostic. Despite high accuracy rate, DNNs
are prone to overconfidence even on out-of-domain data.

The Bayesian framework lends itself well to uncertainty estimation [8], but
exact Bayesian inference is intractable for large models such as DNNs. To address
this issue, a number of approximation inference techniques have been proposed
recently [11,3]. It has been shown that Dropout, a well-known regularization
technique [10], can be treated as a special case of stochastic variational inference
[5,9]. Also [1] showed that stochasticity induced by Dropout can provide well-
calibrated uncertainty estimation for DNNs. Multiplicative Normalizing Flows

[7] is another approximation technique that produces great uncertainty estima-
tion. However, such complex method is hard to scale to very deep convolutional
architectures. Moreover, recently proposed Residual Network [2] with more than
a hundred layers does not have any noise inducing layers such as Dropout. This
type of layer leads to a significant accuracy degradation [2]. This problem can
be addressed by non-Bayesian Deep Ensembles method [6], which provides com-
petitive uncertainty estimation, but it requires to store several separate models
and perform forward passes through all of them to make prediction.

Batch Normalization [4] is an essential part of very deep convolutional archi-
tectures. In our work, we treat Batch Normalization as a stochastic layer and
propose a way to ensemble batch-normalized networks. The straightforward tech-
nique, however, ends up with high memory and computational cost. We, there-
fore, propose Stochastic Batch Normalization (SBN) — an efficient and scalable
approximation technique. We show the performance of our method on out-of-
domain uncertainty estimation problem for deep convolutional architectures in-
cluding VGG-like, ResNet and LeNet-5 on MNIST and CIFAR10 datasets. We
also demonstrate that SBN successfully extends Dropout and Deep Ensembles
methods.

2 Method

We consider a supervised learning problem, with a datasetD = {(xi, yi)}Ni=1. The
goal is to train the parameters θ of the predictive likelihood pθ(y |x), modelled
by a neural network. To solve this problem stochastic optimization methods with
a mini-batch gradient estimator usually are used.

Batch Normalization Batch Normalization attempts to preserve activa-
tions of all layers with zero mean and unit variance. In order to do that it uses
the mean µ(B) and variance σ2(B) over the mini-batch B during training and
accumulated statistics on the inference phase:

BNtrain
γ,β (xi) =

xi − µ(B)√
σ2(B) + ε

· γ + β BNtest
γ,β (xi) =

xi − µ̂√
σ̂2 + ε

· γ + β (1)

where γ, β are the trainable Batch Normalization parameters (scale and shift)
and ε is a small constant, needed for numerical stability. Note that during train-
ing mean and variance are computed over a randomly picked batch (µ(B), σ(B)),
while during testing the exponentially smoothed statistics (µ̂, σ̂2) are used. We
further address this inconsistency by proposed probabilistic model.

Batch Normalization: Probabilistic View Note from (1) that forward
pass through the batch-normalized network depends not only on xi but on the
entire batch B as well. This dependency can be reinterpreted in terms of mini-
batch statistics µ(B), σ(B):

pθ(yi |xi,B\i) = pθ(yi|xi, µ(B), σ(B)), (2)

where B\i is a batch without xi. Due to the stochastic choice of mini-batches dur-
ing training, for a fixed xi B\i is a random variable, so mini-batch statistics can
be treated as a random variables. The conditional distribution pθ(µ, σ |xi,B\i)
is the product of two Dirac delta functions, centered at µ(B) and σ(B), since
statistics are deterministic functions of the mini-batch, and the distribution of
mean and variance given xi is an expectation over mini-batch distribution. Dur-
ing inference we average the distribution pθ(y|x, µ, σ2) over the normalization
statistics:

pθ(µ, σ|xi) = EB\i δµ(B)(µ)δσ(B)(σ) pθ(y|x) = Epθ(µ,σ|x)p(y|x, µ, σ) (3)

Connection to Batch Normalization In Sec. 3 we show that during
training Batch Normalization (1) performs the unbiased one-sample MC esti-
mation of a gradient of a lower bound to the marginal likelihood (3). Thus, such
probabilistic model corresponds to Batch Normalization during training. How-
ever, on test phase Batch Normalization uses exponentially smoothed statistics
Eµ ≈ µ̂,Eσ ≈ σ̂, which can be seen as a biased approximation of (3):

Epθ(µ,σ|xi)p(yi|xi, µ, σ) ≈ pθ(y|x,Eµ,Eσ)

Straightforward MC averaging can be used for better unbiased estimation
of (3), however, it is inefficient in practie. Indeed, to draw one sample from the
distribution over statistics (3) we need to pass an entire mini-batch through the
network. So, to make MC averaging for single test object, we need to perform
several forward passes with different mini-batches sampled from the training
data. To address this drawback we propose Stochastic Batch Normalization.

Stochastic Batch Normalization To address memory and computational
cost of straightforward MC estimation, we propose to approximate the distribu-
tion of Batch Normalization statistics pθ(µ, σ |xi) with a fully-factorized para-
metric approximation pθ(µ, σ |xi) ≈ r(µ)r(σ). We parameterize r(µ) and r(σ)
in the following way:

r(µ) = N (µ|mµ, s
2
µ) r(σ) = LogN (σ|mσ, s

2
σ) (4)

Such approximation works well in practice. In Sec. 4 we show that it ac-
curately fits the real marginals. Since approximation no longer depends on the
training data, samples for each layer can be computed without passing the entire
batch through the network and it is possible to make prediction in an efficient
way.

To adjust parameters {mµ, sµ,mσ, sσ} we minimize the KL-divergence be-
tween distribution induced by Batch Normalization (3) and our approximation
r(µ)r(σ) for each object:

DKL

(
1/N
∑N
i=1pθ(µ, σ |xi)

∣∣∣∣ r(µ)r(σ)
)
−→ min

mµ,sµ,mσ,sσ

Since r belongs to the exponential family, this minimization problem is equal
to moment matching and does not require gradients computation. In our imple-
mentation we simply use exponential smoothing to approximate the sufficient

statistics of mean and variance distributions. It can be done for any pre-trained
batch-normalized network.

3 Lower bound on marginal log-likelihood

In Sec. 2 we propose the probabilistic view on Batch Normalization which models
marginal likelihood pθ(y|x). In this section we show that conventional Batch
Normalization actually optimizes a lower bound on marginal log-likelihood in
such probabilistic model. So the goal is to train the model parameters θ given
training dataset D = {(xi, yi)}Ni=1. Using Maximum Likelihood approach we
need to maximize the following objective L(θ):

L(θ) =

N∑
i=1

log pθ(yi|xi) =

N∑
i=1

logEµ,σ∼pθ(µ,σ|xi) pθ(yi|xi, µ, σ) (5)

However, the term logEµ,σ pθ(yi|xi, µ, σ) is intractable due to the expectation
over statistics. We, therefore, construct a lower bound of L(θ) using the Jensen-
Shannon inequality:

LBN(θ) =

N∑
i=1

Eµ,σ log pθ(yi|xi, µ, σ) ≤
N∑
i=1

logEµ,σ pθ(yi|xi, µ, σ) = L(θ) (6)

To use gradient-based optimization methods we need to compute gradient
of LBN(θ) w.r.t. parameters θ. Unfortunately, distribution over µ, σ depends
on θ and, therefore, we cannot propagate gradient through the expectation.
However, we can use the definition of pθ(µ, σ|xi) from Eq. (3) and reparametrize
expectation in terms of mini-batch distribution:

Eµ,σ log pθ(yi|xi, µ, σ) =

∫
pθ(µ, σ|xi) log pθ(yi|xi, µ, σ)dµdσ

=

∫ (∫
δµ(B)(µ)δσ(B)(σ)p(B\i)dB\i

)
log pθ(yi|xi, µ, σ)dµdσ

=

∫ (∫
δµ(B)(µ)δσ(B)(σ) log pθ(yi|xi, µ, σ)dµdσ

)
p(B\i)dB\i

=

∫
log pθ(yi|xi, µ(B), σ(B))p(B\i)dB\i

= EB\i log pθ(yi|xi, µ(B), σ(B))

Since distribution over mini-batches does not depend on θ, we now can prop-
agate the gradient through the expectation and use MC approximation for an
unbiased estimation. During training Batch Normalization draws mini-batch B
of size M and approximate the full gradient ∇LBN(θ) in the following way:

∇L̂BN(θ) =
N

M

M∑
i=1

∇ log pθ(yi|xi, µ(B))

Note that Batch Normalization uses the same mini-batch B to calculate
statistics as for gradient estimation. Taking an expectation over mini-batch B,
we can actually see that such procedure performs an unbiased estimation of
∇L(θ):

EB∇L̂BN(θ) =
N

M

M∑
i=1

∇EB log pθ(yi|xi, µ(B))

= N · ∇EB log pθ(yi|xi, µ(B), σ(B))

= N · ∇ExiEB\i log pθ(yi|xi, µ(B), σ(B))

= ∇
N∑
i=1

EB\i log pθ(yi|xi, µ(B), σ(B))

= ∇LBN(θ)

So Batch Normalization produces an unbiased gradient estimation of ∇L(θ)
during training and can be seen as an approximation for inference in proposed
probabilistic model.

4 Statistics distribution approximation

(a) Distributions for LeNet-5 conv1 (b) Distributions for LeNet-5 conv2

Fig. 1: The empirical marginal distribution over statistics (blue) for convolu-
tional LeNet-5 layers and proposed approximation (green). Top row for mean
distribution and bottom for variance.

For computational and memory efficiency we propose the following approx-
imation for the real distribution over the batch statistics, induced by Batch
Normalization:

r(µ) = N (µ|mµ, s
2
µ) r(σ) = LogN (σ|mσ, s

2
σ) (7)

According to our observation, the real distributions are unimodal Fig 1. Also
the Central Limit Theorem implies that the means converge in distributions to
Gaussians, therefore we model this distribution using a fully-factorized Gaussian.

Fig. 2: The empirical marginal distribution over statistics (blue) for fully-
connected LeNet-5 layer and the proposed approximation (green). Top row cor-
responds to the means, and the bottom row corresponds to the variances.

While the common choice for the variance is Gamma distribution, we choose the
log-normal distribution, as it allows for a more tractable moment-matching. Also
as we show in Figures 1 and 2, the log-normal distribution fits the data well.

To verify the right choice of parametric family we estimate an empirical
marginal distributions over µ and σ2 for LeNet-5 architecture on MNIST dataset.
To sample statistics from the real distribution we pass different mini-batches
from training data through the network. We use Kernel Density Estimation to
plot the empirical distribution. The results for convolutional and fully-connected
layers of LeNet-5 can be seen in Fig. 1 and 2. It can be seen that the approxi-
mation (7) fits the real marginal distributions over µ, σ accurately.

5 Experiments

Table 1: Test errors (%) and NLL scores for known classes. MNIST for LeNet-5
and CIFAR5 for VGG-11 and ResNet-18. SBN column correspond to methods
with all Batch Normalization layers replaced by ours SBN.

Network Method
Error% NLL

No SBN SBN No SBN SBN

LeNet-5
MNIST

SBN — 0.53 ± 0.05 — 0.025 ± 0.003
Deep Ensembles 0.43 ± 0.00 0.43 ± 0.00 0.015 ± 0.001 0.014 ± 0.001
Dropout 0.51 ± 0.00 0.49 ± 0.00 0.016 ± 0.000 0.015 ± 0.000

VGG-11
CIFAR5

SBN — 5.76 ± 0.00 — 0.302 ± 0.002
Deep Ensembles 5.18 ± 0.00 5.23 ± 0.00 0.177 ± 0.004 0.154 ± 0.002
Dropout 5.32 ± 0.00 5.38 ± 0.00 0.155 ± 0.001 0.149 ± 0.001

ResNet-18
CIFAR5

SBN — 4.35 ± 0.17 — 0.255 ± 0.018
Deep Ensembles 3.37 ± 0.00 3.34 ± 0.00 0.138 ± 0.005 0.110 ± 0.004

We evaluate uncertainties on MNIST and CIFAR10 datasets using convolu-
tional architectures. In order to apply Stochastic Batch Normalization to existing
architectures we only need to update parameters of our approximation r(µ), r(σ)
(4), which does not affect the training process at all. We show that SBN improves

both Dropout and Deep Ensembles techniques in terms of out-of-domain uncer-
tainty and test Negative Log-Likelihood (NLL), and maintains the same level of
accuracy

Experimental Setup We compare our method with Dropout and Deep En-
sembles. Since [2] showed that ResNet does not perform well with any Dropout
layer and suffers from instability, we did not include this method into consider-
ation for ResNet architecture. For Deep Ensembles we trained 6 models for all
architectures and did not use adversarial training (as suggested by [6]) since this
technique results in lower accuracy.

Fig. 3: Results for LeNet-5 on notMNIST. Empirical CDF of entropy for out-
of-domain data. SBN corresponds to model with all Batch Normalization layers
replaced by Stochastic Batch Normalization. The more to the right and the
lower, the better.

Uncertainty estimation on notMNIST For this experiment we trained
LeNet-5 model on MNIST and evaluated the entropy of the predictive distri-
bution on notMNIST, which is out-of-domain data for MNIST, and plot the
empirical CDF on Fig. 3. We also report the test set accuracy and NLL scores,
the results can be seen at Table 1.

Uncertainty estimation on CIFAR10 To show that our method scales to
deep convolutional architectures well, we perform experiments on VGG-like and
ResNet architectures. We split CIFAR10 dataset into two datasets (CIFAR5),
and plot the empirical CDF in Fig. 4. We trained networks on randomly chosen
5 classes and evaluated predictive uncertainty on the remaining.

We observed that Stochastic Batch Normalization improves both Dropout
and Deep Ensembles in terms of out-of-domain uncertainties and NLL score on
test data (from the same domain) at the same level of accuracy. However, SBN
itself ends up with the more overconfident predictive distribution in comparison
to baselines Dropout and Deep Ensembles.

(a) Results for VGG-11

(b) Results for ResNet-18

Fig. 4: Empirical CDF of entropy for out-of-domain data. a VGG-11 and b
ResNet-18 on five classes of CIFAR10, hidden during training. SBN corresponds
to model with all Batch Normalization layers replaced by Stochastic Batch Nor-
malization. The more to the right and the lower, the better.

6 Conclusion

In this paper, we propose a probabilistic interpretation of Batch Normalization
technique. We study a probabilistic point of view and design a new algorithm
that behaves consistently during training and test stages. We compare the per-
formance of the proposed algorithm with concurrent techniques on image clas-
sification and uncertainty estimation tasks.

Acknowledgments This research is in part based on the work supported by
Samsung Research, Samsung Electronics.

References

1. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. arXiv:1506.02142 (2015)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

3. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference.
Journal of Machine Learning Research 14, 1303–1347 (2013)

4. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015)

5. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local repa-
rameterization trick. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp.
2575–2583. Curran Associates, Inc. (2015)

6. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 30, pp. 6405–6416. Curran Associates, Inc.
(2017)

7. Louizos, C., Welling, M.: Multiplicative normalizing flows for variational bayesian
neural networks. In: Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. pp. 2218–2227
(2017)

8. MacKay, D.J.C.: A practical bayesian framework for backprop-
agation networks. Neural Comput. 4(3), 448–472 (May 1992).
https://doi.org/10.1162/neco.1992.4.3.448

9. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural
networks. arXiv preprint arXiv:1701.05369 (2017)

10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (Jan 2014)

11. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynam-
ics. In: Getoor, L., Scheffer, T. (eds.) ICML. pp. 681–688. Omnipress (2011)

https://doi.org/10.1162/neco.1992.4.3.448

	Uncertainty Estimation via Stochastic Batch Normalization
	Introduction
	Method
	Lower bound on marginal log-likelihood
	Statistics distribution approximation
	Experiments
	Conclusion

