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Abstract: In the context of electricity demand response, an important task is to generate
accurate forecasts of energy loads for groups of households as well as individual consumers. We
consider the problem of short-term (one-day-ahead) forecasting of the electricity consumption
load of a residential building. In order to generate such forecasts, historical energy consumption
data are used, presented in the form of a time series with a fixed time step. In this paper, we
first review existing (one-day-ahead) forecasting methodologies including: a) naive persistence
models, b) autoregressive-based models (e.g., AR and SARIMA), c) triple exponential smoothing
(Holt-Winters) model, and d) combinations of naive persistence and auto-regressive-based
models (PAR). We then introduce a novel forecasting methodology, namely seasonal persistence-
based regressive model (SPR) that optimally selects between lower- and higher-frequency
persistence and temporal dependencies that are specific to the residential electricity load
profiles. Given that the proposed forecasting method equivalently translates into a regression
optimization problem, recursive-least-squares is utilized to train the model in a computationally
efficient manner. Finally, we demonstrate through simulations the forecasting accuracy of this
method in comparison with the standard forecasting techniques (a)-(d).

Keywords: demand response, electricity consumption, short term load forecasting, persistence
models, autoregressive models, Holt-Winters model.

1. INTRODUCTION

Recently, electricity markets’ operators and policy mak-
ers have been looking on alternative ways for motivating
prosumers to participate in demand-response mechanisms.
Increasing the percentage of renewables’ integration could
significantly reduce the electricity price and costs of pro-
duction. For example, marketing energy flexibility over the
next day (e.g., in the day-ahead or intra-day spot electric-
ity markets) is one indirect form of such demand-response
services that can increase the participation of residential
prosumers in exchange of a reduced tariff, Xu et al. (2016);
Chasparis et al. (2019). However, the performance of such
day-ahead optimization relies heavily upon the accuracy of
several forecast quantities, including forecasts of the load
profile, price, and Photovoltaic (PV) generation.

In this paper, we are addressing the problem of electricity
load forecasting. As a general rule, the forecast of the elec-
tricity load consumption will be based upon prior available
measurements recorded at regular time intervals.The type
and duration of the forecasts may vary Hong and Fan
(2016), ranging from one hour ahead up to one day ahead,
usually referred to as Short Term Load Forecasting (STLF)
methods Alfares and Mohammad (2002).
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In addition, aggregate forecasts over multiple households
can usually be constructed with high accuracy. However, in
case of individual level STLF, accuracy may considerably
decrease, Haben et al. (2019). Such degradation may be
attributed to rapid changes in residents’/users’ behavior.
In addition, forecasts are often requested in a fine granu-
larity (e.g., of 15-min intervals) which creates additional
challenges in maintaining high prediction accuracy.

Given the involved challenges in establishing accurate
electricity-load forecasts over a short-term time horizon
(of at least one-day ahead), this paper first investigates
standard (black-box) forecasting methodologies as well as
naive (persistence) models. Our intention is to evaluate
the accuracy level that such well-known forecasting models
can generate in a short-term time horizon. Furthermore,
we propose a family of regression models that are specif-
ically tailored for electricity-load forecasting in residen-
tial buildings and perform a comparative analysis with
standard forecasting models. Similarly to expert-based
learning Cesa-Bianchi and Lugosi (2006), our goal is to
integrate persistence-based features as well auto-regressive
features in a single model, and optimally determine their
relative influence in generating forecasts. We demonstrate,
using real-world data, that the proposed models signifi-
cantly outperform standard black-box models and naive
persistence models.



The remainder of this paper is organized as follows. In
Section 2, we discuss related work and the main contri-
butions of this paper. Section 3 presents standard and
black-box models for electricity load forecasting, such as
persistence, Holt-Winters and SARIMA models. In Sec-
tion 4, we present a new class of load forecasting regres-
sion models which are specifically tailored to the problem
of load forecasting, namely the Persistence-based Auto-
Regressive (PAR) model and the Seasonal Persistence-
based Regressive (SPR) model. In both cases, the model
tries to compute the relative importance between lower-
and higher-frequency persistence and temporal features.
Section 5 evaluates the performance of PAR and SPR
models and compares them with the standard forecast-
ing models of Section 3 using real-world data from two
residential buildings.

Notation and abbreviations

d day index
t time index

yd(t) electricity load at time interval t of day d
ŷd(t) forecast of electricity load at time interval t of

day d
AR Auto-regressive model

CLD “Copy-last-days” persistence model
HW Holt-Winters model

N-day persistence model of N previous days
PAR Persistence-based auto-regressive model
PM Persistence model
PV Photovoltaic

SPR Seasonal persistence-based regressive model
STLF Short Term Load Forecasting

RMSE Root-mean squared error

2. RELATED WORK AND CONTRIBUTION

2.1 Related work

There are many popular forecasting methods in the liter-
ature which can mainly be classified into three groups:

• black-box standard models;
• models specifically tailored for STLF;
• optimally combining models for STLF.

The first group can be represented by standard averaging
techniques and auto-regressive models. For example, refer-
ences Haben et al. (2014); Kychkin (2016) discuss simple
models that calculate average day ahead values for energy
consumption based on previous days. The auto-regressive-
based models (AR/ARMA/ARIMA/SARIMA) discussed
in Haben et al. (2019); Clements et al. (2016) and the expo-
nential smoothing approach, like the Holt-Winters method
Alfares and Mohammad (2002), has been extensively used
for electricity load forecasting as well as other applications
Akpinar and Yumusak (2016). Furthermore, the SARIMA
and Holt-Winters method are more efficient if the data
has seasonality, like day or week seasons in the electricity
consumption. Such methods can also be used for long term
load forecasting.

The second group includes STLF models specifically tai-
lored for load forecasting. In particular, Cancelo et al.
(2008) shows an STLF realization of the Spanish system

operator and describes the influence of weather data in
the load predictions. Regression analysis, as a tool for
estimating the relative importance of the features, has also
been used for STLF in the literature, e.g., Hong et al.
(2010). A set of relevant features can be extracted from the
time series of energy data that is described in references
Christ et al. (2017) and Christ et al. (2018). These papers
also demonstrate the time series data attribute selection
problem and describe a feature extraction algorithm. Ref-
erence Kychkin and Mikriukov (2016) proposes a method
for analysing the building multi-sectional lighting and cli-
mate control/conditioning energy consumption data with
linear regression models. Alternatively, artificial neural
networks are also quite popular in STLF applications,
including the references Haben et al. (2019); Chitsaz et al.
(2015); Hippert et al. (2005). Moreover, fuzzy logic and
knowledge-based models can be also used as in Alfares
and Mohammad (2002).

The third group of forecasting methods optimally com-
bines several other reference/basis models. For example,
Chen et al. (2004) introduces a Wavelet-ARMAX-Winters
methodology that incorporates three modeling strategies:
ARMAX models, trigonometric regressions sensitive to
seasonality effects and Holt-Winters model. In reference
Ye and Dai (2018) authors propose a hybrid time series
forecasting algorithm based on transfer learning, namely
Online Sequential Extreme Learning Machine that com-
bines Kernels and ensemble learning. In case of such com-
binations it is important to adaptively update relative im-
portance (or weights) of the reference/basis models. Ref-
erence Soares and Medeiros (2008) describes the two-level
Seasonal Autoregressive model (TLSAR), that combines
calculations for potential and irregular load, and Dummy-
Adjusted SARIMA, which modifies the standard SARIMA
model by using dummy variables of the day type. These
methods demonstrate better forecasting performance than
neural-networks-based models but they were tested only
for aggregate energy data. Finally, reference Hippert et al.
(2005) describes combinations of naive, smoothing and re-
gression models in comparison with Large neural networks,
which show better accuracy on the test data set.

In summary, methods from the first group (i.e., standard
averaging techniques and auto-regressive models) try to
smooth data and as a result cannot predict load with
irregular peaks. On the other hand, the second group (i.e.,
models specifically tailored for load forecasting) helps to
identify hidden patterns in the day consumption and can
detect load peaks. Some of these models can also identify
nonlinear dependencies in the energy data (as in neural-
network models), but they usually require larger training
times and data sets in comparison with linear regression
approaches. Finally, the models of the third group (i.e.,
combinations of other reference/basis models) appear to
have the largest potential by combining basis models and
adapting their relative importance (or weights). However,
such adaptation usually increases computational complex-
ity.

2.2 Contribution

One of the greatest challenges of STLF design is the uncer-
tainty involved even within the relatively short horizon of



one day ahead, primarily due to the stochastic patterns
with which residents use electrical equipment. However
random the behavior of the residents might be, there are
certain “persistence” factors that tend to prevail. In this
work, we intend to capture such multi-faceted persistence
factors and identify their relevant importance. To this
end, we try to identify factors/features that are quite
specific to the electricity load in residential buildings, in
order to minimize the uncertainty involved. We show that
such load-specific design can have significant advantages in
comparison with standard black-box models, such as auto-
regressive-based, SARIMA and Holt-Winters models.

In parallel, we would like to invest on methodologies that
are computationally efficient, in order to avoid the assump-
tions of large data sets and/or large training times. Note
that such assumptions are common for seasonal-based
models, such as SARIMA and Holt-Winters, as well as
for artificial neural-network models. Instead, we focus our
design approach on regression-based architectures where
training can be performed on small data sets and even re-
cursively, e.g., using recursive least squares. This increases
considerably the efficiency of the implementation, given
that the forecast granularity may be rather fine (every
15min or lower).

Furthermore, the use of regression-based models serves as
an optimization criterion for optimal combining forecasts
from different models, in the spirit of expert-based learn-
ing of Cesa-Bianchi and Lugosi (2006). Such framework
reduces considerably the uncertainty involved with respect
to the inability of some forecasting models to continuously
provide accurate forecasts (e.g., due to changes in the
operating conditions). In addition, it provides the relative
significance of the basis models or features which is also
valuable for the interpretability of the derived models.

3. STANDARD FORECASTING MODELS

3.1 Framework

Let us assume that we have measured the electricity load
consumption of a household over the duration of d−1 > 0
days, and measurements have been collected with a period
of 15min. As a result, in each such day, we have available
96 sequential load measurements, and each measurement
at time instance t represents the total electricity load
consumption during the last 15min interval. Using the
available measurements over all previous d − 1 days, we
would like to predict the load consumption over the next
day d (day-ahead forecast) and with the fine granularity of
15min intervals.

In the following subsections, we present several classes of
standard or black-box forecasting models that have been
used for the formulation of such day-ahead forecasts.

3.2 Persistence models

Persistence forecasting models are usually utilized to es-
tablish reference (baseline) models which can then be used
for comparison tests. It is beneficial in many cases to know
whether a developed forecasting model can provide better
predictions than a baseline model. Persistence models are
among the most trivial ones and they are based on the

principle that “things stay the same”, i.e., the forecast is
always equal to the last known data point.

According to Notton and Voyant (2018), a persistence
model would assume that the electricity load at time t+ 1
is equal to the load at time t. However, how exactly time
instances t + 1 and t should be defined? Given that we
are interested in a day-ahead forecast and with 15min
granularity, a persistence model that assumes that the
load remains constant over the next day and equal to the
current one would most likely fail. Instead, a persistence
model would be more accurate if it assumes that the
electricity load at time t of day d (briefly (t, d)) would
be the same with the corresponding load at the same time
t on the previous day d − 1 or on the previous same day
d − 7. An additional variation of such model would also
consider more than one previous days (e.g., the average
consumption at the same time on N previous days).

More formally, let yd(t) denote the electricity load of a
household at time instance t on day d. Then, the 1-day
persistence model assumes that

ŷPM
d (t) = yd−1(t).

Analogously, we can define the N-day persistence
model (or briefly N-day) as follows

ŷPM
d (t) =

1

N

d−1∑
i=d−N

yi(t). (1)

In other words, the N -day persistence model takes an
average of the load of N previous days and at exactly the
same time.

Since electricity load is highly correlated with the resi-
dents’ presence in a household (i.e., with the residents’
schedule), we can further improve the above N-day per-
sistence model by only considering the N previous same
days. Informally, if d corresponds to a “Monday”, then to
establish our forecast for time t, we need to create the av-
erage load at the same time on the most recent N previous
Mondays. We will refer to this model as copy-last-days
persistence model (or briefly CLD), according to which
the forecasts are computed as follows:

ŷPM
d (t) =

1

N

d−7∑
i=d−7N

yi(t). (2)

3.3 Auto-regressive model

As we have seen in the previous subsection, the persistence
models discussed try to capture temporal dependencies
whose frequency extends over multiple days or weeks (due
to, e.g., similarities in the schedule of the residents on
similar days). We will refer to such dependencies as low-
frequency temporal dependencies.

However, there might also be temporal dependencies of
the electricity load within the same day. Informally, it is
highly likely that the load measured at time interval t
depends on the load measured at the previous time interval
t − 1 of the same day. We will refer to such temporal
dependencies of the non-flexible load as high-frequency
temporal dependencies.



Auto-regressive forecasting models can be used to capture
such (high-frequency) temporal dependencies of the load
within the same calendar day. Possibly the simplest such
model is the Auto-Regressive model (briefly AR model),
according to which the prediction of the load at time t is
given by a linear combination of the load at previous time
instances. In particular, we have

ŷAR
d (t) = a1 · yd(t− 1) + · · ·+ an · yd(t− n), (3)

which results from a maximum-a-posteriori predictor of an
original white-noise perturbed process, cf., (Ljung, 1999,
Chapter 4).

In case we would like to create predictions over several
time instances ahead (e.g., one day ahead), then we
can implement a variation of the above model, usually
referred to as pseudo-regression model, which takes on the
following form:

ŷAR
d (t) = a1 · ŷAR

d (t− 1) + · · ·+ an · ŷAR
d (t− n) (4)

In other words, if the non-flexible load at time t − j,
j = 1, , n, is not known, it is replaced by the available
prediction at that time instance.

Note that alternative auto-regressive-based models can
be defined. For example, models that also incorporate
moving-average (MA) noise terms are commonly used,
which try to capture the effects of low-frequency pertur-
bation terms in the profile.

One of the main drawbacks of such methodologies is the
fact that are more appropriate for predictions in the range
of only a few hours ahead. In fact, it is straightforward
to see that even small prediction errors in one-step ahead
predictions can propagate in an unpredictable way when
formulating future predictions that extend over one day
ahead.

3.4 Triple exponential smoothing (Holt-Winters) model

Contrary to the previous models, the Holt-Winters model
tries to capture seasonal phenomena as well as temporal
trends. The seasonal component in the model will explain
the repeated fluctuations, and it will be characterized by
the length of the season, which is the period after which
the repetition of the oscillations begins, Szmit et al. (2012).
For each observation in the season, its own component
is formed. In our data the length of the season is set to
96×7 (where 96 corresponds to the daily seasonality; and
7 corresponds to the weekly seasonality), which results in
672 seasonal components, one for each 15 minute interval
in a day of the week. In particular, the future estimate of a
quantity y at time t, according to the Holt-Winters model,
is given by:

ŷHW
d (t) = L(t− k) + kP (t− k) + S(t− T ) (5)

where L(t) is the level component, given by

L(t) =

α(y(t)− S(t− T )) + (1− α)(L(t− 1) + P (t− 1)), (6)

P (t) is the trend component, given by

P (t) = β(L(t)− L(t− 1)) + (1− β)P (t− 1), (7)

and S(t) is season component, given by

S(t) = γ(y(t)− L(t)) + (1− γ)S(t− T ). (8)

We have used the following notation: k is the forecast-
ing range k=96, y(t) is the real (measured) value of the
electricity load at time t, T is the time series period, α
is the data smoothing factor, β is the trend smoothing
factor, and γ is the seasonal change smoothing factor.
Furthermore, α, β, γ ∈ (0, 1). In the case of creating
sequential forecasts, then y(t) is replaced by the corre-
sponding estimate at the same time.

In the above model, the level component tries to capture a
baseline load level (or reference), while the trend compo-
nent approximates (through a low-pass filter) how the level
component varies with time (within a few days). Finally,
the season component tries to capture lower frequency de-
pendencies (over longer periods of time). Thus, overall the
Holt-Winters model can be thought of as a combination of
both high- and low-frequency temporal dependencies.

To train this model, we use the root-mean squared error
(RMSE) as the loss function, which measures the quality
of the fitting to the train data set. Then, we evaluate
the cross-validation value of the loss function using the
α, β, γ parameters of the model, and then we change
the parameters in accordance to its gradient. Since there
is a constraint on the values of the smoothing param-
eters, which should remain within (0, 1), we implement
the truncated Newton conjugate gradient to update the
parameters.

3.5 Seasonal auto-regressive integrated moving average
(SARIMA) model

The ARIMA model (Auto-Regressive Integrated Moving
Average) is one of the most common methods for analyzing
and forecasting time series. It is an extension of ARMA
models for non-stationary time series, which can be made
stationary by taking differences (of some order) from the
original time series. ARIMA uses three main parameters
(p, d, q), which are expressed as integers. These three pa-
rameters together take into account seasonality, tendency,
and noise in the data sets. In particular,

• p is the auto-regressive order, which allows to incor-
porate previous values of the time series;

• d is the order of integration, which allows to incorpo-
rate previous differences of the time series; and

• q is the order of the moving average, which allows
for setting the model error as a linear combination of
previously observed error values.

The main disadvantage of this model is that it does not
support seasonal time series, which makes it impossible
to use it to predict time series of energy consumption,
characterized by strong seasonality, as in case of one day
or one week seasons.

A variation of the ARIMA model, namely SARIMA can
be used instead to also track seasonality. In this model, the
parameters (p, d, q) are considered as the non-seasonal pa-
rameters, that remain the same as above. Additionally to
these parameters, we also introduce parameters (P,D,Q)
which are defined similarly to (p, d, q), but apply instead



to the seasonal component of the time series. Finally,
parameter S describes the period of the season in the time
series (96 if the season corresponds to one day, 7×96 if the
season corresponds to one week, etc., where 96 refers to
the granularity of sensor data within one day). Similarly
to the Holt-Winters model, this is also a black-box model
that captures the seasonal effects and it will be used in
order to better evaluate the performance of the derived
auto-regressive-based forecasting models.

The selection of the parameters (p, d, q)(P,D,Q)S was
based upon the recommendations presented in Akpinar
and Yumusak (2016). Therein, it is recommended that
the conditions d + D ≤ 2, P + Q ≤ 2 should be
satisfied. In order to compute the most appropriate set
of parameters, we first created an enumeration of the
model parameters, which were then compared by using
the Akaike information criterion (AIC). This process led
to the following SARIMA parameters: (1,1,1)(1,1,1)96.

4. PERSISTENT-BASED REGRESSIVE MODELS

In this section, we introduce two classes of persistence-
based models which try to integrate either multiple mod-
els, as in persistence-based auto-regressive model (PAR),
or a large number of persistence parameters that better
try to capture seasonal phenomena, as in the seasonal
persistence-based regressive model (SPR). In the following
subsections, we present the details of these models.

All models in this section have been trained by setting up
a linear regression optimization problem, which was itera-
tively solved using the Recursive Least Squares algorithms,
cf., Sayed (2003).

4.1 Persistence-based auto-regressive (PAR) model

As we have discussed above, the persistence models can
capture low-frequency temporal dependencies in the load
profile (extending over multiple days or weeks), while auto-
regressive models can capture high-frequency temporal de-
pendencies (within the same calendar day). Furthermore,
auto-regressive type of models can work well only within a
short-term future horizon of a few hours. For this reason,
in this subsection, we would like to also consider the pos-
sibility of an optimal combination between the two types
of models. In principle, this idea fits well to the expert-
based forecasting methods discussed in Cesa-Bianchi and
Lugosi (2006) and transfer learning methodologies, such
as Grubinger et al. (2017).

Briefly, such an optimal combination of the two forecasting
methods assumes a combined prediction of the form:

ŷPAR
d (t|a1, ..., an, b0) =

a1 · ŷAR
d (t− 1) + · · ·+ an · ŷAR

d (t− n) + b0 · ŷPM
d (t)(9)

In this case, we would like to compute the new set of
weights a1, a2, ..., an, b0 that corresponds to the optimal
combination of the high-frequency temporal dependencies
(captured by the auto-regressive terms) and the low-
frequency temporal or seasonal dependencies (captured by
the last persistence term).

4.2 Seasonal persistence-based regressive (SPR) model

Standard persistence models formulate forecasts through
averaging of the load consumption during the same time
intervals on previous days. The main assumption lies
on the fact that residents/users behave almost the same
during the same time of each day. However, when forecasts
are requested with the fine granularity of 15min intervals,
even small modifications in the schedule of the users may
have a significant impact on the forecast accuracy. For
example, a half-hour difference in the time a morning
schedule is executed will result in large prediction errors
on the following day.

For this reason, we would like to create models that are
more robust to such small variations in the users’ schedule.
For example, instead of using the load consumption on
the same 15min interval on the previous day, we may use
the average load consumption over a larger time window
on the previous day (e.g., one-hour window). In this
way, we may better capture persistence in the schedule
of the users even with small variations in its execution
times. Furthermore, the total energy consumption could be
another persistence factor that can reduce the uncertainty
of the forecasts. For example, note that, although the
execution of a day’s schedule may slightly vary, usually
people consume roughly about the same energy every day.

To this end, we introduced a set of persistence factors that
try to reduce the level of uncertainty involved due to small
variations in the schedule of the users. In particular, the
set of factors considered are the following ones:

• L, electricity load;
• rs, rolling sum of the electricity load within one hour

time-window (four 15-min intervals);
• d, flag (integer variable) of the type of day (e.g.,

business day versus weekend);
• Lh, the total energy consumption within one hour

time-window (four 15-min intervals);
• Ld - percentage of the current 15min-interval’s energy

consumption over the average total energy consump-
tion in one day;

• DLh - difference in hourly energy consumption within
the last two hours;

• LC - low energy consumption flag (boolean variable),
when the total load is less than 20 percent of the mean
load consumption value during one day;

• PC - high energy consumption flag (boolean vari-
able), when the total load is more than 150 percent
of the mean load consumption value during one day.

Using these persistence factors, we defined a linear regres-
sion model using the features depicted in Table 1.

Table 1. Energy data features for different days

Short name Target day Previous day Day one week ago

L - w0 w1

rs - w2 w3

d w4 - -
Lh - w5 w6

Ld - w7 w8

DLh - w9 w10

LC - w11 w12

PC - w13 w14



5. EVALUATION

The RMSE metric was chosen for evaluating the perfor-
mance of the forecasting models. In Tables 2–3, we can see
the overall RMSE performances of the previously discussed
models, where we have used real load consumption data
from two buildings (Building A and Building B).

We have observed that the predictions of the two persis-
tence models of Section 3.2, namely the CLD model (which
uses three prior same days) and the N-day model (which
uses the average value over N = 10 previous consecutive
days), were often overestimating the electrical load. Also,
these models were not able to identify the main load peaks
during one day.

Table 2. RMSE of forecasting models for Build-
ing A’s electricity consumption

One day One week One month Half a year
Model 03-02-2017 01-02-2017 17-11-2016 16-11-2016

- 07-02-2017 16-12-2016 15-05-2017

CLD 124 122 116 126
N-day 123 118 107 115
HW 164 131 130 135

SARIMA 127 118 112 119
PAR 126 118 107 114
SPR 115 107 102 100

Table 3. RMSE of forecasting models for Build-
ing B ’s electricity consumption

One day One week One month Half a year
Model 22-10-2016 17-10-2016 01-10-2016 16-10-2016

- 23-10-2016 31-10-2016 15-04-2017

CLD 153 163 189 128
N-day 153 188 205 120
HW 380 289 284 138

SARIMA 211 141 163 117
PAR 174 121 159 110
SPR 103 65 82 69

The Holt-Winters model turned out to be very sensitive
to seasonality, while the performance was better when the
season corresponds to 1 week, as opposed to 1 day. How-
ever, almost all the predictions turned out to overestimate
the electricity load, which was probably caused by the
attempt of the model to track the seasonal trend. Despite
the changes in average daily energy consumption, there is
no seasonal trend in this series of data.

The SARIMA model tried to smooth out the profile
and practically did not predict single peaks or rapid
decreases of energy consumption during one day. It should
be noted that SARIMA very well described the night
mode of energy consumption, as well as the falling edge
of the load profile from 18:00 evening peak to 00:00 hours
approximately.

The combined PAR model significantly improves the prog-
nostic qualities of the separate persistence models. The
model was less likely to produce erroneous local peaks
and was very good at repeating some patterns in the load
profile, in particular, a slight increase in the electricity load
during the morning, specifically from 6:00 to 8:00 am.

Figure 1 depicts the forecast accuracy of PAR and SPR in
Building A and in comparison with the standard models

previously presented. Furthermore, in Tables 2–3, we see
that SPR performs significantly better than PAR, as well
as traditional HW and SARIMA methods. This difference
should be attributed to the fact that SPR utilizes a larger
family of persistence factors that significantly reduces the
impact of the users’ schedule uncertainty.

6. CONCLUSIONS AND FUTURE WORK

The proposed SPR forecasting model, which is specifically
tailored for load forecasting in residential buildings, and
integrates a large family of persistence factors, significantly
improved the forecasting accuracy, as compared to stan-
dard black-box models. In particular, we presented an ex-
tensive comparative analysis with Holt-Winters, SARIMA,
and Auto-Regressive-based models. The proposed SPR
model is also computationally efficiently, since it is based
on a linear regression and can be implemented recursively.
A potential drawback though is that it assumes a linear
dependence between predictors and features which might
be restrictive in energy data.

As a future work, we would like to also investigate the
further improvement that we could attain by also allowing
nonlinear dependencies in the SPR model. Also, the results
of this study can be used in the future to assess the quality
of load forecasts of more complex models obtained by
neural network integration using the ensemble technique.

The energy consumption in a building is mainly influenced
by human behavior. In the future, data related to user
management teams along with meteorological parameters
can be taken into account in forecasts. The energy pre-
diction system can be implemented for forecasting in the
day-ahead mode, as well as for forecasting in modes close
to soft real time.
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